research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and DFT calculations of (2′,6′-di­fluoro-2,3′-bi­pyridine-κN2)[2,6-di­fluoro-3-(pyridin-2-yl)phenyl-κ2C1,N3]methyl­platinum(II)

crossmark logo

aDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, and bDivision of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea
*Correspondence e-mail: kangy@kangwon.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 27 October 2022; accepted 1 November 2022; online 4 November 2022)

The title compound, [Pt(CH3)(C10H5F2N2)(C10H6F2N2)], displays a distorted cis-PtN2C2 square-planar geometry around the PtII ion consisting of the bidentate C,N chelating anion, a monodentate N-bonded neutral ligand and a methyl group. In the crystal, the mol­ecules are linked by C—H⋯F, C—H⋯N and C—H⋯π inter­actions. Time-dependent density functional theory (TD-DFT) at the B3LYP level with the 6–311++G(d,p) basis set was applied to optimize the ground-state geometry. The electronic properties, such as excitation energies and the HOMO–LUMO gap energies, were calculated and compared to related structures.

1. Chemical context

Over the past two decades, there has been considerable inter­est in the design of phospho­rescent IrIII and PtII complexes based on C,N-chelating ligands, especially 2′,6′-di­fluoro-2,3′-bi­pyridine (dfpypy) (Kang et al., 2022b[Kang, J., Moon, S.-H., Paek, S. & Kang, Y. (2022b). Can. J. Chem. In the press. https://doi.org/10.1139/cjc-2022-0093.],c[Kang, J., Zaen, R., Lee, J. H., Hwang, H., Park, K.-M., Kim, S. C., Lee, J. Y. & Kang, Y. (2022c). Chem. Eng. J. 431, 134249.]; Zaen et al., 2019[Zaen, R., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2019). Adv. Opt. Mater. 7, 1901387.]). Among them, heteroleptic PtII compounds show high thermal stability and photoluminescence quantum efficiency (PLQY). Both characteristics make them suitable for applications as organic light-emitting diodes (OLEDs) and organic lighting (Kang et al., 2021[Kang, J., Zaen, R., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2021). Adv. Opt. Mater. 9, 2101233.]; Lee et al., 2018[Lee, C., Zaen, R., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2018). Organometallics, 37, 4639-4647.]). Despite the many advantages of PtII complexes based on bi­pyridine ligands, there are some problems that need to be addressed. For example, a gradient efficiency roll-off often occurs at high current densities owing to intrinsic triplet–triplet exciton annihilation (Zhang et al., 2020[Zhang, H., Luo, Y., Yan, X., Cai, W., Zhao, A., Meng, Q. & Shen, W. (2020). Inorg. Chim. Acta, 501, 119269.]). To overcome this limitation, it is necessary to develop heavy transition-metal compounds with octa­hedral geometry. Therefore, PtIV complexes are highly desirable in OLED applications compared with those of their PtII analogues. However, reports on PtIV compounds based on C,N chelates are scarce, despite the compounds having similar geometries and electronic configurations to IrIII complexes. To make C,N-based PtIV octa­hedral complexes, the syntheses of PtII complexes are needed as inter­mediates at the first step (Juliá et al., 2016[Juliá, F., Bautista, D. & González-Herrero, P. (2016). Chem. Commun. 52, 1657-1660.]). However, the structures and photophysical properties of these PtII precursors are still scarce, which prompted us to determine the structure of a PtII complex bearing a C,N chelating dfpypy ligand and investigate its photophysical properties (Juliá & González-Herrero, 2016[Juliá, F. & González-Herrero, P. (2016). J. Am. Chem. Soc. 138, 5276-5282.]). Herein, we describe the results of our investigation regarding the structural characterization, photophysical properties, and TD–DFT calculations of the title dfpypy-based PtII compound.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. Of the two 2,3′-bipyridyl units, the N1-containing pyridine ring is slightly tilted by 3.08 (7)° to the N2-containing one, while the N3-containing pyridine ring is almost perpendicular to N4-containing one with a dihedral angle of 80.95 (9)°. As expected, the title compound has a distorted PtN2C2 square-planar geometry around the platinum center with an N,N-cis structure (Table 1[link]). The Pt—C and Pt—N bond lengths for the title compound are within the range reported for those of related compounds, namely [Pt(dfpypy)2(Me)Cl] and [Pt(ppy)2(Me)Cl] (ppy = 2-phenyl­pyridine) (Kang et al., 2022a[Kang, J., Kim, S. C., Lee, J. Y. & Kang, Y. (2022a). Dyes & Pigm. 207, 110770.]; Juliá et al., 2016[Juliá, F., Bautista, D. & González-Herrero, P. (2016). Chem. Commun. 52, 1657-1660.]). The Pt1—N1 bond length in the title compound [2.0943 (3) Å] is similar to that of Pt1—N3 [2.120 (3) Å]. However, the Pt1—C21 bond length [2.036 (4) Å] is significantly longer than that of Pt1—C1 [1.966 (3) Å]; this is attributed to the greater trans influence exerted by the N atom of the C,N ligand located at the trans position and the lack of π-back bonding between the Pt atom and the C atom of the methyl ligand.

Table 1
Selected geometric parameters (Å, °)

Pt1—C1 1.966 (3) Pt1—N1 2.094 (3)
Pt1—C21 2.036 (4) Pt1—N3 2.120 (3)
       
C1—Pt1—C21 92.94 (14) C1—Pt1—N3 177.73 (12)
C1—Pt1—N1 81.10 (12) C21—Pt1—N3 89.33 (13)
C21—Pt1—N1 174.00 (12) N1—Pt1—N3 96.63 (10)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the extended structure, C—H⋯F/N hydrogen bonds (Table 2[link], yellow dashed lines in Fig. 2[link]) between adjacent mol­ecules lead to the formation of a di-periodic supra­molecular network. The network is consolidated by weak aromatic ππ stacking, C—H⋯π and C—F⋯π inter­actions [red, sky-blue, and black dashed lines in Fig. 2[link], respectively; Cg2⋯Cg3i = 3.865 (2) Å; C21—H21ACg4ii = 3.507 (4) Å; C3—F1⋯Cg1iii = 3.968 (3) Å; C13—F3⋯Cg3iv = 3.472 (3) Å; Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C6–C10, N2/C1–C5, N3/C16–C20 and N4/C11–C15 rings, respectively; symmetry codes: (i) x, −y + [{3\over 2}], z + [{1\over 2}]; (ii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (iii) −x + 2, −y + 1, −z + 1; (iv) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]]. These varied inter­actions presumably assist in the stabilization of the network structure.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯F2 0.95 2.24 2.858 (4) 122
C12—H12⋯F1i 0.95 2.44 3.259 (5) 144
C20—H20⋯N2ii 0.95 2.45 3.385 (5) 167
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+2, -y+1, -z+1].
[Figure 2]
Figure 2
The di-periodic supra­molecular network formed through C—H⋯F/N hydrogen bonds (yellow dashed lines), F⋯π (black dashed lines) C—H⋯π (sky-blue dashed line) and ππ (red dashed lines) stacking inter­actions. For clarity, H atoms not involved in the inter­molecular inter­actions have been omitted.

4. Photophysical properties

The absorption and emission spectra of title compound in solution are shown in Fig. 3[link]. The title compound exhibits a similar absorption pattern in the 230–350 nm range, as compared to its analog [Pt(ppy)(ppyH)(Me)] (Juliá & González-Herrero, 2016[Juliá, F. & González-Herrero, P. (2016). J. Am. Chem. Soc. 138, 5276-5282.]). The most intense absorption band at 235 nm is assigned to a ππ* ligand-centered (1LC) transition, and the next weak absorption band at longer wavelengths (380–440 nm) is assigned to a metal-to-ligand charge-transfer (MLCT) transition. The title compound shows weak blue and non-structured emission in CH2Cl2 solution at ambient temperature at approximately 455 nm, which is much shorter than that of the parent mol­ecule, [Pt(ppy)(ppyH)(Me)] (λmax = 468). Therefore, the blue-shifted absorption and emission could be due to the greater triplet energy of dfpypy relative to that of ppy.

[Figure 3]
Figure 3
Absorption and emission of title compound at ambient temperature. Inset: extended absorption in the region of 350–450 nm.

5. TD-DFT calculations

To gain deeper insight into the geometrical configuration and nature of the luminescence properties, we performed TD–DFT calculations in the gas phase. Mol­ecular orbital calculations were performed using the Gaussian 03 (Frisch et al., 2004[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A. Jr, Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. & Pople, J. A. (2004). Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford CT, USA.]) program. Fig. 4[link] shows the HOMO and LUMO energy levels of the optimized structures obtained from the single-crystal structure. The TDDFT results show that the triplet vertical excitation at the ground-state geometry corresponds to a π(dfpypy)/d(Pt) → π*(dfpypy) electronic promotion (3LC/MLCT). The HOMO level has significant contributions from the d orbital (64%) of PtII, with small contributions from the C-coordinating dfpypy. Notably, there is little contribution from N-coordinating dfpypy at the HOMO level. By contrast, the contribution from the π*orbitals of the dfpypy chelate is very significant at the LUMO level, whereas the contribution from the PtII atom is negligible. Thus, the electronic transition might arise from ligand-centered charge transfer [LCCT, π(dfpypy)–π*(dfpypy)] mixed with metal-to-ligand charge transfer [MLCT, (Pt(d)–π*(dfpypy)]. The HOMO energy level is −5.72 eV, which is much lower than that of its analogues, such as [Pt(ppy)(ppyH)(Me)] (EHOMO = −5.27 eV). This lower HOMO energy level may be attributed to the replacement of the fluorine-substituted pyridine at the C,N chelate. The calculated LUMO energy is −1.95 eV and the energy gap (Eg) between HOMO and LUMO is 3.77 eV, which is comparable than that of [Pt(ppy)(ppyH)(Me)] (Eg = 3.80 eV).

[Figure 4]
Figure 4
Isodensity surfaces and energy levels of the MOs mainly involved in the S0S1 and S0T1 transitions. (Isocontour value = 0.03.)

6. Database survey

A survey of SciFinder (2021[SciFinder (2021). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed October 7, 2022).]) for transition-metal complexes bearing the 2′,6′-di­fluoro-2,3′-bi­pyridine moiety as a ligand gave 25 hits. They include reports on the crystal structures and photophysical properties of IrIII and PtII complexes based on this ligand (CSD refcode HOVHAC, Lee et al., 2009[Lee, S. J., Park, K. M., Yang, K. & Kang, Y. (2009). Inorg. Chem. 48, 1030-1037.]; OHUMUB01, Lee et al., 2015[Lee, J., Park, H., Park, K. M., Kim, J., Lee, J. Y. & Kang, Y. (2015). Dyes Pigments, 123, 235-241.]; JUDZAL, Park et al., 2015[Park, K.-M., Lee, J. & Kang, Y. (2015). Acta Cryst. E71, 354-356.]). The survey revealed no exact matches for the reported structure of the title complex. To the best of our knowledge, this is the first crystal structure reported for a platinum complex with the title ligand.

7. Synthesis and crystallization

All experiments were performed under a dry N2 atmosphere using standard Schlenk techniques. All solvents were freshly distilled over appropriate drying reagents prior to use. All starting materials were purchased commercially and used without further purification. The 1H NMR spectrum was recorded on a JEOL 400 MHz spectrometer. The starting material, 2′,6′-di­fluoro-2,3′-bi­pyridine was synthesized by a slight modification of the previous synthetic methodology reported by our group. (Kim et al., 2018[Kim, M., Kim, J., Park, K.-M. & Kang, Y. (2018). Bull. Korean Chem. Soc. 39, 703-706.]; Oh et al., 2013[Oh, H., Park, K.-M., Hwang, H., Oh, S., Lee, J. H., Lu, J.-S., Wang, S. & Kang, Y. (2013). Organometallics, 32, 6427-6436.]). The title complex was also synthesized according to a previous report (Kang et al., 2022b[Kang, J., Moon, S.-H., Paek, S. & Kang, Y. (2022b). Can. J. Chem. In the press. https://doi.org/10.1139/cjc-2022-0093.]). Slow evaporation from a di­chloro­methane/hexane solution afforded yellow crystals suitable for X-ray crystallography analysis. Yield 75%. 1H NMR (400 MHz, CD2Cl2): δ 8.97 (dd, J = 5.6, 2.0 Hz, 1H), 8.58 (dd, J = 8.0, 1.6 Hz, 1H), 8.05 (m, 2H), 7.88 (t, J = 8.0 Hz, 1H), 7.74 (m, 2H), 7.05 (m, 2H), 7.57 (td, J = 6.8, 1.2 Hz, 1H), 6.77 (dd, J = 8.0, 2.4 Hz, 1H), 0.72 (s, JHPt = 83.6 Hz, 3H). Analysis calculated for C15H14F4N4Pt; C 42.50; H 2.38; N 9.44; found: C 42.48, H 2.36, N 9.47%.

8. Refinement

Crystal data, data collection and crystal structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for Csp2—H, 0.98 Å for methyl C—H with Uiso(H) = 1.2–1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Pt(CH3)(C10H5F2N2)(C10H6F2N2)]
Mr 593.45
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 11.1590 (4), 11.4767 (4), 16.1918 (5)
β (°) 109.1050 (12)
V3) 1959.44 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 7.21
Crystal size (mm) 0.51 × 0.31 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.258, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 35428, 4873, 4088
Rint 0.050
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.066, 1.06
No. of reflections 4873
No. of parameters 271
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.91, −1.66
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

(2',6'-Difluoro-2,3'-bipyridine-κN2)[2,6-difluoro-3-(pyridin-2-yl)phenyl-κ2C1,N3]methylplatinum(II) top
Crystal data top
[Pt(CH3)(C10H5F2N2)(C10H6F2N2)]F(000) = 1128
Mr = 593.45Dx = 2.012 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.1590 (4) ÅCell parameters from 9651 reflections
b = 11.4767 (4) Åθ = 2.6–28.3°
c = 16.1918 (5) ŵ = 7.21 mm1
β = 109.1050 (12)°T = 173 K
V = 1959.44 (12) Å3Block, yellow
Z = 40.51 × 0.31 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
4088 reflections with I > 2σ(I)
φ and ω scansRint = 0.050
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 28.3°, θmin = 1.9°
Tmin = 0.258, Tmax = 0.746h = 1413
35428 measured reflectionsk = 1514
4873 independent reflectionsl = 2121
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0339P)2 + 1.3145P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
4873 reflectionsΔρmax = 1.91 e Å3
271 parametersΔρmin = 1.66 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.79889 (2)0.62391 (2)0.38446 (2)0.02333 (6)
F10.8075 (3)0.4105 (2)0.68292 (16)0.0611 (7)
F21.1104 (2)0.6711 (2)0.70353 (13)0.0498 (6)
F30.4034 (2)0.9425 (2)0.43326 (16)0.0567 (7)
F40.7227 (2)0.9395 (2)0.32471 (16)0.0525 (6)
N10.9578 (3)0.7325 (2)0.42974 (17)0.0273 (6)
N20.9587 (3)0.5417 (3)0.69091 (18)0.0356 (7)
N30.7423 (3)0.6787 (2)0.25218 (17)0.0259 (6)
N40.5636 (3)0.9383 (3)0.37943 (19)0.0374 (7)
C10.8571 (3)0.5774 (3)0.5081 (2)0.0254 (7)
C20.8049 (4)0.4979 (3)0.5511 (2)0.0333 (8)
H20.73320.45260.51970.040*
C30.8589 (4)0.4860 (3)0.6398 (2)0.0363 (8)
C41.0080 (4)0.6150 (3)0.6493 (2)0.0319 (8)
C50.9668 (3)0.6381 (3)0.5607 (2)0.0259 (7)
C61.0230 (3)0.7225 (3)0.5166 (2)0.0274 (7)
C71.1322 (4)0.7899 (4)0.5540 (2)0.0404 (9)
H71.17670.78510.61490.048*
C81.1747 (4)0.8630 (4)0.5023 (3)0.0493 (11)
H81.24930.90790.52730.059*
C91.1092 (4)0.8711 (3)0.4146 (3)0.0437 (10)
H91.13800.92070.37810.052*
C100.9997 (4)0.8051 (3)0.3804 (2)0.0359 (8)
H100.95300.81170.32000.043*
C110.4600 (4)0.7447 (3)0.2797 (3)0.0381 (9)
H110.42380.67850.24540.046*
C120.4010 (4)0.7948 (4)0.3344 (3)0.0406 (9)
H120.32450.76400.33920.049*
C130.4575 (4)0.8898 (4)0.3807 (3)0.0390 (9)
C140.6162 (4)0.8884 (3)0.3281 (3)0.0356 (9)
C150.5722 (3)0.7921 (3)0.2758 (2)0.0292 (7)
C160.6394 (3)0.7474 (3)0.2168 (2)0.0284 (7)
C170.5998 (4)0.7774 (3)0.1295 (2)0.0380 (9)
H170.52620.82410.10590.046*
C180.6668 (4)0.7397 (3)0.0763 (2)0.0382 (9)
H180.64130.76170.01640.046*
C190.7699 (4)0.6705 (3)0.1114 (2)0.0364 (8)
H190.81720.64240.07630.044*
C200.8051 (4)0.6414 (3)0.1992 (2)0.0342 (8)
H200.87710.59280.22310.041*
C210.6504 (4)0.5106 (3)0.3531 (2)0.0383 (9)
H21A0.60270.51690.29060.057*
H21B0.68240.43090.36650.057*
H21C0.59470.52940.38710.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02173 (9)0.02615 (9)0.01832 (7)0.00107 (5)0.00136 (5)0.00167 (4)
F10.086 (2)0.0583 (15)0.0389 (13)0.0253 (15)0.0204 (13)0.0103 (12)
F20.0438 (14)0.0766 (16)0.0194 (10)0.0193 (13)0.0028 (9)0.0036 (10)
F30.0405 (14)0.0813 (19)0.0549 (15)0.0043 (13)0.0243 (12)0.0113 (14)
F40.0407 (13)0.0626 (16)0.0616 (15)0.0250 (12)0.0267 (12)0.0259 (13)
N10.0235 (14)0.0344 (16)0.0218 (13)0.0019 (12)0.0044 (11)0.0006 (11)
N20.0425 (18)0.0406 (18)0.0239 (14)0.0026 (15)0.0110 (13)0.0027 (12)
N30.0252 (14)0.0243 (14)0.0231 (13)0.0043 (12)0.0008 (11)0.0029 (11)
N40.0296 (17)0.048 (2)0.0330 (16)0.0036 (15)0.0080 (13)0.0094 (14)
C10.0286 (18)0.0247 (17)0.0218 (15)0.0005 (14)0.0066 (13)0.0037 (13)
C20.039 (2)0.0299 (18)0.0281 (17)0.0070 (16)0.0071 (15)0.0012 (14)
C30.048 (2)0.033 (2)0.0296 (17)0.0009 (17)0.0154 (16)0.0039 (15)
C40.0282 (19)0.042 (2)0.0219 (16)0.0013 (16)0.0025 (14)0.0040 (14)
C50.0211 (16)0.0328 (19)0.0223 (15)0.0010 (14)0.0051 (13)0.0029 (13)
C60.0244 (17)0.0363 (19)0.0205 (15)0.0004 (15)0.0062 (13)0.0027 (13)
C70.037 (2)0.058 (3)0.0226 (16)0.0141 (19)0.0048 (15)0.0071 (16)
C80.042 (2)0.065 (3)0.038 (2)0.029 (2)0.0086 (18)0.0128 (19)
C90.044 (3)0.054 (3)0.034 (2)0.016 (2)0.0139 (18)0.0024 (17)
C100.035 (2)0.045 (2)0.0272 (17)0.0077 (17)0.0085 (15)0.0037 (15)
C110.029 (2)0.033 (2)0.046 (2)0.0004 (16)0.0039 (16)0.0021 (16)
C120.0227 (19)0.044 (2)0.053 (2)0.0001 (17)0.0097 (17)0.0070 (19)
C130.028 (2)0.055 (3)0.034 (2)0.0036 (18)0.0094 (16)0.0003 (17)
C140.032 (2)0.040 (2)0.0322 (19)0.0058 (16)0.0069 (16)0.0042 (15)
C150.0227 (17)0.0321 (19)0.0266 (16)0.0024 (15)0.0004 (13)0.0061 (14)
C160.0265 (17)0.0286 (18)0.0241 (15)0.0045 (14)0.0002 (13)0.0017 (13)
C170.037 (2)0.041 (2)0.0276 (17)0.0062 (17)0.0014 (15)0.0065 (15)
C180.049 (2)0.037 (2)0.0223 (16)0.0066 (18)0.0031 (16)0.0015 (14)
C190.046 (2)0.036 (2)0.0278 (17)0.0094 (18)0.0136 (16)0.0063 (15)
C200.037 (2)0.034 (2)0.0293 (18)0.0016 (16)0.0073 (16)0.0023 (14)
C210.033 (2)0.040 (2)0.0319 (18)0.0073 (17)0.0022 (15)0.0036 (16)
Geometric parameters (Å, º) top
Pt1—C11.966 (3)C7—H70.9500
Pt1—C212.036 (4)C8—C91.371 (6)
Pt1—N12.094 (3)C8—H80.9500
Pt1—N32.120 (3)C9—C101.389 (6)
F1—C31.352 (4)C9—H90.9500
F2—C41.354 (4)C10—H100.9500
F3—C131.339 (4)C11—C151.386 (5)
F4—C141.342 (4)C11—C121.390 (5)
N1—C101.340 (4)C11—H110.9500
N1—C61.360 (4)C12—C131.356 (6)
N2—C41.306 (5)C12—H120.9500
N2—C31.316 (5)C14—C151.382 (5)
N3—C201.343 (5)C15—C161.484 (5)
N3—C161.356 (4)C16—C171.379 (5)
N4—C141.297 (5)C17—C181.383 (5)
N4—C131.314 (5)C17—H170.9500
C1—C21.386 (5)C18—C191.361 (6)
C1—C51.423 (5)C18—H180.9500
C2—C31.371 (5)C19—C201.386 (5)
C2—H20.9500C19—H190.9500
C4—C51.382 (5)C20—H200.9500
C5—C61.461 (5)C21—H21A0.9800
C6—C71.402 (5)C21—H21B0.9800
C7—C81.374 (6)C21—H21C0.9800
C1—Pt1—C2192.94 (14)C10—C9—H9120.8
C1—Pt1—N181.10 (12)N1—C10—C9122.3 (3)
C21—Pt1—N1174.00 (12)N1—C10—H10118.8
C1—Pt1—N3177.73 (12)C9—C10—H10118.8
C21—Pt1—N389.33 (13)C15—C11—C12119.4 (4)
N1—Pt1—N396.63 (10)C15—C11—H11120.3
C10—N1—C6119.7 (3)C12—C11—H11120.3
C10—N1—Pt1125.6 (2)C13—C12—C11116.9 (4)
C6—N1—Pt1114.7 (2)C13—C12—H12121.5
C4—N2—C3113.7 (3)C11—C12—H12121.5
C20—N3—C16117.6 (3)N4—C13—F3114.5 (3)
C20—N3—Pt1120.3 (2)N4—C13—C12126.2 (4)
C16—N3—Pt1122.0 (2)F3—C13—C12119.3 (4)
C14—N4—C13114.9 (3)N4—C14—F4115.2 (3)
C2—C1—C5116.3 (3)N4—C14—C15127.0 (4)
C2—C1—Pt1129.6 (3)F4—C14—C15117.7 (3)
C5—C1—Pt1114.1 (2)C14—C15—C11115.5 (3)
C3—C2—C1118.6 (3)C14—C15—C16121.2 (3)
C3—C2—H2120.7C11—C15—C16123.2 (3)
C1—C2—H2120.7N3—C16—C17121.4 (3)
N2—C3—F1113.7 (3)N3—C16—C15117.7 (3)
N2—C3—C2127.0 (3)C17—C16—C15120.9 (3)
F1—C3—C2119.3 (3)C16—C17—C18120.3 (4)
N2—C4—F2112.4 (3)C16—C17—H17119.9
N2—C4—C5127.3 (3)C18—C17—H17119.9
F2—C4—C5120.4 (3)C19—C18—C17118.5 (3)
C4—C5—C1117.1 (3)C19—C18—H18120.7
C4—C5—C6125.7 (3)C17—C18—H18120.7
C1—C5—C6117.1 (3)C18—C19—C20119.1 (4)
N1—C6—C7119.7 (3)C18—C19—H19120.4
N1—C6—C5113.0 (3)C20—C19—H19120.4
C7—C6—C5127.4 (3)N3—C20—C19123.1 (4)
C8—C7—C6119.9 (3)N3—C20—H20118.5
C8—C7—H7120.0C19—C20—H20118.5
C6—C7—H7120.0Pt1—C21—H21A109.5
C9—C8—C7119.9 (4)Pt1—C21—H21B109.5
C9—C8—H8120.1H21A—C21—H21B109.5
C7—C8—H8120.1Pt1—C21—H21C109.5
C8—C9—C10118.5 (4)H21A—C21—H21C109.5
C8—C9—H9120.8H21B—C21—H21C109.5
C5—C1—C2—C32.0 (5)C8—C9—C10—N11.4 (6)
Pt1—C1—C2—C3175.8 (3)C15—C11—C12—C130.7 (6)
C4—N2—C3—F1179.7 (3)C14—N4—C13—F3179.5 (3)
C4—N2—C3—C20.2 (6)C14—N4—C13—C120.2 (6)
C1—C2—C3—N20.9 (6)C11—C12—C13—N40.7 (6)
C1—C2—C3—F1178.6 (3)C11—C12—C13—F3178.9 (4)
C3—N2—C4—F2180.0 (3)C13—N4—C14—F4178.2 (3)
C3—N2—C4—C50.0 (6)C13—N4—C14—C150.4 (6)
N2—C4—C5—C11.2 (6)N4—C14—C15—C110.4 (6)
F2—C4—C5—C1178.8 (3)F4—C14—C15—C11178.1 (3)
N2—C4—C5—C6178.7 (3)N4—C14—C15—C16177.0 (4)
F2—C4—C5—C61.2 (5)F4—C14—C15—C160.8 (5)
C2—C1—C5—C42.1 (5)C12—C11—C15—C140.2 (5)
Pt1—C1—C5—C4176.0 (2)C12—C11—C15—C16177.5 (3)
C2—C1—C5—C6179.9 (3)C20—N3—C16—C170.5 (5)
Pt1—C1—C5—C61.8 (4)Pt1—N3—C16—C17176.6 (3)
C10—N1—C6—C71.2 (5)C20—N3—C16—C15178.0 (3)
Pt1—N1—C6—C7179.1 (3)Pt1—N3—C16—C155.0 (4)
C10—N1—C6—C5178.7 (3)C14—C15—C16—N381.1 (4)
Pt1—N1—C6—C50.7 (4)C11—C15—C16—N3101.7 (4)
C4—C5—C6—N1175.9 (3)C14—C15—C16—C1797.3 (4)
C1—C5—C6—N11.6 (4)C11—C15—C16—C1779.8 (5)
C4—C5—C6—C74.2 (6)N3—C16—C17—C181.5 (5)
C1—C5—C6—C7178.2 (4)C15—C16—C17—C18176.9 (3)
N1—C6—C7—C81.9 (6)C16—C17—C18—C191.6 (6)
C5—C6—C7—C8178.0 (4)C17—C18—C19—C200.8 (6)
C6—C7—C8—C90.9 (7)C16—N3—C20—C190.4 (5)
C7—C8—C9—C100.7 (7)Pt1—N3—C20—C19177.5 (3)
C6—N1—C10—C90.5 (6)C18—C19—C20—N30.2 (6)
Pt1—N1—C10—C9177.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···F20.952.242.858 (4)122
C12—H12···F1i0.952.443.259 (5)144
C20—H20···N2ii0.952.453.385 (5)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
 

Funding information

Funding for this research was provided by: National Research Foundation of Korea (grant No. 2022R1F1A1063758); Ministry of Trade, Industry and Energy, Korea Evaluation Institute of Industrial Technology (grant No. 20018956).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A. Jr, Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. & Pople, J. A. (2004). Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford CT, USA.  Google Scholar
First citationJuliá, F., Bautista, D. & González-Herrero, P. (2016). Chem. Commun. 52, 1657–1660.  Google Scholar
First citationJuliá, F. & González-Herrero, P. (2016). J. Am. Chem. Soc. 138, 5276–5282.  Web of Science PubMed Google Scholar
First citationKang, J., Kim, S. C., Lee, J. Y. & Kang, Y. (2022a). Dyes & Pigm. 207, 110770.  Web of Science CSD CrossRef Google Scholar
First citationKang, J., Moon, S.-H., Paek, S. & Kang, Y. (2022b). Can. J. Chem. In the press. https://doi.org/10.1139/cjc-2022-0093.  Google Scholar
First citationKang, J., Zaen, R., Lee, J. H., Hwang, H., Park, K.-M., Kim, S. C., Lee, J. Y. & Kang, Y. (2022c). Chem. Eng. J. 431, 134249.  Web of Science CSD CrossRef Google Scholar
First citationKang, J., Zaen, R., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2021). Adv. Opt. Mater. 9, 2101233.  Web of Science CSD CrossRef Google Scholar
First citationKim, M., Kim, J., Park, K.-M. & Kang, Y. (2018). Bull. Korean Chem. Soc. 39, 703–706.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, C., Zaen, R., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2018). Organometallics, 37, 4639–4647.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, J., Park, H., Park, K. M., Kim, J., Lee, J. Y. & Kang, Y. (2015). Dyes Pigments, 123, 235–241.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, S. J., Park, K. M., Yang, K. & Kang, Y. (2009). Inorg. Chem. 48, 1030–1037.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOh, H., Park, K.-M., Hwang, H., Oh, S., Lee, J. H., Lu, J.-S., Wang, S. & Kang, Y. (2013). Organometallics, 32, 6427–6436.  Web of Science CSD CrossRef CAS Google Scholar
First citationPark, K.-M., Lee, J. & Kang, Y. (2015). Acta Cryst. E71, 354–356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSciFinder (2021). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed October 7, 2022).  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZaen, R., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2019). Adv. Opt. Mater. 7, 1901387.  Web of Science CSD CrossRef Google Scholar
First citationZhang, H., Luo, Y., Yan, X., Cai, W., Zhao, A., Meng, Q. & Shen, W. (2020). Inorg. Chim. Acta, 501, 119269.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds