research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[tetra­kis­(4-methyl­anilin­ium) [octa-μ-chlorido-di­chlorido­tricadmium(II)]]: a two-dimensional organic–inorganic hybrid perovskite

crossmark logo

aPG and Research Department of Physics, SrimadAndavan Arts and Science College, Tiruchirappalli - 620 005, India, bCrystal Growth and Thin Film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli - 620 024, India, cChemistry Department, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland, and dInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
*Correspondence e-mail: viji.suba@gmail.com, helen.stoeckli-evans@unine.ch

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 1 November 2022; accepted 11 November 2022; online 17 November 2022)

The title polymeric compound, (C7H10N)4[Cd3Cl10], involves a centrosymmetric [Cd3Cl10]4− tetra-anion, which is made up of three face-sharing CdCl6 octa­hedra, linked by four corner Cl atoms, forming layers propagating in the ab plane. The p-methyl­anilinium cations, situated between the layers, form N—H⋯Cl hydrogen bonds to the layers, which stack up the c-axis direction. There are no ππ or C—H⋯π inter­actions involving the aromatic rings, which are inclined to each other by 42.3 (1) ° in the asymmetric unit.

1. Chemical context

There are numerous reports of the structures of polymeric structures involving transition metal halide networks with organic cations to provide charge compensation [Cambridge Structural Database (CSD), Version 5.43, last update September 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]]. They include a number of layer-like structures that have been described as organic–inorganic two-dimensional hybrid perovskites. The structure, properties and applications, especially optoelectronic applications, of such compounds have been reviewed recently by Zhu and collaborators (Zhang et al., 2020[Zhang, F., Lu, H., Tong, J., Berry, J. J., Beard, M. C. & Zhu, K. (2020). Energy Environ. Sci. 13, 1154-1186.]).

Beatty and collaborators (Costin-Hogan et al., 2008[Costin-Hogan, C. E., Chen, C.-L., Hughes, E., Pickett, A., Valencia, R., Rath, N. P. & Beatty, A. M. (2008). CrystEngComm, 10, 1910-1915.]) reported on a number of complexes formed by the reaction of ortho-substituted phenyl­amines with cadmium halide salts. They showed, for example, that the reaction of an acidified solution in methanol of CdCl2 with aniline led to the form­ation of the [Cd3Cl10]4– linear tetra-anion in the compound poly-[tetra­kis­(anilinium) [deca­chloro­tricad­mium(II)]] (CSD refcode EGUFUI). In the present work an analogous reaction has been studied using a para-substituted derivative of aniline, 4-methyl­aniline. The resulting structure of the title compound, (I), is isostructural with that of EGUFUI.

A search of the CSD for polymeric compounds involving the title cation, 4-methyl­anilinium, gave only four hits. One in particular is of inter­est, namely bis­(4-methyl­anilinium) penta­molybdate (YIKLIP; Oszajca et al., 2013[Oszajca, M., Smrčok, Ľ. & Łasocha, W. (2013). Acta Cryst. C69, 1367-1372.]), whose structure was determined by powder X-ray diffraction analysis. It is composed of layers of inorganic {[Mo5O16]2–}n polyanions alternating with layers of 4-methyl­anilinium cations. The latter are linked to the inorganic polyanions by N—H⋯O hydrogen bonds, involving both terminal and shared O atoms.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound, {[Cd3Cl10]4−·4[(C7H10N)+]}n (I), is composed of half of a centrosymmetric [Cd3Cl10]4– tetra-anion, with the central Cd2 atom being situated on a crystallographic inversion centre, and two 4-methyl­anilinium cations (Fig. 1[link]). The complete [Cd3Cl10]4– unit is made up of three face sharing CdCl6 octa­hedra. They are linked by four corner Cl ions (Cl2, Cl2i, Cl2iv and Cl2v; Fig. 1[link]) to form a layer-like structure lying parallel to the ab plane (Figs. 2[link] and 3[link]). The octa­hedral environment of atom Cd1 is slightly distorted with one short contact to a terminal Cl atom (Cl1) of 2.5051 (5) Å, while the other five Cd—Cl bond lengths vary from 2.6329 (5) to 2.7220 (5) Å. The Cd2—Cl bond lengths vary from 2.5764 (5) to 2.6750 (4) Å (Table 1[link]). The cadmium atoms are separated by 3.4082 (2) Å. These bond lengths and the metal⋯metal distance are very similar to those observed for the three compounds involving cadmium chloride mentioned below in § 6. Database survey.

Table 1
Selected bond lengths (Å)

Cd1—Cl1 2.5051 (5) Cd1—Cl5 2.6511 (5)
Cd1—Cl2 2.6560 (5) Cd2—Cl3 2.6750 (4)
Cd1—Cl2i 2.6329 (5) Cd2—Cl4 2.6551 (4)
Cd1—Cl3 2.6462 (5) Cd2—Cl5 2.5764 (5)
Cd1—Cl4 2.7220 (5)    
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].
[Figure 1]
Figure 1
A view of the structure of the polymeric unit of compound I. The displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −x + 1, −y + 2, −z; (ii) x − [{1\over 2}], −y + [{3\over 2}], −z; (iii) −x + [{3\over 2}], y + [{1\over 2}], z; (iv) x − [{1\over 2}], −y + [{5\over 2}], −z; (v) −x + [{3\over 2}], y − [{1\over 2}], z.]
[Figure 2]
Figure 2
A view along the c-axis of the layer-like structure of the [Cd3Cl10]4− polymeric arrangement in I. Colour code: Cd yellow, Cl green.
[Figure 3]
Figure 3
A view along the b-axis of the crystal packing of compound I. The N—H⋯Cl hydrogen bonds (see Table 2[link]) are shown as dashed lines. For clarity, the C-bound H atoms have been omitted. Colour code as in Fig. 2[link].

The two p-methyl­anilinium cations lie in the inter­stitial space between the layers (Fig. 3[link]). They have normal geometry, with the heteroatoms of each cation being almost coplanar with their attached rings: cation N1/C1–C7 is almost planar (r.m.s. deviation = 0.009 Å) with atoms N1 and C7 both being displaced from the mean plane by 0.011 (2) Å; cation N2/C8–C14 is slightly less planar (r.m.s. deviation = 0.047 Å) with N2 and C14 being displaced from the mean plane by 0.064 (2) and 0.060 (3) Å, respectively.

3. Supra­molecular features

In the crystal of I, the p-methyl­anilinium cations that are situated between the layers are N—H⋯Cl hydrogen bonded to the front and back of the layers that stack up the c-axis (Fig. 3[link]). All six ammonium H atoms are involved in hydrogen bonding with all five chloride ions (Table 2[link]). However, there are no identified ππ or C—H⋯π inter­actions involving the aromatic rings (C1–C6 and C8–C13) of the p-methyl­anilinium cations. The rings are inclined to each other by 42.3 (1) ° in the asymmetric unit and by ca 71.8 and 73.8°, respectively, to the ab plane in which lies the anionic {[Cd3Cl10]4−}n layer-like structure.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1AN⋯Cl5ii 0.86 (3) 2.42 (3) 3.258 (2) 166 (2)
N1—H1BN⋯Cl2iii 0.91 (3) 2.38 (3) 3.236 (2) 158 (3)
N1—H1CN⋯Cl4iv 0.80 (3) 2.70 (3) 3.360 (2) 141 (3)
N2—H2AN⋯Cl3v 0.87 (3) 2.34 (3) 3.198 (2) 170 (3)
N2—H2BN⋯Cl1vi 0.85 (3) 2.48 (3) 3.273 (2) 156 (2)
N2—H2CN⋯Cl1vii 0.93 (4) 2.29 (4) 3.194 (2) 164 (3)
Symmetry codes: (ii) [-x+1, -y+2, -z]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iv) [-x+1, -y+1, -z]; (v) [x-{\script{1\over 2}}, y-1, -z+{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (vii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

4. Thermal analyses

Differential thermal analysis (DTA) and thermogravimetric analysis (TGA) were recorded in the temperature range 25–650°C, at a heating rate of 10°C min−1 under a nitro­gen atmosphere, using an SDT Q600 simultaneous thermo analytical system. The alumina crucible was loaded with 6.191 mg of compound I. It can be seen in the TGA and DTA curves for I (Fig. 4[link]), that the sample begins to decompose before reaching the melting point. In the TGA curve, the first weight loss (198–216°C) is due to the loss of two methyl­anilinium cations and two chloride anions: calculated 25.5%, observed 24.8%. The second weight loss (216–250°C) is due to the loss of the two remaining methyl­anilinium cations: calculated 19.2%, observed 18.2%. The third weight loss (553–559°C) involves the loss of two equivalents of HCl: calculated 6.3%, experimental 6.3%. The residual cadmium chloride (CdCl2) begins to evaporate at 559°C as observed from the DTA curve (Fig. 4[link]), and it continues slowly up to 650°C. There is a small residue (0.83%) remaining at 650°C.

[Figure 4]
Figure 4
The TGA (blue) and DTA (black) curves for I.

5. FT–IR and FT–Raman spectroscopy

A Perkin Elmer-paragon-500 Fourier transform infrared (FT–IR) was used to record the FT–IR spectrum (KBr pellet) in the wavelength range of 450–4000 cm−1. A Varian FT–Raman spectrometer was used to record the FT–Raman spectrum in the wavelength range 400–4000 cm−1.

The FT–IR and FT–Raman spectra of I are illustrated in Fig. 5[link], and the assignment of the vibrational frequencies are presented in Table 3[link]. The inter­molecular N—H⋯Cl stretching vibration is observed at 3129 cm−1 (FT–IR) and 3126 cm−1 (FT–Raman) (Haigh et al., 1967[Haigh, J. M., Van Dam, M. A. & Thornton, D. A. (1967). J. S. Afr. Inst. 20, 113-122.]). The band at 637 cm−1 in the FT–IR and 638 cm−1 in the FT–Raman corresponds to the NH2 twisting frequency. The asymmetric NH stretching frequency is observed at 3510 cm−1 in the FT–IR spectrum. The peak at 1243 cm−1 in the FT–IR spectrum is due to the C—N vibration. The frequencies of the FT–IR spectrum agree well with the corresponding values of the FT–Raman spectrum and also when compared with those of p-methyl­aniline (Altun et al., 2003[Altun, A., Gölcük, K. & Kumru, M. (2003). J. Mol. Struct. Theochem, 637, 155-169.]).

Table 3
 Assignment of FT–IR and FT–Raman vibrational frequencies (cm−1) for I and p-methyl­aniline

  FT–IR   FT–Raman  
Assignment of vibrational frequencies I p-methyl­anilinea I p-methyl­anilineb
ν (NH) asymmetric 3510 3416 - 3418
γ NH2 (twisting) 637 - 638 -
β NH2 (scis.) 1616 1621 1608 1617
β CH3 sym 1391 - 1380 1380
γ CH3 sym 2881 2912 2922 2917
ν (C=C) aromatic 1560, 1503, 1291 1582, 1514, 1441 - 1581, 1281
β (C—H) 1,4-disubstituted 1190, 1114 1176, 1120 1196 1179
ν (C—N) 1243 1267 - 1271
ν (N—H⋯Cl) inter­molecular 3129 - 3126 -
Notes: (a) Haigh et al. (1967[Haigh, J. M., Van Dam, M. A. & Thornton, D. A. (1967). J. S. Afr. Inst. 20, 113-122.]);(b) Altun et al. (2003[Altun, A., Gölcük, K. & Kumru, M. (2003). J. Mol. Struct. Theochem, 637, 155-169.]).
[Figure 5]
Figure 5
FT–IR and FT–Raman spectra for I.

6. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update September 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for polymeric-type structures involving transition-metal halide salts with organic cations gave over 150 hits. The large majority involve cadmium halide salts forming zero-dimensional (mol­ecular) salts or one-dimensional polymer chains.

There are only four reports of two-dimensional layered perovskite-type compounds involving the same [Cd3X10]4– (where X = Br, Cl) linear tetra-anion as in the title compound I. They include: catena-[tetra­kis­(anilinium) [octa­kis­(μ2-bromo)­dibromo­tricadmium]] (CSD refcode POPHAD; Ishihara et al., 1994[Ishihara, H., Krishnan, V. G., Dou, S.-Q., Paulus, H. & Weiss, A. (1994). Z. Naturforsch. A: Phys. Sci. 49, 213-222.]), catena-[tetra­kis­(anilinium) [octa­kis­(μ2-chloro)­dichloro­tricadmium(II)]] (EGUFUI; Costin-Hogan et al., 2008[Costin-Hogan, C. E., Chen, C.-L., Hughes, E., Pickett, A., Valencia, R., Rath, N. P. & Beatty, A. M. (2008). CrystEngComm, 10, 1910-1915.]), catena-[tetra­kis­(iso­propyl­ammonium) [deca­chloro­tricadmium(II)]] (IPEMAS01; Gagor et al., 2011[Gagor, A., Waśkowska, A., Czapla, Z. & Dacko, S. (2011). Acta Cryst. B67, 122-129.]) and catena-[tetra­kis­(cyclo­penta­naminium) [octa­kis­(μ-chloro)­dichloro­tricadmium(II)]] (QOHGUR; Liao et al., 2014[Liao, W.-Q., Mei, G.-Q., Ye, H.-Y., Mei, Y.-X. & Zhang, Y. (2014). Inorg. Chem. 53, 8913-8918.]). The various Cd—Cl bond lengths, involving atoms Cd1 and Cd2, for the three compounds are similar to those observed for I, as seen in Table 4[link]. The Cd1⋯Cd2 inter­atomic distance for I [3.4082 (2) Å] however, is shorter than that observed in the other three compounds; see Table 4[link].

Table 4
A comparison of selected geometrical parameters (Å) for I, EGUFUIa, IPEMAS01b and QOHGURc

Distances I EGUFUIa IPEMAS01b QOHGURc
Cd1—Cl1 2.5051 (5) 2.4962 (9) 2.4880 (7) 2.496 (2)
Cd1—Cl(2,3,4,5) 2.6329 (5)–2.7220 (5) 2.5882 (9)–2.8926 (9) 2.6218 (7)–2.7404 (6) 2.660 (2)–2.763 (2)
Cd2d—Cl(3,4,5) 2.5764 (5)–2.6750 (4) 2.5632 (9)–2.7391 (9) 2.5795 (6)–2.6903 (6) 2.577 (2)–2.697 (2)
Cd1⋯Cd2d 3.4082 (2) 3.4714 (6) 3.4493 (3) 3.4396 (9)
Notes: (a) Costin-Hogan et al. (2008[Costin-Hogan, C. E., Chen, C.-L., Hughes, E., Pickett, A., Valencia, R., Rath, N. P. & Beatty, A. M. (2008). CrystEngComm, 10, 1910-1915.]); (b) Gagor et al. (2011[Gagor, A., Waśkowska, A., Czapla, Z. & Dacko, S. (2011). Acta Cryst. B67, 122-129.]); (c) Liao et al. (2014[Liao, W.-Q., Mei, G.-Q., Ye, H.-Y., Mei, Y.-X. & Zhang, Y. (2014). Inorg. Chem. 53, 8913-8918.]); (d) Atom Cd2 is located on an inversion centre

All four compounds crystallize at room temperature in the ortho­rhom­bic space group Pbca, as does the title compound (I). Hence, all five compounds are isostructural. As noted by Gagor et al. (2011[Gagor, A., Waśkowska, A., Czapla, Z. & Dacko, S. (2011). Acta Cryst. B67, 122-129.]) and Liao et al. (2014[Liao, W.-Q., Mei, G.-Q., Ye, H.-Y., Mei, Y.-X. & Zhang, Y. (2014). Inorg. Chem. 53, 8913-8918.]), some layered organic–inorganic hybrids have been shown to show reversible structural phase transitions because cooling and heating can induce reorientation of the organic cations and deformation of the anionic framework. Such changes were observed for compounds IPEMASS01 and QOHGUR, which undergo two phase transitions. At low temperature they transform into the non-centrosymmetric ortho­rhom­bic space group P212121 [structures IPEMAS02 (275 K) and QOHGUR01 (93 K)], while at high temperature they transform to the centrosymmetric ortho­rhom­bic space group Cmca [structures IPEMAS (320 K) and QOHGUR02 (343 K)]. As reported by Gagor et al. (2011[Gagor, A., Waśkowska, A., Czapla, Z. & Dacko, S. (2011). Acta Cryst. B67, 122-129.]), the transition from Pbca to P212121 is type I: translationengleiche; the crystal class changes from mmm to 222. The change from Cmca to Pbca is type IIA: klassengleiche; the crystal class does not change (mmm to mmm). For further details concerning subgroups and supergroups of space groups, see Müller (2013[Müller, U. (2013). Symmetry Relationships between Crystal Structures. International Union of Crystallography Texts on Crystallography. pp. 86-99 and 196-215. Oxford University Press.]).

7. Synthesis and crystallization

Concentrated HCl (1 ml) was added dropwise to a mixture of cadmium chloride dihydrate (1 g, 0.009 mol) and p-methyl­aniline (1.71 g, 0.009 mol) in methanol (30 ml) until the solution was clear. The solution was then stirred and heated under reflux at 353 K for 6 h and filtered. The solution was allowed to evaporate slowly at room temperature, yielding small, orange block-like crystals of I after ca 21 days.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The ammonium H atoms were located in difference-Fourier maps and freely refined. The C-bound H atoms were included in calculated positions (C—H = 0.95 Å) and treated as riding atoms with Uiso(H) = 1.2Ueq(C). The average hkl measurement multiplicity was low, hence an empirical absorption correction was applied.

Table 5
Experimental details

Crystal data
Chemical formula (C7H10N)4[Cd3Cl10]
Mr 1124.34
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 200
a, b, c (Å) 19.4883 (7), 7.3754 (3), 27.1557 (10)
V3) 3903.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.33
Crystal size (mm) 0.12 × 0.10 × 0.08
 
Data collection
Diffractometer STOE IPDS 2T
Absorption correction Empirical (using intensity measurements) (ShxAbs; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.])
Tmin, Tmax 0.495, 0.839
No. of measured, independent and observed [I > 2σ(I)] reflections 49498, 3681, 3072
Rint 0.040
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.031, 0.95
No. of reflections 3681
No. of parameters 231
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.35
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Poly[tetrakis(4-methylanilinium) [octa-µ-chlorido-dichloridotricadmium(II)]] top
Crystal data top
(C7H10N)4[Cd3Cl10]Dx = 1.913 Mg m3
Mr = 1124.34Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 42237 reflections
a = 19.4883 (7) Åθ = 1.5–26.1°
b = 7.3754 (3) ŵ = 2.33 mm1
c = 27.1557 (10) ÅT = 200 K
V = 3903.2 (3) Å3Block, orange
Z = 40.12 × 0.10 × 0.08 mm
F(000) = 2200
Data collection top
STOE IPDS 2T
diffractometer
3681 independent reflections
Radiation source: fine-focus sealed tube3072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 6.67 pixels mm-1θmax = 25.7°, θmin = 1.5°
rotation method scansh = 2323
Absorption correction: empirical (using intensity measurements)
(ShxAbs; Spek, 2020)
k = 89
Tmin = 0.495, Tmax = 0.839l = 3233
49498 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: mixed
wR(F2) = 0.031H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.019P)2]
where P = (Fo2 + 2Fc2)/3
3681 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.65796 (2)0.94295 (2)0.05158 (2)0.02163 (4)
Cd20.5000001.0000000.0000000.02469 (5)
Cl10.68348 (3)0.90247 (7)0.14132 (2)0.03240 (11)
Cl20.75872 (2)1.17278 (6)0.03058 (2)0.02941 (11)
Cl30.56591 (2)1.20044 (6)0.06710 (2)0.02527 (10)
Cl40.54771 (2)0.71648 (6)0.04958 (2)0.02671 (10)
Cl50.61915 (2)0.99188 (6)0.04104 (2)0.02448 (10)
N10.37129 (12)0.5701 (3)0.02703 (7)0.0315 (4)
H1AN0.3750 (13)0.686 (4)0.0249 (9)0.053 (8)*
H1BN0.3360 (18)0.533 (4)0.0078 (13)0.083 (11)*
H1CN0.4063 (17)0.527 (4)0.0167 (11)0.062 (10)*
C10.35738 (10)0.5140 (2)0.07793 (7)0.0244 (4)
C20.29246 (10)0.5348 (3)0.09622 (8)0.0311 (5)
H20.2569150.5838710.0763290.037*
C30.27966 (11)0.4828 (3)0.14427 (8)0.0361 (5)
H30.2347490.4959740.1573970.043*
C40.33130 (11)0.4116 (3)0.17363 (7)0.0316 (5)
C50.39604 (11)0.3939 (3)0.15362 (8)0.0327 (5)
H50.4320610.3465070.1733620.039*
C60.40968 (10)0.4435 (3)0.10564 (8)0.0304 (4)
H60.4543070.4290460.0921240.036*
C70.31785 (14)0.3573 (3)0.22625 (8)0.0495 (6)
H7A0.3044910.2293020.2274340.074*
H7B0.2807460.4320130.2397400.074*
H7C0.3595640.3753590.2457990.074*
N20.15463 (12)0.4659 (3)0.36493 (7)0.0346 (4)
H2AN0.1309 (15)0.405 (4)0.3864 (11)0.061 (9)*
H2BN0.1564 (14)0.578 (4)0.3724 (10)0.055 (8)*
H2CN0.1999 (19)0.426 (4)0.3665 (12)0.082 (11)*
C80.12388 (11)0.4504 (3)0.31563 (7)0.0290 (4)
C90.15310 (12)0.3358 (3)0.28179 (8)0.0375 (5)
H90.1910360.2616300.2905630.045*
C100.12627 (13)0.3304 (3)0.23464 (8)0.0417 (5)
H100.1468150.2528910.2108940.050*
C110.07051 (12)0.4343 (3)0.22117 (8)0.0370 (5)
C120.04108 (12)0.5428 (3)0.25683 (9)0.0442 (6)
H120.0016760.6126320.2487750.053*
C130.06764 (12)0.5523 (3)0.30399 (9)0.0413 (5)
H130.0470450.6286830.3279790.050*
C140.04386 (15)0.4313 (4)0.16891 (9)0.0542 (7)
H14A0.0044550.4681120.1686250.081*
H14B0.0480530.3084100.1555250.081*
H14C0.0707160.5154400.1486880.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02012 (7)0.02084 (7)0.02392 (7)0.00165 (5)0.00197 (6)0.00028 (5)
Cd20.01681 (9)0.02408 (9)0.03317 (11)0.00019 (7)0.00311 (8)0.00007 (8)
Cl10.0366 (3)0.0388 (3)0.0218 (2)0.0015 (2)0.0016 (2)0.00037 (19)
Cl20.0259 (2)0.0242 (2)0.0381 (3)0.00793 (18)0.0008 (2)0.00288 (19)
Cl30.0229 (2)0.0237 (2)0.0293 (2)0.00188 (18)0.00075 (19)0.00623 (17)
Cl40.0243 (2)0.0212 (2)0.0346 (3)0.00105 (17)0.0002 (2)0.00392 (19)
Cl50.0211 (2)0.0293 (2)0.0231 (2)0.00007 (18)0.00004 (18)0.00205 (17)
N10.0376 (11)0.0297 (10)0.0273 (10)0.0036 (9)0.0048 (9)0.0014 (8)
C10.0298 (10)0.0194 (9)0.0241 (10)0.0036 (7)0.0017 (8)0.0018 (7)
C20.0259 (10)0.0363 (11)0.0311 (11)0.0036 (9)0.0029 (8)0.0026 (9)
C30.0289 (11)0.0432 (12)0.0361 (12)0.0019 (9)0.0072 (9)0.0010 (10)
C40.0423 (13)0.0242 (10)0.0281 (11)0.0018 (9)0.0022 (9)0.0001 (8)
C50.0344 (12)0.0283 (11)0.0352 (12)0.0038 (9)0.0062 (9)0.0046 (9)
C60.0257 (10)0.0274 (10)0.0380 (12)0.0034 (8)0.0040 (9)0.0022 (9)
C70.0652 (17)0.0510 (14)0.0324 (13)0.0030 (12)0.0088 (12)0.0075 (11)
N20.0383 (11)0.0352 (11)0.0303 (10)0.0064 (9)0.0065 (9)0.0023 (8)
C80.0297 (11)0.0280 (10)0.0292 (10)0.0063 (8)0.0047 (8)0.0023 (8)
C90.0423 (12)0.0307 (11)0.0394 (12)0.0068 (10)0.0016 (11)0.0003 (9)
C100.0557 (15)0.0316 (11)0.0377 (13)0.0018 (11)0.0052 (11)0.0071 (9)
C110.0453 (13)0.0280 (10)0.0377 (12)0.0103 (10)0.0019 (10)0.0027 (9)
C120.0350 (13)0.0466 (14)0.0511 (15)0.0062 (10)0.0015 (11)0.0019 (11)
C130.0374 (13)0.0451 (13)0.0414 (13)0.0070 (11)0.0061 (10)0.0069 (10)
C140.0718 (19)0.0462 (13)0.0447 (15)0.0153 (13)0.0137 (13)0.0041 (12)
Geometric parameters (Å, º) top
Cd1—Cd23.4082 (2)C5—C61.379 (3)
Cd1—Cl12.5051 (5)C5—H50.9500
Cd1—Cl22.6560 (5)C6—H60.9500
Cd1—Cl2i2.6329 (5)C7—H7A0.9800
Cd1—Cl32.6462 (5)C7—H7B0.9800
Cd1—Cl42.7220 (5)C7—H7C0.9800
Cd1—Cl52.6511 (5)N2—C81.471 (3)
Cd2—Cl32.6750 (4)N2—H2AN0.87 (3)
Cd2—Cl3ii2.6750 (4)N2—H2BN0.85 (3)
Cd2—Cl42.6551 (4)N2—H2CN0.93 (4)
Cd2—Cl4ii2.6551 (4)C8—C131.366 (3)
Cd2—Cl52.5764 (5)C8—C91.372 (3)
Cd2—Cl5ii2.5764 (5)C9—C101.384 (3)
N1—C11.468 (3)C9—H90.9500
N1—H1AN0.86 (3)C10—C111.380 (3)
N1—H1BN0.90 (4)C10—H100.9500
N1—H1CN0.80 (3)C11—C121.381 (3)
C1—C21.368 (3)C11—C141.511 (3)
C1—C61.370 (3)C12—C131.383 (3)
C2—C31.383 (3)C12—H120.9500
C2—H20.9500C13—H130.9500
C3—C41.387 (3)C14—H14A0.9800
C3—H30.9500C14—H14B0.9800
C4—C51.380 (3)C14—H14C0.9800
C4—C71.507 (3)
Cl1—Cd1—Cl2i89.894 (17)H1AN—N1—H1CN107 (3)
Cl1—Cd1—Cl393.735 (16)H1BN—N1—H1CN109 (3)
Cl2i—Cd1—Cl3174.692 (15)C2—C1—C6122.10 (18)
Cl1—Cd1—Cl5174.745 (17)C2—C1—N1118.77 (18)
Cl2i—Cd1—Cl594.211 (15)C6—C1—N1119.14 (18)
Cl3—Cd1—Cl581.953 (15)C1—C2—C3118.58 (19)
Cl1—Cd1—Cl297.945 (17)C1—C2—H2120.7
Cl2i—Cd1—Cl288.887 (7)C3—C2—H2120.7
Cl3—Cd1—Cl294.439 (15)C2—C3—C4121.1 (2)
Cl5—Cd1—Cl285.430 (15)C2—C3—H3119.5
Cl1—Cd1—Cl495.911 (16)C4—C3—H3119.5
Cl2i—Cd1—Cl491.033 (15)C5—C4—C3118.23 (19)
Cl3—Cd1—Cl484.747 (15)C5—C4—C7120.5 (2)
Cl5—Cd1—Cl480.755 (15)C3—C4—C7121.3 (2)
Cl2—Cd1—Cl4166.143 (16)C6—C5—C4121.54 (19)
Cl1—Cd1—Cd2126.427 (13)C6—C5—H5119.2
Cl2i—Cd1—Cd2124.153 (12)C4—C5—H5119.2
Cl3—Cd1—Cd250.545 (10)C1—C6—C5118.45 (19)
Cl5—Cd1—Cd248.363 (10)C1—C6—H6120.8
Cl2—Cd1—Cd2120.049 (12)C5—C6—H6120.8
Cl4—Cd1—Cd249.802 (10)C4—C7—H7A109.5
Cl5ii—Cd2—Cl5180.0C4—C7—H7B109.5
Cl5ii—Cd2—Cl496.582 (14)H7A—C7—H7B109.5
Cl5—Cd2—Cl483.419 (14)C4—C7—H7C109.5
Cl5ii—Cd2—Cl4ii83.418 (14)H7A—C7—H7C109.5
Cl5—Cd2—Cl4ii96.580 (14)H7B—C7—H7C109.5
Cl4—Cd2—Cl4ii180.0C8—N2—H2AN110.7 (19)
Cl5ii—Cd2—Cl3ii82.800 (14)C8—N2—H2BN108.1 (19)
Cl5—Cd2—Cl3ii97.198 (14)H2AN—N2—H2BN111 (3)
Cl4—Cd2—Cl3ii94.491 (14)C8—N2—H2CN114 (2)
Cl4ii—Cd2—Cl3ii85.509 (14)H2AN—N2—H2CN108 (3)
Cl5ii—Cd2—Cl397.198 (14)H2BN—N2—H2CN105 (3)
Cl5—Cd2—Cl382.804 (14)C13—C8—C9121.1 (2)
Cl4—Cd2—Cl385.508 (14)C13—C8—N2119.6 (2)
Cl4ii—Cd2—Cl394.492 (14)C9—C8—N2119.2 (2)
Cl3ii—Cd2—Cl3180.0C8—C9—C10118.7 (2)
Cl5ii—Cd2—Cd1129.733 (10)C8—C9—H9120.6
Cl5—Cd2—Cd150.270 (10)C10—C9—H9120.6
Cl4—Cd2—Cd151.542 (10)C11—C10—C9121.8 (2)
Cl4ii—Cd2—Cd1128.458 (10)C11—C10—H10119.1
Cl3ii—Cd2—Cd1130.200 (10)C9—C10—H10119.1
Cl3—Cd2—Cd149.800 (10)C10—C11—C12117.6 (2)
Cl5ii—Cd2—Cd1ii50.268 (10)C10—C11—C14120.8 (2)
Cl5—Cd2—Cd1ii129.730 (10)C12—C11—C14121.6 (2)
Cl4—Cd2—Cd1ii128.458 (10)C11—C12—C13121.5 (2)
Cl4ii—Cd2—Cd1ii51.542 (10)C11—C12—H12119.2
Cl3ii—Cd2—Cd1ii49.799 (10)C13—C12—H12119.2
Cl3—Cd2—Cd1ii130.200 (10)C8—C13—C12119.1 (2)
Cd1—Cd2—Cd1ii180.0C8—C13—H13120.4
Cd1iii—Cl2—Cd1153.18 (2)C12—C13—H13120.4
Cd1—Cl3—Cd279.655 (12)C11—C14—H14A109.5
Cd2—Cl4—Cd178.656 (12)C11—C14—H14B109.5
Cd2—Cl5—Cd181.367 (13)H14A—C14—H14B109.5
C1—N1—H1AN111.0 (18)C11—C14—H14C109.5
C1—N1—H1BN109 (2)H14A—C14—H14C109.5
H1AN—N1—H1BN109 (3)H14B—C14—H14C109.5
C1—N1—H1CN112 (2)
C6—C1—C2—C30.1 (3)C13—C8—C9—C102.6 (3)
N1—C1—C2—C3179.64 (19)N2—C8—C9—C10176.2 (2)
C1—C2—C3—C40.3 (3)C8—C9—C10—C111.1 (3)
C2—C3—C4—C50.0 (3)C9—C10—C11—C121.2 (3)
C2—C3—C4—C7179.1 (2)C9—C10—C11—C14177.6 (2)
C3—C4—C5—C60.6 (3)C10—C11—C12—C132.1 (3)
C7—C4—C5—C6179.7 (2)C14—C11—C12—C13176.7 (2)
C2—C1—C6—C50.7 (3)C9—C8—C13—C121.7 (3)
N1—C1—C6—C5179.06 (18)N2—C8—C13—C12177.0 (2)
C4—C5—C6—C10.9 (3)C11—C12—C13—C80.7 (4)
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1, y+2, z; (iii) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1AN···Cl5ii0.86 (3)2.42 (3)3.258 (2)166 (2)
N1—H1BN···Cl2iv0.91 (3)2.38 (3)3.236 (2)158 (3)
N1—H1CN···Cl4v0.80 (3)2.70 (3)3.360 (2)141 (3)
N2—H2AN···Cl3vi0.87 (3)2.34 (3)3.198 (2)170 (3)
N2—H2BN···Cl1vii0.85 (3)2.48 (3)3.273 (2)156 (2)
N2—H2CN···Cl1viii0.93 (4)2.29 (4)3.194 (2)164 (3)
Symmetry codes: (ii) x+1, y+2, z; (iv) x1/2, y+3/2, z; (v) x+1, y+1, z; (vi) x1/2, y1, z+1/2; (vii) x1/2, y, z+1/2; (viii) x+1, y1/2, z+1/2.
top
Assignment of FT–IR and FT–Raman vibrational frequencies (cm-1) for I and p-methylanaline
FT–IRFT–Raman
Assignment of vibrational frequenciesIp-methylanalineaIp-methylanalineb
ν (NH) asymmetric35103416-3418
γ NH2 (twisting)637-638-
β NH2 (scis.)1616162116081617
β CH3 sym1391-13801380
γ CH3 sym2881291229222917
ν (CC) aromatic1560, 1503, 12911582, 1514, 1441-1581, 1281
β (C—H) 1,4-disubstituted1190, 11141176, 112011961179
ν (C—N)12431267-1271
ν (N—H···Cl) intermolecular3129-3126-
Notes: (a) Haigh et al. (1967);(b) Altun et al. (2003).
top
A comparison of selected geometrical parameters (Å) for I, EGUFUIa, IPEMAS01b and QOHGURc
DistancesIEGUFUIaIPEMAS01bQOHGURc
Cd1—Cl12.5051 (5)2.4962 (9)2.4880 (7)2.496 (2)
Cd1—Cl(2,3,4,5)2.6329 (5)–2.7220 (5)2.5882 (9)–2.8926 (9)2.6218 (7)–2.7404 (6)2.660 (2)–2.763 (2)
Cd2d—Cl(3,4,5)2.5764 (5)–2.6750 (4)2.5632 (9)–2.7391 (9)2.5795 (6)–2.6903 (6)2.577 (2)–2.697 (2)
Cd1···Cd2d3.4082 (2)3.4714 (6)3.4493 (3)3.4396 (9)
Notes: (a) Costin-Hogan et al. (2008); (b) Gagor et al. (2011); (c) Liao et al. (2014); (d) Atom Cd2 is located on an inversion centre
 

Acknowledgements

The authors thank the Central Instrumentation Facility, Pondicherry University, and the Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi, for access to their analytical facilities. HSE is grateful to the University of Neuchâtel for their support over the years.

Funding information

AS thanks the University Grants Commission, New Delhi, for the award of a UGC Meritorious Fellowship [File No. 4-1/2008 (BSR)].

References

First citationAltun, A., Gölcük, K. & Kumru, M. (2003). J. Mol. Struct. Theochem, 637, 155–169.  CrossRef CAS Google Scholar
First citationCostin-Hogan, C. E., Chen, C.-L., Hughes, E., Pickett, A., Valencia, R., Rath, N. P. & Beatty, A. M. (2008). CrystEngComm, 10, 1910–1915.  Web of Science CSD CrossRef CAS Google Scholar
First citationGagor, A., Waśkowska, A., Czapla, Z. & Dacko, S. (2011). Acta Cryst. B67, 122–129.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaigh, J. M., Van Dam, M. A. & Thornton, D. A. (1967). J. S. Afr. Inst. 20, 113–122.  CAS Google Scholar
First citationIshihara, H., Krishnan, V. G., Dou, S.-Q., Paulus, H. & Weiss, A. (1994). Z. Naturforsch. A: Phys. Sci. 49, 213–222.  Google Scholar
First citationLiao, W.-Q., Mei, G.-Q., Ye, H.-Y., Mei, Y.-X. & Zhang, Y. (2014). Inorg. Chem. 53, 8913–8918.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMüller, U. (2013). Symmetry Relationships between Crystal Structures. International Union of Crystallography Texts on Crystallography. pp. 86–99 and 196–215. Oxford University Press.  Google Scholar
First citationOszajca, M., Smrčok, Ľ. & Łasocha, W. (2013). Acta Cryst. C69, 1367–1372.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, F., Lu, H., Tong, J., Berry, J. J., Beard, M. C. & Zhu, K. (2020). Energy Environ. Sci. 13, 1154–1186.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds