research communications
μ6-benzene-1,3,5-tricarboxylato)tris(1-methylpyrrolidin-2-one)nitratodizinc(II)]
of poly[(aL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of, Sciences of Ukraine, Prospekt Nauki 31, Kyiv, 03028, Ukraine, and b"Petru Poni" Institute of Macromolecular Chemistry, Department of Inorganic, Polymers, Aleea Grigore Ghika Voda41A, RO-700487 Iasi, Romania
*Correspondence e-mail: lampeka@adamant.net
The 2(C9H3O6)(NO3)(C5H9NO)3]n, I, consists of two different zinc(II) ions bridged by the carboxylate group of benzene-1,3,5-tricarboxylate (BTC3−). The Zn1 center is tetra-coordinated by the carboxylate O atoms of three symmetrically equivalent BTC3− anions and one nitrate O atom in a distorted tetrahedral geometry with Zn—Ocarboxylate bond lengths (average value 1.958 Å) slightly shorter than the Zn—Onitrate distance [2.013 (6) Å]. The Zn2 center is hexa-coordinated by three O atoms from the carboxylic groups of different BTC3− linkers and three O atoms of 1-methylpyrrolidin-2-one (NMP) in a slightly distorted octahedral geometry with nearly equivalent Zn—O bond lengths (average values of 2.091 and 2.088 Å, respectively). Linking of the paddle-wheel dizinc building units by the three carboxylate groups of the BTC3− molecule results in the formation of the three-dimensional coordination framework.
of the title compound, [ZnKeywords: crystal structure; coordination polymer; zinc; benzene-1,3,5-tricarboxylate; 1-methylpyrrolidin-2-one..
CCDC reference: 2217788
1. Chemical context
Metal–organic frameworks (MOFs), crystalline coordination polymers built up of metal-containing fragments (secondary building units, SBUs) joined by multidentate organic linkers, have been of continuous interest over the last few decades because of their potential for applications in different areas including gas storage, separation, catalysis, sensing etc. (Farrusseng, 2011; MacGillivray & Lukehart, 2014; Kaskel, 2016). Aromatic carboxylates are the most widely used bridging ligands (Rao et al., 2004; Yoshinari & Konno, 2023) and benzene-1,3,5-tricarboxylic acid (H3BTC), a potential 3-connected linker, is one of the most extensively studied.
Syntheses of Zn-based MOFs starting from the ZnII inorganic salts and H3BTC have been attempted many times, resulting in a large number of compounds, characterized by extreme variability of SBU types (di-, tri-, tetra- and higher nuclearity clusters) and network topologies, which reflects the flexibility of the coordination sphere inherent to the ZnII ion. Among them, trigonal (`three-bladed') binuclear clusters with a paddle-wheel structure represent an important class of SBUs (Vagin et al., 2007).
One of the first examples of MOFs with such an SBU is the complex [Zn2(BTC)(NO3)(EtOH)3]·2EtOH·H2O]n, called also MOF-4, which was prepared via room-temperature reaction in ethanol/thiethylamine. The Zn2 units in this compound are joined with the BTC3− bridges to form a porous network of srs topology (P213 space group) with a three-dimensional channel system filled with ethanol and water molecules of crystallization (Yaghi et al., 1997; Eddaoudi et al., 2000). At the same time, solvothermal reactions of ZnII salts and BTC3− result in the formation of a MOF with a similar structure only in dimethylacetamide (DMA) (Hao et al., 2012; Lou et al., 2013; Wang et al., 2021a), whereas the reaction in DMF, for example, leads to the Zn analogue of HKUST-1 (Feldblyum et al., 2011). It seems, however, that solvent effects can be smoothed by the addition of serine as a template, resulting in a series of MOFs [Zn2(BTC)(NO3)(Solv)3]n including different solvent molecules coordinated to the Zn ion (Oh et al., 2013). All these compounds are usually treated as isostructural because of the identical srs framework topology, although the majority of them crystallize in the related orthorhombic P212121.
Besides common amide solvents, several attempts have been documented that utilize N-methyl-2-pyrrolidone (NMP), which is widely used in industry and for nanomaterials processing (Basma et al., 2018), in the MOF synthesis. Its use in Zn–BTC reactions led to different products depending on the conditions employed and some of them contain `three-bladed' paddle-wheel SBUs (Ordonez et al., 2014; Yuan et al., 2019). However, compounds of the MOF-4 type {namely, [Zn2(BTC)(NO3)(py)(NMP)2]n} was obtained only with an NMP/pyridine mixture (Wang et al., 2021b).
Whilst testing NMP as a possible reaction medium for the synthesis of MOFs, we have found that the reaction of zinc(II) nitrate with H3BTC in pure NMP does not lead to the precipitation of any crystalline products, but the addition of a small amount of DMF results in the formation of the related compound poly[(μ6-benzene-1,3,5-tricarboxylato)tris(1-methylpyrrolidin-2-one)nitratodizinc(II)], [Zn2(BTC)(NO3)(NMP)3]n, I, whose structure is reported herein.
2. Structural commentary
The I is built of two zinc(II) ions bridged by the carboxylate group of the BTC3− anion with an intermetallic Zn1⋯Zn2 distance of 3.6547 (9) Å (Fig. 1). Zn1 is additionally coordinated by the O atom of the nitrate anion, and Zn2 by the amide oxygen atoms of three NMP molecules. Two of these NMP molecules are disordered with the site occupancies of the major components being 0.620 (16) and 0.638 (16). The coordination of the carboxylate groups of two additional symmetry-related BTC3− anions results in the formation of distorted tetrahedral and octahedral environments of the Zn1 and Zn2 ions, respectively.
of the title compoundThe carboxylic groups in I are tilted slightly with respect to the benzene ring (the average angle between the corresponding mean planes is 6.7°) and the C—Ocarboxylate bond lengths (average value of 1.260 Å) are typical of bis(monodentate) μ2-COO− groups with a high degree of delocalization. In spite of this, there is a considerable difference between the Zn—Ocarboxylate bond lengths in the tetrahedral and octahedral ions – these are shorter by ca 0.14 Å in the first case (average values of 1.953 and 2.090 Å, see Table 1). Interestingly, the distances from the octahedral Zn ion to the O atoms of the NMP molecules (average value 2.079 Å) are not too different from the Zn2—Ocarboxylate distances. At the same time, the binding of the nitrate anion to the tetrahedral Zn1 ion is obviously weaker than that of the carboxylate, as indicated by the Zn1—O10 distance of 2.013 (6) Å (Table 1).
|
The `three-bladed' paddle-wheel Zn2O6 core in I represents a skewed elongated triangular bipyramid. This skewing is a source of and can be characterized by dihedral skewing angles Zn1—On⋯On—Zn2 (s). In spite of the lack of strict symmetry, these angles are not too different in I and have an average value of 49.8°. It is worth noting that the tetrahedral Zn1 ion lies close to the plane of the carboxylic groups of BTC3−, while the octahedral Zn2 ion exhibits a large deviation from this plane.
3. Supramolecular features
Linking of the `three-bladed' paddle-wheel dizinc SBUs by BTC3− units results in the formation of a three-dimensional covalent framework with srs topology. A detailed description of such a structure can be found in Yaghi et al. (1997). It is characterized by the presence of interconnected channels parallel to all three crystallographic axes (Fig. 2). However, the crystals of I as a whole are non-porous, because these channels are occupied by coordinated nitrate anions and NMP molecules, though the removal of the NMP molecules could lead to a highly porous material [solvent-accessible volume of 1820.8 Å3 (63.4% of the unit-cell volume) as calculated by PLATON (Spek, 2020)]. Extensive C—H⋯O hydrogen bonding occurs (Table 2).
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.43, last update September 2022; Groom et al., 2016) revealed nine structures of srs-type connectivity with the composition [Zn2(BTC)(NO3)(Solv)3]n, that differ in the nature of solvent molecules coordinated to the octahedral ZnII ion. Two of them [refcodes RIZXUT (Solv = EtOH; Yaghi et al., 1997) and SENWEP (Solv = DMF; Oh et al., 2013)] crystallize in the cubic P213 while the others belong to the orthorhombic P212121 In general, the coordination bond lengths in all these compounds are very similar and close to those observed in I. Interestingly, the Zn—O distances for the coordinated solvent molecules (in particular for EtOH and different amides) are practically the same, despite the different chemical nature of the donor atoms.
Nevertheless, these MOFs demonstrate considerable variations in the structure of the Zn2O6 core. The degree of skewing, as characterized by the averaged value of s, varies by ca 10°, and its increase correlates with the decrease of the unit-cell volume, as can be illustrated by comparison of structures RIZXUT (s = 39.4°) and SENWEP (s = 48.4°) possessing maximum and minimum values of 3194.71 and 2807.34 Å3, respectively. The series as a whole demonstrates a rough correlation between these parameters. Compounds crystallizing in the P212121 reveal asymmetry of the Zn2O6 core, which can be characterized by the difference between maximum and minimum values of skewing angles. This difference is the largest (ca 27°) for compounds containing coordinated DMA molecules [VEHJID (Hao et al., 2012), VEHJID01 (Lou et al., 2013), VEHJID02 (Wang et al., 2021a), and SENWIT (Oh et al., 2013)], while for structures with coordinated EtOH (SENWAL; Oh et al., 2013), diethylformamide (SENWOZ; Oh et al., 2013) and NMP/pyridine (ISIQOT; Wang et al., 2021b), it does not exceed 11°, being minimum (4.6°) in I. Interestingly, increase of core asymmetry is accompanied by an increase in the difference between unit-cell lengths (b − a) from 0.104 Å in I to 2.009 Å in VEHJID02.
5. Synthesis and crystallization
All chemicals and solvents used in this work were purchased from Sigma–Aldrich and were used without further purification.
To prepare [Zn2(BTC)(NO3)(NMP)3]n, I, a solution of 200 mg (0.952 mmol) of H3BTC in 1 ml of DMF was added to a solution of 610 mg (2.051 mmol) of Zn(NO3)2·6H2O in 20 ml of NMP and the mixture was heated at ca 363 K for two days. In the course of heating, the gradual formation of a white crystalline precipitate occurred, accompanied by an intense dark-orange coloration of the solution. The precipitate was filtered off, washed with NMP and dried under vacuum. Yield: 483 mg (73%). Analysis calculated for C24H30N4O12Zn2: C, 41.34; H, 4.34; N, 8.04%. Found: C, 41.22; H, 4.25; N, 7.92%. Single crystals suitable for X-ray were picked from the sample.
6. Refinement
Crystal data, data collection and structure . The H atoms in I were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (aromatic H atoms), 0.99 (methylene H atoms), and 0.98 Å (methyl H atoms), with Uiso(H) values of 1.2 (CH and CH2 groups) or 1.5 (CH3 groups) times those of the corresponding parent C atoms. Two of the NMP molecules are disordered with the site occupancies of the major components being 0.620 (16) and 0.638 (16). Disordered fragments were modeled using the RESI routine available in SHELXL.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2217788
https://doi.org/10.1107/S2056989022011045/jy2025sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022011045/jy2025Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).[Zn2(C9H3O6)(NO3)(C5H9NO)3] | Dx = 1.612 Mg m−3 |
Mr = 697.26 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 6077 reflections |
a = 13.6870 (5) Å | θ = 2.0–25.9° |
b = 13.7912 (5) Å | µ = 1.74 mm−1 |
c = 15.2165 (5) Å | T = 160 K |
V = 2872.26 (17) Å3 | Irregular, clear light colourless |
Z = 4 | 0.2 × 0.2 × 0.15 mm |
F(000) = 1432 |
Rigaku Xcalibur Eos diffractometer | Rint = 0.046 |
ω scans | θmax = 29.2°, θmin = 2.0° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | h = −18→16 |
Tmin = 0.640, Tmax = 1.000 | k = −18→17 |
18130 measured reflections | l = −20→20 |
6787 independent reflections | 10 standard reflections every 50 reflections |
5981 reflections with I > 2σ(I) | intensity decay: none |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.050 | w = 1/[σ2(Fo2) + (0.0475P)2 + 3.9623P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.116 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.95 e Å−3 |
6787 reflections | Δρmin = −0.54 e Å−3 |
494 parameters | Absolute structure: Flack x determined using 2151 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
450 restraints | Absolute structure parameter: −0.003 (8) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | 0.26242 (5) | 0.29446 (5) | 0.72606 (4) | 0.01560 (16) | |
Zn2 | 0.40511 (5) | 0.45592 (5) | 0.58535 (4) | 0.02064 (17) | |
O1 | 0.1740 (3) | 0.3102 (3) | 0.6260 (3) | 0.0202 (9) | |
O2 | 0.2533 (3) | 0.4472 (3) | 0.5943 (2) | 0.0195 (8) | |
O3 | 0.3789 (3) | 0.2222 (3) | 0.6939 (3) | 0.0229 (10) | |
O4 | 0.4112 (4) | 0.3049 (3) | 0.5705 (3) | 0.0265 (10) | |
O5 | 0.2878 (3) | 0.4076 (3) | 0.8006 (3) | 0.0224 (10) | |
O6 | 0.4200 (3) | 0.4452 (3) | 0.7215 (3) | 0.0230 (9) | |
O10 | 0.2034 (5) | 0.2190 (4) | 0.8261 (4) | 0.0608 (19) | |
O11 | 0.1951 (7) | 0.1017 (5) | 0.7347 (5) | 0.084 (3) | |
O12 | 0.1699 (8) | 0.0761 (6) | 0.8725 (5) | 0.112 (4) | |
N4 | 0.1905 (7) | 0.1312 (6) | 0.8116 (5) | 0.062 (2) | |
C1 | 0.1926 (4) | 0.3820 (4) | 0.5767 (4) | 0.0190 (12) | |
C2 | 0.1352 (4) | 0.3889 (4) | 0.4924 (4) | 0.0176 (12) | |
C3 | 0.0599 (4) | 0.3249 (4) | 0.4747 (4) | 0.0179 (12) | |
H3 | 0.043649 | 0.275756 | 0.515988 | 0.021* | |
C4 | 0.5076 (4) | 0.1675 (4) | 0.6039 (4) | 0.0165 (12) | |
C5 | 0.4265 (5) | 0.2377 (4) | 0.6230 (4) | 0.0205 (13) | |
C6 | 0.5313 (5) | 0.0964 (4) | 0.6640 (4) | 0.0171 (12) | |
H6 | 0.495030 | 0.090692 | 0.716959 | 0.021* | |
C7 | 0.3908 (4) | 0.5321 (4) | 0.8529 (4) | 0.0169 (11) | |
C8 | 0.3643 (4) | 0.4570 (4) | 0.7856 (4) | 0.0170 (11) | |
C9 | 0.3407 (4) | 0.5405 (5) | 0.9312 (4) | 0.0184 (12) | |
H9 | 0.288545 | 0.497058 | 0.943489 | 0.022* | |
O1_1 | 0.5572 (3) | 0.4623 (4) | 0.5680 (3) | 0.0424 (11) | |
N1_1 | 0.7026 (4) | 0.3919 (5) | 0.5521 (4) | 0.0431 (12) | |
C1_1 | 0.6253 (4) | 0.4181 (6) | 0.5950 (4) | 0.0412 (11) | |
C2_1 | 0.6392 (6) | 0.3816 (6) | 0.6892 (5) | 0.0461 (13) | |
H2A_1 | 0.654201 | 0.435940 | 0.729435 | 0.055* | |
H2B_1 | 0.579715 | 0.348012 | 0.710282 | 0.055* | |
C3_1 | 0.7251 (6) | 0.3114 (6) | 0.6835 (5) | 0.0512 (14) | |
H3A_1 | 0.768756 | 0.318481 | 0.734951 | 0.061* | |
H3B_1 | 0.702041 | 0.243433 | 0.680296 | 0.061* | |
C4_1 | 0.7773 (5) | 0.3402 (6) | 0.5994 (5) | 0.0495 (14) | |
H4A_1 | 0.834152 | 0.382416 | 0.611853 | 0.059* | |
H4B_1 | 0.799562 | 0.282478 | 0.566320 | 0.059* | |
C5_1 | 0.7180 (7) | 0.4199 (6) | 0.4606 (5) | 0.0534 (19) | |
H5A_1 | 0.711556 | 0.362707 | 0.422809 | 0.080* | |
H5B_1 | 0.783634 | 0.447384 | 0.453918 | 0.080* | |
H5C_1 | 0.669223 | 0.468418 | 0.443581 | 0.080* | |
O1_2 | 0.3924 (5) | 0.6022 (4) | 0.6028 (4) | 0.0565 (13) | 0.380 (9) |
N1_2 | 0.4149 (11) | 0.7633 (8) | 0.5886 (15) | 0.053 (2) | 0.380 (9) |
C1_2 | 0.3711 (12) | 0.6810 (6) | 0.5781 (15) | 0.054 (2) | 0.380 (9) |
C2_2 | 0.2660 (11) | 0.6917 (10) | 0.5452 (15) | 0.056 (2) | 0.380 (9) |
H2A_2 | 0.259279 | 0.671717 | 0.483043 | 0.067* | 0.380 (9) |
H2B_2 | 0.219348 | 0.654664 | 0.581900 | 0.067* | 0.380 (9) |
C3_2 | 0.2532 (12) | 0.8009 (11) | 0.557 (2) | 0.056 (3) | 0.380 (9) |
H3A_2 | 0.217745 | 0.828544 | 0.505664 | 0.068* | 0.380 (9) |
H3B_2 | 0.215575 | 0.815071 | 0.610591 | 0.068* | 0.380 (9) |
C4_2 | 0.3549 (11) | 0.8443 (10) | 0.5628 (16) | 0.055 (3) | 0.380 (9) |
H4A_2 | 0.376135 | 0.870798 | 0.505447 | 0.066* | 0.380 (9) |
H4B_2 | 0.357235 | 0.896507 | 0.607397 | 0.066* | 0.380 (9) |
C5_2 | 0.5189 (10) | 0.7729 (16) | 0.6082 (16) | 0.055 (4) | 0.380 (9) |
H5A_2 | 0.542991 | 0.712415 | 0.634061 | 0.082* | 0.380 (9) |
H5B_2 | 0.528650 | 0.826252 | 0.649858 | 0.082* | 0.380 (9) |
H5C_2 | 0.554762 | 0.786566 | 0.553860 | 0.082* | 0.380 (9) |
O1_3 | 0.3924 (5) | 0.6022 (4) | 0.6028 (4) | 0.0565 (13) | 0.620 (9) |
N1_3 | 0.3812 (7) | 0.7644 (5) | 0.5717 (9) | 0.0484 (18) | 0.620 (9) |
C1_3 | 0.4215 (7) | 0.6820 (5) | 0.5899 (10) | 0.0483 (16) | 0.620 (9) |
C2_3 | 0.5316 (7) | 0.7011 (8) | 0.5935 (9) | 0.0495 (19) | 0.620 (9) |
H2A_3 | 0.554507 | 0.706489 | 0.655009 | 0.059* | 0.620 (9) |
H2B_3 | 0.568354 | 0.648763 | 0.563745 | 0.059* | 0.620 (9) |
C3_3 | 0.5435 (8) | 0.7973 (8) | 0.5450 (9) | 0.050 (2) | 0.620 (9) |
H3A_3 | 0.597135 | 0.836311 | 0.570650 | 0.060* | 0.620 (9) |
H3B_3 | 0.556772 | 0.786696 | 0.481775 | 0.060* | 0.620 (9) |
C4_3 | 0.4453 (8) | 0.8460 (7) | 0.5588 (10) | 0.051 (2) | 0.620 (9) |
H4A_3 | 0.446195 | 0.888724 | 0.611045 | 0.061* | 0.620 (9) |
H4B_3 | 0.425907 | 0.884348 | 0.506638 | 0.061* | 0.620 (9) |
C5_3 | 0.2756 (7) | 0.7744 (11) | 0.5609 (14) | 0.057 (3) | 0.620 (9) |
H5A_3 | 0.260915 | 0.792627 | 0.500046 | 0.085* | 0.620 (9) |
H5B_3 | 0.251232 | 0.824646 | 0.600758 | 0.085* | 0.620 (9) |
H5C_3 | 0.243831 | 0.712505 | 0.574555 | 0.085* | 0.620 (9) |
O1_4 | 0.3920 (4) | 0.4595 (5) | 0.4483 (3) | 0.0542 (13) | 0.638 (16) |
N1_4 | 0.4320 (8) | 0.4834 (9) | 0.3054 (5) | 0.0533 (19) | 0.638 (16) |
C1_4 | 0.4316 (15) | 0.4996 (11) | 0.3892 (6) | 0.0509 (17) | 0.638 (16) |
C2_4 | 0.4914 (11) | 0.5930 (9) | 0.3965 (7) | 0.057 (2) | 0.638 (16) |
H2A_4 | 0.447709 | 0.649208 | 0.406292 | 0.068* | 0.638 (16) |
H2B_4 | 0.537630 | 0.588669 | 0.446379 | 0.068* | 0.638 (16) |
C3_4 | 0.5470 (11) | 0.6048 (11) | 0.3102 (7) | 0.059 (2) | 0.638 (16) |
H3A_4 | 0.546572 | 0.673201 | 0.290540 | 0.071* | 0.638 (16) |
H3B_4 | 0.615468 | 0.582740 | 0.316310 | 0.071* | 0.638 (16) |
C4_4 | 0.4909 (10) | 0.5407 (11) | 0.2467 (7) | 0.058 (2) | 0.638 (16) |
H4A_4 | 0.449879 | 0.579727 | 0.206480 | 0.070* | 0.638 (16) |
H4B_4 | 0.535579 | 0.499515 | 0.211755 | 0.070* | 0.638 (16) |
C5_4 | 0.3807 (11) | 0.3999 (11) | 0.2686 (9) | 0.061 (3) | 0.638 (16) |
H5A_4 | 0.362782 | 0.355207 | 0.315976 | 0.092* | 0.638 (16) |
H5B_4 | 0.423380 | 0.366555 | 0.226621 | 0.092* | 0.638 (16) |
H5C_4 | 0.321455 | 0.421919 | 0.238366 | 0.092* | 0.638 (16) |
O1_5 | 0.3920 (4) | 0.4595 (5) | 0.4483 (3) | 0.0542 (13) | 0.362 (16) |
N1_5 | 0.4502 (17) | 0.4618 (11) | 0.3094 (8) | 0.056 (2) | 0.362 (16) |
C1_5 | 0.429 (3) | 0.4963 (13) | 0.3862 (11) | 0.054 (2) | 0.362 (16) |
C2_5 | 0.447 (2) | 0.6058 (11) | 0.3844 (11) | 0.056 (2) | 0.362 (16) |
H2A_5 | 0.385287 | 0.642731 | 0.388133 | 0.068* | 0.362 (16) |
H2B_5 | 0.491293 | 0.626390 | 0.432474 | 0.068* | 0.362 (16) |
C3_5 | 0.4954 (18) | 0.6173 (14) | 0.2946 (10) | 0.058 (3) | 0.362 (16) |
H3A_5 | 0.475497 | 0.679185 | 0.266967 | 0.069* | 0.362 (16) |
H3B_5 | 0.567448 | 0.616531 | 0.300346 | 0.069* | 0.362 (16) |
C4_5 | 0.4609 (19) | 0.5319 (13) | 0.2399 (10) | 0.057 (3) | 0.362 (16) |
H4A_5 | 0.398036 | 0.545410 | 0.210086 | 0.069* | 0.362 (16) |
H4B_5 | 0.510248 | 0.511644 | 0.196053 | 0.069* | 0.362 (16) |
C5_5 | 0.430 (2) | 0.3623 (13) | 0.2822 (18) | 0.065 (4) | 0.362 (16) |
H5A_5 | 0.395470 | 0.328276 | 0.329510 | 0.097* | 0.362 (16) |
H5B_5 | 0.491603 | 0.328925 | 0.269647 | 0.097* | 0.362 (16) |
H5C_5 | 0.389197 | 0.362877 | 0.229282 | 0.097* | 0.362 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0167 (3) | 0.0170 (3) | 0.0130 (3) | 0.0003 (3) | −0.0002 (3) | −0.0002 (3) |
Zn2 | 0.0199 (4) | 0.0211 (3) | 0.0209 (3) | −0.0001 (3) | 0.0031 (3) | 0.0048 (3) |
O1 | 0.024 (2) | 0.017 (2) | 0.0198 (19) | −0.0012 (18) | −0.0040 (17) | 0.0037 (18) |
O2 | 0.015 (2) | 0.022 (2) | 0.0212 (18) | 0.0008 (18) | −0.0023 (17) | −0.0016 (17) |
O3 | 0.024 (2) | 0.025 (2) | 0.0192 (19) | 0.0088 (19) | 0.0059 (17) | −0.0007 (18) |
O4 | 0.040 (3) | 0.023 (2) | 0.0173 (19) | 0.014 (2) | 0.0014 (19) | 0.0014 (18) |
O5 | 0.025 (2) | 0.022 (2) | 0.021 (2) | −0.0057 (18) | −0.0002 (17) | −0.0064 (18) |
O6 | 0.019 (2) | 0.030 (2) | 0.0200 (19) | 0.0014 (19) | −0.0018 (17) | −0.0100 (19) |
O10 | 0.090 (5) | 0.044 (4) | 0.048 (3) | −0.021 (4) | 0.029 (3) | 0.002 (3) |
O11 | 0.134 (8) | 0.069 (5) | 0.049 (4) | −0.038 (5) | 0.012 (4) | −0.007 (4) |
O12 | 0.210 (12) | 0.072 (5) | 0.053 (4) | −0.071 (6) | 0.008 (5) | 0.025 (4) |
N4 | 0.087 (7) | 0.049 (5) | 0.049 (4) | −0.032 (5) | 0.005 (4) | 0.011 (4) |
C1 | 0.019 (3) | 0.022 (3) | 0.017 (3) | 0.002 (2) | −0.002 (2) | 0.003 (3) |
C2 | 0.017 (3) | 0.018 (3) | 0.017 (3) | 0.003 (2) | −0.002 (2) | 0.000 (2) |
C3 | 0.023 (3) | 0.011 (3) | 0.019 (3) | −0.001 (2) | 0.003 (2) | 0.001 (2) |
C4 | 0.020 (3) | 0.017 (3) | 0.013 (3) | 0.002 (2) | 0.000 (2) | −0.001 (2) |
C5 | 0.022 (3) | 0.020 (3) | 0.020 (3) | 0.000 (2) | −0.003 (2) | −0.005 (2) |
C6 | 0.021 (3) | 0.017 (3) | 0.013 (3) | 0.001 (2) | 0.002 (2) | −0.001 (2) |
C7 | 0.018 (3) | 0.011 (3) | 0.022 (3) | −0.001 (2) | −0.001 (2) | 0.000 (2) |
C8 | 0.018 (3) | 0.016 (3) | 0.018 (3) | 0.000 (2) | −0.002 (2) | 0.001 (2) |
C9 | 0.018 (3) | 0.019 (3) | 0.018 (3) | 0.001 (3) | 0.000 (2) | 0.004 (3) |
O1_1 | 0.024 (2) | 0.054 (3) | 0.050 (3) | −0.001 (2) | 0.006 (2) | 0.004 (2) |
N1_1 | 0.030 (2) | 0.047 (3) | 0.052 (2) | 0.001 (2) | 0.005 (2) | −0.008 (2) |
C1_1 | 0.026 (2) | 0.050 (3) | 0.048 (2) | 0.001 (2) | 0.0017 (19) | −0.006 (2) |
C2_1 | 0.032 (3) | 0.058 (3) | 0.049 (3) | 0.006 (3) | 0.000 (2) | −0.005 (3) |
C3_1 | 0.034 (3) | 0.062 (3) | 0.058 (3) | 0.008 (3) | −0.001 (2) | −0.004 (3) |
C4_1 | 0.031 (3) | 0.055 (3) | 0.062 (3) | 0.006 (2) | 0.003 (2) | −0.008 (3) |
C5_1 | 0.057 (5) | 0.049 (4) | 0.055 (3) | 0.000 (4) | 0.019 (3) | −0.004 (3) |
O1_2 | 0.080 (3) | 0.030 (2) | 0.059 (3) | −0.010 (2) | 0.002 (3) | 0.005 (2) |
N1_2 | 0.080 (5) | 0.030 (3) | 0.049 (5) | −0.006 (4) | −0.003 (5) | 0.002 (4) |
C1_2 | 0.079 (4) | 0.031 (3) | 0.051 (4) | −0.006 (3) | 0.000 (4) | 0.001 (3) |
C2_2 | 0.080 (5) | 0.035 (4) | 0.052 (5) | −0.005 (4) | −0.002 (5) | 0.000 (4) |
C3_2 | 0.081 (5) | 0.036 (4) | 0.052 (5) | −0.003 (4) | −0.004 (5) | 0.001 (5) |
C4_2 | 0.081 (6) | 0.032 (4) | 0.050 (5) | −0.003 (4) | −0.004 (5) | 0.001 (4) |
C5_2 | 0.084 (6) | 0.032 (7) | 0.049 (8) | −0.008 (5) | −0.012 (7) | 0.004 (7) |
O1_3 | 0.080 (3) | 0.030 (2) | 0.059 (3) | −0.010 (2) | 0.002 (3) | 0.005 (2) |
N1_3 | 0.069 (4) | 0.028 (3) | 0.048 (4) | −0.004 (3) | 0.005 (4) | 0.000 (3) |
C1_3 | 0.070 (4) | 0.028 (2) | 0.047 (3) | −0.005 (3) | 0.003 (3) | 0.002 (3) |
C2_3 | 0.069 (4) | 0.032 (3) | 0.048 (4) | −0.005 (3) | −0.002 (4) | 0.002 (3) |
C3_3 | 0.068 (4) | 0.032 (3) | 0.050 (4) | −0.008 (3) | 0.001 (4) | 0.003 (4) |
C4_3 | 0.071 (4) | 0.030 (3) | 0.051 (4) | −0.005 (3) | 0.004 (4) | 0.003 (3) |
C5_3 | 0.067 (4) | 0.042 (6) | 0.061 (7) | 0.001 (4) | 0.008 (6) | 0.002 (6) |
O1_4 | 0.038 (3) | 0.090 (3) | 0.035 (2) | 0.010 (3) | 0.004 (2) | 0.023 (2) |
N1_4 | 0.035 (4) | 0.088 (4) | 0.037 (3) | 0.016 (3) | 0.007 (3) | 0.023 (3) |
C1_4 | 0.033 (3) | 0.083 (4) | 0.036 (3) | 0.014 (3) | 0.005 (3) | 0.021 (3) |
C2_4 | 0.040 (4) | 0.084 (4) | 0.046 (3) | 0.012 (3) | 0.007 (3) | 0.022 (3) |
C3_4 | 0.043 (4) | 0.088 (5) | 0.047 (4) | 0.011 (3) | 0.007 (3) | 0.026 (4) |
C4_4 | 0.040 (4) | 0.092 (5) | 0.042 (3) | 0.014 (4) | 0.009 (3) | 0.025 (3) |
C5_4 | 0.046 (6) | 0.096 (7) | 0.042 (5) | 0.010 (5) | 0.004 (5) | 0.011 (5) |
O1_5 | 0.038 (3) | 0.090 (3) | 0.035 (2) | 0.010 (3) | 0.004 (2) | 0.023 (2) |
N1_5 | 0.037 (5) | 0.091 (5) | 0.038 (4) | 0.006 (5) | 0.001 (4) | 0.022 (4) |
C1_5 | 0.035 (4) | 0.089 (4) | 0.037 (3) | 0.008 (4) | 0.000 (3) | 0.023 (4) |
C2_5 | 0.037 (5) | 0.090 (5) | 0.042 (4) | 0.007 (5) | −0.004 (4) | 0.023 (4) |
C3_5 | 0.037 (6) | 0.093 (5) | 0.043 (4) | 0.005 (5) | −0.004 (4) | 0.026 (4) |
C4_5 | 0.037 (5) | 0.095 (6) | 0.040 (4) | 0.006 (5) | −0.001 (4) | 0.024 (4) |
C5_5 | 0.049 (9) | 0.092 (6) | 0.053 (7) | 0.002 (8) | −0.001 (8) | 0.015 (5) |
Zn1—O1 | 1.956 (4) | C3_2—H3A_2 | 0.9900 |
Zn1—O3 | 1.943 (4) | C3_2—H3B_2 | 0.9900 |
Zn1—O5 | 1.960 (4) | C3_2—C4_2 | 1.518 (8) |
Zn1—O10 | 2.013 (6) | C4_2—H4A_2 | 0.9900 |
Zn2—O2 | 2.086 (4) | C4_2—H4B_2 | 0.9900 |
Zn2—O4 | 2.097 (4) | C5_2—H5A_2 | 0.9800 |
Zn2—O6 | 2.086 (4) | C5_2—H5B_2 | 0.9800 |
Zn2—O1_1 | 2.100 (5) | C5_2—H5C_2 | 0.9800 |
Zn2—O1_2 | 2.042 (5) | O1_3—C1_3 | 1.186 (6) |
Zn2—O1_3 | 2.042 (5) | N1_3—C1_3 | 1.294 (6) |
Zn2—O1_4 | 2.094 (5) | N1_3—C4_3 | 1.440 (7) |
Zn2—O1_5 | 2.094 (5) | N1_3—C5_3 | 1.461 (8) |
O1—C1 | 1.268 (7) | C1_3—C2_3 | 1.531 (8) |
O2—C1 | 1.253 (7) | C2_3—H2A_3 | 0.9900 |
O3—C5 | 1.278 (7) | C2_3—H2B_3 | 0.9900 |
O4—C5 | 1.241 (7) | C2_3—C3_3 | 1.526 (8) |
O5—C8 | 1.269 (7) | C3_3—H3A_3 | 0.9900 |
O6—C8 | 1.250 (7) | C3_3—H3B_3 | 0.9900 |
O10—N4 | 1.244 (9) | C3_3—C4_3 | 1.518 (8) |
O11—N4 | 1.239 (10) | C4_3—H4A_3 | 0.9900 |
O12—N4 | 1.232 (10) | C4_3—H4B_3 | 0.9900 |
C1—C2 | 1.507 (8) | C5_3—H5A_3 | 0.9800 |
C2—C3 | 1.384 (8) | C5_3—H5B_3 | 0.9800 |
C2—C9i | 1.388 (9) | C5_3—H5C_3 | 0.9800 |
C3—H3 | 0.9500 | O1_4—C1_4 | 1.186 (6) |
C3—C4ii | 1.397 (8) | N1_4—C1_4 | 1.294 (6) |
C4—C5 | 1.501 (8) | N1_4—C4_4 | 1.440 (7) |
C4—C6 | 1.380 (8) | N1_4—C5_4 | 1.461 (8) |
C6—H6 | 0.9500 | C1_4—C2_4 | 1.531 (8) |
C6—C7iii | 1.410 (8) | C2_4—H2A_4 | 0.9900 |
C7—C8 | 1.501 (8) | C2_4—H2B_4 | 0.9900 |
C7—C9 | 1.381 (8) | C2_4—C3_4 | 1.526 (8) |
C9—H9 | 0.9500 | C3_4—H3A_4 | 0.9900 |
O1_1—C1_1 | 1.187 (5) | C3_4—H3B_4 | 0.9900 |
N1_1—C1_1 | 1.295 (6) | C3_4—C4_4 | 1.518 (8) |
N1_1—C4_1 | 1.440 (7) | C4_4—H4A_4 | 0.9900 |
N1_1—C5_1 | 1.460 (8) | C4_4—H4B_4 | 0.9900 |
C1_1—C2_1 | 1.531 (8) | C5_4—H5A_4 | 0.9800 |
C2_1—H2A_1 | 0.9900 | C5_4—H5B_4 | 0.9800 |
C2_1—H2B_1 | 0.9900 | C5_4—H5C_4 | 0.9800 |
C2_1—C3_1 | 1.526 (8) | O1_5—C1_5 | 1.186 (6) |
C3_1—H3A_1 | 0.9900 | N1_5—C1_5 | 1.294 (6) |
C3_1—H3B_1 | 0.9900 | N1_5—C4_5 | 1.440 (7) |
C3_1—C4_1 | 1.518 (8) | N1_5—C5_5 | 1.461 (8) |
C4_1—H4A_1 | 0.9900 | C1_5—C2_5 | 1.531 (8) |
C4_1—H4B_1 | 0.9900 | C2_5—H2A_5 | 0.9900 |
C5_1—H5A_1 | 0.9800 | C2_5—H2B_5 | 0.9900 |
C5_1—H5B_1 | 0.9800 | C2_5—C3_5 | 1.526 (8) |
C5_1—H5C_1 | 0.9800 | C3_5—H3A_5 | 0.9900 |
O1_2—C1_2 | 1.186 (6) | C3_5—H3B_5 | 0.9900 |
N1_2—C1_2 | 1.294 (6) | C3_5—C4_5 | 1.518 (8) |
N1_2—C4_2 | 1.440 (7) | C4_5—H4A_5 | 0.9900 |
N1_2—C5_2 | 1.460 (8) | C4_5—H4B_5 | 0.9900 |
C1_2—C2_2 | 1.531 (8) | C5_5—H5A_5 | 0.9800 |
C2_2—H2A_2 | 0.9900 | C5_5—H5B_5 | 0.9800 |
C2_2—H2B_2 | 0.9900 | C5_5—H5C_5 | 0.9800 |
C2_2—C3_2 | 1.526 (8) | ||
O1—Zn1—O5 | 118.14 (18) | C2_2—C3_2—H3A_2 | 110.3 |
O1—Zn1—O10 | 113.4 (3) | C2_2—C3_2—H3B_2 | 110.3 |
O3—Zn1—O1 | 111.59 (18) | H3A_2—C3_2—H3B_2 | 108.6 |
O3—Zn1—O5 | 114.10 (19) | C4_2—C3_2—C2_2 | 106.9 (12) |
O3—Zn1—O10 | 104.8 (2) | C4_2—C3_2—H3A_2 | 110.3 |
O5—Zn1—O10 | 92.6 (2) | C4_2—C3_2—H3B_2 | 110.3 |
O2—Zn2—O4 | 89.36 (18) | N1_2—C4_2—C3_2 | 103.6 (12) |
O2—Zn2—O6 | 91.63 (15) | N1_2—C4_2—H4A_2 | 111.0 |
O2—Zn2—O1_1 | 176.43 (18) | N1_2—C4_2—H4B_2 | 111.0 |
O2—Zn2—O1_4 | 88.92 (19) | C3_2—C4_2—H4A_2 | 111.0 |
O2—Zn2—O1_5 | 88.92 (19) | C3_2—C4_2—H4B_2 | 111.0 |
O4—Zn2—O1_1 | 89.4 (2) | H4A_2—C4_2—H4B_2 | 109.0 |
O6—Zn2—O4 | 91.85 (16) | N1_2—C5_2—H5A_2 | 109.5 |
O6—Zn2—O1_1 | 91.76 (18) | N1_2—C5_2—H5B_2 | 109.5 |
O6—Zn2—O1_4 | 177.2 (2) | N1_2—C5_2—H5C_2 | 109.5 |
O6—Zn2—O1_5 | 177.2 (2) | H5A_2—C5_2—H5B_2 | 109.5 |
O1_2—Zn2—O2 | 87.9 (2) | H5A_2—C5_2—H5C_2 | 109.5 |
O1_2—Zn2—O4 | 177.1 (2) | H5B_2—C5_2—H5C_2 | 109.5 |
O1_2—Zn2—O6 | 87.1 (2) | C1_3—O1_3—Zn2 | 150.1 (8) |
O1_2—Zn2—O1_1 | 93.4 (3) | C1_3—N1_3—C4_3 | 117.1 (8) |
O1_2—Zn2—O1_4 | 95.7 (3) | C1_3—N1_3—C5_3 | 121.9 (10) |
O1_3—Zn2—O2 | 87.9 (2) | C4_3—N1_3—C5_3 | 121.0 (9) |
O1_3—Zn2—O4 | 177.1 (2) | O1_3—C1_3—N1_3 | 135.0 (10) |
O1_3—Zn2—O6 | 87.1 (2) | O1_3—C1_3—C2_3 | 119.0 (9) |
O1_3—Zn2—O1_1 | 93.4 (3) | N1_3—C1_3—C2_3 | 106.0 (7) |
O1_3—Zn2—O1_5 | 95.7 (3) | C1_3—C2_3—H2A_3 | 111.0 |
O1_4—Zn2—O4 | 85.4 (2) | C1_3—C2_3—H2B_3 | 111.0 |
O1_4—Zn2—O1_1 | 87.6 (2) | H2A_3—C2_3—H2B_3 | 109.0 |
O1_5—Zn2—O4 | 85.4 (2) | C3_3—C2_3—C1_3 | 103.8 (8) |
O1_5—Zn2—O1_1 | 87.6 (2) | C3_3—C2_3—H2A_3 | 111.0 |
C1—O1—Zn1 | 115.0 (4) | C3_3—C2_3—H2B_3 | 111.0 |
C1—O2—Zn2 | 133.4 (4) | C2_3—C3_3—H3A_3 | 111.2 |
C5—O3—Zn1 | 123.1 (4) | C2_3—C3_3—H3B_3 | 111.2 |
C5—O4—Zn2 | 132.8 (4) | H3A_3—C3_3—H3B_3 | 109.1 |
C8—O5—Zn1 | 118.0 (4) | C4_3—C3_3—C2_3 | 102.9 (9) |
C8—O6—Zn2 | 135.0 (4) | C4_3—C3_3—H3A_3 | 111.2 |
N4—O10—Zn1 | 115.2 (5) | C4_3—C3_3—H3B_3 | 111.2 |
O11—N4—O10 | 118.7 (7) | N1_3—C4_3—C3_3 | 102.3 (8) |
O12—N4—O10 | 120.0 (8) | N1_3—C4_3—H4A_3 | 111.3 |
O12—N4—O11 | 121.3 (8) | N1_3—C4_3—H4B_3 | 111.3 |
O1—C1—C2 | 116.6 (5) | C3_3—C4_3—H4A_3 | 111.3 |
O2—C1—O1 | 124.5 (5) | C3_3—C4_3—H4B_3 | 111.3 |
O2—C1—C2 | 118.9 (5) | H4A_3—C4_3—H4B_3 | 109.2 |
C3—C2—C1 | 121.0 (5) | N1_3—C5_3—H5A_3 | 109.5 |
C3—C2—C9i | 119.6 (5) | N1_3—C5_3—H5B_3 | 109.5 |
C9i—C2—C1 | 119.4 (5) | N1_3—C5_3—H5C_3 | 109.5 |
C2—C3—H3 | 120.0 | H5A_3—C5_3—H5B_3 | 109.5 |
C2—C3—C4ii | 120.0 (5) | H5A_3—C5_3—H5C_3 | 109.5 |
C4ii—C3—H3 | 120.0 | H5B_3—C5_3—H5C_3 | 109.5 |
C3iv—C4—C5 | 119.7 (5) | C1_4—O1_4—Zn2 | 136.6 (8) |
C6—C4—C3iv | 120.0 (5) | C1_4—N1_4—C4_4 | 121.2 (9) |
C6—C4—C5 | 120.2 (5) | C1_4—N1_4—C5_4 | 120.8 (10) |
O3—C5—C4 | 115.7 (5) | C4_4—N1_4—C5_4 | 117.6 (9) |
O4—C5—O3 | 125.5 (6) | O1_4—C1_4—N1_4 | 132.0 (11) |
O4—C5—C4 | 118.8 (5) | O1_4—C1_4—C2_4 | 125.5 (9) |
C4—C6—H6 | 119.9 | N1_4—C1_4—C2_4 | 102.4 (7) |
C4—C6—C7iii | 120.3 (5) | C1_4—C2_4—H2A_4 | 110.3 |
C7iii—C6—H6 | 119.9 | C1_4—C2_4—H2B_4 | 110.3 |
C6v—C7—C8 | 119.5 (5) | H2A_4—C2_4—H2B_4 | 108.6 |
C9—C7—C6v | 118.7 (5) | C3_4—C2_4—C1_4 | 107.1 (8) |
C9—C7—C8 | 121.7 (5) | C3_4—C2_4—H2A_4 | 110.3 |
O5—C8—C7 | 116.6 (5) | C3_4—C2_4—H2B_4 | 110.3 |
O6—C8—O5 | 125.0 (5) | C2_4—C3_4—H3A_4 | 111.1 |
O6—C8—C7 | 118.4 (5) | C2_4—C3_4—H3B_4 | 111.1 |
C2vi—C9—H9 | 119.3 | H3A_4—C3_4—H3B_4 | 109.0 |
C7—C9—C2vi | 121.3 (6) | C4_4—C3_4—C2_4 | 103.5 (9) |
C7—C9—H9 | 119.3 | C4_4—C3_4—H3A_4 | 111.1 |
C1_1—O1_1—Zn2 | 135.5 (5) | C4_4—C3_4—H3B_4 | 111.1 |
C1_1—N1_1—C4_1 | 117.8 (6) | N1_4—C4_4—C3_4 | 102.0 (8) |
C1_1—N1_1—C5_1 | 121.7 (7) | N1_4—C4_4—H4A_4 | 111.4 |
C4_1—N1_1—C5_1 | 120.3 (6) | N1_4—C4_4—H4B_4 | 111.4 |
O1_1—C1_1—N1_1 | 127.6 (7) | C3_4—C4_4—H4A_4 | 111.4 |
O1_1—C1_1—C2_1 | 126.2 (6) | C3_4—C4_4—H4B_4 | 111.4 |
N1_1—C1_1—C2_1 | 106.2 (6) | H4A_4—C4_4—H4B_4 | 109.2 |
C1_1—C2_1—H2A_1 | 110.8 | N1_4—C5_4—H5A_4 | 109.5 |
C1_1—C2_1—H2B_1 | 110.8 | N1_4—C5_4—H5B_4 | 109.5 |
H2A_1—C2_1—H2B_1 | 108.9 | N1_4—C5_4—H5C_4 | 109.5 |
C3_1—C2_1—C1_1 | 104.6 (6) | H5A_4—C5_4—H5B_4 | 109.5 |
C3_1—C2_1—H2A_1 | 110.8 | H5A_4—C5_4—H5C_4 | 109.5 |
C3_1—C2_1—H2B_1 | 110.8 | H5B_4—C5_4—H5C_4 | 109.5 |
C2_1—C3_1—H3A_1 | 110.9 | C1_5—O1_5—Zn2 | 140.0 (15) |
C2_1—C3_1—H3B_1 | 110.9 | C1_5—N1_5—C4_5 | 116.1 (14) |
H3A_1—C3_1—H3B_1 | 108.9 | C1_5—N1_5—C5_5 | 124.0 (16) |
C4_1—C3_1—C2_1 | 104.1 (6) | C4_5—N1_5—C5_5 | 116.2 (14) |
C4_1—C3_1—H3A_1 | 110.9 | O1_5—C1_5—N1_5 | 131.1 (14) |
C4_1—C3_1—H3B_1 | 110.9 | O1_5—C1_5—C2_5 | 120.4 (13) |
N1_1—C4_1—C3_1 | 102.5 (6) | N1_5—C1_5—C2_5 | 108.1 (10) |
N1_1—C4_1—H4A_1 | 111.3 | C1_5—C2_5—H2A_5 | 111.6 |
N1_1—C4_1—H4B_1 | 111.3 | C1_5—C2_5—H2B_5 | 111.6 |
C3_1—C4_1—H4A_1 | 111.3 | H2A_5—C2_5—H2B_5 | 109.4 |
C3_1—C4_1—H4B_1 | 111.3 | C3_5—C2_5—C1_5 | 100.9 (10) |
H4A_1—C4_1—H4B_1 | 109.2 | C3_5—C2_5—H2A_5 | 111.6 |
N1_1—C5_1—H5A_1 | 109.5 | C3_5—C2_5—H2B_5 | 111.6 |
N1_1—C5_1—H5B_1 | 109.5 | C2_5—C3_5—H3A_5 | 110.5 |
N1_1—C5_1—H5C_1 | 109.5 | C2_5—C3_5—H3B_5 | 110.5 |
H5A_1—C5_1—H5B_1 | 109.5 | H3A_5—C3_5—H3B_5 | 108.7 |
H5A_1—C5_1—H5C_1 | 109.5 | C4_5—C3_5—C2_5 | 106.0 (13) |
H5B_1—C5_1—H5C_1 | 109.5 | C4_5—C3_5—H3A_5 | 110.5 |
C1_2—O1_2—Zn2 | 152.2 (11) | C4_5—C3_5—H3B_5 | 110.5 |
C1_2—N1_2—C4_2 | 112.5 (11) | N1_5—C4_5—C3_5 | 98.6 (12) |
C1_2—N1_2—C5_2 | 123.8 (14) | N1_5—C4_5—H4A_5 | 112.1 |
C4_2—N1_2—C5_2 | 122.8 (13) | N1_5—C4_5—H4B_5 | 112.1 |
O1_2—C1_2—N1_2 | 130.6 (13) | C3_5—C4_5—H4A_5 | 112.1 |
O1_2—C1_2—C2_2 | 115.1 (11) | C3_5—C4_5—H4B_5 | 112.1 |
N1_2—C1_2—C2_2 | 113.0 (9) | H4A_5—C4_5—H4B_5 | 109.7 |
C1_2—C2_2—H2A_2 | 111.9 | N1_5—C5_5—H5A_5 | 109.5 |
C1_2—C2_2—H2B_2 | 111.9 | N1_5—C5_5—H5B_5 | 109.5 |
H2A_2—C2_2—H2B_2 | 109.6 | N1_5—C5_5—H5C_5 | 109.5 |
C3_2—C2_2—C1_2 | 99.6 (10) | H5A_5—C5_5—H5B_5 | 109.5 |
C3_2—C2_2—H2A_2 | 111.9 | H5A_5—C5_5—H5C_5 | 109.5 |
C3_2—C2_2—H2B_2 | 111.9 | H5B_5—C5_5—H5C_5 | 109.5 |
Zn1—O1—C1—O2 | −9.5 (8) | C2_1—C3_1—C4_1—N1_1 | −20.5 (9) |
Zn1—O1—C1—C2 | 171.9 (4) | C4_1—N1_1—C1_1—O1_1 | 178.6 (8) |
Zn1—O3—C5—O4 | 7.1 (9) | C4_1—N1_1—C1_1—C2_1 | −0.7 (10) |
Zn1—O3—C5—C4 | −173.2 (4) | C5_1—N1_1—C1_1—O1_1 | 3.4 (14) |
Zn1—O5—C8—O6 | 7.6 (8) | C5_1—N1_1—C1_1—C2_1 | −176.0 (8) |
Zn1—O5—C8—C7 | −169.7 (4) | C5_1—N1_1—C4_1—C3_1 | −170.6 (7) |
Zn1—O10—N4—O11 | −14.6 (13) | O1_2—C1_2—C2_2—C3_2 | 158 (2) |
Zn1—O10—N4—O12 | 168.2 (9) | N1_2—C1_2—C2_2—C3_2 | −11 (3) |
Zn2—O2—C1—O1 | 79.8 (8) | C1_2—N1_2—C4_2—C3_2 | 15 (3) |
Zn2—O2—C1—C2 | −101.7 (6) | C1_2—C2_2—C3_2—C4_2 | 19 (3) |
Zn2—O4—C5—O3 | 55.3 (9) | C2_2—C3_2—C4_2—N1_2 | −21 (3) |
Zn2—O4—C5—C4 | −124.4 (5) | C4_2—N1_2—C1_2—O1_2 | −169 (2) |
Zn2—O6—C8—O5 | 62.3 (9) | C4_2—N1_2—C1_2—C2_2 | −3 (3) |
Zn2—O6—C8—C7 | −120.5 (5) | C5_2—N1_2—C1_2—O1_2 | 22 (5) |
Zn2—O1_1—C1_1—N1_1 | 140.1 (7) | C5_2—N1_2—C1_2—C2_2 | −172 (2) |
Zn2—O1_1—C1_1—C2_1 | −40.6 (13) | C5_2—N1_2—C4_2—C3_2 | −176 (2) |
Zn2—O1_2—C1_2—N1_2 | −139 (2) | O1_3—C1_3—C2_3—C3_3 | 161.6 (13) |
Zn2—O1_2—C1_2—C2_2 | 55 (4) | N1_3—C1_3—C2_3—C3_3 | −18.1 (16) |
Zn2—O1_3—C1_3—N1_3 | 138.3 (15) | C1_3—N1_3—C4_3—C3_3 | 16.4 (18) |
Zn2—O1_3—C1_3—C2_3 | −41 (3) | C1_3—C2_3—C3_3—C4_3 | 26.9 (14) |
Zn2—O1_4—C1_4—N1_4 | 163.9 (16) | C2_3—C3_3—C4_3—N1_3 | −25.8 (14) |
Zn2—O1_4—C1_4—C2_4 | −21 (3) | C4_3—N1_3—C1_3—O1_3 | −178.5 (17) |
Zn2—O1_5—C1_5—N1_5 | 139 (3) | C4_3—N1_3—C1_3—C2_3 | 1.1 (18) |
Zn2—O1_5—C1_5—C2_5 | −50 (5) | C5_3—N1_3—C1_3—O1_3 | −1 (3) |
O1—C1—C2—C3 | 5.9 (8) | C5_3—N1_3—C1_3—C2_3 | 178.6 (15) |
O1—C1—C2—C9i | −173.0 (5) | C5_3—N1_3—C4_3—C3_3 | −161.1 (15) |
O2—C1—C2—C3 | −172.7 (5) | O1_4—C1_4—C2_4—C3_4 | 167.2 (19) |
O2—C1—C2—C9i | 8.4 (9) | N1_4—C1_4—C2_4—C3_4 | −17 (2) |
C1—C2—C3—C4ii | −179.9 (5) | C1_4—N1_4—C4_4—C3_4 | 5 (2) |
C3iv—C4—C5—O3 | 176.1 (5) | C1_4—C2_4—C3_4—C4_4 | 19.6 (17) |
C3iv—C4—C5—O4 | −4.1 (9) | C2_4—C3_4—C4_4—N1_4 | −14.7 (15) |
C3iv—C4—C6—C7iii | 1.0 (9) | C4_4—N1_4—C1_4—O1_4 | −177 (2) |
C5—C4—C6—C7iii | −178.3 (5) | C4_4—N1_4—C1_4—C2_4 | 7 (2) |
C6—C4—C5—O3 | −4.5 (8) | C5_4—N1_4—C1_4—O1_4 | −3 (4) |
C6—C4—C5—O4 | 175.2 (6) | C5_4—N1_4—C1_4—C2_4 | −179.1 (13) |
C6v—C7—C8—O5 | −173.3 (5) | C5_4—N1_4—C4_4—C3_4 | −168.8 (12) |
C6v—C7—C8—O6 | 9.2 (8) | O1_5—C1_5—C2_5—C3_5 | 179 (3) |
C6v—C7—C9—C2vi | 0.7 (9) | N1_5—C1_5—C2_5—C3_5 | −8 (3) |
C8—C7—C9—C2vi | −179.1 (5) | C1_5—N1_5—C4_5—C3_5 | 29 (3) |
C9i—C2—C3—C4ii | −1.0 (9) | C1_5—C2_5—C3_5—C4_5 | 25 (3) |
C9—C7—C8—O5 | 6.5 (8) | C2_5—C3_5—C4_5—N1_5 | −31 (2) |
C9—C7—C8—O6 | −171.0 (5) | C4_5—N1_5—C1_5—O1_5 | 158 (4) |
O1_1—C1_1—C2_1—C3_1 | 167.6 (8) | C4_5—N1_5—C1_5—C2_5 | −14 (4) |
N1_1—C1_1—C2_1—C3_1 | −13.0 (9) | C5_5—N1_5—C1_5—O1_5 | 0 (6) |
C1_1—N1_1—C4_1—C3_1 | 14.1 (10) | C5_5—N1_5—C1_5—C2_5 | −172 (2) |
C1_1—C2_1—C3_1—C4_1 | 20.7 (9) | C5_5—N1_5—C4_5—C3_5 | −172 (2) |
Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) x−1/2, −y+1/2, −z+1; (iii) −x+1, y−1/2, −z+3/2; (iv) x+1/2, −y+1/2, −z+1; (v) −x+1, y+1/2, −z+3/2; (vi) −x+1/2, −y+1, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2_1—H2B_1···O6 | 0.99 | 2.57 | 3.163 (8) | 119 |
C5_1—H5A_1···O1iv | 0.98 | 2.55 | 3.488 (10) | 160 |
C5_1—H5A_1···O11iv | 0.98 | 2.46 | 3.003 (11) | 115 |
C4_2—H4A_2···O12i | 0.99 | 2.24 | 3.12 (2) | 147 |
C5_2—H5B_2···O6v | 0.98 | 2.65 | 3.61 (2) | 168 |
C2_3—H2A_3···O3v | 0.99 | 2.48 | 3.472 (14) | 177 |
C2_3—H2B_3···O1_1 | 0.99 | 2.58 | 3.335 (13) | 133 |
C4_3—H4B_3···O12i | 0.99 | 2.49 | 3.417 (17) | 156 |
C2_4—H2B_4···O1_1 | 0.99 | 2.56 | 3.297 (15) | 132 |
C4_4—H4A_4···O1i | 0.99 | 2.58 | 3.564 (16) | 170 |
C4_4—H4B_4···O12iv | 0.99 | 2.47 | 3.448 (17) | 169 |
C2_5—H2A_5···O10i | 0.99 | 2.45 | 3.30 (2) | 143 |
C4_5—H4A_5···O1i | 0.99 | 2.56 | 3.34 (2) | 135 |
Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (iv) x+1/2, −y+1/2, −z+1; (v) −x+1, y+1/2, −z+3/2. |
Zn1—O1 | 1.956 (4) | Zn2—O2 | 2.086 (4) |
Zn1—O3i | 1.943 (4) | Zn2—O4i | 2.097 (4) |
Zn1—O5ii | 1.960 (4) | Zn2—O6ii | 2.086 (4) |
Zn1—O10 | 2.013 (6) | Zn2—O1_1 | 2.100 (5) |
Zn2—O1_3 | 2.042 (5) | ||
Zn2—O1_4 | 2.094 (5) |
Symmetry codes: (i) x+1/2, -y+1/2, -z+1; (ii) -x+1/2, -y+1, z+1/2. |
References
Basma, N. S., Headen, T. F., Shaffer, M. S. P., Skipper, N. T. & Howard, C. A. (2018). J. Phys. Chem. B, 122, 8963–8971. CrossRef CAS PubMed Google Scholar
Eddaoudi, M., Li, H. & Yaghi, O. M. (2000). J. Am. Chem. Soc. 122, 1391–1397. Web of Science CrossRef CAS Google Scholar
Farrusseng, D. (2011). Editor. Metal-Organic Frameworks Applications from Catalysis to Gas Storage, Weinheim: Wiley-VCH. Google Scholar
Feldblyum, J. I., Liu, M., Gidley, D. W. & Matzger, A. J. (2011). J. Am. Chem. Soc. 133, 18257–18263. CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hao, X.-R., Wang, X.-L., Shao, K.-Z., Yang, G.-S., Su, Z.-M. & Yuan, G. (2012). CrystEngComm, 14, 5596–5603. Web of Science CSD CrossRef CAS Google Scholar
Kaskel, S. (2016). Editor. The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization, and Applications. Weinheim: Wiley-VCH. Google Scholar
Lou, X.-H., Li, H., Zhang, Z., Zhang, H. & Xu, C. (2013). J. Inorg. Organomet. Polym. 23, 996–1000. CrossRef CAS Google Scholar
MacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal–Organic Framework Materials, Hoboken: John Wiley and Sons. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Oh, M., Rajput, L., Kim, D., Moon, D. & Lah, M. S. (2013). Inorg. Chem. 52, 3891–3899. CrossRef CAS PubMed Google Scholar
Ordonez, C., Fonari, M., Lindline, J., Wei, Q. & Timofeeva, T. (2014). Cryst. Growth Des. 14, 5452–5465. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496. Web of Science CrossRef CAS Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Vagin, S. I., Ott, A. K. & Rieger, B. (2007). Chem. Ing. Tech. 79, 767–780. CrossRef CAS Google Scholar
Wang, F.-K., Yang, S.-Y. & Dong, H.-Z. (2021a). J. Mol. Struct. 1227, 129540. CrossRef Google Scholar
Wang, F.-K., Yang, S.-Y. & Dong, H.-Z. (2021b). J. Chem. Res. 45, 253–257. CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yaghi, O. M., Davis, C. E., Li, G. & Li, H. (1997). J. Am. Chem. Soc. 119, 2861–2868. CSD CrossRef CAS Web of Science Google Scholar
Yoshinari, N. & Konno, T. (2023). Coord. Chem. Rev. 474, 214850. CrossRef Google Scholar
Yuan, H., Chen, L., Fu, L. & Li, B. (2019). Inorg. Chem. Commun. 104, 83–87. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.