research communications
Synthesis, κN2)[2,6-difluoro-3-(pyridin-2-yl)phenyl-κ2C1,N3]methylplatinum(II)
and DFT calculations of (2′,6′-difluoro-2,3′-bipyridine-aDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, and bDivision of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea
*Correspondence e-mail: kangy@kangwon.ac.kr
The title compound, [Pt(CH3)(C10H5F2N2)(C10H6F2N2)], displays a distorted cis-PtN2C2 square-planar geometry around the PtII ion consisting of the bidentate C,N chelating anion, a monodentate N-bonded neutral ligand and a methyl group. In the crystal, the molecules are linked by C—H⋯F, C—H⋯N and C—H⋯π interactions. Time-dependent density functional theory (TD-DFT) at the B3LYP level with the 6–311++G(d,p) basis set was applied to optimize the ground-state geometry. The electronic properties, such as excitation energies and the HOMO–LUMO gap energies, were calculated and compared to related structures.
CCDC reference: 2216704
1. Chemical context
Over the past two decades, there has been considerable interest in the design of phosphorescent IrIII and PtII complexes based on C,N-chelating ligands, especially 2′,6′-difluoro-2,3′-bipyridine (dfpypy) (Kang et al., 2022b,c; Zaen et al., 2019). Among them, heteroleptic PtII compounds show high thermal stability and (PLQY). Both characteristics make them suitable for applications as organic light-emitting diodes (OLEDs) and organic lighting (Kang et al., 2021; Lee et al., 2018). Despite the many advantages of PtII complexes based on bipyridine ligands, there are some problems that need to be addressed. For example, a gradient efficiency roll-off often occurs at high current densities owing to intrinsic triplet–triplet annihilation (Zhang et al., 2020). To overcome this limitation, it is necessary to develop heavy transition-metal compounds with octahedral geometry. Therefore, PtIV complexes are highly desirable in OLED applications compared with those of their PtII analogues. However, reports on PtIV compounds based on C,N chelates are scarce, despite the compounds having similar geometries and electronic configurations to IrIII complexes. To make C,N-based PtIV octahedral complexes, the syntheses of PtII complexes are needed as intermediates at the first step (Juliá et al., 2016). However, the structures and photophysical properties of these PtII precursors are still scarce, which prompted us to determine the structure of a PtII complex bearing a C,N chelating dfpypy ligand and investigate its photophysical properties (Juliá & González-Herrero, 2016). Herein, we describe the results of our investigation regarding the structural characterization, photophysical properties, and TD–DFT calculations of the title dfpypy-based PtII compound.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. Of the two 2,3′-bipyridyl units, the N1-containing pyridine ring is slightly tilted by 3.08 (7)° to the N2-containing one, while the N3-containing pyridine ring is almost perpendicular to N4-containing one with a dihedral angle of 80.95 (9)°. As expected, the title compound has a distorted PtN2C2 square-planar geometry around the platinum center with an N,N-cis structure (Table 1). The Pt—C and Pt—N bond lengths for the title compound are within the range reported for those of related compounds, namely [Pt(dfpypy)2(Me)Cl] and [Pt(ppy)2(Me)Cl] (ppy = 2-phenylpyridine) (Kang et al., 2022a; Juliá et al., 2016). The Pt1—N1 bond length in the title compound [2.0943 (3) Å] is similar to that of Pt1—N3 [2.120 (3) Å]. However, the Pt1—C21 bond length [2.036 (4) Å] is significantly longer than that of Pt1—C1 [1.966 (3) Å]; this is attributed to the greater trans influence exerted by the N atom of the C,N ligand located at the trans position and the lack of π-back bonding between the Pt atom and the C atom of the methyl ligand.
|
3. Supramolecular features
In the extended structure, C—H⋯F/N hydrogen bonds (Table 2, yellow dashed lines in Fig. 2) between adjacent molecules lead to the formation of a di-periodic supramolecular network. The network is consolidated by weak aromatic π–π stacking, C—H⋯π and C—F⋯π interactions [red, sky-blue, and black dashed lines in Fig. 2, respectively; Cg2⋯Cg3i = 3.865 (2) Å; C21—H21A⋯Cg4ii = 3.507 (4) Å; C3—F1⋯Cg1iii = 3.968 (3) Å; C13—F3⋯Cg3iv = 3.472 (3) Å; Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C6–C10, N2/C1–C5, N3/C16–C20 and N4/C11–C15 rings, respectively; symmetry codes: (i) x, −y + , z + ; (ii) −x + 1, y − , −z + ; (iii) −x + 2, −y + 1, −z + 1; (iv) −x + 1, y + , −z + ]. These varied interactions presumably assist in the stabilization of the network structure.
4. Photophysical properties
The absorption and emission spectra of title compound in solution are shown in Fig. 3. The title compound exhibits a similar absorption pattern in the 230–350 nm range, as compared to its analog [Pt(ppy)(ppyH)(Me)] (Juliá & González-Herrero, 2016). The most intense absorption band at 235 nm is assigned to a π–π* ligand-centered (1LC) transition, and the next weak absorption band at longer wavelengths (380–440 nm) is assigned to a metal-to-ligand charge-transfer (MLCT) transition. The title compound shows weak blue and non-structured emission in CH2Cl2 solution at ambient temperature at approximately 455 nm, which is much shorter than that of the parent molecule, [Pt(ppy)(ppyH)(Me)] (λmax = 468). Therefore, the blue-shifted absorption and emission could be due to the greater triplet energy of dfpypy relative to that of ppy.
5. TD-DFT calculations
To gain deeper insight into the geometrical configuration and nature of the luminescence properties, we performed TD–DFT calculations in the gas phase. Molecular orbital calculations were performed using the Gaussian 03 (Frisch et al., 2004) program. Fig. 4 shows the HOMO and LUMO energy levels of the optimized structures obtained from the single-crystal structure. The TDDFT results show that the triplet vertical excitation at the ground-state geometry corresponds to a π(dfpypy)/d(Pt) → π*(dfpypy) electronic promotion (3LC/MLCT). The HOMO level has significant contributions from the d orbital (64%) of PtII, with small contributions from the C-coordinating dfpypy. Notably, there is little contribution from N-coordinating dfpypy at the HOMO level. By contrast, the contribution from the π*orbitals of the dfpypy chelate is very significant at the LUMO level, whereas the contribution from the PtII atom is negligible. Thus, the electronic transition might arise from ligand-centered charge transfer [LCCT, π(dfpypy)–π*(dfpypy)] mixed with [MLCT, (Pt(d)–π*(dfpypy)]. The HOMO energy level is −5.72 eV, which is much lower than that of its analogues, such as [Pt(ppy)(ppyH)(Me)] (EHOMO = −5.27 eV). This lower HOMO energy level may be attributed to the replacement of the fluorine-substituted pyridine at the C,N chelate. The calculated LUMO energy is −1.95 eV and the energy gap (Eg) between HOMO and LUMO is 3.77 eV, which is comparable than that of [Pt(ppy)(ppyH)(Me)] (Eg = 3.80 eV).
6. Database survey
A survey of SciFinder (2021) for transition-metal complexes bearing the 2′,6′-difluoro-2,3′-bipyridine moiety as a ligand gave 25 hits. They include reports on the crystal structures and photophysical properties of IrIII and PtII complexes based on this ligand (CSD refcode HOVHAC, Lee et al., 2009; OHUMUB01, Lee et al., 2015; JUDZAL, Park et al., 2015). The survey revealed no exact matches for the reported structure of the title complex. To the best of our knowledge, this is the first reported for a platinum complex with the title ligand.
7. Synthesis and crystallization
All experiments were performed under a dry N2 atmosphere using standard Schlenk techniques. All solvents were freshly distilled over appropriate drying reagents prior to use. All starting materials were purchased commercially and used without further purification. The 1H NMR spectrum was recorded on a JEOL 400 MHz spectrometer. The starting material, 2′,6′-difluoro-2,3′-bipyridine was synthesized by a slight modification of the previous synthetic methodology reported by our group. (Kim et al., 2018; Oh et al., 2013). The title complex was also synthesized according to a previous report (Kang et al., 2022b). Slow evaporation from a dichloromethane/hexane solution afforded yellow crystals suitable for X-ray crystallography analysis. Yield 75%. 1H NMR (400 MHz, CD2Cl2): δ 8.97 (dd, J = 5.6, 2.0 Hz, 1H), 8.58 (dd, J = 8.0, 1.6 Hz, 1H), 8.05 (m, 2H), 7.88 (t, J = 8.0 Hz, 1H), 7.74 (m, 2H), 7.05 (m, 2H), 7.57 (td, J = 6.8, 1.2 Hz, 1H), 6.77 (dd, J = 8.0, 2.4 Hz, 1H), 0.72 (s, JHPt = 83.6 Hz, 3H). Analysis calculated for C15H14F4N4Pt; C 42.50; H 2.38; N 9.44; found: C 42.48, H 2.36, N 9.47%.
8. Refinement
Crystal data, data collection and . All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for Csp2—H, 0.98 Å for methyl C—H with Uiso(H) = 1.2–1.5Ueq(C).
details are summarized in Table 3Supporting information
CCDC reference: 2216704
https://doi.org/10.1107/S2056989022010519/hb8042sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022010519/hb8042Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).[Pt(CH3)(C10H5F2N2)(C10H6F2N2)] | F(000) = 1128 |
Mr = 593.45 | Dx = 2.012 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.1590 (4) Å | Cell parameters from 9651 reflections |
b = 11.4767 (4) Å | θ = 2.6–28.3° |
c = 16.1918 (5) Å | µ = 7.21 mm−1 |
β = 109.1050 (12)° | T = 173 K |
V = 1959.44 (12) Å3 | Block, yellow |
Z = 4 | 0.51 × 0.31 × 0.20 mm |
Bruker APEXII CCD diffractometer | 4088 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.050 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 28.3°, θmin = 1.9° |
Tmin = 0.258, Tmax = 0.746 | h = −14→13 |
35428 measured reflections | k = −15→14 |
4873 independent reflections | l = −21→21 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.026 | H-atom parameters constrained |
wR(F2) = 0.066 | w = 1/[σ2(Fo2) + (0.0339P)2 + 1.3145P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.002 |
4873 reflections | Δρmax = 1.91 e Å−3 |
271 parameters | Δρmin = −1.66 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.79889 (2) | 0.62391 (2) | 0.38446 (2) | 0.02333 (6) | |
F1 | 0.8075 (3) | 0.4105 (2) | 0.68292 (16) | 0.0611 (7) | |
F2 | 1.1104 (2) | 0.6711 (2) | 0.70353 (13) | 0.0498 (6) | |
F3 | 0.4034 (2) | 0.9425 (2) | 0.43326 (16) | 0.0567 (7) | |
F4 | 0.7227 (2) | 0.9395 (2) | 0.32471 (16) | 0.0525 (6) | |
N1 | 0.9578 (3) | 0.7325 (2) | 0.42974 (17) | 0.0273 (6) | |
N2 | 0.9587 (3) | 0.5417 (3) | 0.69091 (18) | 0.0356 (7) | |
N3 | 0.7423 (3) | 0.6787 (2) | 0.25218 (17) | 0.0259 (6) | |
N4 | 0.5636 (3) | 0.9383 (3) | 0.37943 (19) | 0.0374 (7) | |
C1 | 0.8571 (3) | 0.5774 (3) | 0.5081 (2) | 0.0254 (7) | |
C2 | 0.8049 (4) | 0.4979 (3) | 0.5511 (2) | 0.0333 (8) | |
H2 | 0.7332 | 0.4526 | 0.5197 | 0.040* | |
C3 | 0.8589 (4) | 0.4860 (3) | 0.6398 (2) | 0.0363 (8) | |
C4 | 1.0080 (4) | 0.6150 (3) | 0.6493 (2) | 0.0319 (8) | |
C5 | 0.9668 (3) | 0.6381 (3) | 0.5607 (2) | 0.0259 (7) | |
C6 | 1.0230 (3) | 0.7225 (3) | 0.5166 (2) | 0.0274 (7) | |
C7 | 1.1322 (4) | 0.7899 (4) | 0.5540 (2) | 0.0404 (9) | |
H7 | 1.1767 | 0.7851 | 0.6149 | 0.048* | |
C8 | 1.1747 (4) | 0.8630 (4) | 0.5023 (3) | 0.0493 (11) | |
H8 | 1.2493 | 0.9079 | 0.5273 | 0.059* | |
C9 | 1.1092 (4) | 0.8711 (3) | 0.4146 (3) | 0.0437 (10) | |
H9 | 1.1380 | 0.9207 | 0.3781 | 0.052* | |
C10 | 0.9997 (4) | 0.8051 (3) | 0.3804 (2) | 0.0359 (8) | |
H10 | 0.9530 | 0.8117 | 0.3200 | 0.043* | |
C11 | 0.4600 (4) | 0.7447 (3) | 0.2797 (3) | 0.0381 (9) | |
H11 | 0.4238 | 0.6785 | 0.2454 | 0.046* | |
C12 | 0.4010 (4) | 0.7948 (4) | 0.3344 (3) | 0.0406 (9) | |
H12 | 0.3245 | 0.7640 | 0.3392 | 0.049* | |
C13 | 0.4575 (4) | 0.8898 (4) | 0.3807 (3) | 0.0390 (9) | |
C14 | 0.6162 (4) | 0.8884 (3) | 0.3281 (3) | 0.0356 (9) | |
C15 | 0.5722 (3) | 0.7921 (3) | 0.2758 (2) | 0.0292 (7) | |
C16 | 0.6394 (3) | 0.7474 (3) | 0.2168 (2) | 0.0284 (7) | |
C17 | 0.5998 (4) | 0.7774 (3) | 0.1295 (2) | 0.0380 (9) | |
H17 | 0.5262 | 0.8241 | 0.1059 | 0.046* | |
C18 | 0.6668 (4) | 0.7397 (3) | 0.0763 (2) | 0.0382 (9) | |
H18 | 0.6413 | 0.7617 | 0.0164 | 0.046* | |
C19 | 0.7699 (4) | 0.6705 (3) | 0.1114 (2) | 0.0364 (8) | |
H19 | 0.8172 | 0.6424 | 0.0763 | 0.044* | |
C20 | 0.8051 (4) | 0.6414 (3) | 0.1992 (2) | 0.0342 (8) | |
H20 | 0.8771 | 0.5928 | 0.2231 | 0.041* | |
C21 | 0.6504 (4) | 0.5106 (3) | 0.3531 (2) | 0.0383 (9) | |
H21A | 0.6027 | 0.5169 | 0.2906 | 0.057* | |
H21B | 0.6824 | 0.4309 | 0.3665 | 0.057* | |
H21C | 0.5947 | 0.5294 | 0.3871 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.02173 (9) | 0.02615 (9) | 0.01832 (7) | −0.00107 (5) | 0.00136 (5) | −0.00167 (4) |
F1 | 0.086 (2) | 0.0583 (15) | 0.0389 (13) | −0.0253 (15) | 0.0204 (13) | 0.0103 (12) |
F2 | 0.0438 (14) | 0.0766 (16) | 0.0194 (10) | −0.0193 (13) | −0.0028 (9) | −0.0036 (10) |
F3 | 0.0405 (14) | 0.0813 (19) | 0.0549 (15) | 0.0043 (13) | 0.0243 (12) | −0.0113 (14) |
F4 | 0.0407 (13) | 0.0626 (16) | 0.0616 (15) | −0.0250 (12) | 0.0267 (12) | −0.0259 (13) |
N1 | 0.0235 (14) | 0.0344 (16) | 0.0218 (13) | −0.0019 (12) | 0.0044 (11) | −0.0006 (11) |
N2 | 0.0425 (18) | 0.0406 (18) | 0.0239 (14) | 0.0026 (15) | 0.0110 (13) | 0.0027 (12) |
N3 | 0.0252 (14) | 0.0243 (14) | 0.0231 (13) | −0.0043 (12) | 0.0008 (11) | −0.0029 (11) |
N4 | 0.0296 (17) | 0.048 (2) | 0.0330 (16) | −0.0036 (15) | 0.0080 (13) | −0.0094 (14) |
C1 | 0.0286 (18) | 0.0247 (17) | 0.0218 (15) | 0.0005 (14) | 0.0066 (13) | −0.0037 (13) |
C2 | 0.039 (2) | 0.0299 (18) | 0.0281 (17) | −0.0070 (16) | 0.0071 (15) | −0.0012 (14) |
C3 | 0.048 (2) | 0.033 (2) | 0.0296 (17) | −0.0009 (17) | 0.0154 (16) | 0.0039 (15) |
C4 | 0.0282 (19) | 0.042 (2) | 0.0219 (16) | 0.0013 (16) | 0.0025 (14) | −0.0040 (14) |
C5 | 0.0211 (16) | 0.0328 (19) | 0.0223 (15) | 0.0010 (14) | 0.0051 (13) | −0.0029 (13) |
C6 | 0.0244 (17) | 0.0363 (19) | 0.0205 (15) | −0.0004 (15) | 0.0062 (13) | −0.0027 (13) |
C7 | 0.037 (2) | 0.058 (3) | 0.0226 (16) | −0.0141 (19) | 0.0048 (15) | −0.0071 (16) |
C8 | 0.042 (2) | 0.065 (3) | 0.038 (2) | −0.029 (2) | 0.0086 (18) | −0.0128 (19) |
C9 | 0.044 (3) | 0.054 (3) | 0.034 (2) | −0.016 (2) | 0.0139 (18) | −0.0024 (17) |
C10 | 0.035 (2) | 0.045 (2) | 0.0272 (17) | −0.0077 (17) | 0.0085 (15) | 0.0037 (15) |
C11 | 0.029 (2) | 0.033 (2) | 0.046 (2) | −0.0004 (16) | 0.0039 (16) | 0.0021 (16) |
C12 | 0.0227 (19) | 0.044 (2) | 0.053 (2) | −0.0001 (17) | 0.0097 (17) | 0.0070 (19) |
C13 | 0.028 (2) | 0.055 (3) | 0.034 (2) | 0.0036 (18) | 0.0094 (16) | 0.0003 (17) |
C14 | 0.032 (2) | 0.040 (2) | 0.0322 (19) | −0.0058 (16) | 0.0069 (16) | −0.0042 (15) |
C15 | 0.0227 (17) | 0.0321 (19) | 0.0266 (16) | 0.0024 (15) | −0.0004 (13) | 0.0061 (14) |
C16 | 0.0265 (17) | 0.0286 (18) | 0.0241 (15) | −0.0045 (14) | 0.0002 (13) | −0.0017 (13) |
C17 | 0.037 (2) | 0.041 (2) | 0.0276 (17) | 0.0062 (17) | −0.0014 (15) | 0.0065 (15) |
C18 | 0.049 (2) | 0.037 (2) | 0.0223 (16) | −0.0066 (18) | 0.0031 (16) | 0.0015 (14) |
C19 | 0.046 (2) | 0.036 (2) | 0.0278 (17) | −0.0094 (18) | 0.0136 (16) | −0.0063 (15) |
C20 | 0.037 (2) | 0.034 (2) | 0.0293 (18) | 0.0016 (16) | 0.0073 (16) | −0.0023 (14) |
C21 | 0.033 (2) | 0.040 (2) | 0.0319 (18) | −0.0073 (17) | −0.0022 (15) | −0.0036 (16) |
Pt1—C1 | 1.966 (3) | C7—H7 | 0.9500 |
Pt1—C21 | 2.036 (4) | C8—C9 | 1.371 (6) |
Pt1—N1 | 2.094 (3) | C8—H8 | 0.9500 |
Pt1—N3 | 2.120 (3) | C9—C10 | 1.389 (6) |
F1—C3 | 1.352 (4) | C9—H9 | 0.9500 |
F2—C4 | 1.354 (4) | C10—H10 | 0.9500 |
F3—C13 | 1.339 (4) | C11—C15 | 1.386 (5) |
F4—C14 | 1.342 (4) | C11—C12 | 1.390 (5) |
N1—C10 | 1.340 (4) | C11—H11 | 0.9500 |
N1—C6 | 1.360 (4) | C12—C13 | 1.356 (6) |
N2—C4 | 1.306 (5) | C12—H12 | 0.9500 |
N2—C3 | 1.316 (5) | C14—C15 | 1.382 (5) |
N3—C20 | 1.343 (5) | C15—C16 | 1.484 (5) |
N3—C16 | 1.356 (4) | C16—C17 | 1.379 (5) |
N4—C14 | 1.297 (5) | C17—C18 | 1.383 (5) |
N4—C13 | 1.314 (5) | C17—H17 | 0.9500 |
C1—C2 | 1.386 (5) | C18—C19 | 1.361 (6) |
C1—C5 | 1.423 (5) | C18—H18 | 0.9500 |
C2—C3 | 1.371 (5) | C19—C20 | 1.386 (5) |
C2—H2 | 0.9500 | C19—H19 | 0.9500 |
C4—C5 | 1.382 (5) | C20—H20 | 0.9500 |
C5—C6 | 1.461 (5) | C21—H21A | 0.9800 |
C6—C7 | 1.402 (5) | C21—H21B | 0.9800 |
C7—C8 | 1.374 (6) | C21—H21C | 0.9800 |
C1—Pt1—C21 | 92.94 (14) | C10—C9—H9 | 120.8 |
C1—Pt1—N1 | 81.10 (12) | N1—C10—C9 | 122.3 (3) |
C21—Pt1—N1 | 174.00 (12) | N1—C10—H10 | 118.8 |
C1—Pt1—N3 | 177.73 (12) | C9—C10—H10 | 118.8 |
C21—Pt1—N3 | 89.33 (13) | C15—C11—C12 | 119.4 (4) |
N1—Pt1—N3 | 96.63 (10) | C15—C11—H11 | 120.3 |
C10—N1—C6 | 119.7 (3) | C12—C11—H11 | 120.3 |
C10—N1—Pt1 | 125.6 (2) | C13—C12—C11 | 116.9 (4) |
C6—N1—Pt1 | 114.7 (2) | C13—C12—H12 | 121.5 |
C4—N2—C3 | 113.7 (3) | C11—C12—H12 | 121.5 |
C20—N3—C16 | 117.6 (3) | N4—C13—F3 | 114.5 (3) |
C20—N3—Pt1 | 120.3 (2) | N4—C13—C12 | 126.2 (4) |
C16—N3—Pt1 | 122.0 (2) | F3—C13—C12 | 119.3 (4) |
C14—N4—C13 | 114.9 (3) | N4—C14—F4 | 115.2 (3) |
C2—C1—C5 | 116.3 (3) | N4—C14—C15 | 127.0 (4) |
C2—C1—Pt1 | 129.6 (3) | F4—C14—C15 | 117.7 (3) |
C5—C1—Pt1 | 114.1 (2) | C14—C15—C11 | 115.5 (3) |
C3—C2—C1 | 118.6 (3) | C14—C15—C16 | 121.2 (3) |
C3—C2—H2 | 120.7 | C11—C15—C16 | 123.2 (3) |
C1—C2—H2 | 120.7 | N3—C16—C17 | 121.4 (3) |
N2—C3—F1 | 113.7 (3) | N3—C16—C15 | 117.7 (3) |
N2—C3—C2 | 127.0 (3) | C17—C16—C15 | 120.9 (3) |
F1—C3—C2 | 119.3 (3) | C16—C17—C18 | 120.3 (4) |
N2—C4—F2 | 112.4 (3) | C16—C17—H17 | 119.9 |
N2—C4—C5 | 127.3 (3) | C18—C17—H17 | 119.9 |
F2—C4—C5 | 120.4 (3) | C19—C18—C17 | 118.5 (3) |
C4—C5—C1 | 117.1 (3) | C19—C18—H18 | 120.7 |
C4—C5—C6 | 125.7 (3) | C17—C18—H18 | 120.7 |
C1—C5—C6 | 117.1 (3) | C18—C19—C20 | 119.1 (4) |
N1—C6—C7 | 119.7 (3) | C18—C19—H19 | 120.4 |
N1—C6—C5 | 113.0 (3) | C20—C19—H19 | 120.4 |
C7—C6—C5 | 127.4 (3) | N3—C20—C19 | 123.1 (4) |
C8—C7—C6 | 119.9 (3) | N3—C20—H20 | 118.5 |
C8—C7—H7 | 120.0 | C19—C20—H20 | 118.5 |
C6—C7—H7 | 120.0 | Pt1—C21—H21A | 109.5 |
C9—C8—C7 | 119.9 (4) | Pt1—C21—H21B | 109.5 |
C9—C8—H8 | 120.1 | H21A—C21—H21B | 109.5 |
C7—C8—H8 | 120.1 | Pt1—C21—H21C | 109.5 |
C8—C9—C10 | 118.5 (4) | H21A—C21—H21C | 109.5 |
C8—C9—H9 | 120.8 | H21B—C21—H21C | 109.5 |
C5—C1—C2—C3 | 2.0 (5) | C8—C9—C10—N1 | −1.4 (6) |
Pt1—C1—C2—C3 | −175.8 (3) | C15—C11—C12—C13 | 0.7 (6) |
C4—N2—C3—F1 | −179.7 (3) | C14—N4—C13—F3 | −179.5 (3) |
C4—N2—C3—C2 | −0.2 (6) | C14—N4—C13—C12 | 0.2 (6) |
C1—C2—C3—N2 | −0.9 (6) | C11—C12—C13—N4 | −0.7 (6) |
C1—C2—C3—F1 | 178.6 (3) | C11—C12—C13—F3 | 178.9 (4) |
C3—N2—C4—F2 | 180.0 (3) | C13—N4—C14—F4 | 178.2 (3) |
C3—N2—C4—C5 | 0.0 (6) | C13—N4—C14—C15 | 0.4 (6) |
N2—C4—C5—C1 | 1.2 (6) | N4—C14—C15—C11 | −0.4 (6) |
F2—C4—C5—C1 | −178.8 (3) | F4—C14—C15—C11 | −178.1 (3) |
N2—C4—C5—C6 | 178.7 (3) | N4—C14—C15—C16 | 177.0 (4) |
F2—C4—C5—C6 | −1.2 (5) | F4—C14—C15—C16 | −0.8 (5) |
C2—C1—C5—C4 | −2.1 (5) | C12—C11—C15—C14 | −0.2 (5) |
Pt1—C1—C5—C4 | 176.0 (2) | C12—C11—C15—C16 | −177.5 (3) |
C2—C1—C5—C6 | −179.9 (3) | C20—N3—C16—C17 | 0.5 (5) |
Pt1—C1—C5—C6 | −1.8 (4) | Pt1—N3—C16—C17 | −176.6 (3) |
C10—N1—C6—C7 | 1.2 (5) | C20—N3—C16—C15 | −178.0 (3) |
Pt1—N1—C6—C7 | 179.1 (3) | Pt1—N3—C16—C15 | 5.0 (4) |
C10—N1—C6—C5 | −178.7 (3) | C14—C15—C16—N3 | 81.1 (4) |
Pt1—N1—C6—C5 | −0.7 (4) | C11—C15—C16—N3 | −101.7 (4) |
C4—C5—C6—N1 | −175.9 (3) | C14—C15—C16—C17 | −97.3 (4) |
C1—C5—C6—N1 | 1.6 (4) | C11—C15—C16—C17 | 79.8 (5) |
C4—C5—C6—C7 | 4.2 (6) | N3—C16—C17—C18 | −1.5 (5) |
C1—C5—C6—C7 | −178.2 (4) | C15—C16—C17—C18 | 176.9 (3) |
N1—C6—C7—C8 | −1.9 (6) | C16—C17—C18—C19 | 1.6 (6) |
C5—C6—C7—C8 | 178.0 (4) | C17—C18—C19—C20 | −0.8 (6) |
C6—C7—C8—C9 | 0.9 (7) | C16—N3—C20—C19 | 0.4 (5) |
C7—C8—C9—C10 | 0.7 (7) | Pt1—N3—C20—C19 | 177.5 (3) |
C6—N1—C10—C9 | 0.5 (6) | C18—C19—C20—N3 | −0.2 (6) |
Pt1—N1—C10—C9 | −177.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···F2 | 0.95 | 2.24 | 2.858 (4) | 122 |
C12—H12···F1i | 0.95 | 2.44 | 3.259 (5) | 144 |
C20—H20···N2ii | 0.95 | 2.45 | 3.385 (5) | 167 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1. |
Funding information
Funding for this research was provided by: National Research Foundation of Korea (grant No. 2022R1F1A1063758); Ministry of Trade, Industry and Energy, Korea Evaluation Institute of Industrial Technology (grant No. 20018956).
References
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A. Jr, Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. & Pople, J. A. (2004). Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford CT, USA. Google Scholar
Juliá, F., Bautista, D. & González-Herrero, P. (2016). Chem. Commun. 52, 1657–1660. Google Scholar
Juliá, F. & González-Herrero, P. (2016). J. Am. Chem. Soc. 138, 5276–5282. Web of Science PubMed Google Scholar
Kang, J., Kim, S. C., Lee, J. Y. & Kang, Y. (2022a). Dyes & Pigm. 207, 110770. Web of Science CSD CrossRef Google Scholar
Kang, J., Moon, S.-H., Paek, S. & Kang, Y. (2022b). Can. J. Chem. In the press. https://doi.org/10.1139/cjc-2022-0093. Google Scholar
Kang, J., Zaen, R., Lee, J. H., Hwang, H., Park, K.-M., Kim, S. C., Lee, J. Y. & Kang, Y. (2022c). Chem. Eng. J. 431, 134249. Web of Science CSD CrossRef Google Scholar
Kang, J., Zaen, R., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2021). Adv. Opt. Mater. 9, 2101233. Web of Science CSD CrossRef Google Scholar
Kim, M., Kim, J., Park, K.-M. & Kang, Y. (2018). Bull. Korean Chem. Soc. 39, 703–706. Web of Science CSD CrossRef CAS Google Scholar
Lee, C., Zaen, R., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2018). Organometallics, 37, 4639–4647. Web of Science CSD CrossRef CAS Google Scholar
Lee, J., Park, H., Park, K. M., Kim, J., Lee, J. Y. & Kang, Y. (2015). Dyes Pigments, 123, 235–241. Web of Science CSD CrossRef CAS Google Scholar
Lee, S. J., Park, K. M., Yang, K. & Kang, Y. (2009). Inorg. Chem. 48, 1030–1037. Web of Science CSD CrossRef PubMed CAS Google Scholar
Oh, H., Park, K.-M., Hwang, H., Oh, S., Lee, J. H., Lu, J.-S., Wang, S. & Kang, Y. (2013). Organometallics, 32, 6427–6436. Web of Science CSD CrossRef CAS Google Scholar
Park, K.-M., Lee, J. & Kang, Y. (2015). Acta Cryst. E71, 354–356. Web of Science CSD CrossRef IUCr Journals Google Scholar
SciFinder (2021). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed October 7, 2022). Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Zaen, R., Park, K.-M., Lee, K. H., Lee, J. Y. & Kang, Y. (2019). Adv. Opt. Mater. 7, 1901387. Web of Science CSD CrossRef Google Scholar
Zhang, H., Luo, Y., Yan, X., Cai, W., Zhao, A., Meng, Q. & Shen, W. (2020). Inorg. Chim. Acta, 501, 119269. Web of Science CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.