research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[(μ6-benzene-1,3,5-tri­carboxyl­ato)tris­­(1-methyl­pyrrolidin-2-one)nitratodizinc(II)]

crossmark logo

aL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of, Sciences of Ukraine, Prospekt Nauki 31, Kyiv, 03028, Ukraine, and b"Petru Poni" Institute of Macromolecular Chemistry, Department of Inorganic, Polymers, Aleea Grigore Ghika Voda41A, RO-700487 Iasi, Romania
*Correspondence e-mail: lampeka@adamant.net

Edited by J. Reibenspies, Texas A & M University, USA (Received 8 November 2022; accepted 17 November 2022; online 30 November 2022)

The asymmetric unit of the title compound, [Zn2(C9H3O6)(NO3)(C5H9NO)3]n, I, consists of two different zinc(II) ions bridged by the carboxyl­ate group of benzene-1,3,5-tri­carboxyl­ate (BTC3−). The Zn1 center is tetra-coordinated by the carboxyl­ate O atoms of three symmetrically equivalent BTC3− anions and one nitrate O atom in a distorted tetra­hedral geometry with Zn—Ocarboxyl­ate bond lengths (average value 1.958 Å) slightly shorter than the Zn—Onitrate distance [2.013 (6) Å]. The Zn2 center is hexa-coordinated by three O atoms from the carb­oxy­lic groups of different BTC3− linkers and three O atoms of 1-meth­yl­pyrrolidin-2-one (NMP) in a slightly distorted octa­hedral geometry with nearly equivalent Zn—O bond lengths (average values of 2.091 and 2.088 Å, respectively). Linking of the paddle-wheel dizinc building units by the three carboxyl­ate groups of the BTC3− mol­ecule results in the formation of the three-dimensional coordination framework.

1. Chemical context

Metal–organic frameworks (MOFs), crystalline coordination polymers built up of metal-containing fragments (secondary building units, SBUs) joined by multidentate organic linkers, have been of continuous inter­est over the last few decades because of their potential for applications in different areas including gas storage, separation, catalysis, sensing etc. (Farrusseng, 2011[Farrusseng, D. (2011). Editor. Metal-Organic Frameworks Applications from Catalysis to Gas Storage, Weinheim: Wiley-VCH.]; MacGillivray & Lukehart, 2014[MacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal-Organic Framework Materials, Hoboken: John Wiley and Sons.]; Kaskel, 2016[Kaskel, S. (2016). Editor. The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications. Weinheim: Wiley-VCH.]). Aromatic carboxyl­ates are the most widely used bridging ligands (Rao et al., 2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]; Yoshinari & Konno, 2023[Yoshinari, N. & Konno, T. (2023). Coord. Chem. Rev. 474, 214850.]) and benzene-1,3,5-tri­carb­oxy­lic acid (H3BTC), a potential 3-connected linker, is one of the most extensively studied.

Syntheses of Zn-based MOFs starting from the ZnII inorganic salts and H3BTC have been attempted many times, resulting in a large number of compounds, characterized by extreme variability of SBU types (di-, tri-, tetra- and higher nuclearity clusters) and network topologies, which reflects the flexibility of the coordination sphere inherent to the ZnII ion. Among them, trigonal (`three-bladed') binuclear clusters with a paddle-wheel structure represent an important class of SBUs (Vagin et al., 2007[Vagin, S. I., Ott, A. K. & Rieger, B. (2007). Chem. Ing. Tech. 79, 767-780.]).

One of the first examples of MOFs with such an SBU is the complex [Zn2(BTC)(NO3)(EtOH)3]·2EtOH·H2O]n, called also MOF-4, which was prepared via room-temperature reaction in ethanol/thi­ethyl­amine. The Zn2 units in this compound are joined with the BTC3− bridges to form a porous network of srs topology (P213 space group) with a three-dimensional channel system filled with ethanol and water mol­ecules of crystallization (Yaghi et al., 1997[Yaghi, O. M., Davis, C. E., Li, G. & Li, H. (1997). J. Am. Chem. Soc. 119, 2861-2868.]; Eddaoudi et al., 2000[Eddaoudi, M., Li, H. & Yaghi, O. M. (2000). J. Am. Chem. Soc. 122, 1391-1397.]). At the same time, solvothermal reactions of ZnII salts and BTC3− result in the formation of a MOF with a similar structure only in di­methyl­acetamide (DMA) (Hao et al., 2012[Hao, X.-R., Wang, X.-L., Shao, K.-Z., Yang, G.-S., Su, Z.-M. & Yuan, G. (2012). CrystEngComm, 14, 5596-5603.]; Lou et al., 2013[Lou, X.-H., Li, H., Zhang, Z., Zhang, H. & Xu, C. (2013). J. Inorg. Organomet. Polym. 23, 996-1000.]; Wang et al., 2021a[Wang, F.-K., Yang, S.-Y. & Dong, H.-Z. (2021a). J. Mol. Struct. 1227, 129540.]), whereas the reaction in DMF, for example, leads to the Zn analogue of HKUST-1 (Feldblyum et al., 2011[Feldblyum, J. I., Liu, M., Gidley, D. W. & Matzger, A. J. (2011). J. Am. Chem. Soc. 133, 18257-18263.]). It seems, however, that solvent effects can be smoothed by the addition of serine as a template, resulting in a series of MOFs [Zn2(BTC)(NO3)(Solv)3]n including different solvent mol­ecules coordinated to the Zn ion (Oh et al., 2013[Oh, M., Rajput, L., Kim, D., Moon, D. & Lah, M. S. (2013). Inorg. Chem. 52, 3891-3899.]). All these compounds are usually treated as isostructural because of the identical srs framework topology, although the majority of them crystallize in the related ortho­rhom­bic subgroup P212121.

Besides common amide solvents, several attempts have been documented that utilize N-methyl-2-pyrrolidone (NMP), which is widely used in industry and for nanomaterials processing (Basma et al., 2018[Basma, N. S., Headen, T. F., Shaffer, M. S. P., Skipper, N. T. & Howard, C. A. (2018). J. Phys. Chem. B, 122, 8963-8971.]), in the MOF synthesis. Its use in Zn–BTC reactions led to different products depending on the conditions employed and some of them contain `three-bladed' paddle-wheel SBUs (Ordonez et al., 2014[Ordonez, C., Fonari, M., Lindline, J., Wei, Q. & Timofeeva, T. (2014). Cryst. Growth Des. 14, 5452-5465.]; Yuan et al., 2019[Yuan, H., Chen, L., Fu, L. & Li, B. (2019). Inorg. Chem. Commun. 104, 83-87.]). However, compounds of the MOF-4 type {namely, [Zn2(BTC)(NO3)(py)(NMP)2]n} was obtained only with an NMP/pyridine mixture (Wang et al., 2021b[Wang, F.-K., Yang, S.-Y. & Dong, H.-Z. (2021b). J. Chem. Res. 45, 253-257.]).

Whilst testing NMP as a possible reaction medium for the synthesis of MOFs, we have found that the reaction of zinc(II) nitrate with H3BTC in pure NMP does not lead to the precip­itation of any crystalline products, but the addition of a small amount of DMF results in the formation of the related compound poly[(μ6-benzene-1,3,5-tri­carboxyl­ato)tris­(1-meth­yl­pyrrol­id­in-2-one)nitratodizinc(II)], [Zn2(BTC)(NO3)(NMP)3]n, I, whose structure is reported herein.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound I is built of two zinc(II) ions bridged by the carboxyl­ate group of the BTC3− anion with an inter­metallic Zn1⋯Zn2 distance of 3.6547 (9) Å (Fig. 1[link]). Zn1 is additionally coordinated by the O atom of the nitrate anion, and Zn2 by the amide oxygen atoms of three NMP mol­ecules. Two of these NMP mol­ecules are disordered with the site occupancies of the major components being 0.620 (16) and 0.638 (16). The coordination of the carboxyl­ate groups of two additional symmetry-related BTC3− anions results in the formation of distorted tetra­hedral and octa­hedral environments of the Zn1 and Zn2 ions, respectively.

[Figure 1]
Figure 1
The extended asymmetric unit in I showing the atom-labeling scheme with displacement ellipsoids drawn at the 30% probability level. C-bound H atoms are omitted for clarity. Only the major occupancy components of disordered NMP mol­ecules are shown. Symmetry codes: (i) −x + [{1\over 2}], −y + 1, z + [{1\over 2}]; (ii) x + [{1\over 2}], −y + [{1\over 2}], −z + 1; (iii) −x + [{1\over 2}], −y + 1, z − [{1\over 2}]; (iv) x − [{1\over 2}], −y + [{1\over 2}], −z + 1.

The carb­oxy­lic groups in I are tilted slightly with respect to the benzene ring (the average angle between the corres­ponding mean planes is 6.7°) and the C—Ocarboxyl­ate bond lengths (average value of 1.260 Å) are typical of bis(monodentate) μ2-COO groups with a high degree of delocalization. In spite of this, there is a considerable difference between the Zn—Ocarboxyl­ate bond lengths in the tetra­hedral and octa­hedral ions – these are shorter by ca 0.14 Å in the first case (average values of 1.953 and 2.090 Å, see Table 1[link]). Inter­estingly, the distances from the octa­hedral Zn ion to the O atoms of the NMP mol­ecules (average value 2.079 Å) are not too different from the Zn2—Ocarboxyl­ate distances. At the same time, the binding of the nitrate anion to the tetra­hedral Zn1 ion is obviously weaker than that of the carboxyl­ate, as indicated by the Zn1—O10 distance of 2.013 (6) Å (Table 1[link]).

Table 1
Selected bond lengths (Å)

Zn1—O1 1.956 (4) Zn2—O4 2.097 (4)
Zn1—O3 1.943 (4) Zn2—O6 2.086 (4)
Zn1—O5 1.960 (4) Zn2—O1_1 2.100 (5)
Zn1—O10 2.013 (6) Zn2—O1_3 2.042 (5)
Zn2—O2 2.086 (4) Zn2—O1_4 2.094 (5)

The `three-bladed' paddle-wheel Zn2O6 core in I represents a skewed elongated triangular bipyramid. This skewing is a source of chirality and can be characterized by dihedral skewing angles Zn1—On⋯On—Zn2 (s). In spite of the lack of strict symmetry, these angles are not too different in I and have an average value of 49.8°. It is worth noting that the tetra­hedral Zn1 ion lies close to the plane of the carb­oxy­lic groups of BTC3−, while the octa­hedral Zn2 ion exhibits a large deviation from this plane.

3. Supra­molecular features

Linking of the `three-bladed' paddle-wheel dizinc SBUs by BTC3− units results in the formation of a three-dimensional covalent framework with srs topology. A detailed description of such a structure can be found in Yaghi et al. (1997[Yaghi, O. M., Davis, C. E., Li, G. & Li, H. (1997). J. Am. Chem. Soc. 119, 2861-2868.]). It is characterized by the presence of inter­connected channels parallel to all three crystallographic axes (Fig. 2[link]). However, the crystals of I as a whole are non-porous, because these channels are occupied by coordinated nitrate anions and NMP mol­ecules, though the removal of the NMP mol­ecules could lead to a highly porous material [solvent-accessible volume of 1820.8 Å3 (63.4% of the unit-cell volume) as calculated by PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.])]. Extensive C—H⋯O hydrogen bonding occurs (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5_1—H5A_1⋯O1i 0.98 2.55 3.488 (10) 160
C4_2—H4A_2⋯O12ii 0.99 2.24 3.12 (2) 147
C5_2—H5B_2⋯O6iii 0.98 2.65 3.61 (2) 168
C2_3—H2A_3⋯O3iii 0.99 2.48 3.472 (14) 177
C2_3—H2B_3⋯O1_1 0.99 2.58 3.335 (13) 133
C4_3—H4B_3⋯O12ii 0.99 2.49 3.417 (17) 156
C2_4—H2B_4⋯O1_1 0.99 2.56 3.297 (15) 132
C4_4—H4A_4⋯O1ii 0.99 2.58 3.564 (16) 170
C4_4—H4B_4⋯O12i 0.99 2.47 3.448 (17) 169
C2_5—H2A_5⋯O10ii 0.99 2.45 3.30 (2) 143
C4_5—H4A_5⋯O1ii 0.99 2.56 3.34 (2) 135
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
View of the framework structure in I down the c-axis direction. Coordinated nitrate anions and NMP mol­ecules are not shown.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, last update September 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed nine structures of srs-type connectivity with the composition [Zn2(BTC)(NO3)(Solv)3]n, that differ in the nature of solvent mol­ecules coordinated to the octa­hedral ZnII ion. Two of them [refcodes RIZXUT (Solv = EtOH; Yaghi et al., 1997[Yaghi, O. M., Davis, C. E., Li, G. & Li, H. (1997). J. Am. Chem. Soc. 119, 2861-2868.]) and SENWEP (Solv = DMF; Oh et al., 2013[Oh, M., Rajput, L., Kim, D., Moon, D. & Lah, M. S. (2013). Inorg. Chem. 52, 3891-3899.])] crystallize in the cubic P213 space group, while the others belong to the ortho­rhom­bic P212121 space group. In general, the coordination bond lengths in all these compounds are very similar and close to those observed in I. Inter­estingly, the Zn—O distances for the coordinated solvent mol­ecules (in particular for EtOH and different amides) are practically the same, despite the different chemical nature of the donor atoms.

Nevertheless, these MOFs demonstrate considerable variations in the structure of the Zn2O6 core. The degree of skewing, as characterized by the averaged value of s, varies by ca 10°, and its increase correlates with the decrease of the unit-cell volume, as can be illustrated by comparison of structures RIZXUT (s = 39.4°) and SENWEP (s = 48.4°) possessing maximum and minimum values of 3194.71 and 2807.34 Å3, respectively. The series as a whole demonstrates a rough correlation between these parameters. Compounds crystallizing in the P212121 space group reveal asymmetry of the Zn2O6 core, which can be characterized by the difference between maximum and minimum values of skewing angles. This difference is the largest (ca 27°) for compounds containing coordinated DMA mol­ecules [VEHJID (Hao et al., 2012[Hao, X.-R., Wang, X.-L., Shao, K.-Z., Yang, G.-S., Su, Z.-M. & Yuan, G. (2012). CrystEngComm, 14, 5596-5603.]), VEHJID01 (Lou et al., 2013[Lou, X.-H., Li, H., Zhang, Z., Zhang, H. & Xu, C. (2013). J. Inorg. Organomet. Polym. 23, 996-1000.]), VEHJID02 (Wang et al., 2021a[Wang, F.-K., Yang, S.-Y. & Dong, H.-Z. (2021a). J. Mol. Struct. 1227, 129540.]), and SENWIT (Oh et al., 2013[Oh, M., Rajput, L., Kim, D., Moon, D. & Lah, M. S. (2013). Inorg. Chem. 52, 3891-3899.])], while for structures with coordinated EtOH (SENWAL; Oh et al., 2013[Oh, M., Rajput, L., Kim, D., Moon, D. & Lah, M. S. (2013). Inorg. Chem. 52, 3891-3899.]), di­ethyl­formamide (SENWOZ; Oh et al., 2013[Oh, M., Rajput, L., Kim, D., Moon, D. & Lah, M. S. (2013). Inorg. Chem. 52, 3891-3899.]) and NMP/pyridine (ISIQOT; Wang et al., 2021b[Wang, F.-K., Yang, S.-Y. & Dong, H.-Z. (2021b). J. Chem. Res. 45, 253-257.]), it does not exceed 11°, being minimum (4.6°) in I. Inter­estingly, increase of core asymmetry is accompanied by an increase in the difference between unit-cell lengths (b − a) from 0.104 Å in I to 2.009 Å in VEHJID02.

5. Synthesis and crystallization

All chemicals and solvents used in this work were purchased from Sigma–Aldrich and were used without further purification.

To prepare [Zn2(BTC)(NO3)(NMP)3]n, I, a solution of 200 mg (0.952 mmol) of H3BTC in 1 ml of DMF was added to a solution of 610 mg (2.051 mmol) of Zn(NO3)2·6H2O in 20 ml of NMP and the mixture was heated at ca 363 K for two days. In the course of heating, the gradual formation of a white crystalline precipitate occurred, accompanied by an intense dark-orange coloration of the solution. The precipitate was filtered off, washed with NMP and dried under vacuum. Yield: 483 mg (73%). Analysis calculated for C24H30N4O12Zn2: C, 41.34; H, 4.34; N, 8.04%. Found: C, 41.22; H, 4.25; N, 7.92%. Single crystals suitable for X-ray diffraction analysis were picked from the sample.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms in I were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (aromatic H atoms), 0.99 (methyl­ene H atoms), and 0.98 Å (methyl H atoms), with Uiso(H) values of 1.2 (CH and CH2 groups) or 1.5 (CH3 groups) times those of the corresponding parent C atoms. Two of the NMP mol­ecules are disordered with the site occupancies of the major components being 0.620 (16) and 0.638 (16). Disordered fragments were modeled using the RESI routine available in SHELXL.

Table 3
Experimental details

Crystal data
Chemical formula [Zn2(C9H3O6)(NO3)(C5H9NO)3]
Mr 697.26
Crystal system, space group Orthorhombic, P212121
Temperature (K) 160
a, b, c (Å) 13.6870 (5), 13.7912 (5), 15.2165 (5)
V3) 2872.26 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.74
Crystal size (mm) 0.2 × 0.2 × 0.15
 
Data collection
Diffractometer Rigaku Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.640, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18130, 6787, 5981
Rint 0.046
(sin θ/λ)max−1) 0.687
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.116, 1.05
No. of reflections 6787
No. of parameters 494
No. of restraints 450
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.95, −0.54
Absolute structure Flack x determined using 2151 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.003 (8)
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[(µ6-benzene-1,3,5-tricarboxylato)tris(1-methylpyrrolidin-2-one)nitratodizinc(II)] top
Crystal data top
[Zn2(C9H3O6)(NO3)(C5H9NO)3]Dx = 1.612 Mg m3
Mr = 697.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 6077 reflections
a = 13.6870 (5) Åθ = 2.0–25.9°
b = 13.7912 (5) ŵ = 1.74 mm1
c = 15.2165 (5) ÅT = 160 K
V = 2872.26 (17) Å3Irregular, clear light colourless
Z = 40.2 × 0.2 × 0.15 mm
F(000) = 1432
Data collection top
Rigaku Xcalibur Eos
diffractometer
Rint = 0.046
ω scansθmax = 29.2°, θmin = 2.0°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1816
Tmin = 0.640, Tmax = 1.000k = 1817
18130 measured reflectionsl = 2020
6787 independent reflections10 standard reflections every 50 reflections
5981 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0475P)2 + 3.9623P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.95 e Å3
6787 reflectionsΔρmin = 0.54 e Å3
494 parametersAbsolute structure: Flack x determined using 2151 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
450 restraintsAbsolute structure parameter: 0.003 (8)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.26242 (5)0.29446 (5)0.72606 (4)0.01560 (16)
Zn20.40511 (5)0.45592 (5)0.58535 (4)0.02064 (17)
O10.1740 (3)0.3102 (3)0.6260 (3)0.0202 (9)
O20.2533 (3)0.4472 (3)0.5943 (2)0.0195 (8)
O30.3789 (3)0.2222 (3)0.6939 (3)0.0229 (10)
O40.4112 (4)0.3049 (3)0.5705 (3)0.0265 (10)
O50.2878 (3)0.4076 (3)0.8006 (3)0.0224 (10)
O60.4200 (3)0.4452 (3)0.7215 (3)0.0230 (9)
O100.2034 (5)0.2190 (4)0.8261 (4)0.0608 (19)
O110.1951 (7)0.1017 (5)0.7347 (5)0.084 (3)
O120.1699 (8)0.0761 (6)0.8725 (5)0.112 (4)
N40.1905 (7)0.1312 (6)0.8116 (5)0.062 (2)
C10.1926 (4)0.3820 (4)0.5767 (4)0.0190 (12)
C20.1352 (4)0.3889 (4)0.4924 (4)0.0176 (12)
C30.0599 (4)0.3249 (4)0.4747 (4)0.0179 (12)
H30.0436490.2757560.5159880.021*
C40.5076 (4)0.1675 (4)0.6039 (4)0.0165 (12)
C50.4265 (5)0.2377 (4)0.6230 (4)0.0205 (13)
C60.5313 (5)0.0964 (4)0.6640 (4)0.0171 (12)
H60.4950300.0906920.7169590.021*
C70.3908 (4)0.5321 (4)0.8529 (4)0.0169 (11)
C80.3643 (4)0.4570 (4)0.7856 (4)0.0170 (11)
C90.3407 (4)0.5405 (5)0.9312 (4)0.0184 (12)
H90.2885450.4970580.9434890.022*
O1_10.5572 (3)0.4623 (4)0.5680 (3)0.0424 (11)
N1_10.7026 (4)0.3919 (5)0.5521 (4)0.0431 (12)
C1_10.6253 (4)0.4181 (6)0.5950 (4)0.0412 (11)
C2_10.6392 (6)0.3816 (6)0.6892 (5)0.0461 (13)
H2A_10.6542010.4359400.7294350.055*
H2B_10.5797150.3480120.7102820.055*
C3_10.7251 (6)0.3114 (6)0.6835 (5)0.0512 (14)
H3A_10.7687560.3184810.7349510.061*
H3B_10.7020410.2434330.6802960.061*
C4_10.7773 (5)0.3402 (6)0.5994 (5)0.0495 (14)
H4A_10.8341520.3824160.6118530.059*
H4B_10.7995620.2824780.5663200.059*
C5_10.7180 (7)0.4199 (6)0.4606 (5)0.0534 (19)
H5A_10.7115560.3627070.4228090.080*
H5B_10.7836340.4473840.4539180.080*
H5C_10.6692230.4684180.4435810.080*
O1_20.3924 (5)0.6022 (4)0.6028 (4)0.0565 (13)0.380 (9)
N1_20.4149 (11)0.7633 (8)0.5886 (15)0.053 (2)0.380 (9)
C1_20.3711 (12)0.6810 (6)0.5781 (15)0.054 (2)0.380 (9)
C2_20.2660 (11)0.6917 (10)0.5452 (15)0.056 (2)0.380 (9)
H2A_20.2592790.6717170.4830430.067*0.380 (9)
H2B_20.2193480.6546640.5819000.067*0.380 (9)
C3_20.2532 (12)0.8009 (11)0.557 (2)0.056 (3)0.380 (9)
H3A_20.2177450.8285440.5056640.068*0.380 (9)
H3B_20.2155750.8150710.6105910.068*0.380 (9)
C4_20.3549 (11)0.8443 (10)0.5628 (16)0.055 (3)0.380 (9)
H4A_20.3761350.8707980.5054470.066*0.380 (9)
H4B_20.3572350.8965070.6073970.066*0.380 (9)
C5_20.5189 (10)0.7729 (16)0.6082 (16)0.055 (4)0.380 (9)
H5A_20.5429910.7124150.6340610.082*0.380 (9)
H5B_20.5286500.8262520.6498580.082*0.380 (9)
H5C_20.5547620.7865660.5538600.082*0.380 (9)
O1_30.3924 (5)0.6022 (4)0.6028 (4)0.0565 (13)0.620 (9)
N1_30.3812 (7)0.7644 (5)0.5717 (9)0.0484 (18)0.620 (9)
C1_30.4215 (7)0.6820 (5)0.5899 (10)0.0483 (16)0.620 (9)
C2_30.5316 (7)0.7011 (8)0.5935 (9)0.0495 (19)0.620 (9)
H2A_30.5545070.7064890.6550090.059*0.620 (9)
H2B_30.5683540.6487630.5637450.059*0.620 (9)
C3_30.5435 (8)0.7973 (8)0.5450 (9)0.050 (2)0.620 (9)
H3A_30.5971350.8363110.5706500.060*0.620 (9)
H3B_30.5567720.7866960.4817750.060*0.620 (9)
C4_30.4453 (8)0.8460 (7)0.5588 (10)0.051 (2)0.620 (9)
H4A_30.4461950.8887240.6110450.061*0.620 (9)
H4B_30.4259070.8843480.5066380.061*0.620 (9)
C5_30.2756 (7)0.7744 (11)0.5609 (14)0.057 (3)0.620 (9)
H5A_30.2609150.7926270.5000460.085*0.620 (9)
H5B_30.2512320.8246460.6007580.085*0.620 (9)
H5C_30.2438310.7125050.5745550.085*0.620 (9)
O1_40.3920 (4)0.4595 (5)0.4483 (3)0.0542 (13)0.638 (16)
N1_40.4320 (8)0.4834 (9)0.3054 (5)0.0533 (19)0.638 (16)
C1_40.4316 (15)0.4996 (11)0.3892 (6)0.0509 (17)0.638 (16)
C2_40.4914 (11)0.5930 (9)0.3965 (7)0.057 (2)0.638 (16)
H2A_40.4477090.6492080.4062920.068*0.638 (16)
H2B_40.5376300.5886690.4463790.068*0.638 (16)
C3_40.5470 (11)0.6048 (11)0.3102 (7)0.059 (2)0.638 (16)
H3A_40.5465720.6732010.2905400.071*0.638 (16)
H3B_40.6154680.5827400.3163100.071*0.638 (16)
C4_40.4909 (10)0.5407 (11)0.2467 (7)0.058 (2)0.638 (16)
H4A_40.4498790.5797270.2064800.070*0.638 (16)
H4B_40.5355790.4995150.2117550.070*0.638 (16)
C5_40.3807 (11)0.3999 (11)0.2686 (9)0.061 (3)0.638 (16)
H5A_40.3627820.3552070.3159760.092*0.638 (16)
H5B_40.4233800.3665550.2266210.092*0.638 (16)
H5C_40.3214550.4219190.2383660.092*0.638 (16)
O1_50.3920 (4)0.4595 (5)0.4483 (3)0.0542 (13)0.362 (16)
N1_50.4502 (17)0.4618 (11)0.3094 (8)0.056 (2)0.362 (16)
C1_50.429 (3)0.4963 (13)0.3862 (11)0.054 (2)0.362 (16)
C2_50.447 (2)0.6058 (11)0.3844 (11)0.056 (2)0.362 (16)
H2A_50.3852870.6427310.3881330.068*0.362 (16)
H2B_50.4912930.6263900.4324740.068*0.362 (16)
C3_50.4954 (18)0.6173 (14)0.2946 (10)0.058 (3)0.362 (16)
H3A_50.4754970.6791850.2669670.069*0.362 (16)
H3B_50.5674480.6165310.3003460.069*0.362 (16)
C4_50.4609 (19)0.5319 (13)0.2399 (10)0.057 (3)0.362 (16)
H4A_50.3980360.5454100.2100860.069*0.362 (16)
H4B_50.5102480.5116440.1960530.069*0.362 (16)
C5_50.430 (2)0.3623 (13)0.2822 (18)0.065 (4)0.362 (16)
H5A_50.3954700.3282760.3295100.097*0.362 (16)
H5B_50.4916030.3289250.2696470.097*0.362 (16)
H5C_50.3891970.3628770.2292820.097*0.362 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0167 (3)0.0170 (3)0.0130 (3)0.0003 (3)0.0002 (3)0.0002 (3)
Zn20.0199 (4)0.0211 (3)0.0209 (3)0.0001 (3)0.0031 (3)0.0048 (3)
O10.024 (2)0.017 (2)0.0198 (19)0.0012 (18)0.0040 (17)0.0037 (18)
O20.015 (2)0.022 (2)0.0212 (18)0.0008 (18)0.0023 (17)0.0016 (17)
O30.024 (2)0.025 (2)0.0192 (19)0.0088 (19)0.0059 (17)0.0007 (18)
O40.040 (3)0.023 (2)0.0173 (19)0.014 (2)0.0014 (19)0.0014 (18)
O50.025 (2)0.022 (2)0.021 (2)0.0057 (18)0.0002 (17)0.0064 (18)
O60.019 (2)0.030 (2)0.0200 (19)0.0014 (19)0.0018 (17)0.0100 (19)
O100.090 (5)0.044 (4)0.048 (3)0.021 (4)0.029 (3)0.002 (3)
O110.134 (8)0.069 (5)0.049 (4)0.038 (5)0.012 (4)0.007 (4)
O120.210 (12)0.072 (5)0.053 (4)0.071 (6)0.008 (5)0.025 (4)
N40.087 (7)0.049 (5)0.049 (4)0.032 (5)0.005 (4)0.011 (4)
C10.019 (3)0.022 (3)0.017 (3)0.002 (2)0.002 (2)0.003 (3)
C20.017 (3)0.018 (3)0.017 (3)0.003 (2)0.002 (2)0.000 (2)
C30.023 (3)0.011 (3)0.019 (3)0.001 (2)0.003 (2)0.001 (2)
C40.020 (3)0.017 (3)0.013 (3)0.002 (2)0.000 (2)0.001 (2)
C50.022 (3)0.020 (3)0.020 (3)0.000 (2)0.003 (2)0.005 (2)
C60.021 (3)0.017 (3)0.013 (3)0.001 (2)0.002 (2)0.001 (2)
C70.018 (3)0.011 (3)0.022 (3)0.001 (2)0.001 (2)0.000 (2)
C80.018 (3)0.016 (3)0.018 (3)0.000 (2)0.002 (2)0.001 (2)
C90.018 (3)0.019 (3)0.018 (3)0.001 (3)0.000 (2)0.004 (3)
O1_10.024 (2)0.054 (3)0.050 (3)0.001 (2)0.006 (2)0.004 (2)
N1_10.030 (2)0.047 (3)0.052 (2)0.001 (2)0.005 (2)0.008 (2)
C1_10.026 (2)0.050 (3)0.048 (2)0.001 (2)0.0017 (19)0.006 (2)
C2_10.032 (3)0.058 (3)0.049 (3)0.006 (3)0.000 (2)0.005 (3)
C3_10.034 (3)0.062 (3)0.058 (3)0.008 (3)0.001 (2)0.004 (3)
C4_10.031 (3)0.055 (3)0.062 (3)0.006 (2)0.003 (2)0.008 (3)
C5_10.057 (5)0.049 (4)0.055 (3)0.000 (4)0.019 (3)0.004 (3)
O1_20.080 (3)0.030 (2)0.059 (3)0.010 (2)0.002 (3)0.005 (2)
N1_20.080 (5)0.030 (3)0.049 (5)0.006 (4)0.003 (5)0.002 (4)
C1_20.079 (4)0.031 (3)0.051 (4)0.006 (3)0.000 (4)0.001 (3)
C2_20.080 (5)0.035 (4)0.052 (5)0.005 (4)0.002 (5)0.000 (4)
C3_20.081 (5)0.036 (4)0.052 (5)0.003 (4)0.004 (5)0.001 (5)
C4_20.081 (6)0.032 (4)0.050 (5)0.003 (4)0.004 (5)0.001 (4)
C5_20.084 (6)0.032 (7)0.049 (8)0.008 (5)0.012 (7)0.004 (7)
O1_30.080 (3)0.030 (2)0.059 (3)0.010 (2)0.002 (3)0.005 (2)
N1_30.069 (4)0.028 (3)0.048 (4)0.004 (3)0.005 (4)0.000 (3)
C1_30.070 (4)0.028 (2)0.047 (3)0.005 (3)0.003 (3)0.002 (3)
C2_30.069 (4)0.032 (3)0.048 (4)0.005 (3)0.002 (4)0.002 (3)
C3_30.068 (4)0.032 (3)0.050 (4)0.008 (3)0.001 (4)0.003 (4)
C4_30.071 (4)0.030 (3)0.051 (4)0.005 (3)0.004 (4)0.003 (3)
C5_30.067 (4)0.042 (6)0.061 (7)0.001 (4)0.008 (6)0.002 (6)
O1_40.038 (3)0.090 (3)0.035 (2)0.010 (3)0.004 (2)0.023 (2)
N1_40.035 (4)0.088 (4)0.037 (3)0.016 (3)0.007 (3)0.023 (3)
C1_40.033 (3)0.083 (4)0.036 (3)0.014 (3)0.005 (3)0.021 (3)
C2_40.040 (4)0.084 (4)0.046 (3)0.012 (3)0.007 (3)0.022 (3)
C3_40.043 (4)0.088 (5)0.047 (4)0.011 (3)0.007 (3)0.026 (4)
C4_40.040 (4)0.092 (5)0.042 (3)0.014 (4)0.009 (3)0.025 (3)
C5_40.046 (6)0.096 (7)0.042 (5)0.010 (5)0.004 (5)0.011 (5)
O1_50.038 (3)0.090 (3)0.035 (2)0.010 (3)0.004 (2)0.023 (2)
N1_50.037 (5)0.091 (5)0.038 (4)0.006 (5)0.001 (4)0.022 (4)
C1_50.035 (4)0.089 (4)0.037 (3)0.008 (4)0.000 (3)0.023 (4)
C2_50.037 (5)0.090 (5)0.042 (4)0.007 (5)0.004 (4)0.023 (4)
C3_50.037 (6)0.093 (5)0.043 (4)0.005 (5)0.004 (4)0.026 (4)
C4_50.037 (5)0.095 (6)0.040 (4)0.006 (5)0.001 (4)0.024 (4)
C5_50.049 (9)0.092 (6)0.053 (7)0.002 (8)0.001 (8)0.015 (5)
Geometric parameters (Å, º) top
Zn1—O11.956 (4)C3_2—H3A_20.9900
Zn1—O31.943 (4)C3_2—H3B_20.9900
Zn1—O51.960 (4)C3_2—C4_21.518 (8)
Zn1—O102.013 (6)C4_2—H4A_20.9900
Zn2—O22.086 (4)C4_2—H4B_20.9900
Zn2—O42.097 (4)C5_2—H5A_20.9800
Zn2—O62.086 (4)C5_2—H5B_20.9800
Zn2—O1_12.100 (5)C5_2—H5C_20.9800
Zn2—O1_22.042 (5)O1_3—C1_31.186 (6)
Zn2—O1_32.042 (5)N1_3—C1_31.294 (6)
Zn2—O1_42.094 (5)N1_3—C4_31.440 (7)
Zn2—O1_52.094 (5)N1_3—C5_31.461 (8)
O1—C11.268 (7)C1_3—C2_31.531 (8)
O2—C11.253 (7)C2_3—H2A_30.9900
O3—C51.278 (7)C2_3—H2B_30.9900
O4—C51.241 (7)C2_3—C3_31.526 (8)
O5—C81.269 (7)C3_3—H3A_30.9900
O6—C81.250 (7)C3_3—H3B_30.9900
O10—N41.244 (9)C3_3—C4_31.518 (8)
O11—N41.239 (10)C4_3—H4A_30.9900
O12—N41.232 (10)C4_3—H4B_30.9900
C1—C21.507 (8)C5_3—H5A_30.9800
C2—C31.384 (8)C5_3—H5B_30.9800
C2—C9i1.388 (9)C5_3—H5C_30.9800
C3—H30.9500O1_4—C1_41.186 (6)
C3—C4ii1.397 (8)N1_4—C1_41.294 (6)
C4—C51.501 (8)N1_4—C4_41.440 (7)
C4—C61.380 (8)N1_4—C5_41.461 (8)
C6—H60.9500C1_4—C2_41.531 (8)
C6—C7iii1.410 (8)C2_4—H2A_40.9900
C7—C81.501 (8)C2_4—H2B_40.9900
C7—C91.381 (8)C2_4—C3_41.526 (8)
C9—H90.9500C3_4—H3A_40.9900
O1_1—C1_11.187 (5)C3_4—H3B_40.9900
N1_1—C1_11.295 (6)C3_4—C4_41.518 (8)
N1_1—C4_11.440 (7)C4_4—H4A_40.9900
N1_1—C5_11.460 (8)C4_4—H4B_40.9900
C1_1—C2_11.531 (8)C5_4—H5A_40.9800
C2_1—H2A_10.9900C5_4—H5B_40.9800
C2_1—H2B_10.9900C5_4—H5C_40.9800
C2_1—C3_11.526 (8)O1_5—C1_51.186 (6)
C3_1—H3A_10.9900N1_5—C1_51.294 (6)
C3_1—H3B_10.9900N1_5—C4_51.440 (7)
C3_1—C4_11.518 (8)N1_5—C5_51.461 (8)
C4_1—H4A_10.9900C1_5—C2_51.531 (8)
C4_1—H4B_10.9900C2_5—H2A_50.9900
C5_1—H5A_10.9800C2_5—H2B_50.9900
C5_1—H5B_10.9800C2_5—C3_51.526 (8)
C5_1—H5C_10.9800C3_5—H3A_50.9900
O1_2—C1_21.186 (6)C3_5—H3B_50.9900
N1_2—C1_21.294 (6)C3_5—C4_51.518 (8)
N1_2—C4_21.440 (7)C4_5—H4A_50.9900
N1_2—C5_21.460 (8)C4_5—H4B_50.9900
C1_2—C2_21.531 (8)C5_5—H5A_50.9800
C2_2—H2A_20.9900C5_5—H5B_50.9800
C2_2—H2B_20.9900C5_5—H5C_50.9800
C2_2—C3_21.526 (8)
O1—Zn1—O5118.14 (18)C2_2—C3_2—H3A_2110.3
O1—Zn1—O10113.4 (3)C2_2—C3_2—H3B_2110.3
O3—Zn1—O1111.59 (18)H3A_2—C3_2—H3B_2108.6
O3—Zn1—O5114.10 (19)C4_2—C3_2—C2_2106.9 (12)
O3—Zn1—O10104.8 (2)C4_2—C3_2—H3A_2110.3
O5—Zn1—O1092.6 (2)C4_2—C3_2—H3B_2110.3
O2—Zn2—O489.36 (18)N1_2—C4_2—C3_2103.6 (12)
O2—Zn2—O691.63 (15)N1_2—C4_2—H4A_2111.0
O2—Zn2—O1_1176.43 (18)N1_2—C4_2—H4B_2111.0
O2—Zn2—O1_488.92 (19)C3_2—C4_2—H4A_2111.0
O2—Zn2—O1_588.92 (19)C3_2—C4_2—H4B_2111.0
O4—Zn2—O1_189.4 (2)H4A_2—C4_2—H4B_2109.0
O6—Zn2—O491.85 (16)N1_2—C5_2—H5A_2109.5
O6—Zn2—O1_191.76 (18)N1_2—C5_2—H5B_2109.5
O6—Zn2—O1_4177.2 (2)N1_2—C5_2—H5C_2109.5
O6—Zn2—O1_5177.2 (2)H5A_2—C5_2—H5B_2109.5
O1_2—Zn2—O287.9 (2)H5A_2—C5_2—H5C_2109.5
O1_2—Zn2—O4177.1 (2)H5B_2—C5_2—H5C_2109.5
O1_2—Zn2—O687.1 (2)C1_3—O1_3—Zn2150.1 (8)
O1_2—Zn2—O1_193.4 (3)C1_3—N1_3—C4_3117.1 (8)
O1_2—Zn2—O1_495.7 (3)C1_3—N1_3—C5_3121.9 (10)
O1_3—Zn2—O287.9 (2)C4_3—N1_3—C5_3121.0 (9)
O1_3—Zn2—O4177.1 (2)O1_3—C1_3—N1_3135.0 (10)
O1_3—Zn2—O687.1 (2)O1_3—C1_3—C2_3119.0 (9)
O1_3—Zn2—O1_193.4 (3)N1_3—C1_3—C2_3106.0 (7)
O1_3—Zn2—O1_595.7 (3)C1_3—C2_3—H2A_3111.0
O1_4—Zn2—O485.4 (2)C1_3—C2_3—H2B_3111.0
O1_4—Zn2—O1_187.6 (2)H2A_3—C2_3—H2B_3109.0
O1_5—Zn2—O485.4 (2)C3_3—C2_3—C1_3103.8 (8)
O1_5—Zn2—O1_187.6 (2)C3_3—C2_3—H2A_3111.0
C1—O1—Zn1115.0 (4)C3_3—C2_3—H2B_3111.0
C1—O2—Zn2133.4 (4)C2_3—C3_3—H3A_3111.2
C5—O3—Zn1123.1 (4)C2_3—C3_3—H3B_3111.2
C5—O4—Zn2132.8 (4)H3A_3—C3_3—H3B_3109.1
C8—O5—Zn1118.0 (4)C4_3—C3_3—C2_3102.9 (9)
C8—O6—Zn2135.0 (4)C4_3—C3_3—H3A_3111.2
N4—O10—Zn1115.2 (5)C4_3—C3_3—H3B_3111.2
O11—N4—O10118.7 (7)N1_3—C4_3—C3_3102.3 (8)
O12—N4—O10120.0 (8)N1_3—C4_3—H4A_3111.3
O12—N4—O11121.3 (8)N1_3—C4_3—H4B_3111.3
O1—C1—C2116.6 (5)C3_3—C4_3—H4A_3111.3
O2—C1—O1124.5 (5)C3_3—C4_3—H4B_3111.3
O2—C1—C2118.9 (5)H4A_3—C4_3—H4B_3109.2
C3—C2—C1121.0 (5)N1_3—C5_3—H5A_3109.5
C3—C2—C9i119.6 (5)N1_3—C5_3—H5B_3109.5
C9i—C2—C1119.4 (5)N1_3—C5_3—H5C_3109.5
C2—C3—H3120.0H5A_3—C5_3—H5B_3109.5
C2—C3—C4ii120.0 (5)H5A_3—C5_3—H5C_3109.5
C4ii—C3—H3120.0H5B_3—C5_3—H5C_3109.5
C3iv—C4—C5119.7 (5)C1_4—O1_4—Zn2136.6 (8)
C6—C4—C3iv120.0 (5)C1_4—N1_4—C4_4121.2 (9)
C6—C4—C5120.2 (5)C1_4—N1_4—C5_4120.8 (10)
O3—C5—C4115.7 (5)C4_4—N1_4—C5_4117.6 (9)
O4—C5—O3125.5 (6)O1_4—C1_4—N1_4132.0 (11)
O4—C5—C4118.8 (5)O1_4—C1_4—C2_4125.5 (9)
C4—C6—H6119.9N1_4—C1_4—C2_4102.4 (7)
C4—C6—C7iii120.3 (5)C1_4—C2_4—H2A_4110.3
C7iii—C6—H6119.9C1_4—C2_4—H2B_4110.3
C6v—C7—C8119.5 (5)H2A_4—C2_4—H2B_4108.6
C9—C7—C6v118.7 (5)C3_4—C2_4—C1_4107.1 (8)
C9—C7—C8121.7 (5)C3_4—C2_4—H2A_4110.3
O5—C8—C7116.6 (5)C3_4—C2_4—H2B_4110.3
O6—C8—O5125.0 (5)C2_4—C3_4—H3A_4111.1
O6—C8—C7118.4 (5)C2_4—C3_4—H3B_4111.1
C2vi—C9—H9119.3H3A_4—C3_4—H3B_4109.0
C7—C9—C2vi121.3 (6)C4_4—C3_4—C2_4103.5 (9)
C7—C9—H9119.3C4_4—C3_4—H3A_4111.1
C1_1—O1_1—Zn2135.5 (5)C4_4—C3_4—H3B_4111.1
C1_1—N1_1—C4_1117.8 (6)N1_4—C4_4—C3_4102.0 (8)
C1_1—N1_1—C5_1121.7 (7)N1_4—C4_4—H4A_4111.4
C4_1—N1_1—C5_1120.3 (6)N1_4—C4_4—H4B_4111.4
O1_1—C1_1—N1_1127.6 (7)C3_4—C4_4—H4A_4111.4
O1_1—C1_1—C2_1126.2 (6)C3_4—C4_4—H4B_4111.4
N1_1—C1_1—C2_1106.2 (6)H4A_4—C4_4—H4B_4109.2
C1_1—C2_1—H2A_1110.8N1_4—C5_4—H5A_4109.5
C1_1—C2_1—H2B_1110.8N1_4—C5_4—H5B_4109.5
H2A_1—C2_1—H2B_1108.9N1_4—C5_4—H5C_4109.5
C3_1—C2_1—C1_1104.6 (6)H5A_4—C5_4—H5B_4109.5
C3_1—C2_1—H2A_1110.8H5A_4—C5_4—H5C_4109.5
C3_1—C2_1—H2B_1110.8H5B_4—C5_4—H5C_4109.5
C2_1—C3_1—H3A_1110.9C1_5—O1_5—Zn2140.0 (15)
C2_1—C3_1—H3B_1110.9C1_5—N1_5—C4_5116.1 (14)
H3A_1—C3_1—H3B_1108.9C1_5—N1_5—C5_5124.0 (16)
C4_1—C3_1—C2_1104.1 (6)C4_5—N1_5—C5_5116.2 (14)
C4_1—C3_1—H3A_1110.9O1_5—C1_5—N1_5131.1 (14)
C4_1—C3_1—H3B_1110.9O1_5—C1_5—C2_5120.4 (13)
N1_1—C4_1—C3_1102.5 (6)N1_5—C1_5—C2_5108.1 (10)
N1_1—C4_1—H4A_1111.3C1_5—C2_5—H2A_5111.6
N1_1—C4_1—H4B_1111.3C1_5—C2_5—H2B_5111.6
C3_1—C4_1—H4A_1111.3H2A_5—C2_5—H2B_5109.4
C3_1—C4_1—H4B_1111.3C3_5—C2_5—C1_5100.9 (10)
H4A_1—C4_1—H4B_1109.2C3_5—C2_5—H2A_5111.6
N1_1—C5_1—H5A_1109.5C3_5—C2_5—H2B_5111.6
N1_1—C5_1—H5B_1109.5C2_5—C3_5—H3A_5110.5
N1_1—C5_1—H5C_1109.5C2_5—C3_5—H3B_5110.5
H5A_1—C5_1—H5B_1109.5H3A_5—C3_5—H3B_5108.7
H5A_1—C5_1—H5C_1109.5C4_5—C3_5—C2_5106.0 (13)
H5B_1—C5_1—H5C_1109.5C4_5—C3_5—H3A_5110.5
C1_2—O1_2—Zn2152.2 (11)C4_5—C3_5—H3B_5110.5
C1_2—N1_2—C4_2112.5 (11)N1_5—C4_5—C3_598.6 (12)
C1_2—N1_2—C5_2123.8 (14)N1_5—C4_5—H4A_5112.1
C4_2—N1_2—C5_2122.8 (13)N1_5—C4_5—H4B_5112.1
O1_2—C1_2—N1_2130.6 (13)C3_5—C4_5—H4A_5112.1
O1_2—C1_2—C2_2115.1 (11)C3_5—C4_5—H4B_5112.1
N1_2—C1_2—C2_2113.0 (9)H4A_5—C4_5—H4B_5109.7
C1_2—C2_2—H2A_2111.9N1_5—C5_5—H5A_5109.5
C1_2—C2_2—H2B_2111.9N1_5—C5_5—H5B_5109.5
H2A_2—C2_2—H2B_2109.6N1_5—C5_5—H5C_5109.5
C3_2—C2_2—C1_299.6 (10)H5A_5—C5_5—H5B_5109.5
C3_2—C2_2—H2A_2111.9H5A_5—C5_5—H5C_5109.5
C3_2—C2_2—H2B_2111.9H5B_5—C5_5—H5C_5109.5
Zn1—O1—C1—O29.5 (8)C2_1—C3_1—C4_1—N1_120.5 (9)
Zn1—O1—C1—C2171.9 (4)C4_1—N1_1—C1_1—O1_1178.6 (8)
Zn1—O3—C5—O47.1 (9)C4_1—N1_1—C1_1—C2_10.7 (10)
Zn1—O3—C5—C4173.2 (4)C5_1—N1_1—C1_1—O1_13.4 (14)
Zn1—O5—C8—O67.6 (8)C5_1—N1_1—C1_1—C2_1176.0 (8)
Zn1—O5—C8—C7169.7 (4)C5_1—N1_1—C4_1—C3_1170.6 (7)
Zn1—O10—N4—O1114.6 (13)O1_2—C1_2—C2_2—C3_2158 (2)
Zn1—O10—N4—O12168.2 (9)N1_2—C1_2—C2_2—C3_211 (3)
Zn2—O2—C1—O179.8 (8)C1_2—N1_2—C4_2—C3_215 (3)
Zn2—O2—C1—C2101.7 (6)C1_2—C2_2—C3_2—C4_219 (3)
Zn2—O4—C5—O355.3 (9)C2_2—C3_2—C4_2—N1_221 (3)
Zn2—O4—C5—C4124.4 (5)C4_2—N1_2—C1_2—O1_2169 (2)
Zn2—O6—C8—O562.3 (9)C4_2—N1_2—C1_2—C2_23 (3)
Zn2—O6—C8—C7120.5 (5)C5_2—N1_2—C1_2—O1_222 (5)
Zn2—O1_1—C1_1—N1_1140.1 (7)C5_2—N1_2—C1_2—C2_2172 (2)
Zn2—O1_1—C1_1—C2_140.6 (13)C5_2—N1_2—C4_2—C3_2176 (2)
Zn2—O1_2—C1_2—N1_2139 (2)O1_3—C1_3—C2_3—C3_3161.6 (13)
Zn2—O1_2—C1_2—C2_255 (4)N1_3—C1_3—C2_3—C3_318.1 (16)
Zn2—O1_3—C1_3—N1_3138.3 (15)C1_3—N1_3—C4_3—C3_316.4 (18)
Zn2—O1_3—C1_3—C2_341 (3)C1_3—C2_3—C3_3—C4_326.9 (14)
Zn2—O1_4—C1_4—N1_4163.9 (16)C2_3—C3_3—C4_3—N1_325.8 (14)
Zn2—O1_4—C1_4—C2_421 (3)C4_3—N1_3—C1_3—O1_3178.5 (17)
Zn2—O1_5—C1_5—N1_5139 (3)C4_3—N1_3—C1_3—C2_31.1 (18)
Zn2—O1_5—C1_5—C2_550 (5)C5_3—N1_3—C1_3—O1_31 (3)
O1—C1—C2—C35.9 (8)C5_3—N1_3—C1_3—C2_3178.6 (15)
O1—C1—C2—C9i173.0 (5)C5_3—N1_3—C4_3—C3_3161.1 (15)
O2—C1—C2—C3172.7 (5)O1_4—C1_4—C2_4—C3_4167.2 (19)
O2—C1—C2—C9i8.4 (9)N1_4—C1_4—C2_4—C3_417 (2)
C1—C2—C3—C4ii179.9 (5)C1_4—N1_4—C4_4—C3_45 (2)
C3iv—C4—C5—O3176.1 (5)C1_4—C2_4—C3_4—C4_419.6 (17)
C3iv—C4—C5—O44.1 (9)C2_4—C3_4—C4_4—N1_414.7 (15)
C3iv—C4—C6—C7iii1.0 (9)C4_4—N1_4—C1_4—O1_4177 (2)
C5—C4—C6—C7iii178.3 (5)C4_4—N1_4—C1_4—C2_47 (2)
C6—C4—C5—O34.5 (8)C5_4—N1_4—C1_4—O1_43 (4)
C6—C4—C5—O4175.2 (6)C5_4—N1_4—C1_4—C2_4179.1 (13)
C6v—C7—C8—O5173.3 (5)C5_4—N1_4—C4_4—C3_4168.8 (12)
C6v—C7—C8—O69.2 (8)O1_5—C1_5—C2_5—C3_5179 (3)
C6v—C7—C9—C2vi0.7 (9)N1_5—C1_5—C2_5—C3_58 (3)
C8—C7—C9—C2vi179.1 (5)C1_5—N1_5—C4_5—C3_529 (3)
C9i—C2—C3—C4ii1.0 (9)C1_5—C2_5—C3_5—C4_525 (3)
C9—C7—C8—O56.5 (8)C2_5—C3_5—C4_5—N1_531 (2)
C9—C7—C8—O6171.0 (5)C4_5—N1_5—C1_5—O1_5158 (4)
O1_1—C1_1—C2_1—C3_1167.6 (8)C4_5—N1_5—C1_5—C2_514 (4)
N1_1—C1_1—C2_1—C3_113.0 (9)C5_5—N1_5—C1_5—O1_50 (6)
C1_1—N1_1—C4_1—C3_114.1 (10)C5_5—N1_5—C1_5—C2_5172 (2)
C1_1—C2_1—C3_1—C4_120.7 (9)C5_5—N1_5—C4_5—C3_5172 (2)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x1/2, y+1/2, z+1; (iii) x+1, y1/2, z+3/2; (iv) x+1/2, y+1/2, z+1; (v) x+1, y+1/2, z+3/2; (vi) x+1/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2_1—H2B_1···O60.992.573.163 (8)119
C5_1—H5A_1···O1iv0.982.553.488 (10)160
C5_1—H5A_1···O11iv0.982.463.003 (11)115
C4_2—H4A_2···O12i0.992.243.12 (2)147
C5_2—H5B_2···O6v0.982.653.61 (2)168
C2_3—H2A_3···O3v0.992.483.472 (14)177
C2_3—H2B_3···O1_10.992.583.335 (13)133
C4_3—H4B_3···O12i0.992.493.417 (17)156
C2_4—H2B_4···O1_10.992.563.297 (15)132
C4_4—H4A_4···O1i0.992.583.564 (16)170
C4_4—H4B_4···O12iv0.992.473.448 (17)169
C2_5—H2A_5···O10i0.992.453.30 (2)143
C4_5—H4A_5···O1i0.992.563.34 (2)135
Symmetry codes: (i) x+1/2, y+1, z1/2; (iv) x+1/2, y+1/2, z+1; (v) x+1, y+1/2, z+3/2.
Selected bond lengths (Å). top
Zn1—O11.956 (4)Zn2—O22.086 (4)
Zn1—O3i1.943 (4)Zn2—O4i2.097 (4)
Zn1—O5ii1.960 (4)Zn2—O6ii2.086 (4)
Zn1—O102.013 (6)Zn2—O1_12.100 (5)
Zn2—O1_32.042 (5)
Zn2—O1_42.094 (5)
Symmetry codes: (i) x+1/2, -y+1/2, -z+1; (ii) -x+1/2, -y+1, z+1/2.

References

First citationBasma, N. S., Headen, T. F., Shaffer, M. S. P., Skipper, N. T. & Howard, C. A. (2018). J. Phys. Chem. B, 122, 8963–8971.  CrossRef CAS PubMed Google Scholar
First citationEddaoudi, M., Li, H. & Yaghi, O. M. (2000). J. Am. Chem. Soc. 122, 1391–1397.  Web of Science CrossRef CAS Google Scholar
First citationFarrusseng, D. (2011). Editor. Metal-Organic Frameworks Applications from Catalysis to Gas Storage, Weinheim: Wiley-VCH.  Google Scholar
First citationFeldblyum, J. I., Liu, M., Gidley, D. W. & Matzger, A. J. (2011). J. Am. Chem. Soc. 133, 18257–18263.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHao, X.-R., Wang, X.-L., Shao, K.-Z., Yang, G.-S., Su, Z.-M. & Yuan, G. (2012). CrystEngComm, 14, 5596–5603.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaskel, S. (2016). Editor. The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization, and Applications. Weinheim: Wiley-VCH.  Google Scholar
First citationLou, X.-H., Li, H., Zhang, Z., Zhang, H. & Xu, C. (2013). J. Inorg. Organomet. Polym. 23, 996–1000.  CrossRef CAS Google Scholar
First citationMacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal–Organic Framework Materials, Hoboken: John Wiley and Sons.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOh, M., Rajput, L., Kim, D., Moon, D. & Lah, M. S. (2013). Inorg. Chem. 52, 3891–3899.  CrossRef CAS PubMed Google Scholar
First citationOrdonez, C., Fonari, M., Lindline, J., Wei, Q. & Timofeeva, T. (2014). Cryst. Growth Des. 14, 5452–5465.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVagin, S. I., Ott, A. K. & Rieger, B. (2007). Chem. Ing. Tech. 79, 767–780.  CrossRef CAS Google Scholar
First citationWang, F.-K., Yang, S.-Y. & Dong, H.-Z. (2021a). J. Mol. Struct. 1227, 129540.  CrossRef Google Scholar
First citationWang, F.-K., Yang, S.-Y. & Dong, H.-Z. (2021b). J. Chem. Res. 45, 253–257.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., Davis, C. E., Li, G. & Li, H. (1997). J. Am. Chem. Soc. 119, 2861–2868.  CSD CrossRef CAS Web of Science Google Scholar
First citationYoshinari, N. & Konno, T. (2023). Coord. Chem. Rev. 474, 214850.  CrossRef Google Scholar
First citationYuan, H., Chen, L., Fu, L. & Li, B. (2019). Inorg. Chem. Commun. 104, 83–87.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds