research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[Li6(C2N2H8)11.5][Fe4Se8]: the first lithium-containing chalcogenido­tetra­ferrate synthesized in solution

crossmark logo

aFabeckstr. 34-36, 14195 Berlin, Germany
*Correspondence e-mail: guenther.thiele@fu-berlin.de

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 10 August 2022; accepted 3 November 2022; online 10 November 2022)

The octa­selenido­tetra­ferrate(II/III) with six Li atoms as counter-ions chelated by ethyl­enedi­amine (en, C2H8N2), {[Li6(en)11.5][Fe4Se8]}n, was synthesized from Li, FeSe and Se in an ethyl­enedi­amine solution at room temperature. Its crystal structure was determined at 100 K and has triclinic (P[\overline{1}]) symmetry. The [Fe4Se8]6− anions show a connectivity comparable to a distorted tetra­hedral cluster structure. Contact distances are given, and central structure features compared to literature known selenidoferrates with the same anion motif.

1. Chemical context

Alkali metal chalcogenido ferrates Ax[FeyChz] (A = Li⋯Cs; Ch = O⋯Te) show [FeCh4] tetra­hedra to be the most prominent coordination motif of the anionic moiety. These can be isolated, connected into chains, layers, or three-dimensional networks. A special motive is the connection of four such [FeCh4] (Ch = S, Se, Te) units via three shared edges each to form a tetra­mer. This secondary structure can be described as a distorted heterocubane [Fe4Ch4]x core, with one additional chalcogenido ligand on every iron corner of the heterocubane (Schwarz & Röhr, 2015[Schwarz, M. & Röhr, C. (2015). Inorg. Chem. 54, 1038-1048.]). Another approach to describe those tetra­mers can be as a distorted tetra­hedral star (stella quadrangula; Stüble et al., 2016[Stüble, P., Berroth, A. & Röhr, C. (2016). Z. Naturforsch. B, 71, 485-501.]).

The first reported ferrate of this type was Cs7[Fe4Te8] published by Bronger et al. in 1983[Bronger, W., Kimpel, M. & Schmitz, D. (1983). Acta Cryst. B39, 235-238.]. A7[Fe4Ch8] (A = K, Rb, Cs; Ch = S, Se, Te) is the most common sum formula for those ferrates. The respective sulfido and selenido ferrates are only known with Cs as alkali metal [Cs7[Fe4S8] (Schwarz & Röhr, 2015[Schwarz, M. & Röhr, C. (2015). Inorg. Chem. 54, 1038-1048.]), Cs7[Fe4Se8] (Stüble & Röhr, 2017[Stüble, P. & Röhr, C. (2017). Z. Anorg. Allge Chem. 643, 1462-1473.])], while the tellurido ferrates are known with K, Rb and Cs as alkali metals [K7[Fe4Te8], Rb7[Fe4Te8] (Stüble et al., 2016[Stüble, P., Berroth, A. & Röhr, C. (2016). Z. Naturforsch. B, 71, 485-501.]), Cs7[Fe4Te8] (Bronger et al., 1983[Bronger, W., Kimpel, M. & Schmitz, D. (1983). Acta Cryst. B39, 235-238.])]. The reported tetra­chalcogenido ferrates are synthesized in solid-state reactions at temperatures in the range 500–1050 K. With the exception of the potassium tellurido tetra­ferrates, all these alkali metal chalcogenido tetra­ferrates crystallize in the space-group type C2/c (Schwarz & Röhr, 2015[Schwarz, M. & Röhr, C. (2015). Inorg. Chem. 54, 1038-1048.]; Stüble & Röhr, 2017[Stüble, P. & Röhr, C. (2017). Z. Anorg. Allge Chem. 643, 1462-1473.]; Stüble et al., 2016[Stüble, P., Berroth, A. & Röhr, C. (2016). Z. Naturforsch. B, 71, 485-501.], 2018[Stüble, P., Peschke, S., Johrendt, D. & Röhr, C. (2018). J. Solid State Chem. 258, 416-430.]; Bronger et al., 1983[Bronger, W., Kimpel, M. & Schmitz, D. (1983). Acta Cryst. B39, 235-238.]). For K7[Fe4Te8], a room-temperature (P42/nmc) and a low-temperature (100 K, Pbcn) polymorph are known. K6[Fe4Se8] (Pbcn) is almost isostructural to the low-temperature modification of K7[Fe4Se8] with a missing K site (Stüble et al., 2016[Stüble, P., Berroth, A. & Röhr, C. (2016). Z. Naturforsch. B, 71, 485-501.]).

For the compound presented herein, an initial attempt was to use the solubility of Li and Se in ethyl­enedi­amine to form in situ Li2Se, which would then react with iron(II) selenide to a lithium selenidoferrate(II). Instead, the solution approach yielded the mixed-valent tetra­ferrate [Li6(en11.5)][Fe4Se8].

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) crystallizes in the triclinic space group P[\overline{1}]. The asymmetric unit consists of the cationic [Li6(en)11.5]6+ moiety forming networks and the anionic [Fe4Se8]6− unit, where each Fe atom is coordinated by four Se atoms, forming a distorted tetra­hedron. The distortion is towards a trigonal–pyramidal geometry. The distorted [FeSe4] tetra­hedra are connected via three edges with neighbouring tetra­hedra, forming a distorted tetra­hedral star [Fe4Se8]6– (stella quadrangula; Stüble et al., 2016[Stüble, P., Berroth, A. & Röhr, C. (2016). Z. Naturforsch. B, 71, 485-501.]) as a secondary structure (Fig. 2[link]). The terminal Fe—Se distances are 2.3251 (8)–2.3502 (7) Å. The terminal Se3 directly coordinates Li3, at a distance of 2.634 (7) Å, positioned between two anions along the crystallographic b-axis (see Fig. 4[link]). The Fe—Se bond lengths within the heterocubane core are in the range 2.3899 (8)—2.4752 (8) Å. Parallel to the b-axis the Fe—Se bonds are slightly shorter [2.3899 (8)—2.4157 (8) Å] than the rest of the bonds in the heterocubane [2.4414 (7)—2.4752 (8) Å] (see Figs. 3[link] and 4[link]), this might be due to partial electron-density polarization towards the Li atom directly coordinated by one terminal Se ligand.

[Figure 1]
Figure 1
Excerpt from the crystal structure of [Li6(en11.5)][Fe4Se8]. Green: Fe, red: Se, grey: C, blue: N, light blue: Li. Ellipsoids are drawn with 70% probability. Protons are omitted for clarity.
[Figure 2]
Figure 2
Representation of the anionic tetra­mer [Fe4Se8]6– with tetra­hedral shape highlighted. Green: Fe, red: Se, ellipsoids are drawn with 70% probability.
[Figure 4]
Figure 4
Atom labelling of the anionic moiety in [Li6(en11.5)][Fe4Se8] with selected distances. Green: Fe, red: Se, ellipsoids are drawn with 70% probability.
[Figure 3]
Figure 3
Anionic moiety in [Li6(en11.5)][Fe4Se8] with the distorted heterocubane core highlighted. Ellipsoids are drawn with 70% probability.

The Se—Fe—Se angles for the bridging Se atoms are in the range of 101.23 (2)—108.66 (3)° and therefore smaller than the ideal tetra­hedron angle. As a result of the contraction of the heterocubane along the crystallographic b-axis, the Se—Fe—Se angles are the smallest in this direction, 101.23 (2)–101.90 (2)°. The Se—Fe—Se angles of the terminal Se atoms are in the range of 108.31 (2)—119.59 (3)°.

Five of the six crystallographically independent Li cations are tetra­hedrally coordinated by one amine group of four ethyl­enedi­amine mol­ecules. The ethyl­enedi­amine mol­ecules bridge adjacent lithium cations to form an infinite three-dimensionally connected network of 3[Li6(en)11.5]6+. The last Li cation is coordinated by three amine groups of three independent ethyl­enedi­amine mol­ecules with the fourth coordination site occupied by one of the terminal selenido ligands (Se3) as depicted in Fig. 4[link]. The coordination of Se to the Li cation results in the non-integer number of ethyl­enedi­amine ligands in the sum formula. As a result of the individual coordination environments of lithium ions, a complicated 6-nodal net with point symbol {3.6.73.8}2{3.73.82}{42.6.82.9}{42.63.8}{6.8.9} is obtained (ToposPro V 5.4.1.0; Blatov et al., 2014[Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576-3586.]).

3. Supra­molecular features

The anion packing can be described as layers stacked in an AB type. The Li coordinated to the terminal Se ligand pointing in one direction defines the A layer, while the ligand pointing in the opposite direction defines the B layer. The layers are shifted with respect to each other such that the anions of one layer are placed between the anions of the other layer. The formation of those layers correlates with the inversion centre in the unit cell containing two asymmetric units. The Li–ethyl­enedi­amine network is located both in between and within those layers surrounding the anions (see Fig. 5[link]). It is stabilized by classical N—H⋯Se and non-classical C—H⋯Se hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Se5i 0.91 (1) 2.94 (1) 3.837 (3) 169 (4)
N1—H1B⋯Se6i 0.91 (1) 2.98 (3) 3.594 (3) 127 (3)
N2—H2A⋯Se3i 0.91 (1) 2.60 (2) 3.483 (3) 163 (3)
N2—H2B⋯Se4i 0.91 (1) 2.81 (2) 3.646 (3) 155 (3)
N3—H3B⋯Se5 0.91 (1) 2.86 (2) 3.665 (4) 148 (3)
N4—H4A⋯Se7i 0.91 (1) 2.94 (3) 3.600 (3) 131 (3)
N4—H4B⋯Se8i 0.91 (1) 2.60 (1) 3.493 (3) 170 (4)
N5—H5B⋯Se4i 0.91 (1) 3.15 (4) 3.696 (3) 121 (3)
N5—H5B⋯Se8i 0.91 (1) 2.90 (2) 3.751 (3) 156 (4)
N7—H7A⋯Se2i 0.91 (1) 2.81 (2) 3.647 (3) 154 (3)
N7—H7B⋯Se1i 0.91 (1) 2.73 (2) 3.573 (3) 155 (3)
N8—H8A⋯Se3ii 0.91 (1) 2.68 (2) 3.514 (3) 152 (3)
N9—H9B⋯Se8iii 0.91 (1) 2.92 (2) 3.786 (3) 161 (3)
N10—H10A⋯Se2iv 0.91 (1) 2.88 (2) 3.725 (3) 156 (3)
N10—H10B⋯Se8i 0.91 (1) 2.86 (1) 3.749 (3) 165 (3)
N12—H12A⋯Se5 0.91 (1) 2.71 (1) 3.611 (4) 173 (4)
N12—H12B⋯Se7 0.91 (1) 2.91 (4) 3.532 (3) 127 (3)
N13—H13A⋯Se5 0.91 (1) 3.14 (2) 3.973 (4) 153 (3)
N13—H13B⋯Se2i 0.91 (1) 2.74 (2) 3.628 (3) 166 (4)
N14—H14A⋯Se8i 0.91 (1) 2.59 (1) 3.479 (3) 166 (4)
N14—H14B⋯Se1i 0.90 (1) 2.77 (3) 3.539 (3) 144 (3)
N15—H15A⋯Se3i 0.91 (1) 2.94 (2) 3.785 (4) 154 (3)
N15—H15B⋯Se3ii 0.91 (1) 2.68 (2) 3.560 (3) 163 (4)
N16—H16A⋯Se5i 0.91 (1) 2.82 (2) 3.679 (3) 159 (4)
N16—H16B⋯Se1i 0.91 (1) 2.67 (2) 3.537 (3) 160 (4)
N17—H17A⋯Se3i 0.91 (1) 3.01 (2) 3.897 (4) 166 (4)
N17—H17B⋯Se7i 0.91 (1) 3.07 (4) 3.649 (3) 124 (3)
N18—H18A⋯Se6i 0.91 (1) 2.96 (2) 3.837 (3) 162 (3)
N18—H18B⋯Se2i 0.91 (1) 2.80 (3) 3.491 (3) 134 (3)
N19—H19A⋯Se5i 0.91 (1) 2.98 (2) 3.801 (3) 151 (4)
N20—H20A⋯Se7 0.89 (5) 2.98 (5) 3.841 (4) 163 (4)
N21—H21A⋯Se8v 0.91 (1) 2.98 (3) 3.729 (3) 141 (3)
N21—H21B⋯Se2i 0.91 (1) 2.91 (2) 3.763 (3) 157 (3)
N22—H22A⋯Se5 0.91 (1) 2.97 (2) 3.785 (3) 150 (4)
N22—H22B⋯Se2i 0.91 (1) 3.10 (3) 3.818 (4) 138 (3)
N23—H23B⋯Se2i 0.91 (1) 2.60 (1) 3.505 (3) 173 (4)
C1—H1C⋯Se8v 0.99 3.14 3.702 (4) 118
C6—H6A⋯Se5vi 0.99 2.90 3.734 (4) 143
C12—H12C⋯Se6 0.99 3.05 3.838 (4) 137
C13—H13D⋯Se8iii 0.99 3.07 3.929 (4) 146
N6—H6D⋯Se4i 0.90 (1) 3.01 (4) 3.659 (5) 130 (4)
C10—H10D⋯Se8i 0.99 2.99 3.816 (5) 142
N24—H24B⋯Se3 0.91 (1) 2.77 (5) 3.327 (4) 121 (4)
N24—H24B⋯Se7 0.91 (1) 2.88 (4) 3.507 (5) 128 (4)
N6A—H6AA⋯Se4i 0.91 2.99 3.79 (7) 147
C10A—H10F⋯Se8i 0.99 2.95 3.74 (5) 137
N24A—H24D⋯Se7 0.91 3.17 3.94 (6) 145
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, -y+1, -z+1]; (iii) [-x, -y, -z+1]; (iv) [x-1, y+1, z]; (v) x+1, y+1, z; (vi) [-x+1, -y+1, -z+2].
[Figure 5]
Figure 5
[Fe4Se8]6– anion packing in layers with Se—Li coordination sites pointing in different directions along the crystallographic b-axis. Green: Fe, red: Se, light blue: Li. For ease of viewing, atoms are drawn as small spheres and ethyl­enedi­amine ligands are omitted.

The hydrogen bonds between the ethyl­enedi­amine mol­ecules of the cationic network and the selenium atoms of the anion can be described by graph-set theory (e.g. Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). In graph-set theory, a hydrogen-bond network can be described by a pattern designator (G), the pattern's degree (r) and the number of donors (d) and acceptors (a): Gad(r). G can be S (intra­molecular), C (chains), R (rings) or D (non-cyclic) and r is the number of atoms before repetition. To be able to determine the graph sets, the Li—N coordination was also counted as a `bond' in the network, so rings or chains can contain Li atoms. The anionic moiety was not counted as taking part in the network; every acceptor Se atom was looked at individually. Only the smallest/simplest pattern for each set is given. For Se1 the graph set is three times R21(8), for the donor pairs N7, N14; N14, N16; N7, N16. Se2 can be described by two sets of R21(4) for N10, N18; N22, N23 and two R21(5) for N7, N13 and N21, N23. Se3 is bound in two sets of R21(4) to N2, N8; N15, N17 and in R21(5) to N2, N15 and R21(9) to N2, N24. Se4 has two sets, R21(8) N2, N8 and R21(12) N2, N6/N6A (the split positions of N6 are counted in a single set). Se5 has five sets of classical hydrogen bonds: three sets of R21(4) for N1, N19; N3, N19 and N12, N13; two sets of R21(5) for N2, N22 and N16, N19 and one set of non-classical hydrogen bonds D for C6. Se6 has one set of classical hydrogen bonds, R21(5) to N1, N18 and one set of non-classical D to C20. Se7 has one set of R21(5) for N4, N17 and one R21(7) for N12, N24A and one R21(9) N12, N20. Se8 has three classical sets of hydrogen bonds: one set of R21(4) to N4, N21, C22(4) for N5, N9 and R21(5) to N10, N14 and two non-classical sets, C22(8) to C1, C10/C10A (the split positions of C10 are counted in a single set) and C22(10) C1, C13.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.43; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for compounds showing the motif of a heterocubane core containing iron and chalcogens yielded 548 results. Most of those are structures containing sulfido­ferrate heterocubane cores, which are investigated with regard to iron–sulfur proteins. For a more direct comparison, only compounds comprising one terminal ligand on each iron atom and solely Se as the chalcogen were chosen, as the bond lengths inside the cubane core differ significantly depending on whether S or Se is part of the heterocubane. First, selenido ferrates, which only differ in the anionic moiety, are compared. In the second step, we analyse compounds that contain organic ligands on the terminal Se atoms.

Regarding the elemental ratios of alkali metal to Fe and Se, [Li6(en11.5)][Fe4Se8] is identical to K6[Fe4Se8] (ICSD: 430631; Stüble et al., 2016[Stüble, P., Berroth, A. & Röhr, C. (2016). Z. Naturforsch. B, 71, 485-501.]). In the following, the bond lengths of the anion are compared to the ones in K6[Fe4Se8], despite the differences in the cationic moiety. The Fe—Se bonds to the terminal Se atoms in the potassium selenido tetra­ferrate are in the range of 2.320 (2)–2.307 (2) Å and therefore shorter than the respective bonds in the title compound, lithium selenido tetra­ferrate [2.3251 (8)–2.3502 (7) Å]. The Fe—Se distances of the bridging Se atoms are in the range of 2.397 (2)–2.468 (2) Å in the potassium ferrate and 2.3899 (8)–2.4752 (8) Å in the lithium selenido tetra­ferrate. In known literature for the A7[Fe4Ch8] species, the anion is surrounded by 26 cations, which form a cube with one cation on each corner, edge, and face of the cube: Cs7[Fe4S8] (ICSD: 428508; Schwarz & Röhr, 2015[Schwarz, M. & Röhr, C. (2015). Inorg. Chem. 54, 1038-1048.]), Cs7[Fe4Se8] (ICSD: 433140; Stüble & Röhr, 2017[Stüble, P. & Röhr, C. (2017). Z. Anorg. Allge Chem. 643, 1462-1473.]), (K7[Fe4Te8] (ICSD: 430632), Rb7[Fe4Te8] (ICSD: 430634; Stüble et al., 2016[Stüble, P., Berroth, A. & Röhr, C. (2016). Z. Naturforsch. B, 71, 485-501.]), Cs7[Fe4Te8] (ICSD: 37065; Bronger et al., 1983[Bronger, W., Kimpel, M. & Schmitz, D. (1983). Acta Cryst. B39, 235-238.]). In K6[Fe4Se8], 24 cations form a distorted cube around the anions. In the title compound, no such regular shape can be observed for the surrounding cations, probably due to the more complex cation motif with the ethyl­enedi­amine ligands inter­linking the alkali metal ions.

Comparing the bond angles and distances of the anionic moiety to homologues with aliphatic or arylic ligands at the terminal Se atoms, the bond lengths inside the heterocubane core are in a similar range: Fe—Se distances are found to be 2.3573 (12)–2.4391 (12) Å in [Yb(THF)6][Fe4Se4(SePh4)4] (THF = tetra­hydro­furan; CCDC 228675; Kornienko et al., 2003[Kornienko, A., Huebner, L., Freedman, D., Emge, T. J. & Brennan, J. G. (2003). Inorg. Chem. 42, 8476-8480.]) and 2.391–2.434 Å in (NBu4)2[Fe4Se4(SeCH3)4] (CCDC 201198; Kern et al., 2004[Kern, A., Näther, C., Studt, F. & Tuczek, F. (2004). Inorg. Chem. 43, 5003-5010.]). In contrast, terminal Fe—Se distances are significantly elongated upon organic substitution: 2.3843 (12)–2.4055 (12) Å for [Yb(THF)6][Fe4Se4(SePh4)4] and 2.375 Å in (NBu4)2[Fe4Se4(SeCH3)4].

5. Synthesis and crystallization

500 mg (3.71 mmol, 1 eq.) of iron(II) selenide, 293 mg (3.71 mmol, 1 eq.) of Se and 52 mg (7.49 mmol, 2 eq.) of Li were stirred in 50 mL of dry ethyl­enedi­amine under an argon atmosphere. The reaction mixture was stirred for 24 h, during which time several colour changes from brown to green to brown occur; these are most likely associated with the various inter­mediate polyselenide anions. After 24 h, a final colour change to brown was observed and the solution was filtered and allowed to stand for 16 weeks to afford crystallization. A crystal suitable for X-ray diffraction analysis was chosen in Paratone oil under a light microscope. The obtained crystals were comparably large and visible without a microscope. Breaking the crystal typically yielded very small crystallites that immediately decomposed because of their air and moisture sensitivity. Therefore, a crystal larger than the X-ray beam was used for analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Li6(C2H8N2)11.5][Fe4Se8]
Mr 1587.91
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 11.495 (2), 11.665 (3), 22.233 (5)
α, β, γ (°) 92.885 (8), 92.383 (7), 103.510 (7)
V3) 2890.9 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 6.06
Crystal size (mm) 0.8 × 0.6 × 0.4
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.323, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 178309, 10708, 9144
Rint 0.081
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.059, 1.10
No. of reflections 10708
No. of parameters 752
No. of restraints 193
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.65, −0.64
Computer programs: APEX4 (Bruker, 2021[Bruker (2021). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

The crystal was found to comprise two pieces, mis-aligned by ∼1.6°. For the purpose of integration, and processing, facilities for handling twinning by non-merohedry (namely the HKLF 5 data format in SHELXL) were attempted. In combination with the experimentation with different integration box sizes with common-volume overlap of 4% did not result in an improved dataset.

One of the en ligands is disordered, the disorder was treated with RIGU and DELU restraints. H atoms were treated by a mixture of independent and constrained refinement.

Supporting information


Computing details top

Data collection: APEX4 (Bruker, 2021); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Poly[[tricosa(µ-ethylenediamine)dodecalithium] bis[octaselenidotetraferrate(II/III)]] top
Crystal data top
[Li6(C2H8N2)11.5][Fe4Se8]Z = 2
Mr = 1587.91F(000) = 1570
Triclinic, P1Dx = 1.824 Mg m3
a = 11.495 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.665 (3) ÅCell parameters from 9368 reflections
c = 22.233 (5) Åθ = 2.4–25.4°
α = 92.885 (8)°µ = 6.06 mm1
β = 92.383 (7)°T = 100 K
γ = 103.510 (7)°Block, dark black
V = 2890.9 (11) Å30.8 × 0.6 × 0.4 mm
Data collection top
Bruker APEXII CCD
diffractometer
9144 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.081
φ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1313
Tmin = 0.323, Tmax = 0.745k = 1414
178309 measured reflectionsl = 2626
10708 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059 w = 1/[σ2(Fo2) + 11.5642P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
10708 reflectionsΔρmax = 0.65 e Å3
752 parametersΔρmin = 0.64 e Å3
193 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Se10.23309 (3)0.31834 (3)0.82278 (2)0.00859 (8)
Se20.51559 (3)0.44704 (3)0.80634 (2)0.01022 (8)
Se30.47570 (3)0.02579 (3)0.62160 (2)0.01098 (8)
Se40.36270 (3)0.31909 (3)0.66142 (2)0.00930 (8)
Se50.28008 (3)0.02291 (3)0.88460 (2)0.01085 (8)
Se60.51956 (3)0.09741 (3)0.78576 (2)0.00885 (8)
Se70.19676 (3)0.08788 (3)0.71572 (2)0.00948 (8)
Se80.00915 (3)0.41635 (3)0.67346 (2)0.01008 (8)
Fe10.42062 (4)0.30404 (5)0.77046 (2)0.00816 (11)
Fe20.18670 (4)0.29485 (5)0.71569 (2)0.00838 (11)
Fe30.39696 (4)0.11194 (5)0.69146 (2)0.00849 (11)
Fe40.30805 (4)0.11068 (5)0.80853 (2)0.00818 (11)
N10.4973 (3)0.8434 (3)0.94248 (15)0.0136 (7)
H1A0.448 (3)0.892 (3)0.9340 (18)0.016*
H1B0.490 (4)0.802 (3)0.9063 (10)0.016*
N20.6222 (3)0.8083 (3)0.57712 (14)0.0126 (7)
H2A0.591 (3)0.873 (2)0.5816 (18)0.015*
H2B0.571 (3)0.757 (3)0.5986 (16)0.015*
N30.5391 (3)0.2755 (3)0.90791 (14)0.0138 (7)
H3A0.534 (4)0.3467 (19)0.8947 (18)0.017*
H3B0.4601 (13)0.238 (3)0.9060 (19)0.017*
N40.0699 (3)0.8309 (3)0.61730 (15)0.0139 (7)
H4A0.026 (3)0.891 (2)0.6417 (15)0.017*
H4B0.039 (3)0.772 (3)0.6314 (18)0.017*
N50.1591 (3)0.5663 (3)0.52773 (15)0.0157 (7)
H5A0.223 (2)0.534 (3)0.5327 (19)0.019*
H5B0.146 (4)0.585 (4)0.5667 (7)0.019*
N70.3681 (3)0.5696 (3)0.94751 (15)0.0156 (7)
H7A0.425 (3)0.562 (4)0.9216 (15)0.019*
H7B0.313 (3)0.594 (4)0.9239 (16)0.019*
N80.2417 (3)1.0029 (3)0.32400 (15)0.0135 (7)
H8A0.3213 (12)1.006 (4)0.3250 (19)0.016*
H8B0.205 (3)0.982 (4)0.2869 (9)0.016*
N90.1297 (3)0.7187 (3)0.40169 (14)0.0118 (7)
H9A0.0574 (19)0.734 (4)0.4077 (18)0.014*
H9B0.110 (3)0.6404 (12)0.3901 (18)0.014*
N100.1535 (3)0.5881 (3)0.81593 (15)0.0135 (7)
H10A0.2307 (14)0.574 (4)0.8008 (17)0.016*
H10B0.101 (3)0.591 (4)0.7863 (13)0.016*
N120.0773 (3)0.1331 (3)0.78714 (17)0.0180 (8)
H12A0.134 (3)0.111 (4)0.8107 (16)0.022*
H12B0.063 (4)0.084 (3)0.7533 (12)0.022*
N130.2564 (3)0.3522 (3)0.86096 (15)0.0153 (7)
H13A0.290 (3)0.290 (3)0.8659 (19)0.018*
H13B0.317 (3)0.413 (3)0.8513 (19)0.018*
N140.0117 (3)0.4141 (3)0.79762 (15)0.0134 (7)
H14A0.000 (4)0.448 (3)0.7626 (11)0.016*
H14B0.064 (3)0.468 (3)0.8216 (15)0.016*
N150.4007 (3)0.7894 (3)0.49376 (15)0.0146 (7)
H15A0.409 (4)0.824 (3)0.5317 (8)0.018*
H15B0.425 (4)0.849 (3)0.4688 (16)0.018*
N160.0241 (3)0.7795 (3)0.91254 (15)0.0146 (7)
H16A0.077 (3)0.8511 (19)0.9124 (19)0.018*
H16B0.064 (3)0.736 (3)0.8897 (16)0.018*
N170.1663 (3)0.8433 (3)0.55308 (15)0.0163 (7)
H17A0.234 (2)0.898 (3)0.5658 (18)0.020*
H17B0.150 (4)0.802 (3)0.5863 (12)0.020*
N180.7145 (3)0.7742 (3)0.89574 (16)0.0162 (7)
H18A0.685 (4)0.810 (4)0.8649 (13)0.019*
H18B0.659 (3)0.705 (2)0.8959 (19)0.019*
N190.2420 (3)0.7809 (3)0.99544 (16)0.0174 (7)
H19A0.248 (4)0.814 (4)0.9592 (10)0.021*
H19B0.240 (4)0.842 (3)1.0221 (15)0.021*
N200.0885 (4)0.1079 (3)0.80260 (17)0.0193 (8)
H20A0.019 (4)0.115 (4)0.789 (2)0.023*
H20B0.142 (4)0.108 (4)0.775 (2)0.023*
N210.7131 (3)0.6615 (3)0.68026 (14)0.0129 (7)
H21A0.784 (2)0.657 (4)0.6988 (17)0.015*
H21B0.650 (2)0.646 (4)0.7040 (15)0.015*
N220.4619 (3)0.2194 (3)0.77482 (15)0.0156 (7)
H22A0.416 (3)0.152 (2)0.7881 (18)0.019*
H22B0.433 (4)0.280 (3)0.7899 (18)0.019*
N230.5410 (3)0.3981 (3)0.67015 (15)0.0141 (7)
H23A0.489 (3)0.425 (4)0.6460 (16)0.017*
H23B0.542 (4)0.438 (3)0.7062 (10)0.017*
C10.6909 (3)0.5686 (3)0.63090 (17)0.0123 (8)
H1C0.7625640.5809500.6066200.015*
H1D0.6233100.5792310.6044160.015*
C20.6124 (3)0.7679 (4)0.51350 (17)0.0177 (9)
H2C0.6619280.7097420.5076130.021*
H2D0.6451660.8359940.4893970.021*
C30.2137 (3)0.3794 (4)0.92042 (18)0.0173 (9)
H3C0.1764910.3039720.9378630.021*
H3D0.1503010.4229830.9143530.021*
C40.5863 (3)0.2379 (4)0.79921 (17)0.0136 (8)
H4C0.6281530.3209330.7941290.016*
H4D0.6265670.1869160.7747970.016*
C50.1255 (3)0.6950 (4)0.99522 (18)0.0180 (9)
H5C0.1131720.6685701.0365830.022*
H5D0.1287430.6250570.9687810.022*
C60.6203 (3)0.9169 (3)0.95251 (17)0.0140 (8)
H6A0.6272670.9637980.9914280.017*
H6B0.6372590.9727220.9201020.017*
C70.0182 (3)0.7406 (4)0.97419 (18)0.0175 (9)
H7C0.0553470.6772520.9766730.021*
H7D0.0118570.8076421.0019540.021*
C80.0500 (3)0.8437 (4)0.55319 (18)0.0155 (8)
H8C0.1082370.8855110.5360730.019*
H8D0.0666620.7640260.5324320.019*
C90.0345 (4)0.1159 (4)0.8184 (2)0.0183 (9)
H9C0.0983900.1277960.7898210.022*
H9D0.0241730.1778120.8516630.022*
C110.1833 (4)0.7927 (3)0.35333 (17)0.0151 (8)
H11A0.1360810.7659710.3148230.018*
H11B0.2659870.7839630.3481700.018*
C120.6014 (3)0.2127 (3)0.86527 (16)0.0121 (8)
H12C0.5720220.1267660.8691370.015*
H12D0.6879530.2338090.8773190.015*
C130.0556 (3)0.4759 (3)0.50163 (17)0.0119 (8)
H13C0.0416530.4066520.5266900.014*
H13D0.0727000.4494220.4606230.014*
C140.1363 (4)0.4963 (3)0.85624 (17)0.0143 (8)
H14C0.2110550.4690100.8773470.017*
H14D0.0722240.5326400.8872390.017*
C150.1040 (3)0.3892 (3)0.82603 (18)0.0143 (8)
H15C0.1025450.3305530.8565640.017*
H15D0.1677340.3527950.7948770.017*
C160.0761 (3)0.9104 (3)0.53955 (18)0.0153 (8)
H16C0.0772910.9276220.4963950.018*
H16D0.0969340.9867400.5637070.018*
C170.4843 (4)0.7115 (4)0.48997 (19)0.0207 (9)
H17C0.4857770.6835820.4472830.025*
H17D0.4532120.6414050.5130200.025*
C180.6626 (3)0.4420 (3)0.64901 (17)0.0132 (8)
H18C0.6731240.3902640.6139660.016*
H18D0.7215790.4347510.6814760.016*
C190.0765 (4)0.0038 (4)0.8445 (2)0.0218 (9)
H19C0.0195290.0093230.8781980.026*
H19D0.1552640.0070290.8616020.026*
C200.7115 (3)0.8423 (3)0.95328 (17)0.0142 (8)
H20C0.7919110.8944700.9632000.017*
H20D0.6936410.7866260.9856730.017*
C220.3085 (4)0.4515 (4)0.96621 (18)0.0179 (9)
H22C0.2703390.4610471.0046610.021*
H22D0.3701990.4065160.9739090.021*
C230.1855 (3)0.9217 (3)0.36872 (18)0.0134 (8)
H23C0.1022210.9293840.3727730.016*
H23D0.2293330.9459970.4083130.016*
Li10.7577 (5)0.8246 (6)0.6421 (3)0.0141 (14)
Li20.4064 (6)0.7262 (6)1.0017 (3)0.0162 (14)
Li50.2141 (5)0.7278 (6)0.4896 (3)0.0129 (13)
Li60.1309 (5)0.7527 (6)0.8581 (3)0.0154 (14)
Li40.1373 (6)0.3128 (6)0.7847 (3)0.0170 (14)
N60.2336 (6)0.3899 (6)0.71564 (18)0.0195 (9)0.935 (8)
H6C0.3101 (18)0.383 (4)0.721 (2)0.023*0.935 (8)
H6D0.239 (4)0.4674 (15)0.725 (2)0.023*0.935 (8)
C100.2073 (5)0.3661 (4)0.64990 (19)0.0177 (10)0.935 (8)
H10C0.2777230.4053880.6281820.021*0.935 (8)
H10D0.1388890.3992500.6373140.021*0.935 (8)
C210.1775 (4)0.2355 (4)0.6335 (2)0.0198 (11)0.935 (8)
H21C0.1063290.1967340.6548490.024*0.935 (8)
H21D0.1573300.2215810.5896340.024*0.935 (8)
N240.2752 (4)0.1837 (4)0.6490 (3)0.0335 (13)0.935 (8)
H24A0.276 (5)0.186 (5)0.6897 (6)0.040*0.935 (8)
H24B0.271 (5)0.1061 (15)0.640 (2)0.040*0.935 (8)
Li30.4551 (6)0.2192 (6)0.6823 (3)0.0170 (14)
N6A0.221 (8)0.375 (8)0.7090 (15)0.020 (4)0.065 (8)
H6AA0.2358800.4549900.7117340.024*0.065 (8)
H6AB0.2930280.3549760.7088730.024*0.065 (8)
C10A0.155 (6)0.332 (7)0.6506 (16)0.021 (3)0.065 (8)
H10E0.0820520.2710920.6582740.025*0.065 (8)
H10F0.1293970.3981550.6326690.025*0.065 (8)
C21A0.224 (4)0.280 (5)0.6064 (18)0.022 (3)0.065 (8)
H21E0.1669010.2353140.5741210.026*0.065 (8)
H21F0.2782370.3456600.5876200.026*0.065 (8)
N24A0.294 (4)0.203 (5)0.629 (3)0.025 (3)0.065 (8)
H24C0.3069510.1619160.5952300.030*0.065 (8)
H24D0.2400960.1506780.6490500.030*0.065 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.00745 (17)0.01009 (19)0.00859 (18)0.00206 (14)0.00235 (13)0.00248 (14)
Se20.00890 (18)0.01060 (19)0.01223 (19)0.00395 (15)0.00204 (14)0.00199 (15)
Se30.01273 (18)0.01107 (19)0.01146 (18)0.00579 (15)0.00575 (14)0.00452 (15)
Se40.00803 (17)0.01185 (19)0.00829 (18)0.00278 (14)0.00216 (13)0.00026 (14)
Se50.01063 (18)0.0120 (2)0.00995 (18)0.00294 (15)0.00167 (14)0.00080 (15)
Se60.00723 (17)0.00982 (19)0.00919 (18)0.00113 (14)0.00079 (13)0.00152 (14)
Se70.00895 (17)0.01200 (19)0.00890 (18)0.00486 (15)0.00133 (14)0.00209 (15)
Se80.00716 (17)0.0118 (2)0.01137 (18)0.00250 (15)0.00047 (14)0.00072 (15)
Fe10.0070 (2)0.0093 (3)0.0088 (3)0.0025 (2)0.0019 (2)0.0016 (2)
Fe20.0068 (2)0.0102 (3)0.0083 (3)0.0021 (2)0.0010 (2)0.0007 (2)
Fe30.0081 (2)0.0097 (3)0.0083 (3)0.0029 (2)0.0020 (2)0.0020 (2)
Fe40.0081 (2)0.0090 (3)0.0078 (3)0.0023 (2)0.0014 (2)0.0015 (2)
N10.0103 (16)0.0163 (19)0.0150 (17)0.0044 (14)0.0014 (13)0.0031 (14)
N20.0105 (16)0.0159 (18)0.0134 (17)0.0074 (14)0.0009 (13)0.0005 (14)
N30.0100 (16)0.0203 (19)0.0124 (17)0.0060 (14)0.0001 (13)0.0021 (14)
N40.0136 (17)0.0142 (18)0.0149 (17)0.0045 (14)0.0004 (13)0.0041 (14)
N50.0135 (17)0.0185 (19)0.0142 (17)0.0022 (14)0.0012 (14)0.0010 (15)
N70.0177 (18)0.0172 (19)0.0129 (17)0.0050 (15)0.0022 (14)0.0036 (14)
N80.0129 (16)0.0155 (18)0.0126 (17)0.0041 (14)0.0004 (13)0.0034 (14)
N90.0103 (16)0.0101 (17)0.0144 (17)0.0009 (14)0.0015 (13)0.0028 (14)
N100.0093 (16)0.0172 (18)0.0171 (18)0.0081 (14)0.0031 (13)0.0045 (14)
N120.0160 (18)0.0123 (18)0.028 (2)0.0057 (15)0.0062 (15)0.0043 (15)
N130.0128 (17)0.0168 (19)0.0176 (18)0.0045 (14)0.0067 (14)0.0053 (15)
N140.0099 (16)0.0141 (18)0.0169 (18)0.0031 (14)0.0019 (13)0.0055 (14)
N150.0120 (16)0.0206 (19)0.0119 (17)0.0044 (14)0.0017 (13)0.0032 (14)
N160.0079 (16)0.0178 (19)0.0180 (18)0.0027 (14)0.0013 (13)0.0015 (15)
N170.0138 (17)0.023 (2)0.0137 (17)0.0068 (15)0.0013 (14)0.0022 (15)
N180.0081 (16)0.0187 (19)0.0211 (19)0.0029 (14)0.0002 (14)0.0029 (15)
N190.0148 (17)0.021 (2)0.0158 (18)0.0020 (15)0.0009 (14)0.0042 (15)
N200.025 (2)0.0123 (18)0.021 (2)0.0047 (16)0.0019 (16)0.0015 (15)
N210.0092 (16)0.0157 (18)0.0143 (17)0.0036 (14)0.0017 (13)0.0028 (14)
N220.0154 (17)0.0153 (19)0.0153 (18)0.0018 (14)0.0009 (14)0.0044 (14)
N230.0164 (17)0.0138 (18)0.0118 (17)0.0029 (14)0.0005 (14)0.0003 (14)
C10.0104 (18)0.014 (2)0.0123 (19)0.0033 (16)0.0016 (15)0.0011 (16)
C20.0113 (19)0.029 (2)0.014 (2)0.0075 (18)0.0002 (16)0.0001 (18)
C30.014 (2)0.020 (2)0.019 (2)0.0035 (17)0.0080 (16)0.0029 (17)
C40.0127 (19)0.015 (2)0.014 (2)0.0040 (16)0.0027 (15)0.0009 (16)
C50.018 (2)0.020 (2)0.015 (2)0.0017 (18)0.0015 (16)0.0050 (17)
C60.016 (2)0.013 (2)0.0120 (19)0.0021 (16)0.0002 (15)0.0010 (16)
C70.014 (2)0.024 (2)0.014 (2)0.0031 (17)0.0062 (16)0.0004 (17)
C80.015 (2)0.014 (2)0.019 (2)0.0056 (17)0.0013 (16)0.0001 (17)
C90.016 (2)0.011 (2)0.028 (2)0.0025 (17)0.0021 (17)0.0045 (18)
C110.019 (2)0.014 (2)0.012 (2)0.0027 (17)0.0023 (16)0.0026 (16)
C120.0121 (19)0.014 (2)0.0126 (19)0.0078 (16)0.0002 (15)0.0007 (16)
C130.0121 (19)0.012 (2)0.0115 (19)0.0013 (16)0.0025 (15)0.0016 (15)
C140.019 (2)0.011 (2)0.015 (2)0.0054 (16)0.0036 (16)0.0024 (16)
C150.0102 (18)0.014 (2)0.019 (2)0.0027 (16)0.0039 (15)0.0031 (17)
C160.017 (2)0.013 (2)0.017 (2)0.0044 (17)0.0036 (16)0.0052 (17)
C170.016 (2)0.032 (3)0.015 (2)0.0097 (19)0.0016 (16)0.0083 (18)
C180.0135 (19)0.013 (2)0.0132 (19)0.0050 (16)0.0014 (15)0.0001 (16)
C190.025 (2)0.013 (2)0.029 (2)0.0053 (18)0.0082 (19)0.0025 (18)
C200.0130 (19)0.015 (2)0.015 (2)0.0037 (16)0.0010 (15)0.0009 (16)
C220.021 (2)0.018 (2)0.014 (2)0.0029 (18)0.0031 (16)0.0046 (17)
C230.0102 (18)0.013 (2)0.017 (2)0.0028 (16)0.0012 (15)0.0023 (16)
Li10.009 (3)0.017 (4)0.018 (3)0.006 (3)0.001 (3)0.004 (3)
Li20.015 (3)0.020 (4)0.013 (3)0.002 (3)0.001 (3)0.003 (3)
Li50.011 (3)0.016 (3)0.010 (3)0.001 (3)0.001 (2)0.000 (3)
Li60.007 (3)0.015 (4)0.023 (4)0.002 (3)0.000 (3)0.003 (3)
Li40.011 (3)0.014 (4)0.025 (3)0.001 (3)0.001 (3)0.002 (3)
N60.020 (2)0.019 (3)0.0166 (19)0.0016 (17)0.0021 (17)0.0056 (17)
C100.013 (2)0.020 (2)0.021 (2)0.0058 (18)0.0039 (17)0.0005 (18)
C210.019 (2)0.020 (2)0.021 (2)0.0077 (18)0.0066 (18)0.0024 (18)
N240.015 (2)0.015 (2)0.072 (3)0.0062 (17)0.001 (2)0.007 (2)
Li30.017 (3)0.016 (4)0.020 (4)0.008 (3)0.001 (3)0.002 (3)
N6A0.017 (6)0.019 (6)0.022 (5)0.002 (6)0.002 (5)0.002 (5)
C10A0.017 (5)0.019 (5)0.025 (4)0.004 (5)0.005 (4)0.003 (5)
C21A0.016 (5)0.017 (5)0.034 (5)0.007 (4)0.004 (5)0.001 (5)
N24A0.018 (6)0.017 (6)0.041 (6)0.006 (5)0.004 (6)0.005 (6)
Geometric parameters (Å, º) top
Se1—Fe12.4674 (7)N21—H21A0.909 (10)
Se1—Fe22.4611 (8)N21—H21B0.908 (10)
Se1—Fe42.4157 (8)N21—C11.473 (5)
Se2—Fe12.3502 (7)N21—Li12.084 (7)
Se3—Fe32.3456 (7)N22—H22A0.905 (10)
Se3—Li32.634 (7)N22—H22B0.907 (10)
Se4—Fe12.4739 (8)N22—C41.471 (5)
Se4—Fe22.4629 (7)N22—Li32.055 (8)
Se4—Fe32.4108 (8)N23—H23A0.906 (10)
Se5—Fe42.3251 (8)N23—H23B0.906 (10)
Se6—Fe12.4133 (8)N23—C181.477 (5)
Se6—Fe32.4531 (8)N23—Li32.126 (8)
Se6—Fe42.4752 (8)C1—H1C0.9900
Se7—Fe22.3899 (8)C1—H1D0.9900
Se7—Fe32.4608 (8)C1—C181.516 (5)
Se7—Fe42.4414 (7)C2—H2C0.9900
Se8—Fe22.3262 (7)C2—H2D0.9900
Fe1—Fe22.9327 (9)C2—C171.524 (5)
Fe1—Fe32.9702 (9)C3—H3C0.9900
Fe1—Fe42.9566 (9)C3—H3D0.9900
Fe2—Fe32.9154 (9)C3—C221.524 (6)
Fe2—Fe42.9556 (9)C4—H4C0.9900
Fe3—Fe42.8362 (9)C4—H4D0.9900
N1—H1A0.907 (10)C4—C121.523 (5)
N1—H1B0.908 (10)C5—H5C0.9900
N1—C61.474 (5)C5—H5D0.9900
N1—Li22.079 (7)C5—C71.519 (5)
N2—H2A0.907 (10)C6—H6A0.9900
N2—H2B0.907 (10)C6—H6B0.9900
N2—C21.460 (5)C6—C201.511 (5)
N2—Li12.049 (7)C7—H7C0.9900
N3—H3A0.909 (10)C7—H7D0.9900
N3—H3B0.909 (10)C8—H8C0.9900
N3—C121.476 (5)C8—H8D0.9900
N3—Li2i2.082 (7)C8—C161.527 (5)
N4—H4A0.906 (10)C9—H9C0.9900
N4—H4B0.907 (10)C9—H9D0.9900
N4—C81.463 (5)C9—C191.519 (5)
N4—Li1ii2.065 (7)C11—H11A0.9900
N5—H5A0.908 (10)C11—H11B0.9900
N5—H5B0.908 (10)C11—C231.521 (5)
N5—C131.470 (5)C12—H12C0.9900
N5—Li52.077 (7)C12—H12D0.9900
N7—H7A0.907 (10)C13—C13vi1.513 (7)
N7—H7B0.908 (10)C13—H13C0.9900
N7—C221.477 (5)C13—H13D0.9900
N7—Li22.085 (8)C14—H14C0.9900
N8—H8A0.907 (10)C14—H14D0.9900
N8—H8B0.906 (10)C14—C151.518 (5)
N8—C231.471 (5)C15—H15C0.9900
N8—Li1iii2.111 (8)C15—H15D0.9900
N9—H9A0.906 (10)C16—H16C0.9900
N9—H9B0.910 (10)C16—H16D0.9900
N9—C111.476 (5)C17—H17C0.9900
N9—Li52.133 (7)C17—H17D0.9900
N10—H10A0.909 (7)C18—H18C0.9900
N10—H10B0.910 (7)C18—H18D0.9900
N10—C141.474 (5)C19—H19C0.9900
N10—Li62.049 (8)C19—H19D0.9900
N12—H12A0.905 (10)C20—H20C0.9900
N12—H12B0.908 (10)C20—H20D0.9900
N12—C91.464 (5)C22—H22C0.9900
N12—Li42.052 (8)C22—H22D0.9900
N13—H13A0.908 (10)C23—H23C0.9900
N13—H13B0.908 (10)C23—H23D0.9900
N13—C31.474 (5)Li1—H2B2.26 (4)
N13—Li42.097 (8)Li2—H7B2.31 (4)
N14—H14A0.908 (10)Li4—H14B2.30 (4)
N14—H14B0.902 (10)Li4—N62.051 (8)
N14—C151.469 (5)Li4—N6A2.05 (2)
N14—Li42.088 (7)N6—H6C0.907 (10)
N15—H15A0.909 (10)N6—H6D0.903 (10)
N15—H15B0.909 (10)N6—C101.479 (6)
N15—C171.470 (5)C10—H10C0.9900
N15—Li52.094 (7)C10—H10D0.9900
N16—H16A0.909 (10)C10—C211.504 (6)
N16—H16B0.908 (10)C21—H21C0.9900
N16—C71.465 (5)C21—H21D0.9900
N16—Li62.064 (7)C21—N241.431 (6)
N17—H17A0.907 (10)N24—H24A0.902 (10)
N17—H17B0.908 (10)N24—H24B0.906 (10)
N17—C161.468 (5)N24—Li32.107 (8)
N17—Li52.080 (7)Li3—H24A2.01 (6)
N18—H18A0.909 (10)Li3—N24A2.12 (2)
N18—H18B0.907 (10)N6A—H6AA0.9100
N18—C201.477 (5)N6A—H6AB0.9100
N18—Li6iv2.058 (7)N6A—C10A1.48 (2)
N19—H19A0.910 (10)C10A—H10E0.9900
N19—H19B0.907 (10)C10A—H10F0.9900
N19—C51.472 (5)C10A—C21A1.48 (2)
N19—Li22.133 (7)C21A—H21E0.9900
N20—H20A0.89 (5)C21A—H21F0.9900
N20—H20B0.85 (5)C21A—N24A1.44 (2)
N20—C191.469 (6)N24A—H24C0.9100
N20—Li6v2.070 (7)N24A—H24D0.9100
Fe2—Se1—Fe173.03 (2)C18—C1—H1D108.1
Fe4—Se1—Fe174.52 (2)N2—C2—H2C108.9
Fe4—Se1—Fe274.60 (2)N2—C2—H2D108.9
Fe3—Se3—Li398.63 (15)N2—C2—C17113.6 (3)
Fe2—Se4—Fe172.89 (2)H2C—C2—H2D107.7
Fe3—Se4—Fe174.89 (2)C17—C2—H2C108.9
Fe3—Se4—Fe273.47 (2)C17—C2—H2D108.9
Fe1—Se6—Fe375.23 (2)N13—C3—H3C108.3
Fe1—Se6—Fe474.42 (2)N13—C3—H3D108.3
Fe3—Se6—Fe470.27 (2)N13—C3—C22115.9 (3)
Fe2—Se7—Fe373.87 (2)H3C—C3—H3D107.4
Fe2—Se7—Fe475.43 (2)C22—C3—H3C108.3
Fe4—Se7—Fe370.70 (2)C22—C3—H3D108.3
Se1—Fe1—Se4105.83 (3)N22—C4—H4C108.4
Se1—Fe1—Fe253.39 (2)N22—C4—H4D108.4
Se1—Fe1—Fe397.87 (2)N22—C4—C12115.7 (3)
Se1—Fe1—Fe451.944 (18)H4C—C4—H4D107.4
Se2—Fe1—Se1108.31 (2)C12—C4—H4C108.4
Se2—Fe1—Se4117.08 (3)C12—C4—H4D108.4
Se2—Fe1—Se6119.59 (3)N19—C5—H5C108.5
Se2—Fe1—Fe2138.02 (3)N19—C5—H5D108.5
Se2—Fe1—Fe3153.78 (3)N19—C5—C7115.1 (3)
Se2—Fe1—Fe4143.63 (3)H5C—C5—H5D107.5
Se4—Fe1—Fe253.381 (17)C7—C5—H5C108.5
Se4—Fe1—Fe351.589 (19)C7—C5—H5D108.5
Se4—Fe1—Fe498.75 (2)N1—C6—H6A109.3
Se6—Fe1—Se1103.23 (2)N1—C6—H6B109.3
Se6—Fe1—Se4101.23 (2)N1—C6—C20111.5 (3)
Se6—Fe1—Fe2102.13 (2)H6A—C6—H6B108.0
Se6—Fe1—Fe353.00 (2)C20—C6—H6A109.3
Se6—Fe1—Fe453.75 (2)C20—C6—H6B109.3
Fe2—Fe1—Fe359.189 (18)N16—C7—C5113.9 (3)
Fe2—Fe1—Fe460.25 (2)N16—C7—H7C108.8
Fe4—Fe1—Fe357.18 (2)N16—C7—H7D108.8
Se1—Fe2—Se4106.37 (2)C5—C7—H7C108.8
Se1—Fe2—Fe153.582 (17)C5—C7—H7D108.8
Se1—Fe2—Fe399.46 (2)H7C—C7—H7D107.7
Se1—Fe2—Fe452.00 (2)N4—C8—H8C108.6
Se4—Fe2—Fe153.73 (2)N4—C8—H8D108.6
Se4—Fe2—Fe352.44 (2)N4—C8—C16114.7 (3)
Se4—Fe2—Fe499.03 (2)H8C—C8—H8D107.6
Se7—Fe2—Se1101.70 (2)C16—C8—H8C108.6
Se7—Fe2—Se4104.06 (2)C16—C8—H8D108.6
Se7—Fe2—Fe1103.32 (2)N12—C9—H9C108.4
Se7—Fe2—Fe354.18 (2)N12—C9—H9D108.4
Se7—Fe2—Fe453.076 (19)N12—C9—C19115.6 (3)
Se8—Fe2—Se1116.00 (2)H9C—C9—H9D107.4
Se8—Fe2—Se4112.40 (3)C19—C9—H9C108.4
Se8—Fe2—Se7115.01 (3)C19—C9—H9D108.4
Se8—Fe2—Fe1141.65 (3)N9—C11—H11A109.6
Se8—Fe2—Fe3144.53 (3)N9—C11—H11B109.6
Se8—Fe2—Fe4148.55 (3)N9—C11—C23110.4 (3)
Fe1—Fe2—Fe460.28 (2)H11A—C11—H11B108.1
Fe3—Fe2—Fe161.05 (2)C23—C11—H11A109.6
Fe3—Fe2—Fe457.77 (2)C23—C11—H11B109.6
Se3—Fe3—Se4118.26 (3)N3—C12—C4115.6 (3)
Se3—Fe3—Se6114.85 (3)N3—C12—H12C108.4
Se3—Fe3—Se7108.75 (2)N3—C12—H12D108.4
Se3—Fe3—Fe1150.72 (3)C4—C12—H12C108.4
Se3—Fe3—Fe2143.27 (3)C4—C12—H12D108.4
Se3—Fe3—Fe4137.92 (3)H12C—C12—H12D107.4
Se4—Fe3—Se6101.90 (2)N5—C13—C13vi110.8 (4)
Se4—Fe3—Se7103.50 (2)N5—C13—H13C109.5
Se4—Fe3—Fe153.52 (2)N5—C13—H13D109.5
Se4—Fe3—Fe254.084 (19)C13vi—C13—H13C109.5
Se4—Fe3—Fe4103.67 (2)C13vi—C13—H13D109.5
Se6—Fe3—Se7108.66 (3)H13C—C13—H13D108.1
Se6—Fe3—Fe151.778 (19)N10—C14—H14C108.3
Se6—Fe3—Fe2101.62 (2)N10—C14—H14D108.3
Se6—Fe3—Fe455.23 (2)N10—C14—C15115.8 (3)
Se7—Fe3—Fe1100.50 (2)H14C—C14—H14D107.4
Se7—Fe3—Fe251.95 (2)C15—C14—H14C108.3
Se7—Fe3—Fe454.331 (17)C15—C14—H14D108.3
Fe2—Fe3—Fe159.76 (2)N14—C15—C14114.8 (3)
Fe4—Fe3—Fe161.17 (2)N14—C15—H15C108.6
Fe4—Fe3—Fe261.83 (2)N14—C15—H15D108.6
Se1—Fe4—Se6102.93 (2)C14—C15—H15C108.6
Se1—Fe4—Se7101.53 (2)C14—C15—H15D108.6
Se1—Fe4—Fe153.54 (2)H15C—C15—H15D107.5
Se1—Fe4—Fe253.40 (2)N17—C16—C8112.3 (3)
Se1—Fe4—Fe3102.80 (2)N17—C16—H16C109.1
Se5—Fe4—Se1117.39 (3)N17—C16—H16D109.1
Se5—Fe4—Se6114.88 (3)C8—C16—H16C109.1
Se5—Fe4—Se7110.38 (3)C8—C16—H16D109.1
Se5—Fe4—Fe1148.27 (3)H16C—C16—H16D107.9
Se5—Fe4—Fe2144.99 (3)N15—C17—C2115.0 (4)
Se5—Fe4—Fe3139.68 (3)N15—C17—H17C108.5
Se6—Fe4—Fe151.836 (18)N15—C17—H17D108.5
Se6—Fe4—Fe299.98 (2)C2—C17—H17C108.5
Se6—Fe4—Fe354.502 (17)C2—C17—H17D108.5
Se7—Fe4—Se6108.57 (3)H17C—C17—H17D107.5
Se7—Fe4—Fe1101.35 (2)N23—C18—C1115.2 (3)
Se7—Fe4—Fe251.50 (2)N23—C18—H18C108.5
Se7—Fe4—Fe354.97 (2)N23—C18—H18D108.5
Fe2—Fe4—Fe159.48 (2)C1—C18—H18C108.5
Fe3—Fe4—Fe161.652 (19)C1—C18—H18D108.5
Fe3—Fe4—Fe260.40 (2)H18C—C18—H18D107.5
H1A—N1—H1B99 (4)N20—C19—C9116.5 (4)
C6—N1—H1A108 (3)N20—C19—H19C108.2
C6—N1—H1B109 (3)N20—C19—H19D108.2
C6—N1—Li2126.1 (3)C9—C19—H19C108.2
Li2—N1—H1A105 (3)C9—C19—H19D108.2
Li2—N1—H1B106 (3)H19C—C19—H19D107.3
H2A—N2—H2B100 (4)N18—C20—C6114.0 (3)
C2—N2—H2A109 (3)N18—C20—H20C108.8
C2—N2—H2B111 (3)N18—C20—H20D108.8
C2—N2—Li1131.7 (3)C6—C20—H20C108.8
Li1—N2—H2A108 (3)C6—C20—H20D108.8
Li1—N2—H2B92 (3)H20C—C20—H20D107.7
H3A—N3—H3B100 (4)N7—C22—C3114.5 (3)
C12—N3—H3A111 (3)N7—C22—H22C108.6
C12—N3—H3B109 (3)N7—C22—H22D108.6
C12—N3—Li2i114.9 (3)C3—C22—H22C108.6
Li2i—N3—H3A116 (3)C3—C22—H22D108.6
Li2i—N3—H3B104 (3)H22C—C22—H22D107.6
H4A—N4—H4B98 (4)N8—C23—C11114.3 (3)
C8—N4—H4A114 (3)N8—C23—H23C108.7
C8—N4—H4B111 (3)N8—C23—H23D108.7
C8—N4—Li1ii115.7 (3)C11—C23—H23C108.7
Li1ii—N4—H4A102 (3)C11—C23—H23D108.7
Li1ii—N4—H4B114 (3)H23C—C23—H23D107.6
H5A—N5—H5B101 (4)N2—Li1—H2B23.6 (5)
C13—N5—H5A110 (3)N2—Li1—N4iv119.8 (3)
C13—N5—H5B109 (3)N2—Li1—N8iii97.3 (3)
C13—N5—Li5121.3 (3)N2—Li1—N21102.0 (3)
Li5—N5—H5A109 (3)N4iv—Li1—H2B136.0 (10)
Li5—N5—H5B105 (3)N4iv—Li1—N8iii105.9 (3)
H7A—N7—H7B103 (4)N4iv—Li1—N21101.7 (3)
C22—N7—H7A109 (3)N8iii—Li1—H2B103.6 (11)
C22—N7—H7B106 (3)N21—Li1—H2B81.1 (7)
C22—N7—Li2126.1 (3)N21—Li1—N8iii132.1 (3)
Li2—N7—H7A115 (3)N1—Li2—N3i123.8 (4)
Li2—N7—H7B93 (3)N1—Li2—N7100.6 (3)
H8A—N8—H8B113 (4)N1—Li2—H7B92.4 (10)
C23—N8—H8A109 (3)N1—Li2—N1996.7 (3)
C23—N8—H8B111 (3)N3i—Li2—N7119.6 (3)
C23—N8—Li1iii106.9 (3)N3i—Li2—H7B138.6 (9)
Li1iii—N8—H8A101 (3)N3i—Li2—N19109.5 (3)
Li1iii—N8—H8B115 (3)N7—Li2—H7B23.1 (5)
H9A—N9—H9B103 (4)N7—Li2—N19102.7 (3)
C11—N9—H9A107 (3)N19—Li2—H7B82.3 (7)
C11—N9—H9B113 (3)N5—Li5—N9109.6 (3)
C11—N9—Li5122.9 (3)N5—Li5—N15112.6 (3)
Li5—N9—H9A105 (3)N5—Li5—N17102.1 (3)
Li5—N9—H9B105 (3)N15—Li5—N9114.8 (3)
H10A—N10—H10B112 (4)N17—Li5—N9115.7 (3)
C14—N10—H10A112 (3)N17—Li5—N15101.2 (3)
C14—N10—H10B108 (3)N10—Li6—N16106.0 (3)
C14—N10—Li6114.3 (3)N10—Li6—N18ii111.6 (3)
Li6—N10—H10A101 (3)N10—Li6—N20vii115.3 (3)
Li6—N10—H10B109 (3)N16—Li6—N20vii101.4 (3)
H12A—N12—H12B108 (4)N18ii—Li6—N16118.9 (4)
C9—N12—H12A109 (3)N18ii—Li6—N20vii103.7 (3)
C9—N12—H12B107 (3)N12—Li4—N13101.3 (3)
C9—N12—Li4105.0 (3)N12—Li4—N14117.0 (3)
Li4—N12—H12A104 (3)N12—Li4—H14B132.6 (10)
Li4—N12—H12B123 (3)N12—Li4—N6A117 (3)
H13A—N13—H13B105 (4)N13—Li4—H14B84.9 (7)
C3—N13—H13A106 (3)N14—Li4—N13105.8 (3)
C3—N13—H13B110 (3)N14—Li4—H14B23.1 (5)
C3—N13—Li4120.5 (3)N6—Li4—N12122.4 (4)
Li4—N13—H13A109 (3)N6—Li4—N13105.0 (3)
Li4—N13—H13B106 (3)N6—Li4—N14103.6 (4)
H14A—N14—H14B107 (4)N6—Li4—H14B100.2 (11)
C15—N14—H14A107 (3)N6A—Li4—N13111 (2)
C15—N14—H14B108 (3)N6A—Li4—N14104 (4)
C15—N14—Li4131.9 (3)N6A—Li4—H14B104 (3)
Li4—N14—H14A108 (3)Li4—N6—H6C108 (3)
Li4—N14—H14B92 (3)Li4—N6—H6D102 (3)
H15A—N15—H15B106 (4)H6C—N6—H6D103 (4)
C17—N15—H15A108 (3)C10—N6—Li4128.5 (4)
C17—N15—H15B108 (3)C10—N6—H6C104 (3)
C17—N15—Li5123.7 (3)C10—N6—H6D109 (3)
Li5—N15—H15A98 (3)N6—C10—H10C109.5
Li5—N15—H15B112 (3)N6—C10—H10D109.5
H16A—N16—H16B99 (4)N6—C10—C21110.7 (4)
C7—N16—H16A109 (3)H10C—C10—H10D108.1
C7—N16—H16B110 (3)C21—C10—H10C109.5
C7—N16—Li6119.8 (3)C21—C10—H10D109.5
Li6—N16—H16A117 (3)C10—C21—H21C109.3
Li6—N16—H16B98 (3)C10—C21—H21D109.3
H17A—N17—H17B102 (4)H21C—C21—H21D107.9
C16—N17—H17A106 (3)N24—C21—C10111.8 (4)
C16—N17—H17B112 (3)N24—C21—H21C109.3
C16—N17—Li5122.6 (3)N24—C21—H21D109.3
Li5—N17—H17A107 (3)C21—N24—H24A103 (4)
Li5—N17—H17B105 (3)C21—N24—H24B121 (4)
H18A—N18—H18B102 (4)C21—N24—Li3144.7 (4)
C20—N18—H18A110 (3)H24A—N24—H24B101 (5)
C20—N18—H18B108 (3)Li3—N24—H24A72 (4)
C20—N18—Li6iv124.2 (3)Li3—N24—H24B94 (4)
Li6iv—N18—H18A98 (3)Se3—Li3—H24A100.9 (15)
Li6iv—N18—H18B112 (3)N22—Li3—Se3117.6 (3)
H19A—N19—H19B104 (4)N22—Li3—N23100.7 (3)
C5—N19—H19A109 (3)N22—Li3—N24109.6 (4)
C5—N19—H19B108 (3)N22—Li3—H24A84.5 (5)
C5—N19—Li2121.3 (3)N22—Li3—N24A123 (2)
Li2—N19—H19A100 (3)N23—Li3—Se3129.2 (3)
Li2—N19—H19B113 (3)N23—Li3—H24A115.6 (17)
H20A—N20—H20B114 (4)N24—Li3—Se388.4 (3)
C19—N20—H20A113 (3)N24—Li3—N23109.9 (3)
C19—N20—H20B109 (3)N24—Li3—H24A25.2 (4)
C19—N20—Li6v103.1 (3)N24A—Li3—Se386.1 (15)
Li6v—N20—H20A103 (3)N24A—Li3—N23100.3 (16)
Li6v—N20—H20B114 (3)Li4—N6A—H6AA108.3
H21A—N21—H21B114 (4)Li4—N6A—H6AB108.3
C1—N21—H21A104 (3)H6AA—N6A—H6AB107.4
C1—N21—H21B107 (3)C10A—N6A—Li4116 (3)
C1—N21—Li1107.9 (3)C10A—N6A—H6AA108.3
Li1—N21—H21A103 (3)C10A—N6A—H6AB108.3
Li1—N21—H21B119 (3)N6A—C10A—H10E108.6
H22A—N22—H22B107 (4)N6A—C10A—H10F108.6
C4—N22—H22A110 (3)H10E—C10A—H10F107.5
C4—N22—H22B107 (3)C21A—C10A—N6A115 (3)
C4—N22—Li3110.9 (3)C21A—C10A—H10E108.6
Li3—N22—H22A112 (3)C21A—C10A—H10F108.6
Li3—N22—H22B109 (3)C10A—C21A—H21E108.2
H23A—N23—H23B104 (4)C10A—C21A—H21F108.2
C18—N23—H23A108 (3)H21E—C21A—H21F107.3
C18—N23—H23B105 (3)N24A—C21A—C10A116 (3)
C18—N23—Li3126.5 (3)N24A—C21A—H21E108.2
Li3—N23—H23A105 (3)N24A—C21A—H21F108.2
Li3—N23—H23B107 (3)Li3—N24A—H24C102.7
N21—C1—H1C108.1Li3—N24A—H24D102.7
N21—C1—H1D108.1C21A—N24A—Li3138 (3)
N21—C1—C18116.6 (3)C21A—N24A—H24C102.7
H1C—C1—H1D107.3C21A—N24A—H24D102.7
C18—C1—H1C108.1H24C—N24A—H24D105.0
N1—C6—C20—N1862.8 (4)Li5—N9—C11—C2367.9 (4)
N2—C2—C17—N1560.7 (5)Li5—N15—C17—C2161.3 (3)
N4—C8—C16—N1769.1 (4)Li5—N17—C16—C890.2 (4)
N9—C11—C23—N8177.8 (3)Li6—N10—C14—C15157.0 (3)
N10—C14—C15—N1463.8 (5)Li6—N16—C7—C5144.6 (4)
N12—C9—C19—N2053.8 (5)Li6iv—N18—C20—C6139.2 (4)
N13—C3—C22—N760.9 (5)Li6v—N20—C19—C9174.9 (3)
N19—C5—C7—N1659.9 (5)Li4—N12—C9—C19160.7 (4)
N21—C1—C18—N2374.6 (4)Li4—N13—C3—C22157.0 (3)
N22—C4—C12—N354.0 (5)Li4—N14—C15—C14148.6 (4)
Li1—N2—C2—C17150.7 (4)Li4—N6—C10—C2148.1 (9)
Li1ii—N4—C8—C16149.4 (3)Li4—N6A—C10A—C21A128 (6)
Li1iii—N8—C23—C11176.9 (3)N6—C10—C21—N2461.0 (6)
Li1—N21—C1—C18177.2 (3)C10—C21—N24—Li35.6 (10)
Li2—N1—C6—C2067.1 (5)Li3—N22—C4—C12166.9 (3)
Li2i—N3—C12—C4165.5 (3)Li3—N23—C18—C1166.7 (3)
Li2—N7—C22—C3136.6 (4)N6A—C10A—C21A—N24A43 (9)
Li2—N19—C5—C7164.6 (3)C10A—C21A—N24A—Li374 (8)
Li5—N5—C13—C13vi57.2 (5)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z; (iii) x+1, y+2, z+1; (iv) x+1, y, z; (v) x, y1, z; (vi) x, y+1, z+1; (vii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Se5vii0.91 (1)2.94 (1)3.837 (3)169 (4)
N1—H1B···Se6vii0.91 (1)2.98 (3)3.594 (3)127 (3)
N2—H2A···Se3vii0.91 (1)2.60 (2)3.483 (3)163 (3)
N2—H2B···Se4vii0.91 (1)2.81 (2)3.646 (3)155 (3)
N3—H3B···Se50.91 (1)2.86 (2)3.665 (4)148 (3)
N4—H4A···Se7vii0.91 (1)2.94 (3)3.600 (3)131 (3)
N4—H4B···Se8vii0.91 (1)2.60 (1)3.493 (3)170 (4)
N5—H5B···Se4vii0.91 (1)3.15 (4)3.696 (3)121 (3)
N5—H5B···Se8vii0.91 (1)2.90 (2)3.751 (3)156 (4)
N7—H7A···Se2vii0.91 (1)2.81 (2)3.647 (3)154 (3)
N7—H7B···Se1vii0.91 (1)2.73 (2)3.573 (3)155 (3)
N8—H8A···Se3viii0.91 (1)2.68 (2)3.514 (3)152 (3)
N9—H9B···Se8ix0.91 (1)2.92 (2)3.786 (3)161 (3)
N10—H10A···Se2x0.91 (1)2.88 (2)3.725 (3)156 (3)
N10—H10B···Se8vii0.91 (1)2.86 (1)3.749 (3)165 (3)
N12—H12A···Se50.91 (1)2.71 (1)3.611 (4)173 (4)
N12—H12B···Se70.91 (1)2.91 (4)3.532 (3)127 (3)
N13—H13A···Se50.91 (1)3.14 (2)3.973 (4)153 (3)
N13—H13B···Se2vii0.91 (1)2.74 (2)3.628 (3)166 (4)
N14—H14A···Se8vii0.91 (1)2.59 (1)3.479 (3)166 (4)
N14—H14B···Se1vii0.90 (1)2.77 (3)3.539 (3)144 (3)
N15—H15A···Se3vii0.91 (1)2.94 (2)3.785 (4)154 (3)
N15—H15B···Se3viii0.91 (1)2.68 (2)3.560 (3)163 (4)
N16—H16A···Se5vii0.91 (1)2.82 (2)3.679 (3)159 (4)
N16—H16B···Se1vii0.91 (1)2.67 (2)3.537 (3)160 (4)
N17—H17A···Se3vii0.91 (1)3.01 (2)3.897 (4)166 (4)
N17—H17B···Se7vii0.91 (1)3.07 (4)3.649 (3)124 (3)
N18—H18A···Se6vii0.91 (1)2.96 (2)3.837 (3)162 (3)
N18—H18B···Se2vii0.91 (1)2.80 (3)3.491 (3)134 (3)
N19—H19A···Se5vii0.91 (1)2.98 (2)3.801 (3)151 (4)
N20—H20A···Se70.89 (5)2.98 (5)3.841 (4)163 (4)
N21—H21A···Se8xi0.91 (1)2.98 (3)3.729 (3)141 (3)
N21—H21B···Se2vii0.91 (1)2.91 (2)3.763 (3)157 (3)
N22—H22A···Se50.91 (1)2.97 (2)3.785 (3)150 (4)
N22—H22B···Se2vii0.91 (1)3.10 (3)3.818 (4)138 (3)
N23—H23B···Se2vii0.91 (1)2.60 (1)3.505 (3)173 (4)
C1—H1C···Se8xi0.993.143.702 (4)118
C6—H6A···Se5i0.992.903.734 (4)143
C12—H12C···Se60.993.053.838 (4)137
C13—H13D···Se8ix0.993.073.929 (4)146
N6—H6D···Se4vii0.90 (1)3.01 (4)3.659 (5)130 (4)
C10—H10D···Se8vii0.992.993.816 (5)142
N24—H24B···Se30.91 (1)2.77 (5)3.327 (4)121 (4)
N24—H24B···Se70.91 (1)2.88 (4)3.507 (5)128 (4)
N6A—H6AA···Se4vii0.912.993.79 (7)147
C10A—H10F···Se8vii0.992.953.74 (5)137
N24A—H24D···Se70.913.173.94 (6)145
Symmetry codes: (i) x+1, y+1, z+2; (vii) x, y+1, z; (viii) x+1, y+1, z+1; (ix) x, y, z+1; (x) x1, y+1, z; (xi) x+1, y+1, z.
 

Acknowledgements

We thank Daniel Mazur for the preparation of the compound. Core facility Bio­SupraMol supported by the DFG is acknowledged for X-ray diffraction time.

Funding information

We thank the Verband der Chemischen Industrie e·V. for a Liebig scholarship, and Hans-Böckler-Stiftung for a scholarship for doctoral candidates. The DFG is acknowledged for X-ray diffraction time. We acknowledge support by the Open Access Publication Fund of the Freie Universität Berlin.

References

First citationBlatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576–3586.  Web of Science CrossRef CAS Google Scholar
First citationBronger, W., Kimpel, M. & Schmitz, D. (1983). Acta Cryst. B39, 235–238.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2021). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKern, A., Näther, C., Studt, F. & Tuczek, F. (2004). Inorg. Chem. 43, 5003–5010.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKornienko, A., Huebner, L., Freedman, D., Emge, T. J. & Brennan, J. G. (2003). Inorg. Chem. 42, 8476–8480.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSchwarz, M. & Röhr, C. (2015). Inorg. Chem. 54, 1038–1048.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStüble, P., Berroth, A. & Röhr, C. (2016). Z. Naturforsch. B, 71, 485–501.  Google Scholar
First citationStüble, P., Peschke, S., Johrendt, D. & Röhr, C. (2018). J. Solid State Chem. 258, 416–430.  Google Scholar
First citationStüble, P. & Röhr, C. (2017). Z. Anorg. Allge Chem. 643, 1462–1473.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds