research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two new carbazole derivatives: ethyl 9-(benzene­sulfon­yl)-2-(4-fluoro-2-nitro­phen­yl)-6-meth­­oxy-9H-carbazole-3-carboxyl­ate and 12-(benzene­sulfon­yl)-12H-quinolino­[4,3-b]carbazole

crossmark logo

aDepartment of Physics, The New College, Chennai 600 014, University of Madras, Tamil Nadu, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamilnadu, India
*Correspondence e-mail: mnizam.new@gmail.com

Edited by S. Parkin, University of Kentucky, USA (Received 28 September 2022; accepted 7 November 2022; online 10 November 2022)

The title compounds, C28H21FN2O7S (I) and C25H16N2O2S (II), are carbazole derivatives with a benzene­sulfonyl group attached to the carbazole moiety at the N atom on both mol­ecules. A fluoro-substituted nitro­phenyl ring system in I and a fused iso­quinoline ring in II are attached to the respective carbazole moieties. In both compounds, the carbazole ring systems are essentially planar, with maximum deviations of 0.028 (2) and 0.026 (2) Å for carbon atoms in compounds I and II, respectively. The carbazole ring system is almost orthogonal to the benzene ring attached to sulfonyl group, with dihedral angles of 79.7 (2) in I and 88.2 (2)° in II, respectively. The mean planes of the carbazole ring systems make dihedral angles of 66.1 (2) and 1.3 (2)°, respectively, with the nitro­phenyl ring in I and the planar iso­quinoline moiety [maximum deviation of 0.009 (3) Å for a carbon atom in II, indicating that the ring system in II is essentially planar]. The benzene­sulfonyl ring is almost normal to the iso­quinoline ring, with a dihedral angle of 87.9 (2)° in II and the nitro­phenyl ring forms a dihedral angle of 17.8 (2)° in I. In both compounds, intra­molecular C—H⋯O hydrogen bonds generate S(6) ring motifs with the sulfone group O atoms. In crystals of compound I, the mol­ecules are linked by C—H⋯O inter­molecular weak hydrogen bonds, which generate C(7) and C(10) chains running parallel to [010] and [100], respectively.

1. Chemical context

Carbazole and its derivatives have been attractive to researchers because of their broad spectrum of biological activities. Beneficial properties include anti-oxidative (Tachibana et al., 2001[Tachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589-5594.]), anti­tumor activity against leukaemia, renal tumour, colon cancer and malignant melanoma tumour cell lines (Pindur & Lemster, 1997[Pindur, U. & Lemster, T. (1997). In Recent Research Developments in Organic and Bioorganic Chemistry, Vol. 1, edited by S. G. Pandalai, pp. 33-54. Trivandrum India: Transworld Research Network.]; Itoigawa et al., 2000[Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893-897.]), anti-inflammatory and anti­mutagenic (Ramsewak et al., 1999[Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444-447.]), anti­biotic, anti­fungal and cytotoxic (Chakraborty et al., 1965[Chakraborty, D. P., Barman, B. K. & Bose, P. K. (1965). Tetrahedron, 21, 681-685.]; 1978[Chakraborty, D. P., Bhattacharyya, P., Roy, S., Bhattacharyya, S. P. & Biswas, A. K. (1978). Phytochemistry, 17, 834-835.]), pim kinase inhibitory (Giraud et al., 2014[Giraud, F., Bourhis, M., Nauton, L., Théry, V., Herfindal, L., Døskeland, S. O., Anizon, F. & Moreau, P. (2014). Bioorg. Chem. 57, 108-115.]), anti­microbial (Gu et al., 2014[Gu, W., Qiao, C., Wang, S. F., Hao, Y. & Miao, T. T. (2014). Bioorg. Med. Chem. Lett. 24, 328-331.]), anti­mitotic and anti­oxidative activities (Tachibana et al., 2003[Tachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2003). J. Agric. Food Chem. 51, 6461-6467.]; Hu et al., 2006[Hu, L., Li, Z., Li, Y., Qu, J., Ling, Y.-H., Jiang, J. & Boykin, D. W. (2006). J. Med. Chem. 49, 6273-6282.]), and anti-Alzheimer's effects (Thiratmatrakul et al., 2014[Thiratmatrakul, S., Yenjai, C., Waiwut, P., Vajragupta, O., Reubroycharoen, P., Tohda, M. & Boonyarat, C. (2014). Eur. J. Med. Chem. 75, 21-30.]). Carbazole derivatives also exhibit electroactivity and luminescence, and are considered to be potential contenders for electronic applications such as luminescent and hole-transporting materials (Dijken et al., 2004[Dijken, A. van, Bastiaansen, J. J. A. M., Kiggen, N. M. M., Langeveld, B. M. W., Rothe, C., Monkman, A., Bach, I., Stössel, P. & Brunner, K. (2004). J. Am. Chem. Soc. 126, 7718-7727.]), colour displays (Santhanam & Sundaresan, 1986[Santhanam, K. S. V. & Sundaresan, N. S. (1986). Indian J. Technol. 24, 417-422.]), organic semiconductors, high-performance blue phospho­rescent organic light-emitting diodes (Ye et al., 2010[Ye, S. H., Liu, Y. Q., Chen, J. M., Lu, K., Wu, W. P., Du, C. Y., Liu, Y., Wu, T., Shuai, Z. G. & Yu, G. (2010). Adv. Mater. 22, 4167-4171.]), laser and solar cells (Friend, et al. 1999[Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Brédas, J. L., Lögdlund, M. & Salaneck, W. R. (1999). Nature, 397, 121-128.]; Zhang et al. 2004[Zhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895-900.]). Carbazole-based heterocyclic polymer systems can be chemically or electrochemically polymerized to give products with a number of applications, such as rechargeable batteries (Sacak, 1999[Sacak, M. (1999). J. Appl. Polym. Sci. 74, 1792-1796.]) and mol­ecular glasses, which are widely studied as components of electroactive and photoactive materials (Zhang et al., 2004[Zhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895-900.]). Against this background, the X-ray structure determinations of the title compounds, I and II, have been carried out and the results are presented here.

[Scheme 1]

2. Structural commentary

In the mol­ecular structures of the title compounds, C28H21FN2O7S (I), which comprises a carbazole ring system attached to a benzenesulfonyl ring, a fluorine substituted nitro­phenyl ring, a meth­oxy group and an ethyl­formate group and C25H16N2O2S (II), which comprises a carbazole ring system attached to a benzene­sulfonyl ring and fused isoqinoline ring, are illustrated in Figs. 1[link] and 2[link], respectively. In both compounds, the carbazole ring systems (N1/C1–C12) are essentially planar, with maximum deviations of 0.028 (2) and 0.026 (2) Å for atom C12 and C4 in compounds I and II, respectively. The carbazole ring system is almost orthogonal to the benzene ring (C20–C25) attached to the sulfonyl group, with dihedral angles of 79.7 (2) in I and 88.2 (2)° in II, respectively. The mean planes of the carbazole ring systems make dihedral angles of 66.1 (2) and 1.3 (2)°, respectively, with the nitro­phenyl ring (C13–C18) in I and the planar iso­quinoline (N2/C9/C10/C13–C19) moiety [maximum deviation of 0.009 (3) Å for atom C9] in II, indicating that the ring system in II is essentially planar. The benzene­sulfonyl ring (C20–C25) is almost normal to the iso­quinoline ring (N2/C9/C10/C13–C19), with a dihedral angle of 87.9 (2)° in II. In I, the corresponding dihedral angle with the nitro­phenyl ring (C13–C18) is 17.8 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of compound I, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Intra­molecular contacts are shown as dashed lines (Table 1[link]).
[Figure 2]
Figure 2
The mol­ecular structure of compound II, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Intra­molecular contacts are shown as dashed lines (Table 2[link]).

In both compounds, the tetra­hedral configuration is distorted around sulfur atom S1. The increase in the O2—S1—O1 angle [119.9 (2)° in I and 120.3 (2)° in II], with a simultaneous decrease in the N1—S1—C20 angle [104.7 (2)° in I and 104.9 (2)° in II] from the ideal tetra­hedral value (109.5°) are attributed to the Thorpe-Ingold effect (Bassindale, 1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). The widening of the angles may be due to the repulsive inter­action between the two short S=O bonds. The N1—C1 distances [1.434 (3) Å in I and 1.435 (3) Å in II] and N1—C12 bond lengths [1.421 (3) Å in I and 1.426 (3) Å in II] in the mol­ecules are longer than the mean Nsp2—Csp2 bond-length value of 1.355 (14) Å (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). The elongation observed may be due to the electron-withdrawing character of the benzene­sulfonyl group. The sum of the bond angles around N1 (351.7° in I and 356.2° in II) indicate sp2 hybridization. The geometric parameters of both compounds agree well with those of related structures (Narayanan et al., 2014a[Narayanan, P., Sethusankar, K., Saravanan, V. & Mohanakrishnan, A. K. (2014a). Acta Cryst. E70, o212-o213.],b[Narayanan, P., Sethusankar, K., Saravanan, V. & Mohanakrishnan, A. K. (2014b). Acta Cryst. E70, o230-o231.]).

In compound I, the nitro group is (+) syn-periplanar to the benzene ring (atoms C13–C18), as indicated by the values of the torsion angles C13—C14—N2—O6 = −24.6 (4)° and C15—C14—N2—O7 = −24.1 (4)°. The nitro­gen atom N2 is almost in the plane of the benzene ring, with a torsion angle C18—C13—C14—N2 of −177.8 (2)°. The fluorine atom forms a torsion angle C14—C15—C16—F1 of 177.9 (2)°, indicating that the fluorine substituent at C16 is almost coplanar with benzene ring C13–C18. The fluorine atom F1 deviates by −0.063 (2) Å from the benzene ring (C13–C18). In both compounds, the mol­ecular structures are stabilized by C2—H2⋯O2 and C11—H11⋯O1 intra­molecular inter­actions involving the sulfone oxygen atoms, which generate two S(6) ring motifs (Fig. 1[link] and 2).

3. Supra­molecular features

In the crystal packing of compound I, mol­ecules are linked by C3—H3⋯O4i and C17—H17⋯O7ii (symmetry codes as per Table 1[link]) inter­molecular hydrogen bonds, generating C(7) and C(10) chains running parallel to [010] and [100], respectively. Very weak inter­actions between inversion-related C13–C18 and C20–C25 rings lead to an inter-centroid distance Cg1⋯Cg2iii of 3.889 (2) Å [Cg1 and Cg2 are the centroids of rings C13–C18 and C20–C25, respectively, symmetry code: (iii) 1 − x, 1 − y, −z]. No significant C—H⋯π inter­actions with centroid distances of less than ∼4 Å are observed in the structure.

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2 0.93 2.36 2.945 (4) 121
C3—H3⋯O4i 0.93 2.37 3.301 (3) 174
C11—H11⋯O1 0.93 2.35 2.952 (3) 123
C17—H17⋯O7ii 0.93 2.50 3.428 (3) 173
Symmetry codes: (i) x, y+1, z; (ii) [x-1, y, z].

In compound II, the crystal packing is stabilized by C4—H4⋯Cg1ii and C16—H16⋯Cg3iii inter­molecular inter­actions (symmetry codes as per Table 2[link]), where Cg1 and Cg3 are the centres of gravity of rings (C13–C18) and (C7–C12), respectively. Packing plots of I and II are shown in Figs. 3[link] and 4[link]. The whole of the fused ring system in II π-stacks with that of an inversion-related adjacent mol­ecule, giving an inter­planar spacing of 3.492 (3) Å.

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

Cg1 is the centroid of ring C13–C18 and Cg2 is the centroid of ring C7–C12.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2 0.93 2.36 2.944 (4) 121
C11—H11⋯O1 0.93 2.34 2.940 (3) 122
C21—H21⋯N2i 0.93 2.64 3.476 (4) 150
C4—H4⋯Cg1ii 0.93 2.80 3.605 (4) 145
C16—H16⋯Cg3iii 0.93 2.99 3.747 (3) 139
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
A view approximately down the a axis of the crystal packing of compound I. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
[Figure 4]
Figure 4
A view down the a axis of the crystal packing of compound II. Hydrogen bonds are shown as dashed lines.

4. Hirshfeld surface analysis

A recent article by Tiekink and collaborators (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) reviews and describes the uses and utility of Hirshfeld-surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]), and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]), to analyse inter­molecular contacts in crystals. The various analyses (dnorm, curvedness, shape index, and 2D-fingerprint plots) for I and II were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]).

The Hirshfeld surfaces of compounds I and II mapped over dnorm are given in Fig. 5[link], and the inter­molecular contacts are illustrated in Fig. 6[link]a for I and Fig. 7[link]a for II. They are colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii), such that the red spots indicate inter­molecular contacts involved in hydrogen bonding. The presence of inter­actions are indicated by red and blue areas on the shape-index surface (Fig. 6[link]b for I and 7b for II). Areas on the Hirshfeld surface with high curvedness tend to divide the surface into contact patches with the neighbouring mol­ecules. The coordination number in the crystal is thus indicated by the curvedness of the Hirshfeld surface (Fig. 6[link]c for I and Fig. 7[link]c for II). The nearest neighbour coordination environment of a mol­ecule is indicated by colour patches on the Hirshfeld surface depending on their closeness to adjacent mol­ecules (Fig. 6[link]d for I and Fig. 7[link]d for II).

[Figure 5]
Figure 5
The Hirshfeld surfaces of compounds I and II, mapped over dnorm.
[Figure 6]
Figure 6
The Hirshfeld surfaces for visualizing the inter­molecular contacts of compound I: (a) dnorm, showing the various inter­molecular contacts in the crystal, (b) shape index, (c) curvedness and (d) fragment patches.
[Figure 7]
Figure 7
The Hirshfeld surfaces for visualizing the inter­molecular contacts of compound II: (a) dnorm, showing the various inter­molecular contacts in the crystal, (b) shape index, (c) curvedness and (d) fragment patches.

Atom-contact fingerprint plots are given in Figs. 8[link] and 9[link]. For compound I, they reveal the fraction of inter­molecular contacts to be H⋯H = 31.0%, O⋯H/H⋯O = 31.0%, C⋯H/H⋯C = 18.9%, F⋯H/H⋯F = 6.3%, C⋯C = 4.9%, C⋯O/O⋯C = 3.4%, N⋯H/H⋯N = 2.3%, and C⋯F/F⋯C = 0.6%). For compound II, they reveal a similar trend, with the fraction of inter­molecular contacts being C⋯H/H⋯C = 35.2%, H⋯H = 35.1%, O⋯H/H⋯O = 14.2%, C⋯C = 7.9%, N⋯H/H⋯N contacts = 4.2%, C⋯N/N⋯C contacts = 1.0%, C⋯O/O⋯C = 0.2% and S⋯H/H⋯S = 0.1%.

[Figure 8]
Figure 8
The full two-dimensional fingerprint plot for compound I (a) and plots delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) F⋯H/H⋯F, (f) C⋯C, (g) O⋯C/C⋯O, (h) N⋯H/H⋯N, and (i) F⋯C/C⋯F contacts.
[Figure 9]
Figure 9
The full two-dimensional fingerprint plot for compound II (a) and plots delineated into (b) H⋯C/C⋯H, (c) H⋯H, (d) O⋯H/H⋯O, (e) C⋯C, (f) N⋯H/H⋯N, (g) N⋯C/C⋯N, (h) O⋯C/C⋯O and (i) S⋯H/H⋯S contacts.

5. Synthesis and crystallization

Compound I: To a solution of ethyl (E)-3-{2-[(E)-4-fluoro-2-nitro­styr­yl]-5-meth­oxy-1-(benzene­sulfon­yl)-1H-indol-3-yl}acrylate (3.0 g) in xylenes (100 mL), MnO2 (2.5 g) was added, and the reaction mixture was refluxed for 12 h. It was then filtered through a celite pad and washed with hot xylenes (2 × 10 mL). The combined filtrate was concentrated under vacuum and then triturated with MeOH to give compound I (2.46 g, 85%) as a pale-yellow solid, mp: 473–475% K. Crystals of I were obtained by re-crystallization from ethanol.

Compound II: To a solution of 2-(2-nitro­phen­yl)-9-(benzene­sulfon­yl)-9H-carbazole-3-carbaldehyde (1.0 g) in dry THF (50 mL), Raney-Ni (2.0 g) was carefully added, and the reaction mixture was stirred at room temperature for 3 h. Then, the nickel residue was carefully filtered through a celite pad and washed with hot THF (3 × 30 mL). The combined filtrate was evaporated under vacuum and then triturated with MeOH to give compound II (0.79 g, 80%) as a white solid, mp: 487–489 K. Crystals suitable for X-ray analysis were obtained by re-crystallization from ethanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The positions of hydrogen atoms were found in difference electron-density maps. Hydrogen atoms bound to carbon were treated as riding atoms, with d(C—H) = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) (meth­yl). Methyl group torsion angles were optimized.

Table 3
Experimental details

  I II
Crystal data
Chemical formula C28H21FN2O7S C25H16N2O2S
Mr 548.53 408.46
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 298 296
a, b, c (Å) 8.1589 (9), 12.2053 (13), 12.9129 (13) 10.142 (1), 12.097 (1), 16.2218 (15)
α, β, γ (°) 101.569 (4), 93.086 (4), 92.481 (4) 90, 104.846 (4), 90
V3) 1256.0 (2) 1923.8 (3)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.19 0.19
Crystal size (mm) 0.31 × 0.24 × 0.13 0.40 × 0.35 × 0.25
 
Data collection
Diffractometer Bruker D8 Venture diffractometer with Photon II detector Bruker D8 Venture diffractometer with Photon II detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.923, 0.965 0.867, 0.957
No. of measured, independent and observed [I > 2σ(I)] reflections 31739, 5194, 4176 60289, 4185, 3488
Rint 0.051 0.051
(sin θ/λ)max−1) 0.628 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.150, 1.13 0.054, 0.161, 1.13
No. of reflections 5194 4185
No. of parameters 354 271
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.38 0.32, −0.44
Computer programs: APEX3, SAINT and XPREP (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: APEX3/SAINT (Bruker, 2016); data reduction: SAINT/XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and PLATON (Spek, 2020).

Ethyl 9-(benzenesulfonyl)-2-(4-fluoro-2-nitrophenyl)-6-methoxy-9H-carbazole-3-carboxylate (I) top
Crystal data top
C28H21FN2O7SZ = 2
Mr = 548.53F(000) = 568
Triclinic, P1Dx = 1.450 Mg m3
a = 8.1589 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.2053 (13) ÅCell parameters from 9133 reflections
c = 12.9129 (13) Åθ = 2.9–20.6°
α = 101.569 (4)°µ = 0.19 mm1
β = 93.086 (4)°T = 298 K
γ = 92.481 (4)°Solid, pale yellow
V = 1256.0 (2) Å30.31 × 0.24 × 0.13 mm
Data collection top
Bruker D8 Venture
diffractometer with Photon II detector
5194 independent reflections
Radiation source: fine-focus sealed tube4176 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω and φ scanθmax = 26.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1010
Tmin = 0.923, Tmax = 0.965k = 1515
31739 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.9577P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
5194 reflectionsΔρmax = 0.28 e Å3
354 parametersΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5947 (3)0.82807 (19)0.33841 (19)0.0432 (5)
C20.5905 (4)0.9424 (2)0.3415 (2)0.0547 (7)
H20.5349510.9695810.2879410.066*
C30.6708 (4)1.0137 (2)0.4262 (2)0.0602 (8)
H30.6702801.0904900.4294130.072*
C40.7534 (4)0.9746 (2)0.5077 (2)0.0550 (7)
C50.7536 (3)0.8609 (2)0.5069 (2)0.0484 (6)
H50.8052340.8343520.5622120.058*
C60.6741 (3)0.78757 (18)0.42037 (19)0.0413 (5)
C70.6522 (3)0.66650 (18)0.39461 (18)0.0384 (5)
C80.7000 (3)0.58302 (18)0.44653 (18)0.0382 (5)
H80.7600230.6017970.5115040.046*
C90.6584 (3)0.47101 (18)0.40159 (18)0.0369 (5)
C100.5673 (3)0.44179 (18)0.30303 (18)0.0369 (5)
C110.5192 (3)0.52566 (19)0.25104 (19)0.0411 (5)
H110.4588350.5074650.1861750.049*
C120.5621 (3)0.63664 (18)0.29683 (19)0.0390 (5)
C130.4990 (3)0.32669 (18)0.25064 (17)0.0359 (5)
C140.5846 (3)0.23731 (19)0.19937 (19)0.0397 (5)
C150.5085 (3)0.1383 (2)0.1430 (2)0.0461 (6)
H150.5693680.0804940.1092860.055*
C160.3402 (3)0.1284 (2)0.1385 (2)0.0479 (6)
C170.2487 (3)0.2110 (2)0.1896 (2)0.0508 (6)
H170.1348120.2013320.1875870.061*
C180.3288 (3)0.3093 (2)0.2444 (2)0.0441 (5)
H180.2664210.3660800.2784780.053*
C190.7117 (3)0.38165 (19)0.45764 (19)0.0422 (5)
C200.6890 (3)0.7300 (2)0.0857 (2)0.0506 (6)
C210.7943 (4)0.8241 (3)0.1038 (2)0.0722 (9)
H210.7615070.8931460.1385960.087*
C220.9537 (6)0.8117 (5)0.0674 (3)0.1089 (18)
H221.0297010.8725750.0790310.131*
C230.9955 (6)0.7078 (7)0.0144 (3)0.120 (2)
H231.1014710.6992210.0080050.143*
C240.8868 (7)0.6181 (5)0.0060 (3)0.1110 (17)
H240.9166150.5503140.0455270.133*
C250.7336 (5)0.6269 (3)0.0313 (3)0.0739 (9)
H250.6601660.5645830.0203590.089*
C260.9088 (6)1.0250 (3)0.6723 (3)0.0956 (14)
H26A0.8301540.9915050.7110040.143*
H26B0.9628061.0899340.7177340.143*
H26C0.9887960.9719380.6479470.143*
C270.8536 (4)0.3375 (2)0.6062 (2)0.0535 (7)
H27A0.9343150.2949240.5651850.064*
H27B0.7646710.2860480.6162830.064*
C280.9307 (4)0.3968 (3)0.7108 (2)0.0673 (8)
H28A1.0135420.4510880.7001780.101*
H28B0.9800230.3436420.7466790.101*
H28C0.8481890.4340500.7528720.101*
N10.5207 (3)0.73549 (16)0.26146 (17)0.0445 (5)
N20.7653 (3)0.2432 (2)0.2032 (2)0.0580 (6)
O10.3949 (3)0.64184 (17)0.08549 (17)0.0671 (6)
O20.4347 (3)0.84684 (17)0.12977 (17)0.0676 (6)
O30.8282 (3)1.05644 (16)0.58552 (18)0.0792 (7)
O40.6862 (3)0.28366 (15)0.42290 (17)0.0798 (8)
O50.7909 (2)0.42120 (13)0.55099 (14)0.0494 (4)
O60.8380 (3)0.33442 (19)0.2187 (2)0.0800 (7)
O70.8334 (3)0.1550 (2)0.1902 (3)0.0957 (9)
S10.49241 (8)0.73975 (5)0.13348 (5)0.0483 (2)
F10.2637 (2)0.03387 (13)0.08098 (16)0.0748 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0559 (15)0.0285 (11)0.0468 (13)0.0031 (10)0.0074 (11)0.0106 (10)
C20.0776 (19)0.0340 (13)0.0562 (16)0.0105 (12)0.0076 (14)0.0156 (11)
C30.093 (2)0.0257 (12)0.0631 (17)0.0059 (13)0.0135 (16)0.0100 (11)
C40.079 (2)0.0314 (13)0.0523 (15)0.0046 (12)0.0100 (14)0.0029 (11)
C50.0657 (17)0.0318 (12)0.0465 (14)0.0009 (11)0.0030 (12)0.0058 (10)
C60.0529 (14)0.0288 (11)0.0435 (13)0.0018 (10)0.0076 (10)0.0096 (9)
C70.0481 (13)0.0276 (11)0.0405 (12)0.0004 (9)0.0048 (10)0.0092 (9)
C80.0482 (13)0.0292 (11)0.0376 (11)0.0007 (9)0.0017 (10)0.0086 (9)
C90.0443 (12)0.0296 (11)0.0385 (12)0.0012 (9)0.0044 (9)0.0104 (9)
C100.0420 (12)0.0292 (11)0.0401 (12)0.0001 (9)0.0052 (9)0.0081 (9)
C110.0480 (13)0.0348 (12)0.0404 (12)0.0019 (10)0.0029 (10)0.0099 (9)
C120.0456 (13)0.0305 (11)0.0439 (12)0.0007 (9)0.0023 (10)0.0154 (9)
C130.0411 (12)0.0292 (11)0.0385 (11)0.0011 (9)0.0011 (9)0.0107 (9)
C140.0394 (12)0.0350 (12)0.0443 (12)0.0005 (9)0.0022 (10)0.0078 (9)
C150.0554 (15)0.0312 (12)0.0497 (14)0.0025 (10)0.0027 (11)0.0048 (10)
C160.0517 (15)0.0316 (12)0.0585 (15)0.0067 (10)0.0146 (12)0.0110 (11)
C170.0379 (13)0.0437 (14)0.0729 (18)0.0046 (11)0.0077 (12)0.0214 (13)
C180.0414 (13)0.0374 (12)0.0554 (14)0.0046 (10)0.0038 (11)0.0135 (11)
C190.0546 (14)0.0307 (12)0.0427 (13)0.0006 (10)0.0019 (11)0.0113 (9)
C200.0607 (16)0.0537 (15)0.0379 (13)0.0025 (12)0.0091 (11)0.0141 (11)
C210.074 (2)0.091 (2)0.0472 (16)0.0215 (18)0.0042 (15)0.0091 (16)
C220.081 (3)0.191 (5)0.052 (2)0.043 (3)0.0110 (19)0.033 (3)
C230.078 (3)0.235 (7)0.050 (2)0.042 (4)0.001 (2)0.035 (3)
C240.122 (4)0.153 (5)0.064 (2)0.075 (4)0.005 (3)0.023 (3)
C250.098 (3)0.071 (2)0.0551 (18)0.0295 (19)0.0012 (17)0.0137 (15)
C260.144 (4)0.065 (2)0.068 (2)0.032 (2)0.022 (2)0.0060 (18)
C270.0665 (17)0.0436 (14)0.0554 (16)0.0101 (12)0.0020 (13)0.0220 (12)
C280.076 (2)0.072 (2)0.0559 (17)0.0126 (16)0.0095 (15)0.0197 (15)
N10.0546 (12)0.0305 (10)0.0508 (12)0.0017 (9)0.0021 (9)0.0155 (9)
N20.0448 (13)0.0518 (14)0.0717 (16)0.0017 (11)0.0119 (11)0.0023 (11)
O10.0753 (14)0.0557 (12)0.0692 (13)0.0174 (10)0.0300 (11)0.0238 (10)
O20.0830 (15)0.0528 (12)0.0743 (14)0.0187 (10)0.0081 (11)0.0302 (10)
O30.128 (2)0.0355 (10)0.0670 (14)0.0149 (11)0.0070 (13)0.0004 (9)
O40.142 (2)0.0282 (10)0.0659 (13)0.0011 (11)0.0335 (13)0.0130 (9)
O50.0695 (12)0.0319 (8)0.0475 (10)0.0026 (8)0.0100 (8)0.0134 (7)
O60.0534 (12)0.0631 (14)0.1118 (19)0.0173 (11)0.0258 (12)0.0109 (13)
O70.0493 (13)0.0665 (15)0.163 (3)0.0153 (11)0.0119 (15)0.0009 (16)
S10.0555 (4)0.0389 (3)0.0527 (4)0.0009 (3)0.0122 (3)0.0189 (3)
F10.0759 (12)0.0370 (8)0.1018 (14)0.0127 (8)0.0333 (10)0.0047 (8)
Geometric parameters (Å, º) top
C1—C21.390 (3)C17—H170.9300
C1—C61.396 (3)C18—H180.9300
C1—N11.434 (3)C19—O41.195 (3)
C2—C31.369 (4)C19—O51.326 (3)
C2—H20.9300C20—C211.377 (4)
C3—C41.395 (4)C20—C251.387 (4)
C3—H30.9300C20—S11.749 (3)
C4—O31.363 (3)C21—C221.411 (6)
C4—C51.386 (3)C21—H210.9300
C5—C61.393 (3)C22—C231.381 (8)
C5—H50.9300C22—H220.9300
C6—C71.449 (3)C23—C241.352 (7)
C7—C81.386 (3)C23—H230.9300
C7—C121.400 (3)C24—C251.365 (6)
C8—C91.393 (3)C24—H240.9300
C8—H80.9300C25—H250.9300
C9—C101.412 (3)C26—O31.397 (4)
C9—C191.492 (3)C26—H26A0.9600
C10—C111.391 (3)C26—H26B0.9600
C10—C131.501 (3)C26—H26C0.9600
C11—C121.387 (3)C27—O51.454 (3)
C11—H110.9300C27—C281.490 (4)
C12—N11.421 (3)C27—H27A0.9700
C13—C181.392 (3)C27—H27B0.9700
C13—C141.393 (3)C28—H28A0.9600
C14—C151.381 (3)C28—H28B0.9600
C14—N21.471 (3)C28—H28C0.9600
C15—C161.371 (4)N1—S11.668 (2)
C15—H150.9300N2—O61.213 (3)
C16—F11.348 (3)N2—O71.219 (3)
C16—C171.363 (4)O1—S11.419 (2)
C17—C181.382 (3)O2—S11.4172 (19)
C2—C1—C6121.1 (2)O4—C19—O5122.6 (2)
C2—C1—N1129.8 (2)O4—C19—C9124.0 (2)
C6—C1—N1109.12 (19)O5—C19—C9113.48 (19)
C3—C2—C1117.7 (3)C21—C20—C25122.3 (3)
C3—C2—H2121.1C21—C20—S1119.3 (2)
C1—C2—H2121.1C25—C20—S1118.5 (3)
C2—C3—C4121.9 (2)C20—C21—C22117.5 (4)
C2—C3—H3119.0C20—C21—H21121.3
C4—C3—H3119.0C22—C21—H21121.3
O3—C4—C5124.8 (3)C23—C22—C21119.1 (4)
O3—C4—C3114.5 (2)C23—C22—H22120.5
C5—C4—C3120.7 (3)C21—C22—H22120.5
C4—C5—C6117.8 (2)C24—C23—C22122.0 (5)
C4—C5—H5121.1C24—C23—H23119.0
C6—C5—H5121.1C22—C23—H23119.0
C5—C6—C1120.8 (2)C23—C24—C25120.1 (5)
C5—C6—C7131.9 (2)C23—C24—H24119.9
C1—C6—C7107.3 (2)C25—C24—H24119.9
C8—C7—C12119.1 (2)C24—C25—C20119.0 (4)
C8—C7—C6133.2 (2)C24—C25—H25120.5
C12—C7—C6107.7 (2)C20—C25—H25120.5
C7—C8—C9120.1 (2)O3—C26—H26A109.5
C7—C8—H8119.9O3—C26—H26B109.5
C9—C8—H8119.9H26A—C26—H26B109.5
C8—C9—C10120.3 (2)O3—C26—H26C109.5
C8—C9—C19119.7 (2)H26A—C26—H26C109.5
C10—C9—C19120.0 (2)H26B—C26—H26C109.5
C11—C10—C9119.5 (2)O5—C27—C28108.0 (2)
C11—C10—C13114.0 (2)O5—C27—H27A110.1
C9—C10—C13126.16 (19)C28—C27—H27A110.1
C12—C11—C10119.4 (2)O5—C27—H27B110.1
C12—C11—H11120.3C28—C27—H27B110.1
C10—C11—H11120.3H27A—C27—H27B108.4
C11—C12—C7121.5 (2)C27—C28—H28A109.5
C11—C12—N1129.3 (2)C27—C28—H28B109.5
C7—C12—N1109.07 (19)H28A—C28—H28B109.5
C18—C13—C14115.5 (2)C27—C28—H28C109.5
C18—C13—C10116.5 (2)H28A—C28—H28C109.5
C14—C13—C10127.7 (2)H28B—C28—H28C109.5
C15—C14—C13123.4 (2)C12—N1—C1106.72 (19)
C15—C14—N2115.6 (2)C12—N1—S1122.61 (17)
C13—C14—N2121.0 (2)C1—N1—S1122.44 (16)
C16—C15—C14117.6 (2)O6—N2—O7123.7 (2)
C16—C15—H15121.2O6—N2—C14118.9 (2)
C14—C15—H15121.2O7—N2—C14117.4 (2)
F1—C16—C17119.4 (2)C4—O3—C26118.4 (2)
F1—C16—C15118.4 (2)C19—O5—C27115.66 (19)
C17—C16—C15122.1 (2)O2—S1—O1119.94 (13)
C16—C17—C18118.6 (2)O2—S1—N1106.24 (12)
C16—C17—H17120.7O1—S1—N1106.37 (11)
C18—C17—H17120.7O2—S1—C20109.43 (14)
C17—C18—C13122.6 (2)O1—S1—C20109.01 (14)
C17—C18—H18118.7N1—S1—C20104.74 (11)
C13—C18—H18118.7
C6—C1—C2—C31.9 (4)C15—C16—C17—C182.4 (4)
N1—C1—C2—C3178.9 (3)C16—C17—C18—C130.9 (4)
C1—C2—C3—C40.6 (5)C14—C13—C18—C171.1 (3)
C2—C3—C4—O3179.4 (3)C10—C13—C18—C17173.7 (2)
C2—C3—C4—C51.5 (5)C8—C9—C19—O4177.3 (3)
O3—C4—C5—C6178.7 (3)C10—C9—C19—O42.2 (4)
C3—C4—C5—C62.3 (4)C8—C9—C19—O52.9 (3)
C4—C5—C6—C11.0 (4)C10—C9—C19—O5177.6 (2)
C4—C5—C6—C7179.7 (3)C25—C20—C21—C221.9 (4)
C2—C1—C6—C51.1 (4)S1—C20—C21—C22177.6 (2)
N1—C1—C6—C5178.7 (2)C20—C21—C22—C231.2 (5)
C2—C1—C6—C7178.4 (2)C21—C22—C23—C241.6 (6)
N1—C1—C6—C70.8 (3)C22—C23—C24—C253.8 (7)
C5—C6—C7—C80.9 (5)C23—C24—C25—C203.1 (6)
C1—C6—C7—C8178.5 (3)C21—C20—C25—C240.2 (5)
C5—C6—C7—C12179.8 (3)S1—C20—C25—C24179.7 (3)
C1—C6—C7—C120.9 (3)C11—C12—N1—C1179.3 (2)
C12—C7—C8—C90.1 (4)C7—C12—N1—C12.6 (3)
C6—C7—C8—C9179.2 (2)C11—C12—N1—S131.7 (4)
C7—C8—C9—C100.0 (3)C7—C12—N1—S1151.62 (18)
C7—C8—C9—C19179.5 (2)C2—C1—N1—C12179.4 (3)
C8—C9—C10—C110.0 (3)C6—C1—N1—C122.1 (3)
C19—C9—C10—C11179.5 (2)C2—C1—N1—S131.5 (4)
C8—C9—C10—C13173.3 (2)C6—C1—N1—S1151.14 (19)
C19—C9—C10—C137.2 (4)C15—C14—N2—O6155.8 (3)
C9—C10—C11—C120.2 (4)C13—C14—N2—O624.6 (4)
C13—C10—C11—C12174.2 (2)C15—C14—N2—O724.1 (4)
C10—C11—C12—C70.3 (4)C13—C14—N2—O7155.5 (3)
C10—C11—C12—N1176.7 (2)C5—C4—O3—C261.4 (5)
C8—C7—C12—C110.2 (4)C3—C4—O3—C26177.7 (3)
C6—C7—C12—C11179.2 (2)O4—C19—O5—C273.4 (4)
C8—C7—C12—N1177.3 (2)C9—C19—O5—C27176.7 (2)
C6—C7—C12—N12.2 (3)C28—C27—O5—C19177.3 (2)
C11—C10—C13—C1862.6 (3)C12—N1—S1—O2173.3 (2)
C9—C10—C13—C18110.9 (3)C1—N1—S1—O242.4 (2)
C11—C10—C13—C14111.5 (3)C12—N1—S1—O144.5 (2)
C9—C10—C13—C1475.0 (3)C1—N1—S1—O1171.3 (2)
C18—C13—C14—C151.8 (3)C12—N1—S1—C2070.9 (2)
C10—C13—C14—C15172.4 (2)C1—N1—S1—C2073.4 (2)
C18—C13—C14—N2177.8 (2)C21—C20—S1—O233.8 (3)
C10—C13—C14—N28.1 (4)C25—C20—S1—O2146.8 (2)
C13—C14—C15—C160.4 (4)C21—C20—S1—O1166.7 (2)
N2—C14—C15—C16179.1 (2)C25—C20—S1—O113.8 (2)
C14—C15—C16—F1177.9 (2)C21—C20—S1—N179.8 (2)
C14—C15—C16—C171.7 (4)C25—C20—S1—N199.7 (2)
F1—C16—C17—C18177.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.932.362.945 (4)121
C3—H3···O4i0.932.373.301 (3)174
C11—H11···O10.932.352.952 (3)123
C17—H17···O7ii0.932.503.428 (3)173
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z.
12-(Benzenesulfonyl)-12H-quinolino[4,3-b]carbazole (II) top
Crystal data top
C25H16N2O2SF(000) = 848
Mr = 408.46Dx = 1.410 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.142 (1) ÅCell parameters from 9986 reflections
b = 12.097 (1) Åθ = 2.7–29.5°
c = 16.2218 (15) ŵ = 0.19 mm1
β = 104.846 (4)°T = 296 K
V = 1923.8 (3) Å3Solid, colourless
Z = 40.40 × 0.35 × 0.25 mm
Data collection top
Bruker D8 Venture
diffractometer with Photon II detector
4185 independent reflections
Radiation source: fine-focus sealed tube3488 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω and φ scanθmax = 27.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1212
Tmin = 0.867, Tmax = 0.957k = 1515
60289 measured reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0465P)2 + 2.5552P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
4185 reflectionsΔρmax = 0.32 e Å3
271 parametersΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8659 (3)0.1951 (2)0.62473 (17)0.0405 (6)
C20.8576 (3)0.1281 (3)0.69302 (19)0.0518 (7)
H20.7962040.1429900.7254440.062*
C30.9447 (3)0.0387 (3)0.7104 (2)0.0592 (8)
H30.9419230.0073340.7558000.071*
C41.0364 (3)0.0151 (3)0.6623 (2)0.0576 (8)
H41.0943930.0454450.6762870.069*
C51.0418 (3)0.0807 (2)0.5943 (2)0.0515 (7)
H51.1020620.0644460.5613280.062*
C60.9560 (3)0.1717 (2)0.57542 (16)0.0391 (5)
C70.9415 (2)0.2576 (2)0.51200 (16)0.0368 (5)
C81.0084 (3)0.2769 (2)0.44958 (17)0.0427 (6)
H81.0754960.2284510.4419610.051*
C90.9744 (3)0.3705 (2)0.39769 (16)0.0392 (6)
C100.8736 (2)0.4456 (2)0.40903 (15)0.0340 (5)
C110.8069 (3)0.4262 (2)0.47373 (15)0.0363 (5)
H110.7410280.4748510.4826890.044*
C120.8418 (2)0.3330 (2)0.52353 (15)0.0340 (5)
C130.8459 (2)0.5400 (2)0.35213 (15)0.0372 (5)
C140.7505 (3)0.6228 (2)0.35608 (18)0.0457 (6)
H140.7012300.6179740.3970500.055*
C150.7285 (3)0.7109 (3)0.3006 (2)0.0543 (7)
H150.6647910.7646580.3042880.065*
C160.8013 (3)0.7197 (3)0.2390 (2)0.0562 (8)
H160.7866550.7795700.2017670.067*
C170.8941 (3)0.6405 (3)0.2332 (2)0.0533 (7)
H170.9418800.6464620.1914620.064*
C180.9187 (3)0.5501 (2)0.28923 (17)0.0432 (6)
C191.0408 (3)0.3910 (3)0.33103 (19)0.0523 (7)
H191.1070160.3408090.3247730.063*
C200.5258 (3)0.2476 (3)0.54943 (17)0.0464 (6)
C210.4892 (3)0.1494 (3)0.5817 (2)0.0557 (8)
H210.5297940.1286640.6376930.067*
C220.3916 (4)0.0826 (3)0.5298 (3)0.0770 (11)
H220.3645720.0177080.5516090.092*
C230.3347 (4)0.1110 (5)0.4470 (3)0.0920 (16)
H230.2702980.0649560.4122170.110*
C240.3727 (4)0.2082 (5)0.4147 (3)0.0880 (15)
H240.3339130.2266250.3580530.106*
C250.4677 (3)0.2788 (4)0.4653 (2)0.0656 (9)
H250.4918610.3448370.4437000.079*
N10.7952 (2)0.29582 (18)0.59462 (14)0.0400 (5)
N21.0159 (3)0.4741 (2)0.27880 (17)0.0562 (7)
O10.6239 (2)0.44428 (18)0.58737 (15)0.0610 (6)
O20.6604 (2)0.30363 (18)0.70130 (12)0.0553 (5)
S10.64894 (7)0.33247 (6)0.61490 (4)0.0440 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0408 (13)0.0378 (13)0.0409 (13)0.0012 (11)0.0070 (11)0.0004 (10)
C20.0532 (17)0.0534 (17)0.0502 (16)0.0005 (14)0.0156 (13)0.0084 (13)
C30.0629 (19)0.0517 (18)0.0594 (18)0.0013 (15)0.0089 (15)0.0174 (15)
C40.0558 (18)0.0442 (16)0.067 (2)0.0085 (14)0.0056 (15)0.0108 (14)
C50.0474 (16)0.0465 (16)0.0583 (17)0.0119 (13)0.0097 (13)0.0023 (13)
C60.0380 (13)0.0377 (13)0.0392 (13)0.0019 (10)0.0056 (10)0.0006 (10)
C70.0323 (12)0.0378 (13)0.0386 (12)0.0026 (10)0.0061 (10)0.0032 (10)
C80.0375 (13)0.0437 (14)0.0492 (15)0.0108 (11)0.0156 (11)0.0018 (11)
C90.0358 (13)0.0451 (14)0.0386 (13)0.0029 (11)0.0131 (10)0.0029 (11)
C100.0328 (11)0.0337 (12)0.0344 (12)0.0022 (9)0.0064 (9)0.0052 (9)
C110.0374 (12)0.0339 (12)0.0393 (13)0.0030 (10)0.0129 (10)0.0036 (10)
C120.0325 (11)0.0363 (12)0.0336 (11)0.0011 (10)0.0093 (9)0.0038 (9)
C130.0360 (12)0.0379 (13)0.0361 (12)0.0052 (10)0.0061 (10)0.0041 (10)
C140.0477 (15)0.0428 (14)0.0475 (15)0.0013 (12)0.0138 (12)0.0013 (12)
C150.0539 (17)0.0420 (15)0.0649 (19)0.0036 (13)0.0114 (14)0.0058 (14)
C160.0565 (18)0.0482 (17)0.0610 (19)0.0062 (14)0.0096 (14)0.0149 (14)
C170.0498 (16)0.0584 (18)0.0536 (17)0.0098 (14)0.0169 (13)0.0094 (14)
C180.0402 (14)0.0464 (15)0.0437 (14)0.0050 (11)0.0118 (11)0.0009 (11)
C190.0480 (16)0.0606 (18)0.0554 (17)0.0123 (14)0.0263 (13)0.0040 (14)
C200.0378 (13)0.0620 (18)0.0432 (14)0.0135 (12)0.0174 (11)0.0015 (13)
C210.0441 (16)0.0581 (18)0.068 (2)0.0082 (14)0.0211 (14)0.0037 (15)
C220.051 (2)0.070 (2)0.111 (3)0.0021 (17)0.024 (2)0.020 (2)
C230.0415 (19)0.116 (4)0.112 (4)0.010 (2)0.008 (2)0.048 (3)
C240.049 (2)0.148 (5)0.059 (2)0.032 (3)0.0014 (16)0.021 (3)
C250.0470 (17)0.098 (3)0.0527 (18)0.0202 (18)0.0141 (14)0.0052 (18)
N10.0420 (12)0.0391 (11)0.0415 (11)0.0061 (9)0.0155 (9)0.0025 (9)
N20.0544 (15)0.0668 (17)0.0552 (15)0.0032 (13)0.0283 (12)0.0068 (13)
O10.0772 (15)0.0467 (12)0.0726 (14)0.0203 (11)0.0439 (12)0.0080 (10)
O20.0696 (14)0.0626 (13)0.0396 (10)0.0056 (11)0.0249 (10)0.0039 (9)
S10.0508 (4)0.0455 (4)0.0419 (4)0.0091 (3)0.0230 (3)0.0002 (3)
Geometric parameters (Å, º) top
C1—C61.389 (4)C14—H140.9300
C1—C21.392 (4)C15—C161.390 (5)
C1—N11.435 (3)C15—H150.9300
C2—C31.379 (4)C16—C171.364 (5)
C2—H20.9300C16—H160.9300
C3—C41.387 (5)C17—C181.403 (4)
C3—H30.9300C17—H170.9300
C4—C51.372 (4)C18—N21.390 (4)
C4—H40.9300C19—N21.297 (4)
C5—C61.388 (4)C19—H190.9300
C5—H50.9300C20—C211.387 (4)
C6—C71.444 (4)C20—C251.393 (4)
C7—C81.376 (4)C20—S11.750 (3)
C7—C121.409 (3)C21—C221.384 (5)
C8—C91.400 (4)C21—H210.9300
C8—H80.9300C22—C231.364 (6)
C9—C101.415 (3)C22—H220.9300
C9—C191.435 (4)C23—C241.381 (7)
C10—C111.407 (3)C23—H230.9300
C10—C131.450 (3)C24—C251.388 (6)
C11—C121.379 (3)C24—H240.9300
C11—H110.9300C25—H250.9300
C12—N11.426 (3)N1—S11.660 (2)
C13—C141.405 (4)O1—S11.427 (2)
C13—C181.409 (4)O2—S11.420 (2)
C14—C151.375 (4)
C6—C1—C2121.5 (3)C14—C15—H15119.9
C6—C1—N1108.8 (2)C16—C15—H15119.9
C2—C1—N1129.7 (3)C17—C16—C15119.9 (3)
C3—C2—C1116.9 (3)C17—C16—H16120.0
C3—C2—H2121.6C15—C16—H16120.0
C1—C2—H2121.6C16—C17—C18120.9 (3)
C2—C3—C4122.2 (3)C16—C17—H17119.5
C2—C3—H3118.9C18—C17—H17119.5
C4—C3—H3118.9N2—C18—C17116.7 (3)
C5—C4—C3120.2 (3)N2—C18—C13123.4 (2)
C5—C4—H4119.9C17—C18—C13119.9 (3)
C3—C4—H4119.9N2—C19—C9125.2 (3)
C4—C5—C6118.9 (3)N2—C19—H19117.4
C4—C5—H5120.5C9—C19—H19117.4
C6—C5—H5120.5C21—C20—C25121.0 (3)
C5—C6—C1120.2 (3)C21—C20—S1119.5 (2)
C5—C6—C7132.2 (3)C25—C20—S1119.5 (3)
C1—C6—C7107.5 (2)C22—C21—C20119.3 (4)
C8—C7—C12119.6 (2)C22—C21—H21120.4
C8—C7—C6131.9 (2)C20—C21—H21120.4
C12—C7—C6108.5 (2)C23—C22—C21120.6 (4)
C7—C8—C9119.2 (2)C23—C22—H22119.7
C7—C8—H8120.4C21—C22—H22119.7
C9—C8—H8120.4C22—C23—C24119.9 (4)
C8—C9—C10121.1 (2)C22—C23—H23120.0
C8—C9—C19120.2 (2)C24—C23—H23120.0
C10—C9—C19118.8 (2)C23—C24—C25121.3 (4)
C11—C10—C9119.4 (2)C23—C24—H24119.4
C11—C10—C13123.7 (2)C25—C24—H24119.4
C9—C10—C13116.9 (2)C24—C25—C20117.9 (4)
C12—C11—C10118.3 (2)C24—C25—H25121.1
C12—C11—H11120.9C20—C25—H25121.1
C10—C11—H11120.9C12—N1—C1107.6 (2)
C11—C12—C7122.4 (2)C12—N1—S1125.03 (17)
C11—C12—N1130.0 (2)C1—N1—S1123.60 (18)
C7—C12—N1107.5 (2)C19—N2—C18117.3 (2)
C14—C13—C18117.8 (2)O2—S1—O1120.34 (13)
C14—C13—C10123.8 (2)O2—S1—N1106.19 (12)
C18—C13—C10118.5 (2)O1—S1—N1106.70 (12)
C15—C14—C13121.3 (3)O2—S1—C20108.65 (14)
C15—C14—H14119.3O1—S1—C20108.92 (15)
C13—C14—H14119.3N1—S1—C20104.97 (12)
C14—C15—C16120.2 (3)
C6—C1—C2—C31.1 (4)C16—C17—C18—N2179.5 (3)
N1—C1—C2—C3176.1 (3)C16—C17—C18—C130.5 (4)
C1—C2—C3—C40.3 (5)C14—C13—C18—N2179.8 (3)
C2—C3—C4—C50.8 (5)C10—C13—C18—N20.0 (4)
C3—C4—C5—C61.1 (5)C14—C13—C18—C170.2 (4)
C4—C5—C6—C10.3 (4)C10—C13—C18—C17180.0 (2)
C4—C5—C6—C7176.9 (3)C8—C9—C19—N2179.1 (3)
C2—C1—C6—C50.9 (4)C10—C9—C19—N20.2 (5)
N1—C1—C6—C5176.9 (2)C25—C20—C21—C221.2 (4)
C2—C1—C6—C7178.7 (3)S1—C20—C21—C22179.9 (2)
N1—C1—C6—C70.9 (3)C20—C21—C22—C232.0 (5)
C5—C6—C7—C80.0 (5)C21—C22—C23—C241.1 (6)
C1—C6—C7—C8177.4 (3)C22—C23—C24—C250.5 (6)
C5—C6—C7—C12177.5 (3)C23—C24—C25—C201.2 (5)
C1—C6—C7—C120.0 (3)C21—C20—C25—C240.4 (4)
C12—C7—C8—C91.1 (4)S1—C20—C25—C24178.5 (2)
C6—C7—C8—C9178.3 (3)C11—C12—N1—C1178.7 (2)
C7—C8—C9—C100.6 (4)C7—C12—N1—C11.4 (3)
C7—C8—C9—C19178.7 (3)C11—C12—N1—S122.5 (4)
C8—C9—C10—C110.2 (4)C7—C12—N1—S1160.13 (18)
C19—C9—C10—C11179.6 (2)C6—C1—N1—C121.4 (3)
C8—C9—C10—C13179.9 (2)C2—C1—N1—C12179.0 (3)
C19—C9—C10—C130.8 (4)C6—C1—N1—S1160.52 (19)
C9—C10—C11—C120.7 (4)C2—C1—N1—S121.9 (4)
C13—C10—C11—C12179.7 (2)C9—C19—N2—C181.1 (5)
C10—C11—C12—C70.2 (4)C17—C18—N2—C19179.1 (3)
C10—C11—C12—N1177.2 (2)C13—C18—N2—C190.9 (4)
C8—C7—C12—C110.6 (4)C12—N1—S1—O2163.8 (2)
C6—C7—C12—C11178.5 (2)C1—N1—S1—O240.7 (2)
C8—C7—C12—N1176.9 (2)C12—N1—S1—O134.3 (3)
C6—C7—C12—N10.9 (3)C1—N1—S1—O1170.2 (2)
C11—C10—C13—C140.7 (4)C12—N1—S1—C2081.2 (2)
C9—C10—C13—C14179.0 (2)C1—N1—S1—C2074.3 (2)
C11—C10—C13—C18179.5 (2)C21—C20—S1—O219.3 (3)
C9—C10—C13—C180.9 (3)C25—C20—S1—O2161.8 (2)
C18—C13—C14—C150.0 (4)C21—C20—S1—O1152.1 (2)
C10—C13—C14—C15179.8 (3)C25—C20—S1—O129.0 (3)
C13—C14—C15—C160.1 (5)C21—C20—S1—N194.0 (2)
C14—C15—C16—C170.4 (5)C25—C20—S1—N184.9 (2)
C15—C16—C17—C180.6 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of ring C13–C18 and Cg2 is the centroid of ring C7–C12.
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.932.362.944 (4)121
C11—H11···O10.932.342.940 (3)122
C21—H21···N2i0.932.643.476 (4)150
C4—H4···Cg1ii0.932.803.605 (4)145
C16—H16···Cg3iii0.932.993.747 (3)139
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x1/2, y1/2, z1/2; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the SAIF, IIT, Madras, India, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, D. P., Barman, B. K. & Bose, P. K. (1965). Tetrahedron, 21, 681–685.  CrossRef CAS Web of Science Google Scholar
First citationChakraborty, D. P., Bhattacharyya, P., Roy, S., Bhattacharyya, S. P. & Biswas, A. K. (1978). Phytochemistry, 17, 834–835.  CrossRef CAS Web of Science Google Scholar
First citationDijken, A. van, Bastiaansen, J. J. A. M., Kiggen, N. M. M., Langeveld, B. M. W., Rothe, C., Monkman, A., Bach, I., Stössel, P. & Brunner, K. (2004). J. Am. Chem. Soc. 126, 7718–7727.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFriend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Brédas, J. L., Lögdlund, M. & Salaneck, W. R. (1999). Nature, 397, 121–128.  Web of Science CrossRef CAS Google Scholar
First citationGiraud, F., Bourhis, M., Nauton, L., Théry, V., Herfindal, L., Døskeland, S. O., Anizon, F. & Moreau, P. (2014). Bioorg. Chem. 57, 108–115.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGu, W., Qiao, C., Wang, S. F., Hao, Y. & Miao, T. T. (2014). Bioorg. Med. Chem. Lett. 24, 328–331.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHu, L., Li, Z., Li, Y., Qu, J., Ling, Y.-H., Jiang, J. & Boykin, D. W. (2006). J. Med. Chem. 49, 6273–6282.  Web of Science CrossRef PubMed CAS Google Scholar
First citationItoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNarayanan, P., Sethusankar, K., Saravanan, V. & Mohanakrishnan, A. K. (2014a). Acta Cryst. E70, o212–o213.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNarayanan, P., Sethusankar, K., Saravanan, V. & Mohanakrishnan, A. K. (2014b). Acta Cryst. E70, o230–o231.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPindur, U. & Lemster, T. (1997). In Recent Research Developments in Organic and Bioorganic Chemistry, Vol. 1, edited by S. G. Pandalai, pp. 33–54. Trivandrum India: Transworld Research Network.  Google Scholar
First citationRamsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSacak, M. (1999). J. Appl. Polym. Sci. 74, 1792–1796.  CAS Google Scholar
First citationSanthanam, K. S. V. & Sundaresan, N. S. (1986). Indian J. Technol. 24, 417–422.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589–5594.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2003). J. Agric. Food Chem. 51, 6461–6467.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThiratmatrakul, S., Yenjai, C., Waiwut, P., Vajragupta, O., Reubroycharoen, P., Tohda, M. & Boonyarat, C. (2014). Eur. J. Med. Chem. 75, 21–30.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, S. H., Liu, Y. Q., Chen, J. M., Lu, K., Wu, W. P., Du, C. Y., Liu, Y., Wu, T., Shuai, Z. G. & Yu, G. (2010). Adv. Mater. 22, 4167–4171.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895–900.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds