tools for teaching crystallography\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pitfalls of a structure determination: The structure of closo-9-[4-(di­benzyl­amino)­phen­yl]-1,2-dicarb­a­dodeca­borane(12)

crossmark logo

aFaculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany, and bCentre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie de Coordination, 205 Route de Narbonne, 31077 Toulouse Cedex 4, France
*Correspondence e-mail: peter.loennecke@uni-leipzig.de

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 4 October 2022; accepted 30 October 2022; online 8 November 2022)

Automated X-ray data recording and data reduction strategies are straightforward and powerful these days, as well as semi-automated routines to solve standard structures without, or at least with only little manual inter­vention and within a relatively short time. The structure determination of the amino-carborane closo-9-[4-(di­benzyl­amino)­phen­yl]-1,2-dicarbadodeca­borane(12), C22H29B10N, is an example that automated routines still always have to be revised and that it may be necessary to be aware of possible problems of a structure determination.

1. Chemical context

Derivatives of closo-dicarbadodeca­boranes (carboranes) have been the focus of inter­est of many research groups over the past few years as building blocks for medicinal chemistry, supra­molecular assemblies and ligands in metal complexes (selected references: Stockmann, 2019[Stockmann, P., Gozzi, M., Kuhnert, R., Sárosi, M. B. & Hey-Hawkins, E. (2019). Chem. Soc. Rev. 48, 3497-3512.]; Andrews, 1999[Andrews, P. C., Hardie, M. J. & Raston, C. L. (1999). Coord. Chem. Rev. 189, 169-198.] and Grimes, 2016[Grimes, R. N. (2016). Carboranes, 3rd ed. London, Burlington, MA: Academic Press.]). In particular, the readily accessible 1,2-disubstituted closo-dicarbadodeca­boranes (ortho-carboranes) are a class of versatile compounds with attractive properties such as a flexible C—C bond. Unlike the C—H groups, the B—H units are much less polar and, depending on their position within the cluster, they exhibit different electronic properties, requiring alternative methods for regioselective substitution. Following the procedures of Zakharkin and co-workers (Zakharkin, 1982[Zakharkin, L. I., Kovredov, A. I., Ol'shevskaya, V. A. & Shaugumbekova, Z. S. (1982). J. Organomet. Chem. 226, 217-222.]), closo-9-[4-(di­benzyl­amino)­phen­yl]-1,2-dicarbadodeca­borane(12) was prepared (see Scheme[link] below). After removal of the benzylic protecting groups, the resulting aniline derivative is a suitable functionalized building block for various modifications.

[Scheme 1]

2. Structural commentary

To quote Anthony Linden (Linden, 2020[Linden, A. (2020). Acta Cryst. E76, 765-775.]), `With a nice graphical user inter­face (GUI), there is great temptation to click quickly through all the steps of, for example, a structure refinement and the task is complete within minutes, but is the result correct? Is it the best possible result? How can one be sure? Nothing is foolproof (yet!) and users should not rely 100% on automated tools.'

The structure determination of closo-dicarbadodeca­borane derivatives based on a 12-vertex icosa­hedron is frequently hindered, if not prevented, by rotational disorder, especially of the CH and BH vertices. This is a consequence of the approximately spherical shape of a carborane unit and, of course, its relatively weak inter­molecular inter­actions. Up to now, the structures of the pure ortho-, meta- and para-closo-dicarbadodeca­boranes are still unknown. Only co-crystallized solvent associates have been published and these lead to precisely defined non-disordered cluster arrangements (Fox & Hughes, 2004[Fox, M. A. & Hughes, A. K. (2004). Coord. Chem. Rev. 248, 457-476.]). Considering these facts, a carborane structure may easily be associated with a disorder of the carborane unit.

Taking the data of this structure determination automatically generated by the CrysAlis PRO software routine (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Wroclaw, Poland.]), the structure solution (monoclinic cell; space group P21/n; Table 1[link]) provided a disordered carborane unit, which can only be refined with a very limited accuracy and with unlocalizable carbon atoms of the carborane unit. Nevertheless, the final structure parameters for this cell setting (R1 and wR2 for all observed reflections: 0.0543 and 0.1268), the space group P21/n and its associated extinction conditions didn't look suspicious, and for the remaining non-disordered fraction of the mol­ecule, even all hydrogen atoms could be localized in the final step of the refinement. However, disordered structures should always be checked thoroughly, as disorder may be feigned and a result of an incorrect space group, twinning, an erroneous unit-cell determination, etc. For these reasons, the original recorded frames had been manually inspected as well. This inspection of the original data revealed a small number of additional very weak reflections, which had been ignored by the automated analysis and integration routine. As a representative, the reconstructed (hk[\overline{2}])-layer is given in Fig. 1[link]. Analyzing all reflections the intensity distribution can be qu­anti­fied by:

[{{\sum _{h\neq 2n}^{}}F^{2}_{o (hkl)}\over{\sum _{h=2n}^{}}F^{2}_{o (hkl)}} = 0.091]

These additional reflections (h≠2n) represent approximately 8% of the total intensity. Taking these weak reflections into account, the a-axis is doubled and a new modified unit cell is obtained, with parameters summarized in Table 2[link]. To compare this larger unit cell with the initial cell of the automated data reduction routine given above, the cell setting of the small standard cell a1, b1, c1, β1 may be better transformed into its non-standard setting a2, b2, c2, β2 (Table 1[link]).

Table 1
Initial unit cell (Å, °, Å3) derived after the automated data reduction with CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Wroclaw, Poland.])

  Standard cell   Non-standard cella
a1 6.5043 (1) a2 6.5043 (1)
b1 27.1414 (5) b2 27.1414 (5)
c1 13.2456 (3) c2 13.9094 (3)
β1 98.101 (2) β2 109.477 (2)
V 2314.99 (8) V 2314.99 (8)
Note (a): Unit-cell transformation matrix by rows: [\overline{1}] 0 0 0 [\overline{1}] 0 1 0 1.

Table 2
Experimental details

Crystal data
Chemical formula C22H29B10N
Mr 415.56
Crystal system, space group Monoclinic, P21/c
Temperature (K) 130
a, b, c (Å) 13.0128 (2), 27.1423 (4), 13.9114 (3)
β (°) 109.485 (2)
V3) 4632.07 (15)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.06
Crystal size (mm) 0.40 × 0.35 × 0.25
 
Data collection
Diffractometer Xcalibur, Sapphire3, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Wroclaw, Poland.])
Tmin, Tmax 0.997, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 76840, 15117, 9789
Rint 0.054
(sin θ/λ)max−1) 0.745
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.160, 1.02
No. of reflections 15117
No. of parameters 827
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.36, −0.25
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Wroclaw, Poland.]), SHELXT2018-2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018-3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Crystal Impact GbR, 2022[Crystal Impact GbR. (2022). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).
[Figure 1]
Figure 1
Reconstructed (hk[\overline{2}])-layer.

With this larger cell, the structure could be solved with SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) without any problems, whereby the two carborane clusters of the asymmetric unit are not disordered any longer. Without any doubt, all carbon atoms of both carborane units could be identified with a bond-length and displacement-parameter analysis, and in the final step, even all hydrogen atoms could be localized, as expected for a light-atom structure. However, there is a strong resemblance between the two mol­ecules of the asymmetric unit (Fig. 2[link]) and it seems to be obvious to check the structure for pseudo-symmetry.

[Figure 2]
Figure 2
The two mol­ecules of the asymmetric unit (displacement ellipsoids are drawn at the 50% probability level; hydrogen atoms are omitted for clarity).

As illustrated with an overlay (Fig. 3[link]), both mol­ecules of the asymmetric unit represent more or less the same conformer, but the central carborane fragments C2/B1–B9 (mol­ecule 1) and C24/B11–B19 (mol­ecule 2) are clearly in a different position and can't be mapped to each other with a translation vector. However, these units are responsible for the enlarged unit cell, and the question arises as to the reason for these differently positioned carborane units. To answer this question, an analysis of inter­molecular inter­actions of the two carboranes may be most expedient.

[Figure 3]
Figure 3
Overlay of mol­ecule 1 (brown: B1–B10/C1–C22/N1) and mol­ecule 2 (light brown: B11–B20/C23–C44/N2). Hydrogen atoms are omitted for clarity.

3. Supra­molecular features

Numerous carborane structures have previously been analyzed and a very inter­esting summary on this topic was published by Fox & Hughes (2004[Fox, M. A. & Hughes, A. K. (2004). Coord. Chem. Rev. 248, 457-476.]). As a consequence of carbon and boron electronegativity differences, the CH moiety of a carborane cluster has moderate acidity, whereas the basicity is expected to be dominating for the BH fragment. Analyzing inter­molecular contact distances, one of the most obvious and striking features of this structure is a relatively strong carborane–phenyl–π (CH⋯πC6) inter­action (Fig. 4[link]). For both mol­ecules of the asymmetric unit, the CH moiety of the carborane in para position to the substituent R1 and R2 points directly towards the center of an adjacent boron-bonded phenyl ring inter­acting with the entire πC6-system. For this kind of CH⋯πC6 inter­actions, Kraka and co-workers (Zou et al., 2018[Zou, W., Zhang, X., Dai, H., Yan, H., Cremer, D. & Kraka, E. (2018). J. Organomet. Chem. 865, 114-127.]) calculated a bonding energy of −33 kJ mol−1 (−7.9 kcal mol−1) for an ideally centered CH donor with a centroid distance of 2.36 Å (i.e. 2.74 Å for each CH⋯πC). This energy represents approximately one tenth of an ordinary carbon–carbon single bond. The experimentally estimated CH⋯πC contact distances are in the range of 2.68 (2) (dmin) to 2.86 (2) Å (dmax) for C1H⋯πC and 2.68 (2) to 2.78 (2) Å for C23H⋯πC. It can be thus proven that all CH⋯πC contact distances are shorter than the sum of the van der Waals radii (H: 1.2 Å, C: 1.7 Å). The mean CH⋯πC distances of 2.76 (2) Å for C1 and 2.73 (2) Å for C23 are quite close to the value given by Kraka and co-workers (Zou et al., 2018[Zou, W., Zhang, X., Dai, H., Yan, H., Cremer, D. & Kraka, E. (2018). J. Organomet. Chem. 865, 114-127.]).

[Figure 4]
Figure 4
Inter­molecular carborane–phen­yl–π (CH⋯πC6) inter­actions. [R1 = R2 = C6H4—N(CH2—Ph)2]. Symmetry codes as in Table 3 and x − 1, y, z.

For the remaining two N-bonded benzyl substituents only weak CH2⋯C π-stacking with adjacent N-bonded benzyl substituents is detectable: CH16B⋯C22 = 2.87 (2) Å and CH38B⋯C44 = 2.83 (2) Å.

The inter­molecular inter­actions discussed so far are dominant and comparable for both mol­ecules of the asymmetric unit; they control the packing and can thus be used as an explanation for the structurally related conformers as illustrated by the overlay shown in Fig. 3[link]. To explain the different orientation of the central carborane fragments (C2/B1–B9 and C24/B11–B19), which is ultimately responsible for the enlarged unit cell, we analyzed inter­molecular carborane–carborane inter­actions as well (Fig. 5[link]). These non-conventional di­hydrogen bonds M—H⋯H—X, first discovered in 1996 by Robert H. Crabtree (Crabtree et al., 1996[Crabtree, R. H., Siegbahn, P. E. M., Eisenstein, O., Rheingold, A. L. & Koetzle, T. F. (1996). Acc. Chem. Res. 29, 348-354.]), are bonds formed between a proton donor X—H (X = halogen, chalcogen, pnictogen or even carbon) and a hydridic proton acceptor M—H (M = metal, transition metal or boron), and it is a well-known fact by now that these di­hydrogen bonds may contribute to intra- and inter­molecular bonding. To qu­antify this kind of inter­action, mol­ecular dynamics simulations conducted by Hobza's group (Fanfrlík et al., 2006[Fanfrlík, J., Lepšík, M., Horinek, D., Havlas, Z. & Hobza, P. (2006). ChemPhysChem, 7, 1100-1105.]) revealed bonding energies of approximately −20 kJ mol−1 (−4.8 kcal mol−1).

[Figure 5]
Figure 5
Inter­molecular carborane-carborane inter­actions. Symmetry code: (′) x − 1, y, z.

For this structure, the shortest experimental inter­molecular CH⋯HB contacts are 2.49 (2) Å (H24⋯H8X) and 2.61 (2) Å (H2⋯H18X), both slightly longer than the sum of the van der Waals radii of 2.4 Å, indicating a quite weak and most likely electrostatic inter­action. Nevertheless, this inter­action provides the only striking argument for an ordered structure, as steric inter­actions can clearly be excluded. Considering steric arguments only, the CH fragment of the carborane moiety may take every possible position by simply rotating the entire carborane unit (rotational disorder). A theoretical calculation conducted by Hobza and co-workers (Fanfrlík et al., 2006[Fanfrlík, J., Lepšík, M., Horinek, D., Havlas, Z. & Hobza, P. (2006). ChemPhysChem, 7, 1100-1105.]) on inter­molecular inter­actions of biomolecules with closo-1-carbadodeca­boranes led to the observation that carboranes favor the formation of CH⋯HB di­hydrogen bonds with biomolecules, with the C—H unit of the biomolecule pointing preferably to the lower hemisphere position of the carborane, the part of the carborane cage opposite to the carbon atom. In addition, it is known that electrophiles attack carborane boron atoms preferably in an opposite para position to the carbon atom (Rudakov et al., 2011[Rudakov, D. A., Kurman, P. V. & Potkin, V. I. (2011). Russ. J. Gen. Chem. 81, 1137-1142.]). Considering these facts, the observed alternating inter­action illustrated in Fig. 5[link] may be explainable: The boron atom in the para position to C1 and C23 bears the substituent (Fig. 4[link]). C1—H and C23—H are strongly and highly symmetrically bonded to the adjacent π-system, fixing the carborane unit within the lattice. However, rotation of this unit along the C1B10 and C23B20 axis seems to be still possible so that the remaining CH units C2H and C24H can inter­act via CH⋯HB contacts with the most preferred neighboring BH units B18 and B8, as both of these boron atoms are in a para position to a carborane carbon atom.

A particularly inter­esting aspect of these non-conventional di­hydrogen bonds is that linear B—H⋯H—X arrangements are an exception (Calhorda, 2000[Calhorda, M. J. (2000). Chem. Commun. pp. 801-809.]), and it is still questionable whether the hydrogen-donor bond is pointing towards the hydridic B—H bond rather than the hydrogen atom itself. For this structure, the C—H⋯H angles for the shortest contacts (C2—H2⋯H18X and C24—H24⋯H8X) range from 116 (1) to 118 (1)° (Fig. 5[link]).

4. Database survey

To compare the contact distances with other ortho-carboranes, we analyzed the Cambridge Structural Database (CSD; Version 5.43, last update November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for ortho-carboranes with comparable inter­molecular CH⋯πC6 contact distances. The accuracy of all inter­molecular hydrogen–πC6 distances was improved by normalizing the C—H bond distances to 1.089 Å, a value derived from neutron diffraction experiments (Allen & Bruno, 2010[Allen, F. H. & Bruno, I. J. (2010). Acta Cryst. B66, 380-386.]). The results are summarized in Fig. 6[link]. To get more hits, the range of inter­molecular inter­actions was expanded, so that the mean values of the CH⋯πC6 inter­actions are still smaller than the sum of the van der Waals radii. The given data represent approximately 6% of all published ortho-carboranes with at least one phenyl fragment in the structure. 27% of all published ortho-carborane-phenyl structures have at least one short contact, illustrating the particular importance of this inter­action. In addition to the strength of the individual CH⋯πC6 inter­action, represented by its contact distance, Fig. 6[link] illustrates its symmetry: the smaller the range of the individual CH⋯πC6 contact distances are, the more centered and symmetrical the π-bonded system is. Qu­anti­tatively, this can be expressed with a delta value defined as Δ = dmax − dmin (Fig. 7[link]). The individual contact distances for C1 and C23 differ by only ± 0.09 Å and ± 0.05 Å from the mean value, indicating a very highly symmetrical inter­action. Numerical details of the hydrogen bonds in the title structure are given in Table 3[link].

Table 3
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯C3i 0.968 (17) 2.742 (17) 3.6196 (17) 151.0 (13)
C1—H1⋯C4i 0.968 (17) 2.676 (17) 3.5889 (17) 157.3 (12)
C1—H1⋯C5i 0.968 (17) 2.740 (17) 3.6322 (18) 153.4 (12)
C1—H1⋯C6i 0.968 (17) 2.860 (17) 3.7008 (18) 145.8 (13)
C1—H1⋯C7i 0.968 (17) 2.797 (17) 3.6112 (18) 142.2 (12)
C1—H1⋯C8i 0.968 (17) 2.745 (16) 3.5809 (18) 144.9 (12)
C23—H23⋯C25i 0.971 (16) 2.780 (16) 3.6436 (17) 148.4 (12)
C23—H23⋯C26i 0.971 (16) 2.741 (15) 3.5682 (17) 143.4 (11)
C23—H23⋯C27i 0.971 (16) 2.724 (15) 3.5432 (18) 142.3 (11)
C23—H23⋯C28i 0.971 (16) 2.749 (16) 3.6050 (18) 147.3 (12)
C23—H23⋯C29i 0.971 (16) 2.681 (16) 3.5857 (18) 155.0 (12)
C23—H23⋯C30i 0.971 (16) 2.690 (16) 3.5996 (17) 156.0 (12)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 6]
Figure 6
Normalized (C—H = 1.089 Å) ortho-carborane CH⋯πC6 contact distances (gray) published in the Cambridge Structural Database (CSD, version 5.43) with the corresponding CSD entry code. The experimental normalized CH⋯πC6 contacts for C1 and C23 are highlighted in orange, and mean CH⋯πC6 contacts are presented in red.
[Figure 7]
Figure 7
Delta values (blue) of ortho-carborane CH⋯πC6 contact distances defined as Δ = dmaxdmin. The experimental values for C1 and C23 are highlighted in orange.

Finally, we compared inter­molecular C—H⋯H—B contact distances between carboranes as well, as they are responsible for our ordered structure and the enlarged unit cell. To get more reliable values, we analyzed the CSD in a comparable manner by using normalized C—H (1.089 Å) and B—H (1.185 Å) bond lengths (Allen & Bruno, 2010[Allen, F. H. & Bruno, I. J. (2010). Acta Cryst. B66, 380-386.]). The two shortest normalized C—H⋯H—B contacts for our structure differ from the values given above: 2.438 (11) Å for H24⋯H8X and 2.539 (7) Å for H2⋯H18X. They are both slightly shorter as expected, but still longer than the sum of the van der Waals radii of 2.4 Å. For comparison, 21% of all ortho-carboranes published in the CSD exhibit much stronger inter­actions with contact distances ranging from 1.858 to 2.400 Å, indicating that short contacts are by no means exotic.

5. Summary

Inter­molecular inter­actions play a crucial role in the mol­ecular self-assembly of compounds, which is important in biological systems or in catalysis. It is noteworthy that substituted carboranes can form two types of non-covalent inter­actions: di­hydrogen bonds or stacking inter­actions. In particular, di­hydrogen bonds of the B—H⋯H–X type are important for the binding of this class of compounds to biomolecules. Starting from ortho-carborane, promising ligands for homogeneous catalysis can be prepared by directed synthesis. The compound closo-9-[4-(di­benzyl­amino)­phen­yl]-1,2-dicarba­do­deca­borane(12) reported here can thus be used as a building block after deprotection of the amino group.

The detailed analysis of this structure determination revealed pseudo translation symmetry (PTS) and thus we can ignore the PLATON checkCIF (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) validation alert (Fig. 8[link]). Without any doubt, the huge unit cell is the correct solution. The example given here clearly demonstrates that it is always important to check the original recorded data of a structure determination.

[Figure 8]
Figure 8
PLATON ADDSYM checkCIF validation alert.

6. Synthesis and crystallization

All reactions were conducted under N2. A solid mixture of Mg turnings (0.356 g, 14.6 mmol) and LiCl (0.364 g, 8.59 mmol) was stirred overnight to mechanically activate the Mg. 1,2-Di­bromo­ethane (0.1 ml, 1.15 mmol) in THF (10 ml) was added slowly to further activate Mg. Then N,N-dibenzyl-4-bromo­aniline (2.58 g, 7.33 mmol) in THF (15 ml) was added over 40 min. The reaction mixture was stirred for 18 h at rt and then slowly added to a solution of 9-iodo-ortho-carborane (0.592 g, 1.96 mmol) and [PdCl2(PPh3)2] (0.045 g, 0.064 mmol) in THF (10 ml) over 15 min. The resulting mixture was stirred at rt for ca 5 d; the reaction progress was monitored by NMR spectroscopy. At the end of the reaction, the mixture was quenched with methanol (50 ml) and distilled water (100 ml), then poured into Et2O (50 ml), and the phases were separated. The organic layer was washed with saturated sodium bicarbonate solution (20 ml), and the aqueous phase was extracted with Et2O (4 × 50 ml). The combined organic layers were dried over MgSO4. After evaporation of solvents, the remaining brown oil was purified by column chromatography on silica gel, using a Biotage Isolera ONE SNAP KP-SIL 100 g cartridge, 100 ml min−1, n-hexa­ne/ethyl acetate (97:3 to 40:60, v/v), yielding 0.492 g (1.18 mmol, 50%) of a colorless solid.

Crystals suitable for X-ray structure analysis were obtained from di­chloro­methane and n-pentane by slow evaporation.

RF (n-hexa­ne/ethyl acetate 85:15, v/v) = 0.25.

1H NMR (400 MHz, CDCl3, 298 K): δ = 7.34 to 7.28 (m, 4H, Bz–H), 7.27 to 7.23 (m, 6H, Bz–H), 7.17 (d, 2H, J = 8.3 Hz, C6H4), 6.65 (d, 2H, J = 8.3 Hz, C6H4), 4.61 (s, 4H, CH2), 3.56 (s, 1H, Ccarborane—H), 3.45 (s, 1H, Ccarborane—H), 3.14 to 1.58 (m, 9H, BH) ppm.

13C{1H} NMR (101 MHz, CDCl3, 298 K) δ = 148.9, 139.0, 133.4, 128.7, 126.9, 126.9, 111.8, 54.2, 52.9, 48.0 ppm.

11B{1H} NMR (128 MHz, CDCl3) δ = 8.3 (1B), −2.2 (1B), −8.7 (2B), −13.2 to −16.3 (6B) ppm.

11B NMR (128 MHz, CDCl3, 298 K): δ = 8.3 (s, 1B), −2.2 (d, 1B, 1JBH = 149 Hz), −8.7 (d, 2B, 1JBH = 151 Hz), −14.7 (m, 6B) ppm.

HRMS (ESI+) [C22H29B10N], m/z calculated: 416.3387 ([M + H]+), m/z found: 416.3385 (100%).

6.1. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were located in difference-Fourier maps and refined isotropically. Distance restraints were applied only temporarily for hydrogen atoms with normalized B—H and C—H carborane bond lengths.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT2018-2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018-3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Crystal Impact GbR, 2022); software used to prepare material for publication: WinGX (Farrugia, 2012).

closo-9-[4-(Dibenzylamino)phenyl]-1,2-dicarbadodecaborane(12) top
Crystal data top
C22H29B10NF(000) = 1744
Mr = 415.56Dx = 1.192 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.0128 (2) ÅCell parameters from 15129 reflections
b = 27.1423 (4) Åθ = 2.7–31.7°
c = 13.9114 (3) ŵ = 0.06 mm1
β = 109.485 (2)°T = 130 K
V = 4632.07 (15) Å3Prism, clear colourless
Z = 80.40 × 0.35 × 0.25 mm
Data collection top
Xcalibur, Sapphire3, Gemini
diffractometer
15117 independent reflections
Radiation source: fine-focus sealed X-ray tube9789 reflections with I > 2σ(I)
Detector resolution: 16.3560 pixels mm-1Rint = 0.054
ω scansθmax = 32.0°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1818
Tmin = 0.997, Tmax = 1.000k = 3939
76840 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: difference Fourier map
wR(F2) = 0.160All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0768P)2 + 0.5669P]
where P = (Fo2 + 2Fc2)/3
15117 reflections(Δ/σ)max = 0.001
827 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.80689 (8)0.44759 (4)0.29624 (8)0.0207 (2)
N20.31192 (8)0.44924 (4)0.29350 (8)0.0202 (2)
C10.75073 (11)0.21628 (5)0.18817 (10)0.0246 (3)
C20.86438 (11)0.22701 (6)0.09675 (11)0.0270 (3)
C30.77687 (9)0.33326 (4)0.07952 (8)0.0154 (2)
C40.68627 (9)0.35885 (4)0.08718 (9)0.0164 (2)
C50.69507 (9)0.39534 (4)0.15909 (9)0.0170 (2)
C60.79726 (9)0.40888 (4)0.22913 (8)0.0163 (2)
C70.88796 (9)0.38137 (4)0.22642 (9)0.0172 (2)
C80.87696 (9)0.34536 (4)0.15272 (9)0.0168 (2)
C90.71200 (11)0.47718 (5)0.29057 (10)0.0219 (3)
C100.66716 (10)0.50871 (4)0.19573 (9)0.0191 (2)
C110.73030 (11)0.52328 (5)0.13796 (11)0.0262 (3)
C120.68691 (11)0.55325 (5)0.05303 (12)0.0286 (3)
C130.58003 (11)0.56903 (5)0.02561 (11)0.0271 (3)
C140.51617 (11)0.55469 (6)0.08218 (12)0.0330 (3)
C150.55940 (11)0.52455 (6)0.16659 (11)0.0275 (3)
C160.91324 (10)0.46443 (5)0.36173 (9)0.0199 (2)
C170.95759 (10)0.43697 (5)0.46178 (9)0.0199 (2)
C180.89638 (11)0.43253 (6)0.52622 (10)0.0286 (3)
C190.93807 (14)0.40840 (6)0.61920 (11)0.0366 (4)
C201.04145 (16)0.38851 (6)0.64884 (12)0.0429 (4)
C211.10342 (15)0.39246 (7)0.58564 (12)0.0426 (4)
C221.06112 (12)0.41662 (6)0.49229 (11)0.0310 (3)
C230.25860 (10)0.20807 (5)0.16977 (10)0.0218 (3)
C240.34621 (10)0.25254 (5)0.14500 (10)0.0214 (3)
C250.28131 (9)0.33029 (4)0.08712 (9)0.0159 (2)
C260.38140 (9)0.34356 (5)0.15898 (9)0.0173 (2)
C270.39249 (9)0.38135 (5)0.22885 (9)0.0172 (2)
C280.30168 (9)0.40946 (4)0.22909 (8)0.0163 (2)
C290.19968 (9)0.39532 (5)0.16005 (9)0.0174 (2)
C300.19095 (9)0.35701 (4)0.09171 (9)0.0165 (2)
C310.21668 (11)0.47828 (5)0.28924 (10)0.0217 (3)
C320.16852 (10)0.50898 (4)0.19360 (9)0.0184 (2)
C330.06146 (11)0.52514 (6)0.16785 (11)0.0277 (3)
C340.01589 (11)0.55504 (6)0.08342 (12)0.0338 (3)
C350.07650 (11)0.56851 (5)0.02323 (11)0.0275 (3)
C360.18253 (11)0.55209 (5)0.04685 (11)0.0263 (3)
C370.22841 (10)0.52246 (5)0.13193 (10)0.0238 (3)
C380.41834 (10)0.46511 (5)0.36040 (9)0.0206 (2)
C390.46056 (10)0.43727 (4)0.46019 (9)0.0191 (2)
C400.39592 (11)0.43183 (5)0.52134 (10)0.0240 (3)
C410.43545 (13)0.40825 (6)0.61522 (11)0.0301 (3)
C420.54040 (13)0.38950 (6)0.64855 (11)0.0344 (3)
C430.60498 (12)0.39415 (6)0.58822 (12)0.0327 (3)
C440.56558 (11)0.41789 (5)0.49431 (11)0.0258 (3)
B10.81698 (12)0.27055 (6)0.18993 (12)0.0267 (3)
B20.67398 (12)0.26766 (6)0.22070 (11)0.0241 (3)
B30.64289 (12)0.22044 (6)0.14670 (12)0.0244 (3)
B40.76566 (14)0.19313 (6)0.06946 (12)0.0279 (3)
B50.84362 (12)0.23900 (6)0.01495 (11)0.0246 (3)
B60.87445 (11)0.28651 (6)0.05933 (12)0.0236 (3)
B70.75088 (12)0.31360 (6)0.13680 (11)0.0215 (3)
B80.64304 (11)0.28275 (6)0.10971 (10)0.0201 (3)
B90.69944 (12)0.23639 (6)0.01608 (11)0.0222 (3)
B100.76666 (10)0.29471 (5)0.00781 (10)0.0162 (2)
B110.36914 (12)0.20502 (6)0.05926 (12)0.0228 (3)
B120.23609 (12)0.18860 (6)0.06331 (12)0.0234 (3)
B130.14027 (11)0.22585 (6)0.15496 (11)0.0231 (3)
B140.21202 (12)0.26605 (6)0.21025 (11)0.0238 (3)
B150.29526 (12)0.30483 (6)0.11260 (11)0.0221 (3)
B160.39070 (11)0.26741 (6)0.01958 (11)0.0208 (3)
B170.31821 (11)0.22730 (5)0.03513 (11)0.0198 (3)
B180.17675 (11)0.24009 (5)0.02374 (11)0.0193 (3)
B190.16218 (11)0.28806 (6)0.11484 (11)0.0206 (3)
B200.27214 (10)0.28968 (5)0.00406 (10)0.0160 (2)
H1X0.8580 (12)0.2750 (6)0.2448 (12)0.032 (4)*
H2X0.6239 (12)0.2718 (6)0.2989 (12)0.030 (4)*
H3X0.5742 (13)0.1967 (6)0.1808 (13)0.038 (5)*
H4X0.7798 (12)0.1543 (6)0.0584 (12)0.036 (4)*
H5X0.9079 (12)0.2265 (6)0.0857 (12)0.030 (4)*
H6X0.9525 (12)0.3046 (6)0.0336 (12)0.033 (4)*
H7X0.7472 (11)0.3518 (6)0.1578 (11)0.028 (4)*
H8X0.5659 (11)0.3021 (5)0.1150 (11)0.022 (4)*
H9X0.6610 (11)0.2233 (6)0.0401 (11)0.027 (4)*
H11X0.4329 (11)0.1785 (6)0.0585 (11)0.026 (4)*
H12X0.2193 (13)0.1499 (6)0.0566 (12)0.039 (5)*
H13X0.0655 (12)0.2102 (6)0.2046 (12)0.031 (4)*
H14X0.1897 (11)0.2745 (5)0.2911 (11)0.026 (4)*
H15X0.3223 (12)0.3398 (6)0.1329 (11)0.028 (4)*
H16X0.4741 (12)0.2797 (6)0.0143 (12)0.033 (4)*
H17X0.3546 (12)0.2139 (6)0.1164 (11)0.029 (4)*
H18X0.1184 (12)0.2351 (6)0.0184 (12)0.030 (4)*
H19X0.0949 (11)0.3153 (6)0.1341 (11)0.027 (4)*
H10.7538 (12)0.1918 (6)0.2379 (12)0.036 (4)*
H20.9255 (13)0.2086 (7)0.1008 (13)0.042 (5)*
H40.6116 (11)0.3516 (5)0.0389 (11)0.021 (4)*
H50.6312 (12)0.4128 (6)0.1600 (12)0.025 (4)*
H70.9619 (11)0.3872 (6)0.2760 (11)0.023 (4)*
H80.9449 (11)0.3278 (5)0.1528 (11)0.019 (4)*
H9A0.6543 (11)0.4553 (5)0.2997 (11)0.018 (3)*
H9B0.7361 (12)0.4983 (6)0.3542 (12)0.028 (4)*
H110.8060 (14)0.5123 (6)0.1576 (13)0.039 (5)*
H120.7323 (14)0.5641 (7)0.0159 (14)0.045 (5)*
H130.5513 (13)0.5901 (6)0.0343 (13)0.034 (4)*
H140.4381 (17)0.5653 (7)0.0618 (16)0.059 (6)*
H150.5134 (13)0.5139 (6)0.2062 (13)0.035 (4)*
H16A0.9674 (11)0.4625 (5)0.3246 (11)0.020 (4)*
H16B0.9041 (12)0.5000 (6)0.3739 (12)0.025 (4)*
H180.8217 (13)0.4463 (6)0.5087 (13)0.034 (4)*
H190.8947 (14)0.4055 (7)0.6620 (14)0.043 (5)*
H201.0707 (16)0.3727 (8)0.7129 (16)0.061 (6)*
H211.1814 (17)0.3786 (8)0.6078 (16)0.067 (6)*
H221.1078 (15)0.4198 (7)0.4462 (15)0.050 (5)*
H230.2607 (12)0.1850 (6)0.2226 (12)0.028 (4)*
H240.3953 (12)0.2530 (6)0.1860 (12)0.028 (4)*
H260.4469 (11)0.3260 (5)0.1611 (11)0.020 (4)*
H270.4639 (11)0.3874 (5)0.2778 (11)0.019 (4)*
H290.1364 (12)0.4140 (6)0.1593 (11)0.024 (4)*
H300.1154 (11)0.3494 (5)0.0421 (11)0.022 (4)*
H31A0.1579 (12)0.4560 (6)0.2987 (12)0.027 (4)*
H31B0.2407 (11)0.5004 (6)0.3487 (12)0.025 (4)*
H330.0171 (13)0.5149 (6)0.2090 (13)0.037 (5)*
H340.0609 (16)0.5670 (7)0.0671 (15)0.051 (5)*
H350.0450 (13)0.5902 (6)0.0366 (13)0.036 (5)*
H360.2273 (14)0.5614 (6)0.0073 (14)0.040 (5)*
H370.3018 (14)0.5112 (6)0.1469 (13)0.039 (5)*
H38A0.4750 (11)0.4635 (6)0.3239 (11)0.022 (4)*
H38B0.4126 (11)0.5004 (6)0.3745 (11)0.024 (4)*
H400.3188 (13)0.4444 (6)0.5003 (12)0.031 (4)*
H410.3875 (14)0.4054 (7)0.6553 (14)0.045 (5)*
H420.5671 (14)0.3733 (7)0.7151 (14)0.047 (5)*
H430.6804 (14)0.3819 (7)0.6116 (13)0.040 (5)*
H440.6132 (13)0.4216 (6)0.4507 (13)0.034 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0218 (5)0.0188 (5)0.0181 (5)0.0044 (4)0.0019 (4)0.0056 (4)
N20.0224 (5)0.0184 (5)0.0160 (5)0.0045 (4)0.0013 (4)0.0040 (4)
C10.0259 (6)0.0271 (7)0.0219 (6)0.0025 (5)0.0094 (5)0.0116 (5)
C20.0216 (6)0.0330 (8)0.0258 (7)0.0032 (5)0.0070 (5)0.0112 (6)
C30.0167 (5)0.0158 (6)0.0129 (5)0.0002 (4)0.0040 (4)0.0003 (4)
C40.0162 (5)0.0160 (6)0.0158 (5)0.0000 (4)0.0037 (4)0.0002 (4)
C50.0169 (5)0.0167 (6)0.0169 (5)0.0027 (4)0.0049 (4)0.0003 (4)
C60.0198 (5)0.0156 (6)0.0123 (5)0.0011 (4)0.0037 (4)0.0003 (4)
C70.0174 (5)0.0184 (6)0.0140 (5)0.0011 (4)0.0029 (4)0.0014 (4)
C80.0159 (5)0.0183 (6)0.0151 (5)0.0017 (4)0.0037 (4)0.0004 (4)
C90.0266 (6)0.0218 (6)0.0172 (6)0.0073 (5)0.0075 (5)0.0004 (5)
C100.0222 (5)0.0156 (6)0.0182 (6)0.0017 (4)0.0050 (4)0.0017 (5)
C110.0224 (6)0.0281 (7)0.0299 (7)0.0034 (5)0.0109 (5)0.0053 (6)
C120.0297 (7)0.0278 (7)0.0319 (7)0.0003 (6)0.0151 (6)0.0070 (6)
C130.0302 (7)0.0231 (7)0.0261 (7)0.0007 (5)0.0069 (5)0.0079 (6)
C140.0231 (6)0.0370 (9)0.0375 (8)0.0051 (6)0.0081 (6)0.0150 (7)
C150.0238 (6)0.0313 (8)0.0295 (7)0.0047 (5)0.0115 (5)0.0092 (6)
C160.0248 (6)0.0166 (6)0.0161 (5)0.0012 (5)0.0038 (5)0.0012 (5)
C170.0244 (6)0.0165 (6)0.0162 (5)0.0021 (5)0.0035 (5)0.0035 (5)
C180.0268 (6)0.0369 (8)0.0203 (6)0.0060 (6)0.0055 (5)0.0013 (6)
C190.0473 (9)0.0419 (10)0.0201 (7)0.0125 (7)0.0106 (6)0.0007 (6)
C200.0665 (11)0.0335 (9)0.0209 (7)0.0075 (8)0.0042 (7)0.0065 (7)
C210.0522 (10)0.0435 (10)0.0262 (7)0.0232 (8)0.0051 (7)0.0037 (7)
C220.0353 (7)0.0334 (8)0.0229 (7)0.0122 (6)0.0079 (6)0.0010 (6)
C230.0238 (6)0.0220 (6)0.0215 (6)0.0043 (5)0.0099 (5)0.0083 (5)
C240.0225 (6)0.0229 (6)0.0220 (6)0.0044 (5)0.0115 (5)0.0054 (5)
C250.0183 (5)0.0157 (6)0.0138 (5)0.0000 (4)0.0054 (4)0.0004 (4)
C260.0172 (5)0.0191 (6)0.0157 (5)0.0014 (4)0.0055 (4)0.0010 (5)
C270.0174 (5)0.0182 (6)0.0142 (5)0.0000 (4)0.0031 (4)0.0010 (4)
C280.0212 (5)0.0143 (5)0.0123 (5)0.0015 (4)0.0043 (4)0.0011 (4)
C290.0175 (5)0.0171 (6)0.0171 (5)0.0027 (4)0.0051 (4)0.0005 (4)
C300.0174 (5)0.0164 (6)0.0149 (5)0.0007 (4)0.0041 (4)0.0007 (4)
C310.0291 (6)0.0199 (6)0.0160 (6)0.0072 (5)0.0072 (5)0.0004 (5)
C320.0219 (5)0.0152 (6)0.0169 (5)0.0019 (4)0.0050 (4)0.0004 (4)
C330.0251 (6)0.0312 (8)0.0303 (7)0.0054 (5)0.0138 (6)0.0091 (6)
C340.0231 (6)0.0385 (9)0.0386 (8)0.0086 (6)0.0087 (6)0.0157 (7)
C350.0271 (6)0.0246 (7)0.0274 (7)0.0014 (5)0.0047 (5)0.0088 (6)
C360.0276 (6)0.0262 (7)0.0265 (7)0.0006 (5)0.0109 (5)0.0071 (6)
C370.0210 (6)0.0245 (7)0.0259 (6)0.0023 (5)0.0078 (5)0.0035 (5)
C380.0262 (6)0.0160 (6)0.0165 (5)0.0019 (5)0.0032 (5)0.0026 (5)
C390.0221 (5)0.0156 (6)0.0160 (5)0.0024 (4)0.0016 (4)0.0035 (4)
C400.0255 (6)0.0254 (7)0.0193 (6)0.0009 (5)0.0052 (5)0.0000 (5)
C410.0387 (8)0.0306 (8)0.0194 (6)0.0033 (6)0.0077 (6)0.0020 (6)
C420.0460 (9)0.0274 (8)0.0205 (7)0.0012 (6)0.0015 (6)0.0039 (6)
C430.0308 (7)0.0274 (8)0.0300 (7)0.0067 (6)0.0029 (6)0.0005 (6)
C440.0241 (6)0.0246 (7)0.0254 (7)0.0016 (5)0.0041 (5)0.0035 (5)
B10.0263 (7)0.0345 (9)0.0227 (7)0.0052 (6)0.0128 (6)0.0079 (6)
B20.0250 (7)0.0307 (8)0.0160 (6)0.0014 (6)0.0061 (5)0.0045 (6)
B30.0242 (7)0.0263 (8)0.0229 (7)0.0064 (6)0.0081 (6)0.0082 (6)
B40.0370 (8)0.0205 (8)0.0247 (7)0.0018 (6)0.0084 (6)0.0042 (6)
B50.0269 (7)0.0243 (8)0.0202 (7)0.0056 (6)0.0048 (6)0.0036 (6)
B60.0193 (6)0.0296 (8)0.0226 (7)0.0025 (6)0.0077 (5)0.0082 (6)
B70.0249 (6)0.0238 (7)0.0163 (6)0.0028 (6)0.0074 (5)0.0008 (5)
B80.0170 (6)0.0257 (7)0.0165 (6)0.0007 (5)0.0042 (5)0.0051 (5)
B90.0277 (7)0.0204 (7)0.0202 (6)0.0037 (6)0.0103 (6)0.0026 (6)
B100.0154 (5)0.0173 (6)0.0157 (6)0.0002 (5)0.0050 (5)0.0020 (5)
B110.0217 (6)0.0224 (7)0.0250 (7)0.0011 (5)0.0089 (5)0.0039 (6)
B120.0291 (7)0.0180 (7)0.0252 (7)0.0028 (6)0.0121 (6)0.0040 (6)
B130.0196 (6)0.0295 (8)0.0199 (6)0.0045 (6)0.0062 (5)0.0078 (6)
B140.0279 (7)0.0267 (8)0.0165 (6)0.0005 (6)0.0069 (5)0.0023 (6)
B150.0301 (7)0.0197 (7)0.0195 (6)0.0017 (6)0.0122 (6)0.0015 (6)
B160.0191 (6)0.0245 (7)0.0197 (6)0.0029 (5)0.0076 (5)0.0064 (6)
B170.0201 (6)0.0190 (7)0.0196 (6)0.0019 (5)0.0058 (5)0.0003 (5)
B180.0190 (6)0.0210 (7)0.0188 (6)0.0029 (5)0.0074 (5)0.0038 (5)
B190.0216 (6)0.0238 (7)0.0157 (6)0.0035 (5)0.0053 (5)0.0012 (5)
B200.0162 (5)0.0168 (6)0.0148 (6)0.0001 (5)0.0050 (5)0.0017 (5)
Geometric parameters (Å, º) top
N1—C61.3831 (15)C33—C341.3875 (19)
N1—C91.4529 (15)C33—H330.980 (17)
N1—C161.4536 (15)C34—C351.377 (2)
N2—C281.3809 (15)C34—H341.002 (19)
N2—C381.4525 (15)C35—C361.3813 (19)
N2—C311.4533 (16)C35—H350.990 (17)
C1—C21.6231 (18)C36—C371.3903 (18)
C1—B21.687 (2)C36—H360.959 (18)
C1—B31.690 (2)C37—H370.957 (17)
C1—B11.711 (2)C38—C391.5137 (17)
C1—B41.716 (2)C38—H38A1.025 (14)
C1—H10.968 (17)C38—H38B0.987 (16)
C2—B61.688 (2)C39—C401.3893 (18)
C2—B51.695 (2)C39—C441.3917 (17)
C2—B11.710 (2)C40—C411.3899 (19)
C2—B41.722 (2)C40—H401.007 (15)
C2—H20.957 (17)C41—C421.384 (2)
C3—C81.3987 (15)C41—H410.968 (18)
C3—C41.4026 (15)C42—C431.377 (2)
C3—B101.5751 (17)C42—H420.977 (19)
C4—C51.3851 (16)C43—C441.392 (2)
C4—H40.999 (14)C43—H430.984 (17)
C5—C61.4100 (16)C44—H441.007 (17)
C5—H50.961 (15)B1—B71.754 (2)
C6—C71.4078 (16)B1—B21.767 (2)
C7—C81.3889 (16)B1—B61.772 (2)
C7—H70.992 (14)B1—H1X1.074 (15)
C8—H81.004 (14)B2—B81.769 (2)
C9—C101.5167 (17)B2—B71.772 (2)
C9—H9A0.998 (14)B2—B31.773 (2)
C9—H9B1.013 (16)B2—H2X1.072 (15)
C10—C111.3849 (18)B3—B41.764 (2)
C10—C151.3915 (17)B3—B81.767 (2)
C11—C121.3897 (19)B3—B91.772 (2)
C11—H110.976 (17)B3—H3X1.076 (16)
C12—C131.3818 (19)B4—B91.761 (2)
C12—H120.951 (19)B4—B51.778 (2)
C13—C141.378 (2)B4—H4X1.073 (17)
C13—H130.977 (17)B5—B61.780 (2)
C14—C151.3870 (19)B5—B91.781 (2)
C14—H141.00 (2)B5—B101.783 (2)
C15—H150.983 (17)B5—H5X1.111 (15)
C16—C171.5133 (17)B6—B71.770 (2)
C16—H16A1.005 (14)B6—B101.7893 (19)
C16—H16B0.994 (16)B6—H6X1.077 (15)
C17—C221.3852 (18)B7—B81.779 (2)
C17—C181.3888 (19)B7—B101.811 (2)
C18—C191.389 (2)B7—H7X1.073 (15)
C18—H180.992 (16)B8—B91.783 (2)
C19—C201.379 (2)B8—B101.7837 (18)
C19—H190.951 (18)B8—H8X1.114 (14)
C20—C211.381 (3)B9—B101.794 (2)
C20—H200.95 (2)B9—H9X1.118 (15)
C21—C221.394 (2)B11—B171.764 (2)
C21—H211.03 (2)B11—B121.770 (2)
C22—H221.024 (19)B11—B161.774 (2)
C23—C241.6165 (18)B11—H11X1.097 (14)
C23—B121.688 (2)B12—B181.771 (2)
C23—B131.6905 (19)B12—B131.773 (2)
C23—B141.713 (2)B12—B171.773 (2)
C23—B111.722 (2)B12—H12X1.082 (17)
C23—H230.971 (16)B13—B181.769 (2)
C24—B151.690 (2)B13—B141.770 (2)
C24—B161.6937 (19)B13—B191.771 (2)
C24—B111.714 (2)B13—H13X1.075 (15)
C24—B141.7177 (19)B14—B191.765 (2)
C24—H240.988 (15)B14—B151.774 (2)
C25—C261.3988 (15)B14—H14X1.088 (15)
C25—C301.4011 (16)B15—B191.781 (2)
C25—B201.5723 (17)B15—B161.782 (2)
C26—C271.3873 (16)B15—B201.794 (2)
C26—H260.969 (14)B15—H15X1.082 (15)
C27—C281.4074 (16)B16—B171.770 (2)
C27—H270.966 (14)B16—B201.7866 (19)
C28—C291.4074 (16)B16—H16X1.081 (15)
C29—C301.3878 (16)B17—B181.7815 (19)
C29—H290.964 (15)B17—B201.800 (2)
C30—H301.016 (14)B17—H17X1.130 (15)
C31—C321.5168 (17)B18—B191.782 (2)
C31—H31A1.017 (15)B18—B201.7838 (19)
C31—H31B0.985 (16)B18—H18X1.111 (15)
C32—C371.3867 (18)B19—B201.7906 (19)
C32—C331.3888 (17)B19—H19X1.109 (15)
C6—N1—C9119.95 (10)C1—B4—B5103.63 (11)
C6—N1—C16120.99 (10)C2—B4—B557.90 (9)
C9—N1—C16118.32 (10)B9—B4—B560.42 (8)
C28—N2—C38120.85 (10)B3—B4—B5108.02 (11)
C28—N2—C31120.09 (10)C1—B4—H4X117.2 (9)
C38—N2—C31118.89 (10)C2—B4—H4X116.8 (8)
C2—C1—B2111.41 (11)B9—B4—H4X132.9 (8)
C2—C1—B3111.34 (10)B3—B4—H4X125.3 (8)
B2—C1—B363.35 (9)B5—B4—H4X124.1 (9)
C2—C1—B161.64 (9)C2—B5—B459.38 (9)
B2—C1—B162.64 (9)C2—B5—B658.07 (9)
B3—C1—B1115.29 (11)B4—B5—B6108.25 (11)
C2—C1—B462.01 (9)C2—B5—B9104.32 (10)
B2—C1—B4115.32 (11)B4—B5—B959.29 (9)
B3—C1—B462.38 (9)B6—B5—B9108.14 (10)
B1—C1—B4115.66 (11)C2—B5—B10104.59 (11)
C2—C1—H1116.0 (9)B4—B5—B10108.27 (10)
B2—C1—H1122.4 (10)B6—B5—B1060.29 (8)
B3—C1—H1121.7 (9)B9—B5—B1060.44 (8)
B1—C1—H1116.0 (10)C2—B5—H5X116.8 (8)
B4—C1—H1114.7 (10)B4—B5—H5X117.8 (8)
C1—C2—B6111.71 (11)B6—B5—H5X119.1 (8)
C1—C2—B5111.75 (10)B9—B5—H5X128.5 (8)
B6—C2—B563.48 (9)B10—B5—H5X128.9 (8)
C1—C2—B161.71 (9)C2—B6—B7104.38 (10)
B6—C2—B162.87 (9)C2—B6—B159.16 (9)
B5—C2—B1115.77 (11)B7—B6—B159.35 (9)
C1—C2—B461.65 (9)C2—B6—B558.45 (9)
B6—C2—B4115.45 (10)B7—B6—B5108.64 (10)
B5—C2—B462.72 (9)B1—B6—B5108.56 (11)
B1—C2—B4115.42 (10)C2—B6—B10104.59 (10)
C1—C2—H2114.7 (10)B7—B6—B1061.17 (8)
B6—C2—H2122.5 (10)B1—B6—B10108.78 (10)
B5—C2—H2122.9 (10)B5—B6—B1059.94 (8)
B1—C2—H2114.4 (10)C2—B6—H6X120.5 (8)
B4—C2—H2115.4 (10)B7—B6—H6X125.3 (9)
C8—C3—C4115.51 (10)B1—B6—H6X118.8 (8)
C8—C3—B10122.41 (10)B5—B6—H6X120.5 (8)
C4—C3—B10122.05 (10)B10—B6—H6X126.0 (8)
C5—C4—C3122.67 (11)B1—B7—B660.40 (9)
C5—C4—H4117.1 (8)B1—B7—B260.14 (9)
C3—C4—H4120.3 (8)B6—B7—B2107.92 (11)
C4—C5—C6121.14 (11)B1—B7—B8107.94 (11)
C4—C5—H5120.0 (9)B6—B7—B8107.22 (11)
C6—C5—H5118.8 (9)B2—B7—B859.75 (8)
N1—C6—C7122.21 (10)B1—B7—B10108.64 (11)
N1—C6—C5121.11 (11)B6—B7—B1059.95 (8)
C7—C6—C5116.68 (11)B2—B7—B10107.82 (10)
C8—C7—C6120.81 (10)B8—B7—B1059.57 (7)
C8—C7—H7117.5 (9)B1—B7—H7X120.8 (8)
C6—C7—H7121.7 (9)B6—B7—H7X121.1 (8)
C7—C8—C3122.97 (11)B2—B7—H7X122.4 (8)
C7—C8—H8117.3 (8)B8—B7—H7X123.0 (8)
C3—C8—H8119.7 (8)B10—B7—H7X121.5 (8)
N1—C9—C10115.63 (10)B3—B8—B260.19 (9)
N1—C9—H9A109.0 (8)B3—B8—B7108.24 (10)
C10—C9—H9A111.0 (8)B2—B8—B759.92 (8)
N1—C9—H9B104.8 (8)B3—B8—B959.86 (9)
C10—C9—H9B111.0 (9)B2—B8—B9108.44 (10)
H9A—C9—H9B104.7 (12)B7—B8—B9108.98 (10)
C11—C10—C15118.56 (12)B3—B8—B10108.59 (10)
C11—C10—C9122.37 (11)B2—B8—B10109.17 (9)
C15—C10—C9119.06 (11)B7—B8—B1061.10 (8)
C10—C11—C12120.60 (12)B9—B8—B1060.37 (8)
C10—C11—H11119.2 (10)B3—B8—H8X121.2 (7)
C12—C11—H11120.2 (10)B2—B8—H8X120.9 (7)
C13—C12—C11120.15 (13)B7—B8—H8X121.4 (7)
C13—C12—H12120.3 (11)B9—B8—H8X121.5 (7)
C11—C12—H12119.5 (11)B10—B8—H8X121.4 (7)
C14—C13—C12119.87 (13)B4—B9—B359.91 (9)
C14—C13—H13121.4 (9)B4—B9—B560.29 (9)
C12—C13—H13118.7 (9)B3—B9—B5107.57 (10)
C13—C14—C15119.91 (13)B4—B9—B8107.61 (10)
C13—C14—H14120.3 (12)B3—B9—B859.62 (8)
C15—C14—H14119.8 (12)B5—B9—B8107.02 (10)
C14—C15—C10120.90 (13)B4—B9—B10108.59 (10)
C14—C15—H15119.9 (10)B3—B9—B10107.96 (10)
C10—C15—H15119.2 (10)B5—B9—B1059.84 (8)
N1—C16—C17114.38 (10)B8—B9—B1059.82 (8)
N1—C16—H16A110.3 (8)B4—B9—H9X118.6 (8)
C17—C16—H16A109.3 (8)B3—B9—H9X120.6 (8)
N1—C16—H16B105.6 (8)B5—B9—H9X121.6 (7)
C17—C16—H16B110.6 (9)B8—B9—H9X124.3 (8)
H16A—C16—H16B106.3 (12)B10—B9—H9X124.0 (8)
C22—C17—C18118.44 (13)C3—B10—B5121.91 (10)
C22—C17—C16120.78 (12)C3—B10—B8123.76 (10)
C18—C17—C16120.77 (11)B5—B10—B8106.91 (10)
C19—C18—C17120.81 (14)C3—B10—B6121.06 (10)
C19—C18—H18116.9 (10)B5—B10—B659.77 (9)
C17—C18—H18122.3 (10)B8—B10—B6106.18 (9)
C20—C19—C18120.15 (15)C3—B10—B9123.34 (10)
C20—C19—H19120.3 (11)B5—B10—B959.72 (8)
C18—C19—H19119.6 (11)B8—B10—B959.81 (8)
C19—C20—C21119.86 (15)B6—B10—B9107.16 (10)
C19—C20—H20120.3 (12)C3—B10—B7121.93 (11)
C21—C20—H20119.8 (12)B5—B10—B7106.70 (10)
C20—C21—C22119.78 (15)B8—B10—B759.33 (8)
C20—C21—H21120.5 (12)B6—B10—B758.88 (8)
C22—C21—H21119.7 (12)B9—B10—B7107.13 (9)
C17—C22—C21120.96 (15)C24—B11—C2356.13 (8)
C17—C22—H22119.6 (11)C24—B11—B17103.81 (10)
C21—C22—H22119.4 (11)C23—B11—B17103.82 (10)
C24—C23—B12111.31 (10)C24—B11—B12103.06 (10)
C24—C23—B13111.54 (10)C23—B11—B1257.78 (8)
B12—C23—B1363.30 (9)B17—B11—B1260.23 (8)
C24—C23—B1462.04 (8)C24—B11—B1658.06 (8)
B12—C23—B14115.49 (10)C23—B11—B16103.31 (10)
B13—C23—B1462.67 (9)B17—B11—B1660.05 (8)
C24—C23—B1161.69 (8)B12—B11—B16107.56 (10)
B12—C23—B1162.56 (9)C24—B11—H11X117.1 (8)
B13—C23—B11115.38 (10)C23—B11—H11X116.4 (8)
B14—C23—B11115.88 (10)B17—B11—H11X133.6 (8)
C24—C23—H23116.5 (9)B12—B11—H11X124.3 (8)
B12—C23—H23121.2 (9)B16—B11—H11X125.7 (8)
B13—C23—H23122.1 (9)C23—B12—B1159.66 (8)
B14—C23—H23116.0 (9)C23—B12—B18104.29 (11)
B11—C23—H23114.7 (9)B11—B12—B18108.33 (10)
C23—C24—B15111.86 (10)C23—B12—B1358.43 (8)
C23—C24—B16111.84 (10)B11—B12—B13108.97 (11)
B15—C24—B1663.56 (9)B18—B12—B1359.89 (8)
C23—C24—B1162.17 (8)C23—B12—B17104.83 (10)
B15—C24—B11116.04 (10)B11—B12—B1759.69 (8)
B16—C24—B1162.75 (9)B18—B12—B1760.35 (8)
C23—C24—B1461.73 (8)B13—B12—B17108.40 (11)
B15—C24—B1462.72 (9)C23—B12—H12X118.6 (9)
B16—C24—B14115.56 (10)B11—B12—H12X117.7 (8)
B11—C24—B14116.02 (10)B18—B12—H12X128.1 (8)
C23—C24—H24115.6 (9)B13—B12—H12X120.1 (9)
B15—C24—H24122.0 (9)B17—B12—H12X126.5 (9)
B16—C24—H24121.8 (9)C23—B13—B18104.26 (10)
B11—C24—H24114.5 (9)C23—B13—B1459.27 (8)
B14—C24—H24115.5 (9)B18—B13—B14108.36 (10)
C26—C25—C30115.45 (11)C23—B13—B19104.66 (10)
C26—C25—B20122.01 (10)B18—B13—B1960.46 (8)
C30—C25—B20122.50 (10)B14—B13—B1959.77 (9)
C27—C26—C25123.06 (11)C23—B13—B1258.27 (8)
C27—C26—H26117.3 (9)B18—B13—B1260.01 (8)
C25—C26—H26119.7 (8)B14—B13—B12108.53 (10)
C26—C27—C28120.74 (11)B19—B13—B12108.45 (10)
C26—C27—H27118.1 (9)C23—B13—H13X118.4 (8)
C28—C27—H27121.1 (9)B18—B13—H13X128.5 (8)
N2—C28—C27121.73 (10)B14—B13—H13X117.3 (8)
N2—C28—C29121.39 (11)B19—B13—H13X126.4 (8)
C27—C28—C29116.88 (11)B12—B13—H13X120.4 (8)
C30—C29—C28120.98 (11)C23—B14—C2456.23 (8)
C30—C29—H29120.8 (9)C23—B14—B19104.03 (10)
C28—C29—H29118.2 (9)C24—B14—B19103.81 (10)
C29—C30—C25122.75 (11)C23—B14—B1358.05 (8)
C29—C30—H30117.2 (8)C24—B14—B13103.26 (10)
C25—C30—H30120.0 (8)B19—B14—B1360.16 (9)
N2—C31—C32115.53 (10)C23—B14—B15103.58 (10)
N2—C31—H31A109.9 (9)C24—B14—B1557.88 (8)
C32—C31—H31A109.3 (9)B19—B14—B1560.44 (8)
N2—C31—H31B105.6 (8)B13—B14—B15108.00 (10)
C32—C31—H31B108.9 (9)C23—B14—H14X118.4 (8)
H31A—C31—H31B107.2 (12)C24—B14—H14X117.7 (8)
C37—C32—C33118.65 (12)B19—B14—H14X131.9 (8)
C37—C32—C31122.31 (11)B13—B14—H14X125.5 (8)
C33—C32—C31119.02 (11)B15—B14—H14X123.5 (8)
C34—C33—C32120.78 (13)C24—B15—B1459.40 (8)
C34—C33—H33119.5 (10)C24—B15—B19104.26 (10)
C32—C33—H33119.7 (10)B14—B15—B1959.53 (8)
C35—C34—C33120.01 (13)C24—B15—B1658.31 (8)
C35—C34—H34120.4 (11)B14—B15—B16108.51 (11)
C33—C34—H34119.6 (11)B19—B15—B16107.76 (10)
C34—C35—C36119.92 (13)C24—B15—B20104.35 (10)
C34—C35—H35120.6 (9)B14—B15—B20108.23 (10)
C36—C35—H35119.5 (9)B19—B15—B2060.11 (8)
C35—C36—C37120.03 (13)B16—B15—B2059.94 (8)
C35—C36—H36121.9 (10)C24—B15—H15X118.4 (8)
C37—C36—H36118.0 (10)B14—B15—H15X119.3 (8)
C32—C37—C36120.59 (12)B19—B15—H15X128.2 (8)
C32—C37—H37120.4 (11)B16—B15—H15X118.8 (8)
C36—C37—H37119.0 (11)B20—B15—H15X127.2 (8)
N2—C38—C39114.61 (10)C24—B16—B17104.38 (10)
N2—C38—H38A111.0 (8)C24—B16—B1159.19 (8)
C39—C38—H38A109.3 (8)B17—B16—B1159.67 (8)
N2—C38—H38B107.2 (8)C24—B16—B1558.12 (8)
C39—C38—H38B109.3 (9)B17—B16—B15108.69 (10)
H38A—C38—H38B104.8 (12)B11—B16—B15108.57 (10)
C40—C39—C44118.51 (12)C24—B16—B20104.53 (9)
C40—C39—C38120.39 (11)B17—B16—B2060.81 (8)
C44—C39—C38121.07 (12)B11—B16—B20108.88 (10)
C39—C40—C41120.96 (13)B15—B16—B2060.36 (8)
C39—C40—H40122.3 (9)C24—B16—H16X118.1 (8)
C41—C40—H40116.7 (9)B17—B16—H16X127.1 (8)
C42—C41—C40119.90 (14)B11—B16—H16X117.5 (8)
C42—C41—H41122.1 (11)B15—B16—H16X119.7 (8)
C40—C41—H41118.0 (11)B20—B16—H16X128.1 (8)
C43—C42—C41119.77 (14)B11—B17—B1660.27 (8)
C43—C42—H42121.5 (10)B11—B17—B1260.08 (8)
C41—C42—H42118.8 (10)B16—B17—B12107.61 (10)
C42—C43—C44120.38 (14)B11—B17—B18108.17 (10)
C42—C43—H43120.8 (10)B16—B17—B18107.43 (10)
C44—C43—H43118.8 (10)B12—B17—B1859.76 (8)
C39—C44—C43120.48 (14)B11—B17—B20108.75 (10)
C39—C44—H44119.2 (10)B16—B17—B2060.05 (8)
C43—C44—H44120.3 (10)B12—B17—B20107.77 (10)
C2—B1—C156.65 (8)B18—B17—B2059.74 (8)
C2—B1—B7104.16 (10)B11—B17—H17X119.9 (8)
C1—B1—B7104.31 (10)B16—B17—H17X121.5 (8)
C2—B1—B2103.74 (11)B12—B17—H17X121.7 (8)
C1—B1—B258.01 (9)B18—B17—H17X123.2 (7)
B7—B1—B260.43 (9)B20—B17—H17X122.5 (8)
C2—B1—B657.97 (9)B13—B18—B1260.10 (9)
C1—B1—B6103.77 (11)B13—B18—B17108.20 (10)
B7—B1—B660.25 (8)B12—B18—B1759.89 (8)
B2—B1—B6108.02 (10)B13—B18—B1959.84 (8)
C2—B1—H1X118.5 (8)B12—B18—B19108.04 (10)
C1—B1—H1X118.6 (9)B17—B18—B19108.53 (10)
B7—B1—H1X130.9 (9)B13—B18—B20108.45 (10)
B2—B1—H1X124.5 (8)B12—B18—B20108.60 (10)
B6—B1—H1X124.1 (8)B17—B18—B2060.65 (8)
C1—B2—B159.35 (9)B19—B18—B2060.28 (8)
C1—B2—B8104.12 (11)B13—B18—H18X121.5 (8)
B1—B2—B8107.84 (10)B12—B18—H18X120.8 (8)
C1—B2—B7104.55 (10)B17—B18—H18X121.1 (8)
B1—B2—B759.42 (8)B19—B18—H18X122.4 (8)
B8—B2—B760.34 (8)B20—B18—H18X121.8 (8)
C1—B2—B358.40 (9)B14—B19—B1360.07 (9)
B1—B2—B3108.50 (11)B14—B19—B1560.03 (8)
B8—B2—B359.87 (9)B13—B19—B15107.60 (10)
B7—B2—B3108.32 (10)B14—B19—B18107.98 (10)
C1—B2—H2X117.7 (8)B13—B19—B1859.70 (8)
B1—B2—H2X118.4 (8)B15—B19—B18107.58 (10)
B8—B2—H2X128.6 (8)B14—B19—B20108.79 (10)
B7—B2—H2X127.9 (8)B13—B19—B20108.03 (10)
B3—B2—H2X119.1 (8)B15—B19—B2060.31 (8)
C1—B3—B459.55 (9)B18—B19—B2059.90 (8)
C1—B3—B8104.06 (10)B14—B19—H19X120.2 (8)
B4—B3—B8108.17 (10)B13—B19—H19X121.9 (8)
C1—B3—B9104.97 (10)B15—B19—H19X121.2 (8)
B4—B3—B959.73 (9)B18—B19—H19X123.2 (8)
B8—B3—B960.52 (8)B20—B19—H19X122.0 (8)
C1—B3—B258.25 (9)C25—B20—B18124.41 (10)
B4—B3—B2108.77 (11)C25—B20—B16120.92 (10)
B8—B3—B259.94 (9)B18—B20—B16106.62 (10)
B9—B3—B2108.76 (10)C25—B20—B19122.50 (10)
C1—B3—H3X118.2 (9)B18—B20—B1959.82 (8)
B4—B3—H3X117.8 (9)B16—B20—B19107.14 (9)
B8—B3—H3X128.5 (9)C25—B20—B15120.63 (10)
B9—B3—H3X126.8 (9)B18—B20—B15106.94 (9)
B2—B3—H3X119.6 (9)B16—B20—B1559.70 (8)
C1—B4—C256.34 (8)B19—B20—B1559.58 (8)
C1—B4—B9104.33 (11)C25—B20—B17123.05 (10)
C2—B4—B9104.06 (11)B18—B20—B1759.61 (8)
C1—B4—B358.07 (9)B16—B20—B1759.15 (8)
C2—B4—B3103.42 (11)B19—B20—B17107.35 (10)
B9—B4—B360.36 (9)B15—B20—B17106.86 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···C3i0.968 (17)2.742 (17)3.6196 (17)151.0 (13)
C1—H1···C4i0.968 (17)2.676 (17)3.5889 (17)157.3 (12)
C1—H1···C5i0.968 (17)2.740 (17)3.6322 (18)153.4 (12)
C1—H1···C6i0.968 (17)2.860 (17)3.7008 (18)145.8 (13)
C1—H1···C7i0.968 (17)2.797 (17)3.6112 (18)142.2 (12)
C1—H1···C8i0.968 (17)2.745 (16)3.5809 (18)144.9 (12)
C23—H23···C25i0.971 (16)2.780 (16)3.6436 (17)148.4 (12)
C23—H23···C26i0.971 (16)2.741 (15)3.5682 (17)143.4 (11)
C23—H23···C27i0.971 (16)2.724 (15)3.5432 (18)142.3 (11)
C23—H23···C28i0.971 (16)2.749 (16)3.6050 (18)147.3 (12)
C23—H23···C29i0.971 (16)2.681 (16)3.5857 (18)155.0 (12)
C23—H23···C30i0.971 (16)2.690 (16)3.5996 (17)156.0 (12)
C16—H16B···C22ii0.994 (16)2.869 (16)3.769 (2)151.0 (12)
C38—H38B···C44iii0.987 (16)2.825 (16)3.7325 (19)153.3 (12)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1.
Initial unit cell (Å, °, Å3) derived after the automated data reduction with CrysAlisPro (Rigaku OD, 2020) top
Standard cellNon-standard cella
a16.5043 (1)a26.5043 (1)
b127.1414 (5)b227.1414 (5)
c113.2456 (3)c213.9094 (3)
β198.101 (2)β2109.477 (2)
V2314.99 (8)V2314.99 (8)
Note (a): Unit-cell transformation matrix by rows: 1 0 0 0 1 0 1 0 1.
 

Funding information

The project leading to this application received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 860322. This paper was funded by the Open Access Publishing Fund of Leipzig University supported by the German Research Foundation within the program Open Access Publication Funding.

References

First citationAllen, F. H. & Bruno, I. J. (2010). Acta Cryst. B66, 380–386.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAndrews, P. C., Hardie, M. J. & Raston, C. L. (1999). Coord. Chem. Rev. 189, 169–198.  Web of Science CrossRef CAS Google Scholar
First citationCalhorda, M. J. (2000). Chem. Commun. pp. 801–809.  Web of Science CrossRef Google Scholar
First citationCrabtree, R. H., Siegbahn, P. E. M., Eisenstein, O., Rheingold, A. L. & Koetzle, T. F. (1996). Acc. Chem. Res. 29, 348–354.  CrossRef PubMed CAS Web of Science Google Scholar
First citationCrystal Impact GbR. (2022). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFanfrlík, J., Lepšík, M., Horinek, D., Havlas, Z. & Hobza, P. (2006). ChemPhysChem, 7, 1100–1105.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFox, M. A. & Hughes, A. K. (2004). Coord. Chem. Rev. 248, 457–476.  Web of Science CrossRef CAS Google Scholar
First citationGrimes, R. N. (2016). Carboranes, 3rd ed. London, Burlington, MA: Academic Press.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLinden, A. (2020). Acta Cryst. E76, 765–775.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Wroclaw, Poland.  Google Scholar
First citationRudakov, D. A., Kurman, P. V. & Potkin, V. I. (2011). Russ. J. Gen. Chem. 81, 1137–1142.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStockmann, P., Gozzi, M., Kuhnert, R., Sárosi, M. B. & Hey-Hawkins, E. (2019). Chem. Soc. Rev. 48, 3497–3512.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZakharkin, L. I., Kovredov, A. I., Ol'shevskaya, V. A. & Shaugumbekova, Z. S. (1982). J. Organomet. Chem. 226, 217–222.  CrossRef CAS Web of Science Google Scholar
First citationZou, W., Zhang, X., Dai, H., Yan, H., Cremer, D. & Kraka, E. (2018). J. Organomet. Chem. 865, 114–127.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds