research communications
Synthesis and μ-methoxo-bis(oxido{N′-[3-(oxidoimino)butan-2-ylidene]benzohydrazonato-κ3O,N,O′}vanadium(V))
of di-aSchool of Chemistry, University of Hyderabad, Hyderabad 500 046, India
*Correspondence e-mail: 19chph09@uohyd.ac.in
The structure of the dimeric oxomethoxovanadium(V) complex, [V2(CH3O)2(C11H11N3O3)2] or [VO(μ-OMe)(L)]2 (1), with N′-[3-(hydroxyimino)-butan-2-ylidene]benzohydrazide (H2L, where 2 Hs represent the dissociable oxime and amide protons) is reported. The oximate functionality can coordinate through either the O or the N atom. In the present complex, it is coordinated through the O atom. Here, methoxo groups bridge the two VV centers with a V⋯V separation of 3.3275 (10) Å. Within the centrosymmetric edge-shared dioctahedral structure, each metal center is in a distorted octahedral NO5 environment, assembled by the O,N,O-donor L2– ligand, bridging OMe− groups and the oxo group. The complex is diamagnetic in nature and brown in color. Solution electrical conductivity measurements confirmed its electrically non-conducting behavior.
Keywords: crystal structure; oxomethoxovanadium(V); Schiff base; dinuclear complex.
CCDC reference: 2218751
1. Chemical context
Interest in the coordination complexes of vanadium is primarily due to their variety of roles in biological processes such as nitrogen fixation, haloperoxidation, phosphorylation, insulin mimicking, anti-microbial and anti-fungal activities, and for their possible use as efficient catalysts in various organic reactions (Noblía et al., 2004; Plass et al., 2007; Zabin & Abdelbaset, 2016; Tsave et al., 2016; Tanabe & Nishibayashi, 2019; Assey & Mgohamwende, 2020). Oxovanadium(V) (VO3+) and dioxovanadium(V) (VO2+) catalyzed reactions include C—C bond formation, hydrogenation, dehydrogenation, sulfide oxidation, C—C/C—O bond cleavage, alcohol/aldehyde/ketone oxidation, deoxydehydration (Langeslay et al., 2019). Oxovanadium(IV/V) materials have also found several industrial applications such as gas sensors, electrochemical and optical switching devices, and reversible cathode materials for Li batteries (Guerrero-Pérez, 2017).
Our research group has previously reported some pentavalent vanadium complexes with aroylhydrazine-based et al., 2020). Herein we report a dinuclear centrosymmetric complex [VO(μ-OMe)(L)]2, where we have used an ambidentate oxime containing N′-[3-(hydroxyimino)butan-2-ylidene]benzohydrazide (H2L).
(Srivastava2. Structural commentary
The dimeric complex [VO(μ-OMe)(L)]2 (1) crystallizes in the triclinic P Here the contains half of the formula unit and the two halves of the dimeric molecule are related by an inversion center. A displacement ellipsoid plot of 1 is illustrated in Fig. 1. The meridionally spanning L2– coordinates to the metal center via the oximate-O, the imine-N and the amidate-O atoms (O1, N2 and O2, respectively) and forms fused five- and six-membered chelate rings. The methoxo-O atom (O3) completes an NO3 square plane (r.m.s. deviation = 0.02 Å) and the oxo group (O4) occupies the apical position to complete a square-pyramidal NO4 coordination environment around the metal center. As generally observed in a square-pyramidal geometry, here the vanadium atom is also shifted towards the apical oxo group by 0.34 Å. The dimeric structure is formed by two such inversion-symmetry-related square-pyramidal units, in which the methoxo-O atoms act as equatorial–axial bridging atoms. As a result, a divanadium(V) core, [OV(μ-OMe)2VO]4+, is formed at the center of 1 and each metal center in it resides in a distorted octahedral NO5 coordination sphere. Overall, two O,N,O-donor L2–, two methoxo-O atoms, and the two oxo-O atoms constitute an edge-shared dioctahedral geometry [O3NVO2VNO3] (Fig. 1). The central V2(μ-OMe)2 moiety has a pair of short [1.8351 (14) Å] and a pair of long [2.3240 (14) Å] V—O bonds (Table 1). The longer pair of bonds is trans to the corresponding oxo groups. The V⋯V distance is 3.3275 (10) Å. In general, the V=O, V—N, and V—O bond lengths in 1 are comparable with the corresponding bond lengths in other pentavalent vanadium complexes with analogous ligands (Dash et al., 2012; Sutradhar et al., 2013; Srivastava et al., 2018; Srivastava et al., 2020).
3. Supramolecular features
We have investigated the self-assembly pattern of complex 1 via intermolecular hydrogen-bonding interactions having an H⋯A distance of up to 3 Å. Only non-classical C—H⋯A (A = O and N) interactions have been found (Table 2). These are: one bifurcated C—H⋯O/N, two C—H⋯O and one C—H⋯N interactions involving the methyl C—H (C1—H1A and C4—H4A) and methoxo C—H groups (C12—H12B and C12—H12C) as donors, and iminolate-O (O2), oxo-O (O4), oximate-N (N1), and imine-N (N3) atoms as acceptors. The C—H⋯O (C12—H12B⋯O2 and C12—H12C⋯O4) interactions link the complex molecules and form linear chains parallel to each other. The bifurcated C—H⋯O/N (C1—H1A⋯O4/N1) hydrogen bonds connect the parallel linear chains and a di-periodic layered structure is formed. The C—H⋯N (C4—H4A⋯N3) interactions provide the links between the layers, assembling a three-dimensional network structure (Fig. 2).
4. Database survey
Five more structures of analogous dinuclear dimethoxo bridged oxovanadium(V) complexes are reported in the literature and deposited in the Cambridge Structure Database (CSD v5.43; Groom et al., 2016). These are [VO(μ-OMe)(L1)]2 (CSD refcode XIVJUH) with H2L1 = benzoylhydrazone of 2-hydroxy-5-methoxybenzaldehyde (Sangeetha et al., 2000), [VO(μ-OMe)(L2)]2 (CSD: GAVROL) with H2L2 = diacetyl monoxime (4-methoxybenzoyl)hydrazone (Deng et al., 2005), [VO(μ-OMe)(L3)]2 (CSD: KUBSUW) with H2L3 = benzoic acid (1-methyl-3-oxo-butylidene)hydrazide, [VO(μ-OMe)(L4)]2 (CSD: KUBTAD) with H2L4 = 4-Cl-benzoic acid (1-methyl-3-oxo-butylidene)hydrazide (Sarkar & Pal, 2009), and [VO(μ-OMe)(HL5)]2 (CSD: FUDTUW) with H3L5 = diacetylmonoxime salicyloylhydrazone (Srivastava et al., 2020).
5. Synthesis and crystallization
The Schiff base (H2L) was prepared in ∼72% yield by a condensation reaction with equimolar amounts of diacetyl-monoxime and benzohydrazide in methanol, following a reported procedure (Naskar et al., 2007).
A methanol solution (10 ml) of [VO(acac)2] (80 mg, 0.3 mmol) was added to a methanol solution (10 ml) of H2L (65 mg, 0.3 mmol) and the mixture was stirred under aerobic conditions for 6 h at room temperature. The resulting brown solution was kept for slow evaporation at room temperature in air. The dark-brown crystalline material was obtained in about a week. It was filtered, washed with cold methanol, and dried in air. A single crystal suitable for X-ray was selected from the crystals thus obtained. Yield: 47 mg (50%). HRMS in acetonitrile m/z found (calculated) for ([M + Li]+): 637.3059 (637.1008).
6. Refinement
Crystal data, data collection and structure . All non-hydrogen atoms were refined anisotropically. A riding model was used to include all hydrogen atoms at idealized positions with C—H distances of 0.93 Å (Car—H) and 0.96 Å (CMe—H) and Uiso = 1.2 or 1.5 Ueq of the attached carbon atom.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2218751
https://doi.org/10.1107/S2056989022010775/pk2672sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022010775/pk2672Isup3.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).[V2(CH3O)2(C11H11N3O3)2] | Z = 1 |
Mr = 630.40 | F(000) = 324 |
Triclinic, P1 | Dx = 1.497 Mg m−3 |
a = 7.3050 (16) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.825 (2) Å | Cell parameters from 9603 reflections |
c = 11.121 (3) Å | θ = 3.0–26.3° |
α = 105.586 (8)° | µ = 0.73 mm−1 |
β = 107.226 (8)° | T = 298 K |
γ = 101.610 (9)° | Block, brown |
V = 699.3 (3) Å3 | 0.23 × 0.22 × 0.21 mm |
Bruker APEXII CCD diffractometer | 2495 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.046 |
φ and ω scans | θmax = 26.4°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −9→9 |
Tmin = 0.851, Tmax = 0.863 | k = −12→12 |
26928 measured reflections | l = −13→13 |
2849 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0355P)2 + 0.3713P] where P = (Fo2 + 2Fc2)/3 |
2849 reflections | (Δ/σ)max < 0.001 |
184 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The structure was solved by direct methods and refined on F2 using full-matrix least-squares procedures. |
x | y | z | Uiso*/Ueq | ||
V1 | −0.08607 (5) | 0.44936 (3) | 0.10918 (3) | 0.03903 (12) | |
O1 | 0.1665 (2) | 0.50789 (16) | 0.23557 (15) | 0.0541 (4) | |
O2 | −0.29767 (19) | 0.30059 (14) | −0.05246 (14) | 0.0404 (3) | |
O3 | −0.0981 (2) | 0.58907 (14) | 0.02824 (14) | 0.0409 (3) | |
O4 | −0.2093 (3) | 0.48301 (18) | 0.20281 (16) | 0.0578 (4) | |
N1 | 0.2299 (3) | 0.4859 (2) | 0.35485 (19) | 0.0553 (5) | |
N2 | −0.0753 (2) | 0.24395 (17) | 0.12871 (16) | 0.0359 (3) | |
N3 | −0.2005 (2) | 0.11897 (17) | 0.01885 (15) | 0.0369 (4) | |
C1 | 0.2508 (4) | 0.3332 (3) | 0.4857 (2) | 0.0611 (6) | |
H1A | 0.316716 | 0.428766 | 0.555551 | 0.092* | |
H1B | 0.345953 | 0.279053 | 0.482381 | 0.092* | |
H1C | 0.143345 | 0.279288 | 0.503827 | 0.092* | |
C2 | 0.1669 (3) | 0.3528 (2) | 0.3532 (2) | 0.0454 (5) | |
C3 | 0.0332 (3) | 0.2233 (2) | 0.23344 (19) | 0.0380 (4) | |
C4 | 0.0235 (3) | 0.0707 (2) | 0.2350 (2) | 0.0484 (5) | |
H4A | 0.011744 | 0.007875 | 0.148658 | 0.073* | |
H4B | −0.091311 | 0.031769 | 0.254590 | 0.073* | |
H4C | 0.143812 | 0.074359 | 0.302670 | 0.073* | |
C5 | −0.3129 (3) | 0.1622 (2) | −0.06967 (19) | 0.0355 (4) | |
C6 | −0.4598 (3) | 0.0488 (2) | −0.19731 (19) | 0.0369 (4) | |
C7 | −0.5068 (3) | −0.1011 (2) | −0.2135 (2) | 0.0457 (5) | |
H7 | −0.452941 | −0.130314 | −0.141287 | 0.055* | |
C8 | −0.6331 (3) | −0.2060 (2) | −0.3364 (2) | 0.0551 (6) | |
H8 | −0.662785 | −0.306194 | −0.347149 | 0.066* | |
C9 | −0.7154 (4) | −0.1640 (3) | −0.4428 (2) | 0.0618 (6) | |
H9 | −0.799625 | −0.235320 | −0.525864 | 0.074* | |
C10 | −0.6730 (4) | −0.0165 (3) | −0.4264 (2) | 0.0681 (7) | |
H10 | −0.730846 | 0.012005 | −0.498326 | 0.082* | |
C11 | −0.5455 (4) | 0.0906 (3) | −0.3042 (2) | 0.0534 (6) | |
H11 | −0.517565 | 0.190539 | −0.294152 | 0.064* | |
C12 | −0.2584 (4) | 0.6538 (3) | 0.0049 (3) | 0.0625 (7) | |
H12A | −0.215116 | 0.743512 | −0.011824 | 0.094* | |
H12B | −0.294736 | 0.676184 | 0.082561 | 0.094* | |
H12C | −0.372897 | 0.585240 | −0.071673 | 0.094* |
U11 | U22 | U33 | U12 | U13 | U23 | |
V1 | 0.0405 (2) | 0.03042 (18) | 0.0430 (2) | 0.00729 (14) | 0.01466 (15) | 0.01163 (14) |
O1 | 0.0502 (9) | 0.0411 (8) | 0.0513 (9) | −0.0025 (7) | 0.0044 (7) | 0.0144 (7) |
O2 | 0.0355 (7) | 0.0337 (7) | 0.0459 (8) | 0.0062 (6) | 0.0091 (6) | 0.0146 (6) |
O3 | 0.0379 (7) | 0.0321 (7) | 0.0557 (8) | 0.0134 (6) | 0.0187 (6) | 0.0166 (6) |
O4 | 0.0737 (11) | 0.0503 (9) | 0.0594 (10) | 0.0227 (8) | 0.0364 (9) | 0.0188 (8) |
N1 | 0.0509 (11) | 0.0482 (11) | 0.0458 (10) | 0.0052 (9) | 0.0016 (8) | 0.0096 (8) |
N2 | 0.0333 (8) | 0.0333 (8) | 0.0376 (8) | 0.0067 (6) | 0.0127 (7) | 0.0102 (7) |
N3 | 0.0358 (8) | 0.0347 (8) | 0.0356 (8) | 0.0075 (7) | 0.0113 (7) | 0.0101 (7) |
C1 | 0.0609 (15) | 0.0654 (15) | 0.0410 (12) | 0.0124 (12) | 0.0056 (11) | 0.0138 (11) |
C2 | 0.0405 (11) | 0.0473 (12) | 0.0406 (11) | 0.0116 (9) | 0.0098 (9) | 0.0106 (9) |
C3 | 0.0345 (10) | 0.0413 (10) | 0.0383 (10) | 0.0114 (8) | 0.0146 (8) | 0.0130 (8) |
C4 | 0.0535 (13) | 0.0465 (12) | 0.0470 (12) | 0.0206 (10) | 0.0148 (10) | 0.0191 (10) |
C5 | 0.0316 (9) | 0.0366 (10) | 0.0396 (10) | 0.0067 (8) | 0.0177 (8) | 0.0131 (8) |
C6 | 0.0316 (9) | 0.0378 (10) | 0.0391 (10) | 0.0058 (8) | 0.0153 (8) | 0.0113 (8) |
C7 | 0.0422 (11) | 0.0410 (11) | 0.0504 (12) | 0.0095 (9) | 0.0157 (9) | 0.0146 (9) |
C8 | 0.0523 (13) | 0.0381 (11) | 0.0623 (14) | 0.0043 (10) | 0.0213 (11) | 0.0053 (10) |
C9 | 0.0574 (14) | 0.0589 (15) | 0.0445 (13) | 0.0026 (12) | 0.0132 (11) | −0.0016 (11) |
C10 | 0.0775 (18) | 0.0694 (17) | 0.0404 (12) | 0.0095 (14) | 0.0067 (12) | 0.0199 (12) |
C11 | 0.0619 (14) | 0.0455 (12) | 0.0437 (12) | 0.0054 (10) | 0.012 (1) | 0.0183 (10) |
C12 | 0.0553 (14) | 0.0576 (14) | 0.098 (2) | 0.0325 (12) | 0.0389 (14) | 0.0391 (14) |
V1—O4 | 1.5795 (16) | C4—H4A | 0.9600 |
V1—O1 | 1.8200 (16) | C4—H4B | 0.9600 |
V1—O3 | 1.8351 (14) | C4—H4C | 0.9600 |
V1—O2 | 1.9469 (14) | C5—C6 | 1.475 (3) |
V1—N2 | 2.1013 (16) | C6—C11 | 1.378 (3) |
V1—O3i | 2.3240 (14) | C6—C7 | 1.392 (3) |
O1—N1 | 1.361 (2) | C7—C8 | 1.377 (3) |
O2—C5 | 1.298 (2) | C7—H7 | 0.9300 |
O3—C12 | 1.433 (3) | C8—C9 | 1.369 (4) |
N1—C2 | 1.289 (3) | C8—H8 | 0.9300 |
N2—C3 | 1.293 (2) | C9—C10 | 1.369 (4) |
N2—N3 | 1.385 (2) | C9—H9 | 0.9300 |
N3—C5 | 1.308 (2) | C10—C11 | 1.382 (3) |
C1—C2 | 1.499 (3) | C10—H10 | 0.9300 |
C1—H1A | 0.9600 | C11—H11 | 0.9300 |
C1—H1B | 0.9600 | C12—H12A | 0.9600 |
C1—H1C | 0.9600 | C12—H12B | 0.9600 |
C2—C3 | 1.472 (3) | C12—H12C | 0.9600 |
C3—C4 | 1.491 (3) | ||
O4—V1—O1 | 100.13 (9) | N2—C3—C4 | 121.05 (18) |
O4—V1—O3 | 103.30 (7) | C2—C3—C4 | 119.71 (18) |
O1—V1—O3 | 107.22 (7) | C3—C4—H4A | 109.5 |
O4—V1—O2 | 100.48 (8) | C3—C4—H4B | 109.5 |
O1—V1—O2 | 149.15 (7) | H4A—C4—H4B | 109.5 |
O3—V1—O2 | 90.01 (6) | C3—C4—H4C | 109.5 |
O4—V1—N2 | 95.24 (7) | H4A—C4—H4C | 109.5 |
O1—V1—N2 | 80.87 (6) | H4B—C4—H4C | 109.5 |
O3—V1—N2 | 157.85 (6) | O2—C5—N3 | 123.23 (17) |
O2—V1—N2 | 74.61 (6) | O2—C5—C6 | 118.16 (17) |
O4—V1—O3i | 177.40 (7) | N3—C5—C6 | 118.58 (17) |
O1—V1—O3i | 79.72 (7) | C11—C6—C7 | 119.27 (19) |
O3—V1—O3i | 74.33 (6) | C11—C6—C5 | 119.82 (18) |
O2—V1—O3i | 80.69 (6) | C7—C6—C5 | 120.85 (18) |
N2—V1—O3i | 87.30 (5) | C8—C7—C6 | 120.0 (2) |
N1—O1—V1 | 129.68 (13) | C8—C7—H7 | 120.0 |
C5—O2—V1 | 117.55 (12) | C6—C7—H7 | 120.0 |
C12—O3—V1 | 124.15 (13) | C9—C8—C7 | 120.4 (2) |
C12—O3—V1i | 124.22 (14) | C9—C8—H8 | 119.8 |
V1—O3—V1i | 105.67 (6) | C7—C8—H8 | 119.8 |
C2—N1—O1 | 116.97 (17) | C10—C9—C8 | 119.7 (2) |
C3—N2—N3 | 117.28 (16) | C10—C9—H9 | 120.2 |
C3—N2—V1 | 126.48 (13) | C8—C9—H9 | 120.2 |
N3—N2—V1 | 116.22 (11) | C9—C10—C11 | 120.8 (2) |
C5—N3—N2 | 107.95 (15) | C9—C10—H10 | 119.6 |
C2—C1—H1A | 109.5 | C11—C10—H10 | 119.6 |
C2—C1—H1B | 109.5 | C6—C11—C10 | 119.8 (2) |
H1A—C1—H1B | 109.5 | C6—C11—H11 | 120.1 |
C2—C1—H1C | 109.5 | C10—C11—H11 | 120.1 |
H1A—C1—H1C | 109.5 | O3—C12—H12A | 109.5 |
H1B—C1—H1C | 109.5 | O3—C12—H12B | 109.5 |
N1—C2—C3 | 125.5 (2) | H12A—C12—H12B | 109.5 |
N1—C2—C1 | 114.69 (19) | O3—C12—H12C | 109.5 |
C3—C2—C1 | 119.7 (2) | H12A—C12—H12C | 109.5 |
N2—C3—C2 | 119.24 (18) | H12B—C12—H12C | 109.5 |
O4—V1—O1—N1 | 41.62 (19) | N3—N2—C3—C4 | 0.1 (3) |
O3—V1—O1—N1 | 149.08 (17) | V1—N2—C3—C4 | 178.75 (14) |
O2—V1—O1—N1 | −89.6 (2) | N1—C2—C3—N2 | −20.0 (3) |
N2—V1—O1—N1 | −52.12 (18) | C1—C2—C3—N2 | 163.8 (2) |
O3i—V1—O1—N1 | −141.01 (18) | N1—C2—C3—C4 | 160.6 (2) |
O4—V1—O3—C12 | −27.48 (19) | C1—C2—C3—C4 | −15.7 (3) |
O1—V1—O3—C12 | −132.69 (18) | V1—O2—C5—N3 | 3.6 (2) |
O2—V1—O3—C12 | 73.30 (18) | V1—O2—C5—C6 | −174.43 (12) |
N2—V1—O3—C12 | 118.6 (2) | N2—N3—C5—O2 | 1.7 (2) |
O3i—V1—O3—C12 | 153.6 (2) | N2—N3—C5—C6 | 179.71 (15) |
O4—V1—O3—V1i | 178.90 (8) | O2—C5—C6—C11 | 13.4 (3) |
O1—V1—O3—V1i | 73.68 (8) | N3—C5—C6—C11 | −164.71 (19) |
O2—V1—O3—V1i | −80.33 (7) | O2—C5—C6—C7 | −169.48 (17) |
N2—V1—O3—V1i | −35.03 (18) | N3—C5—C6—C7 | 12.4 (3) |
O3i—V1—O3—V1i | −0.001 (1) | C11—C6—C7—C8 | 1.9 (3) |
V1—O1—N1—C2 | 48.4 (3) | C5—C6—C7—C8 | −175.28 (19) |
C3—N2—N3—C5 | 172.97 (16) | C6—C7—C8—C9 | −0.9 (3) |
V1—N2—N3—C5 | −5.80 (18) | C7—C8—C9—C10 | −0.6 (4) |
O1—N1—C2—C3 | 0.3 (3) | C8—C9—C10—C11 | 1.1 (4) |
O1—N1—C2—C1 | 176.7 (2) | C7—C6—C11—C10 | −1.4 (3) |
N3—N2—C3—C2 | −179.30 (16) | C5—C6—C11—C10 | 175.8 (2) |
V1—N2—C3—C2 | −0.7 (3) | C9—C10—C11—C6 | −0.1 (4) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O4ii | 0.96 | 2.98 | 3.583 (3) | 122 |
C1—H1A···N1iii | 0.96 | 3.02 | 3.508 (3) | 113 |
C4—H4A···N3iv | 0.96 | 2.81 | 3.663 (3) | 149 |
C12—H12B···O2v | 0.96 | 2.96 | 3.531 (3) | 119 |
C12—H12C···O4v | 0.96 | 2.81 | 3.629 (3) | 144 |
Symmetry codes: (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x, −y, −z; (v) −x−1, −y+1, −z. |
Acknowledgements
We thank Professor S. Pal, School of Chemistry, University of Hyderabad, for his constant support and helpful discussions throughout this work.
Funding information
Funding for this research was provided by: The Ministry of Education, Government of India [grant No. F11/9/2019-102U3(A) to the Univesity of Hyderabad, Institution of Eminence].
References
Assey, G. E. & Mgohamwende, R. (2020). Pharm. & Pharmacol. Int. J. 8, 136–146. CrossRef Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dash, S. P., Pasayat, S., Saswati, Dash, H. R., Das, S., Butcher, R. J. & Dinda, R. (2012). Polyhedron, 31, 524–529. CrossRef CAS Google Scholar
Deng, Z.-P., Gao, S., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. E61, m2214–m2216. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guerrero-Pérez, M. O. (2017). Catal. Today, 285, 226–233. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Langeslay, R. R., Kaphan, D. M., Marshall, C. L., Stair, P. C., Sattelberger, A. P. & Delferro, M. (2019). Chem. Rev. 119, 2128–2191. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Naskar, S., Mishra, D., Butcher, R. J. & Chattopadhyay, S. K. (2007). Polyhedron, 26, 3703–3714. CrossRef CAS Google Scholar
Noblía, P., Baran, E. J., Otero, L., Draper, P., Cerecetto, H., González, M., Piro, O. E., Castellano, E. E., Inohara, T., Adachi, Y., Sakurai, H. & Gambino, D. (2004). Eur. J. Inorg. Chem. pp. 322–328. Google Scholar
Plass, W., Bangesh, M., Nica, S. & Buchholz, A. (2007). Model Studies of Vanadium-Dependent Haloperoxidation: Structural and Functional Lessons, ACS Symposium Series, Vol. 974, pp. 163–177. Washington: American Chemical Society. Google Scholar
Sangeetha, N. R., Kavita, V., Wocadlo, S., Powell, A. K. & Pal, S. (2000). J. Coord. Chem. 51, 55–66. CrossRef CAS Google Scholar
Sarkar, A. & Pal, S. (2009). Inorg. Chim. Acta, 362, 3807–3812. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Srivastava, A. K., Ghosh, S., Jana, S. & Pal, S. (2018). Inorg. Chim. Acta, 483, 329–336. CrossRef CAS Google Scholar
Srivastava, A. K., Ghosh, S. & Pal, S. (2020). Inorg. Chim. Acta, 502, 119344. CrossRef Google Scholar
Sutradhar, M., Roy Barman, T., Ghosh, S. & Drew, M. G. B. (2013). J. Mol. Struct. 1037, 276–282. CrossRef CAS Google Scholar
Tanabe, Y. & Nishibayashi, Y. (2019). Coord. Chem. Rev. 381, 135–150. Web of Science CrossRef CAS Google Scholar
Tsave, O., Petanidis, S., Kioseoglou, E., Yavropoulou, M. P., Yovos, J. G., Anestakis, D. & Salifoglou, A. (2016). Oxidative Med. Cell. Longev. Article ID 4013639. https://doi.org/10.1155/2016/4013639 Google Scholar
Zabin, S. A. & Abdelbaset, M. (2016). Eur. J. Chem. 7, 322–328. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.