research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structural characterization of the az­­oxy derivative of an anti­tubercular 8-nitro-1,3-benzo­thia­zin-4-one1

crossmark logo

aMartin-Luther-Universität Halle-Wittenberg, Institut für Pharmazie, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany, and bMax-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
*Correspondence e-mail: ruediger.seidel@pharmazie.uni-halle.de

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 4 November 2022; accepted 11 November 2022; online 17 November 2022)

(Z)-1,2-Bis[4-oxo-2-(piperidin-1-yl)-6-(tri­fluoro­meth­yl)-4H-benzo[e][1,3]thiazin-8-yl]diazene oxide, C28H24F6N6O3S2, was obtained and its structure determined while attempting to crystallize and structurally characterize 8-nitro-2-(piperidin-1-yl)-6-(trifluoro­meth­yl)-4H-benzo[e][1,3]thia­zin-4-one, a simplified analogue of the antituberculosis clinical drug candidate BTZ043. X-ray crystallography revealed the structure of the az­oxy compound to be comprised of two benzo­thia­zinone moieties linked by a Z-configured az­oxy group in an almost coplanar arrangement. In the crystal, the mol­ecules are densely packed, revealing a herringbone pattern.

1. Chemical context

8-Nitro-1,3-benzo­thia­zin-4-ones (BTZs) are a class of covalently binding inhibitors of deca­prenyl­phosphoryl-β-D-ribose-2′-epimerase (DprE1), an enzyme crucial for cell-wall synthesis in Mycobacterium tuberculosis, the primary pathogen causing tuberculosis (Chikhale et al., 2018[Chikhale, R. V., Barmade, M. A., Murumkar, P. R. & Yadav, M. R. (2018). J. Med. Chem. 61, 8563-8593.]). BTZ043 (Fig. 1[link]; Makarov et al., 2009[Makarov, V., Manina, G., Mikusova, K., Möllmann, U., Ryabova, O., Saint-Joanis, B., Dhar, N., Pasca, M. R., Buroni, S., Lucarelli, A. P., Milano, A., De Rossi, E., Belanova, M., Bobovska, A., Dianiskova, P., Kordulakova, J., Sala, C., Fullam, E., Schneider, P., McKinney, J. D., Brodin, P., Christophe, T., Waddell, S., Butcher, P., Albrethsen, J., Rosenkrands, I., Brosch, R., Nandi, V., Bharath, S., Gaonkar, S., Shandil, R. K., Balasubramanian, V., Balganesh, T., Tyagi, S., Grosset, J., Riccardi, G. & Cole, S. T. (2009). Science, 324, 801-804.]) is one of the most advanced candidates and has recently completed a Phase Ib/IIa clinical study (ClinicalTrials.gov Identifier: NCT04044001). Compound 1 (Fig. 1[link]) represents a simplified analogue of BTZ043, lacking the spiro­ketal moiety (Richter et al., 2018[Richter, A., Rudolph, I., Möllmann, U., Voigt, K., Chung, C., Singh, O. M. P., Rees, M., Mendoza-Losana, A., Bates, R., Ballell, L., Batt, S., Veerapen, N., Fütterer, K., Besra, G., Imming, P. & Argyrou, A. (2018). Sci. Rep. 8, 13473.]). The generally accepted mechanism of action of BTZs is a reduction of the nitro group to a nitroso group by FADH2, followed by a semimercaptal formation with Cys387 (Trefzer et al., 2010[Trefzer, C., Rengifo-Gonzalez, M., Hinner, M. J., Schneider, P., Makarov, V., Cole, S. T. & Johnsson, K. (2010). J. Am. Chem. Soc. 132, 13663-13665.], 2012[Trefzer, C., Škovierová, H., Buroni, S., Bobovská, A., Nenci, S., Molteni, E., Pojer, F., Pasca, M. R., Makarov, V., Cole, S. T., Riccardi, G., Mikušová, K. & Johnsson, K. (2012). J. Am. Chem. Soc. 134, 912-915.]; Neres et al., 2012[Neres, J., Pojer, F., Molteni, E., Chiarelli, L. R., Dhar, N., Boy-Röttger, S., Buroni, S., Fullam, E., Degiacomi, G., Lucarelli, A. P., Read, R. J., Zanoni, G., Edmondson, D. E., De Rossi, E., Pasca, M. R., McKinney, J. D., Dyson, P. J., Riccardi, G., Mattevi, A., Cole, S. T. & Binda, C. (2012). Sci. Transl. Med. 4, 150r, a121.]; Richter et al., 2018[Richter, A., Rudolph, I., Möllmann, U., Voigt, K., Chung, C., Singh, O. M. P., Rees, M., Mendoza-Losana, A., Bates, R., Ballell, L., Batt, S., Veerapen, N., Fütterer, K., Besra, G., Imming, P. & Argyrou, A. (2018). Sci. Rep. 8, 13473.]). Tiwari et al. (2013[Tiwari, R., Moraski, G. C., Krchňák, V., Miller, P. A., Colon-Martinez, M., Herrero, E., Oliver, A. G. & Miller, M. J. (2013). J. Am. Chem. Soc. 135, 3539-3549.]) suggested an alternative mechanism in which the reduction to the nitroso form is initiated by nucleophilic addition of thiol­ate to C-7 of the BTZ system. Subsequent formation of the az­oxy form was postulated, but no proof of the structure is available. Liu et al. (2019[Liu, R., Krchnak, V., Brown, S. N. & Miller, M. J. (2019). ACS Med. Chem. Lett. 10, 1462-1466.]) reported detection of the BTZ043 az­oxy form by LC/MS in a reaction mixture. To the best of our knowledge, an az­oxy derivative of an anti­tubercular BTZ has not been structurally characterized thus far.

[Figure 1]
Figure 1
Chemical diagrams of BTZ043 and 1, showing the systematic numbering scheme for the BTZ system.

The az­oxy derivative of 1 was obtained unintentionally during an attempt to grow crystals of 1 for X-ray crystallography by leaving a di­methyl­formamide (DMF) solution of 1 at ambient conditions and allowing the solvent to evaporate slowly. Fig. 2[link] shows a possible reaction pathway to the az­oxy derivative. Compound 1 is reduced to the nitroso congener 2 and then to the hydroxyl­amine 3, which reacts with excess of 2 in a condensation reaction to yield the az­oxy compound 4. Although it remains unclear how the reduction of the nitro group in 1 was induced in the absence of an intended reducing agent, this pathway has some plausibility (Chen et al., 2017[Chen, Y.-F., Chen, J., Lin, L.-J. & Chuang, G. J. (2017). J. Org. Chem. 82, 11626-11630.]; Cole et al., 2017[Cole, K. P., Johnson, M. D., Laurila, M. E. & Stout, J. R. (2017). React. Chem. Eng. 2, 288-294.]). Possibly DMF acted as a reducing agent here (Heravi et al., 2018[Heravi, M. M., Ghavidel, M. & Mohammadkhani, L. (2018). RSC Adv. 8, 27832-27862.]). Moreover, DMF usually contains small amounts of water, which causes partial hydrolysis (Meglitskii & Kvasha, 1972[Meglitskii, V. A. & Kvasha, N. M. (1972). Fibre Chem. 3, 327-329.]). Thus, trace amounts of di­methyl­amine often contained in DMF may have initiated reduction of 1 by nucleophilic addition to C-7 of the BTZ system. A related reaction of BTZs with nucleophilic attack by thiol­ates on C-7 was postulated by Tiwari et al. (2013[Tiwari, R., Moraski, G. C., Krchňák, V., Miller, P. A., Colon-Martinez, M., Herrero, E., Oliver, A. G. & Miller, M. J. (2013). J. Am. Chem. Soc. 135, 3539-3549.]).

[Scheme 1]
[Figure 2]
Figure 2
Possible reduction pathway leading from 1 to 4 in DMF in the presence of moisture (see text).

The identification and structural characterization of 4 could be relevant for drug stability assessment of BTZs. To the best of our knowledge, targeted synthesis of an az­oxy derivative of an anti­tubercular BTZ and anti­mycobacterial testing has not been reported so far. In this context, it is inter­esting to note that a variety of az­oxy compounds occur naturally and have various biological effects, including potent growth inhibition of M. tuberculosis in vitro exerted by the compound elaiomycin (Dembitsky et al., 2017[Dembitsky, V. M., Gloriozova, T. A. & Poroikov, V. V. (2017). Nat. Prod. Bioprospect. 7, 151-169.]; Wibowo & Ding, 2020[Wibowo, M. & Ding, L. (2020). J. Nat. Prod. 83, 3482-3491.]).

2. Structural commentary

Fig. 3[link] shows the mol­ecular structure of 4 in the crystal. The two benzo­thia­zinone moieties and the Z-configured az­oxy linkage exhibit a nearly planar structure. The dihedral angles between the mean plane of the az­oxy group (i.e. N1′, N1 and O2) and the mean planes of the attached benzene rings are 6.7 (1)° for the ring C4A–C8A and 5.4 (1)° for the ring C4A′–C8A′. The tilt angle between the mean planes of the two benzene rings is 4.15 (6)°. The planar conformation is assumed to be the ground state, possibly stabilized by intra­molecular C—S⋯O and C—S⋯N chalcogen bonds (Scilabra et al., 2019[Scilabra, P., Terraneo, G. & Resnati, G. (2019). Acc. Chem. Res. 52, 1313-1324.]). Additional stabilization, however, does not appear to be necessary, considering that (Z)-azoxybenzene (di­phenyl­diazene oxide) is planar in the gas phase, as revealed by electron diffraction and ab initio calculations (Tsuji et al., 2000[Tsuji, T., Takashima, H., Takeuchi, H., Egawa, T. & Konaka, S. (2000). J. Mol. Struct. 554, 203-210.]) but not in the crystal (vide infra). The piperidine rings attached to C-2 of the BTZ system both adopt a low-energy chair conformation with slight distortions from the ideal tetra­hedral angle (Table 1[link]). The az­oxy oxygen atom O2 has a significant effect on an otherwise symmetrical hypothetical azo-BTZ structure, with the N1′—C8′ distance at 1.394 (1) Å being notably shorter than the N1—C8 distance of 1.459 (1) Å and a clear geometry change at the C-8 position. The difference between the two parts of the mol­ecule is highlighted in Fig. 4[link], which shows a superposition of the benzene rings of the BTZ moieties of two identical mol­ecules.

Table 1
Selected bond angles (°)

N2—C10—C11 112.23 (9) N2′—C10′—C11′ 110.86 (10)
C12—C11—C10 111.03 (10) C12′—C11′—C10′ 111.95 (10)
C13—C12—C11 108.02 (9) C13′—C12′—C11′ 109.74 (10)
C14—C13—C12 111.74 (9) C14′—C13′—C12′ 110.73 (11)
N2—C14—C13 111.16 (9) N2′—C14′—C13′ 110.78 (9)
C14—N2—C10 114.52 (8) C14′—N2′—C10′ 113.32 (9)
[Figure 3]
Figure 3
Displacement ellipsoid plot (50% probability level) of 4. H atoms are shown as small spheres of arbitrary radius.
[Figure 4]
Figure 4
Superposition of the benzene rings of the benzo­thia­zinone moieties of two identical mol­ecules (green and orange), illustrating the difference in the attachment of the az­oxy group to C8 and C8′ in the two parts of 4.

3. Supra­molecular features

In the crystal structure, the mol­ecules are densely packed, as revealed by a packing index of 73.0% (Kitaigorodskii, 1973[Kitaigorodskii, A. I. (1973). Molecular crystals and molecules. London: Academic Press.]), which was calculated with PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). A view of the crystal structure along the [101] direction reveals a herringbone pattern (Fig. 5[link]). The separation between the planes of stacked mol­ecules is ca 3.31 Å, similar to the inter­planar distance in graphite (3.35 Å; Delhaes, 2001[Delhaes, P. (2001). Graphite and Precursors. London: CRC Press.]). As can be seen in the crystal structure, the tri­fluoro­methyl groups of adjacent mol­ecules are in close proximity to one another, but no inter­molecular F⋯F contacts shorter than the sum of the corresponding van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) are encountered.

[Figure 5]
Figure 5
Projection of the crystal structure of 4 in the [101] direction. H atoms are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) via the WebCSD inter­face (CCDC, 2017[CCDC (2017). CSD web interface - intuitive, cross-platform, web-based access to CSD data. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, UK.]) in October of 2022 revealed no structure of an az­oxy-BTZ, but four structures of 8-nitro-BTZs, viz. BTZ043 (CSD refcodes: HACQOY and HACQOV01; Richter et al., 2022a[Richter, A., Patzer, M., Goddard, R., Lingnau, J. B., Imming, P. & Seidel, R. W. (2022a). J. Mol. Struct. 1248, 131419.]) and its 5-methyl derivative (MELLAU; Richter et al., 2022b[Richter, A., Seidel, R. W., Graf, J., Goddard, R., Lehmann, C., Schlegel, T., Khater, N. & Imming, P. (2022b). ChemMedChem, 17, e202200021.]), macozinone (PBTZ169; LOPXAS; Zhang & Aldrich, 2019[Zhang, G. & Aldrich, C. C. (2019). Acta Cryst. C75, 1031-1035.]) and 2-(4-Boc-piperazin-1-yl)-8-nitro-6-(tri­fluoro­meth­yl)-BTZ (MESSOW; Richter et al., 2022c[Richter, A., Narula, G., Rudolph, I., Seidel, R. W., Wagner, C., Av-Gay, Y. & Imming, P. (2022c). ChemMedChem, 17, e202100733.]), with an average CBTZ—Nnitro bond length of 1.46 (1) Å. This can be compared with the C8—N1 bond length of 1.459 (1) and the C8′—N1′ bond length of 1.394 (1) Å in 4, which highlights the short C8′—N1′ bond length resulting from O2 being bonded to N1.

A substructure search for variously substituted acyclic azoxybenzene moieties yielded more than a hundred hits. Almost half of these have dihedral angles between the phenyl rings of less than 20°, although there are exceptions such as 1,3-dimeth­oxy-2-(phenylaz­oxy)benzene (VUNSII; Zhang et al., 2015[Zhang, D., Cui, X., Yang, F., Zhang, Q., Zhu, Y. & Wu, Y. (2015). Org. Chem. Front. 2, 951-955.]) with a dihedral angle between the aromatic rings of ca 90°, illustrating that packing and steric effects are sufficient to disturb the ground-state conformation. The simplest azoxy­benzene structure is that of (Z)-azoxybenzene (TIHTEK; Gonzáles Martínez & Bernès, 2007[González Martínez, S. P. & Bernès, S. (2007). Acta Cryst. E63, o3639.]). The structure most related to that of 4, containing bicycles with fused six-membered rings, appears to be that of (Z)-1,2-bis­[2-(2,2,2-tri­fluoro­acet­yl)naphthalen-1-yl]diazene oxide (XOZHUS; Belligund et al., 2019[Belligund, K., Mathew, T., Hunt, J. R., Nirmalchandar, A., Haiges, R., Dawlaty, J. & Prakash, G. K. S. (2019). J. Am. Chem. Soc. 141, 15921-15931.]). In contrast to 4, in both TIHTEK and XOZHUS the aromatic rings are not coplanar and are significantly tilted out of the plane of the az­oxy group. This can be reasonably attributed to effects of crystal packing in TIHTEK and steric effects of the substituents in ortho-position to the az­oxy group in XOZHUS.

5. Synthesis and crystallization

The synthesis of 1 is described elsewhere (Richter et al., 2018[Richter, A., Rudolph, I., Möllmann, U., Voigt, K., Chung, C., Singh, O. M. P., Rees, M., Mendoza-Losana, A., Bates, R., Ballell, L., Batt, S., Veerapen, N., Fütterer, K., Besra, G., Imming, P. & Argyrou, A. (2018). Sci. Rep. 8, 13473.]). DMF was of reagent-grade quality. Crystals of 4 suitable for single-crystal X-ray diffraction were obtained from a solution of 1 in DMF at room temperature, when the solvent was allowed to evaporate slowly over a period of several weeks.

6. Refinement

The crystal structure was initially refined to convergence by standard independent atom model (IAM) refinement with SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). The final structure refinement was performed with Hirshfeld atom refinement (HAR), using aspherical scattering factors with NoSpherA2 (Kleemiss et al., 2021[Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, M., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675-1692.]; Midgley et al., 2021[Midgley, L., Bourhis, L. J., Dolomanov, O. V., Grabowsky, S., Kleemiss, F., Puschmann, H. & Peyerimhoff, N. (2021). J. Chem. Phys. 152, 224108.]) partitioning in OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) based on electron density from iterative single determinant SCF single-point DFT calculations using ORCA (Neese et al., 2020[Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. (2020). J. Chem. Phys. 152, 224108.]) with a B3LYP functional (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]; Lee et al., 1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.]) and a def2-TZVPP basis set. Fig. 6[link] depicts the Fcalc(HAR)–Fcalc(IAM) deformation density map, showing the modelled deformation of the electron density as a result of bonding between independent spherical atoms. Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C28H24F6N6O3S2
Mr 670.66
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 24.0754 (8), 6.3343 (2), 19.6822 (8)
β (°) 113.1511 (14)
V3) 2759.84 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.06 × 0.05 × 0.03
 
Data collection
Diffractometer Bruker AXS D8 Venture
Absorption correction Gaussian (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.990, 0.996
No. of measured, independent and observed [I ≥ 2u(I)] reflections 178787, 8391, 7021
Rint 0.070
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.06
No. of reflections 8391
No. of parameters 502
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.51, −0.42
Computer programs: APEX4 (Bruker, 2017[Bruker (2017). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2019[Bruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), OLEX2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 6]
Figure 6
The Fcalc(HAR)–Fcalc(IAM) deformation density map superimposed on the mol­ecular structure of 4 (map level: 0.2 e Å−3). Colour scheme: C grey, H white, N blue, O red, S yellow.

Supporting information


Computing details top

Data collection: APEX4 (Bruker, 2017); cell refinement: SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: olex2.refine (Bourhis et al., 2015); molecular graphics: Mercury (Macrae et al., 2020) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

(Z)-1,2-Bis[4-oxo-2-(piperidin-1-yl)-6-(trifluoromethyl)-4H-benzo[e][1,3]thiazin-8-yl]diazene oxide top
Crystal data top
C28H24F6N6O3S2F(000) = 1378.110
Mr = 670.66Dx = 1.614 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 24.0754 (8) ÅCell parameters from 9921 reflections
b = 6.3343 (2) Åθ = 2.3–30.4°
c = 19.6822 (8) ŵ = 0.28 mm1
β = 113.1511 (14)°T = 100 K
V = 2759.84 (17) Å3Prism, yellow
Z = 40.06 × 0.05 × 0.03 mm
Data collection top
Bruker AXS D8 Venture
diffractometer
8391 independent reflections
Radiation source: IµS7021 reflections with I 2u(I)
Incoatec Helios mirrors monochromatorRint = 0.070
Detector resolution: 7.391 pixels mm-1θmax = 30.5°, θmin = 2.3°
φ– and ω–scansh = 3940
Absorption correction: gaussian
(SADABS; Krause et al., 2015)
k = 1010
Tmin = 0.990, Tmax = 0.996l = 3232
178787 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: difference Fourier map
wR(F2) = 0.080All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.5834P]
where P = (Fo2 + 2Fc2)/3
8391 reflections(Δ/σ)max = 0.001
502 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.41 e Å3
0 constraints
Special details top

Experimental. Crystal mounted on a MiTeGen loop using Perfluoropolyether PFO-XR75

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.28147 (4)1.62528 (16)0.35880 (6)0.01856 (18)
C40.18168 (5)1.66757 (16)0.27097 (6)0.01990 (19)
C4A0.18126 (4)1.46289 (16)0.23218 (5)0.01821 (18)
C50.12727 (5)1.41066 (17)0.17388 (6)0.02096 (19)
H50.0901 (6)1.516 (2)0.1592 (8)0.032 (3)*
C60.12223 (4)1.22486 (18)0.13493 (6)0.0215 (2)
C70.17143 (5)1.09111 (17)0.15219 (6)0.02065 (19)
H70.1706 (7)0.938 (2)0.1223 (8)0.034 (4)*
C80.22558 (4)1.14234 (16)0.20994 (5)0.01785 (18)
C8A0.23135 (4)1.32656 (15)0.25264 (5)0.01688 (17)
C90.06319 (5)1.1574 (2)0.07626 (6)0.0285 (2)
C100.38359 (5)1.58701 (17)0.45870 (6)0.0233 (2)
H10a0.3900 (6)1.455 (2)0.4242 (8)0.032 (3)*
H10b0.3783 (7)1.516 (3)0.5073 (9)0.046 (4)*
C110.43872 (5)1.72905 (19)0.48551 (7)0.0287 (2)
H11a0.4441 (7)1.795 (3)0.4356 (9)0.044 (4)*
H11b0.4809 (8)1.628 (3)0.5181 (10)0.054 (5)*
C120.43017 (5)1.91406 (19)0.52990 (7)0.0284 (2)
H12a0.4223 (7)1.856 (2)0.5775 (9)0.045 (4)*
H12b0.4717 (8)2.017 (3)0.5496 (9)0.050 (4)*
C130.37393 (5)2.03337 (17)0.48121 (6)0.0244 (2)
H13a0.3795 (7)2.092 (2)0.4309 (9)0.044 (4)*
H13b0.3658 (7)2.169 (2)0.5094 (8)0.042 (4)*
C140.31845 (5)1.89287 (17)0.45499 (7)0.0245 (2)
H14a0.3085 (7)1.838 (3)0.5017 (9)0.049 (4)*
H14b0.2788 (7)1.972 (2)0.4171 (8)0.042 (4)*
F30.07072 (4)1.02538 (16)0.02812 (5)0.0534 (3)
S10.297929 (11)1.37714 (4)0.329373 (14)0.01863 (6)
N10.27597 (4)0.99673 (14)0.22486 (5)0.01818 (16)
N20.32766 (4)1.70422 (14)0.41709 (5)0.02082 (17)
N30.23098 (4)1.73330 (14)0.33002 (5)0.02101 (17)
O10.13567 (3)1.77651 (13)0.24771 (5)0.02728 (17)
O20.32334 (3)1.03059 (13)0.28039 (4)0.02664 (17)
F10.02873 (3)1.05970 (15)0.10561 (5)0.0451 (2)
F20.03113 (3)1.32047 (13)0.03808 (4)0.03864 (18)
C2'0.20796 (5)0.37012 (16)0.00025 (6)0.02017 (19)
C4'0.29718 (5)0.18587 (16)0.07323 (6)0.02048 (19)
C4A'0.32046 (4)0.35975 (16)0.12869 (6)0.01907 (18)
C5'0.37853 (5)0.33989 (18)0.18380 (6)0.0223 (2)
H5'0.4033 (7)0.204 (2)0.1849 (8)0.044 (4)*
C6'0.40175 (5)0.49576 (18)0.23691 (6)0.0229 (2)
C7'0.36784 (5)0.67241 (18)0.23859 (6)0.0218 (2)
H7'0.3860 (6)0.787 (2)0.2804 (8)0.034 (3)*
C8'0.30904 (4)0.69248 (16)0.18499 (5)0.01844 (18)
C8A'0.28619 (4)0.53676 (16)0.12859 (5)0.01775 (18)
C9'0.46319 (5)0.4618 (2)0.29701 (7)0.0313 (3)
C10'0.11963 (5)0.56488 (19)0.09017 (7)0.0272 (2)
H10c0.1317 (7)0.647 (3)0.1305 (9)0.051 (4)*
H10d0.1259 (7)0.666 (3)0.0433 (9)0.046 (4)*
C11'0.05376 (5)0.4965 (2)0.12664 (7)0.0288 (2)
H11c0.0264 (8)0.638 (3)0.1484 (10)0.055 (5)*
H11d0.0421 (8)0.432 (3)0.0822 (10)0.055 (5)*
C12'0.04379 (6)0.3354 (2)0.18782 (7)0.0306 (2)
H12c0.0026 (7)0.282 (3)0.2089 (9)0.051 (4)*
H12d0.0532 (7)0.410 (3)0.2314 (9)0.047 (4)*
C13'0.08662 (5)0.1495 (2)0.15767 (7)0.0285 (2)
H13c0.0763 (7)0.070 (2)0.1158 (8)0.040 (4)*
H13d0.0819 (7)0.034 (3)0.2003 (9)0.047 (4)*
C14'0.15169 (5)0.2246 (2)0.12305 (7)0.0326 (3)
H14c0.1830 (8)0.097 (3)0.0982 (10)0.058 (5)*
H14d0.1662 (7)0.307 (3)0.1646 (9)0.048 (4)*
N1'0.26622 (4)0.84787 (14)0.17848 (5)0.02021 (17)
N2'0.15965 (4)0.38055 (16)0.06438 (5)0.0264 (2)
N3'0.24492 (4)0.20906 (14)0.01250 (5)0.02222 (18)
O1'0.32738 (4)0.02386 (12)0.08251 (5)0.02674 (17)
F1'0.46238 (4)0.29899 (17)0.33958 (6)0.0656 (3)
F2'0.50496 (3)0.42022 (16)0.27055 (5)0.0510 (2)
F3'0.48340 (3)0.62741 (14)0.34161 (4)0.04065 (19)
S1'0.214168 (11)0.58337 (4)0.060830 (14)0.01939 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0182 (4)0.0166 (4)0.0206 (4)0.0010 (3)0.0073 (4)0.0014 (3)
C40.0183 (4)0.0184 (5)0.0224 (5)0.0012 (3)0.0074 (4)0.0007 (4)
C4A0.0168 (4)0.0189 (4)0.0185 (4)0.0009 (3)0.0065 (4)0.0003 (3)
C50.0168 (4)0.0242 (5)0.0197 (5)0.0023 (4)0.0049 (4)0.0002 (4)
C60.0164 (4)0.0258 (5)0.0193 (4)0.0010 (4)0.0037 (4)0.0027 (4)
C70.0173 (4)0.0231 (5)0.0187 (4)0.0009 (4)0.0040 (4)0.0030 (4)
C80.0161 (4)0.0194 (4)0.0167 (4)0.0004 (3)0.0049 (4)0.0013 (3)
C8A0.0163 (4)0.0174 (4)0.0165 (4)0.0004 (3)0.0059 (3)0.0003 (3)
C90.0189 (5)0.0349 (6)0.0236 (5)0.0025 (4)0.0002 (4)0.0064 (4)
C100.0216 (5)0.0196 (5)0.0256 (5)0.0009 (4)0.0059 (4)0.0030 (4)
C110.0210 (5)0.0289 (6)0.0319 (6)0.0006 (4)0.0058 (4)0.0100 (5)
C120.0245 (5)0.0265 (5)0.0281 (6)0.0004 (4)0.0037 (4)0.0077 (4)
C130.0270 (5)0.0184 (5)0.0255 (5)0.0004 (4)0.0080 (4)0.0038 (4)
C140.0221 (5)0.0219 (5)0.0283 (5)0.0003 (4)0.0087 (4)0.0062 (4)
F30.0275 (4)0.0711 (6)0.0430 (5)0.0112 (4)0.0060 (3)0.0325 (4)
S10.01677 (11)0.01686 (11)0.01941 (11)0.00039 (8)0.00407 (9)0.00168 (8)
N10.0181 (4)0.0188 (4)0.0167 (4)0.0000 (3)0.0059 (3)0.0013 (3)
N20.0188 (4)0.0184 (4)0.0236 (4)0.0001 (3)0.0066 (3)0.0032 (3)
N30.0191 (4)0.0189 (4)0.0236 (4)0.0009 (3)0.0070 (3)0.0022 (3)
O10.0219 (4)0.0233 (4)0.0316 (4)0.0060 (3)0.0052 (3)0.0016 (3)
O20.0203 (4)0.0250 (4)0.0275 (4)0.0034 (3)0.0017 (3)0.0062 (3)
F10.0247 (4)0.0540 (5)0.0443 (5)0.0130 (3)0.0005 (3)0.0029 (4)
F20.0277 (4)0.0455 (5)0.0299 (4)0.0071 (3)0.0024 (3)0.0017 (3)
C2'0.0196 (4)0.0202 (5)0.0210 (5)0.0005 (4)0.0082 (4)0.0040 (4)
C4'0.0222 (5)0.0180 (5)0.0236 (5)0.0022 (4)0.0116 (4)0.0004 (4)
C4A'0.0185 (4)0.0197 (4)0.0198 (4)0.0027 (4)0.0084 (4)0.0014 (4)
C5'0.0195 (5)0.0241 (5)0.0236 (5)0.0053 (4)0.0088 (4)0.0024 (4)
C6'0.0177 (4)0.0284 (5)0.0207 (5)0.0044 (4)0.0055 (4)0.0018 (4)
C7'0.0178 (4)0.0256 (5)0.0196 (5)0.0021 (4)0.0047 (4)0.0016 (4)
C8'0.0172 (4)0.0206 (5)0.0166 (4)0.0008 (3)0.0057 (4)0.0004 (3)
C8A'0.0180 (4)0.0185 (4)0.0175 (4)0.0011 (3)0.0078 (4)0.0007 (3)
C9'0.0208 (5)0.0376 (6)0.0294 (6)0.0072 (5)0.0033 (5)0.0008 (5)
C10'0.0273 (5)0.0273 (5)0.0219 (5)0.0038 (4)0.0041 (4)0.0051 (4)
C11'0.0249 (5)0.0316 (6)0.0262 (5)0.0075 (4)0.0063 (4)0.0017 (5)
C12'0.0249 (5)0.0327 (6)0.0277 (6)0.0004 (5)0.0031 (5)0.0053 (5)
C13'0.0244 (5)0.0290 (6)0.0288 (6)0.0002 (4)0.0069 (5)0.0085 (5)
C14'0.0230 (5)0.0381 (7)0.0329 (6)0.0021 (5)0.0068 (5)0.0178 (5)
N1'0.0214 (4)0.0211 (4)0.0177 (4)0.0020 (3)0.0073 (3)0.0030 (3)
N2'0.0222 (4)0.0290 (5)0.0244 (5)0.0040 (4)0.0052 (4)0.0095 (4)
N3'0.0223 (4)0.0197 (4)0.0248 (4)0.0013 (3)0.0093 (4)0.0043 (3)
O1'0.0291 (4)0.0196 (4)0.0319 (4)0.0058 (3)0.0124 (3)0.0006 (3)
F1'0.0411 (5)0.0661 (7)0.0601 (6)0.0001 (5)0.0119 (4)0.0341 (5)
F2'0.0201 (3)0.0722 (6)0.0523 (5)0.0090 (4)0.0053 (3)0.0254 (5)
F3'0.0266 (4)0.0545 (5)0.0303 (4)0.0095 (3)0.0002 (3)0.0110 (3)
S1'0.01745 (11)0.02073 (12)0.01844 (11)0.00258 (9)0.00539 (9)0.00378 (9)
Geometric parameters (Å, º) top
C2—S11.7730 (10)N1—N1'1.2685 (12)
C2—N21.3416 (13)C2'—N2'1.3402 (14)
C2—N31.3135 (13)C2'—N3'1.3115 (13)
C4—C4A1.5026 (14)C2'—S1'1.7750 (10)
C4—N31.3595 (13)C4'—C4A'1.4958 (15)
C4—O11.2304 (12)C4'—N3'1.3604 (14)
C4A—C51.3938 (14)C4'—O1'1.2291 (12)
C4A—C8A1.4074 (13)C4A'—C5'1.3981 (14)
C5—H51.063 (14)C4A'—C8A'1.3917 (13)
C5—C61.3837 (15)C5'—H5'1.041 (16)
C6—C71.3855 (14)C5'—C6'1.3858 (16)
C6—C91.4987 (15)C6'—C7'1.3931 (15)
C7—H71.129 (15)C6'—C9'1.5027 (15)
C7—C81.3899 (14)C7'—H7'1.053 (14)
C8—C8A1.4127 (14)C7'—C8'1.3994 (14)
C8—N11.4589 (13)C8'—C8A'1.4240 (14)
C8A—S11.7461 (10)C8'—N1'1.3943 (13)
C9—F31.3284 (14)C8A'—S1'1.7475 (10)
C9—F11.3347 (15)C9'—F1'1.3336 (16)
C9—F21.3310 (14)C9'—F2'1.3280 (15)
C10—H10a1.124 (14)C9'—F3'1.3313 (15)
C10—H10b1.108 (16)C10'—H10c1.082 (16)
C10—C111.5162 (16)C10'—H10d1.082 (16)
C10—N21.4724 (13)C10'—C11'1.5239 (17)
C11—H11a1.120 (16)C10'—N2'1.4712 (15)
C11—H11b1.158 (18)C11'—H11c1.094 (17)
C11—C121.5234 (16)C11'—H11d1.098 (17)
C12—H12a1.089 (15)C11'—C12'1.5240 (17)
C12—H12b1.129 (17)C12'—H12c1.082 (16)
C12—C131.5173 (16)C12'—H12d1.080 (16)
C13—H13a1.114 (16)C12'—C13'1.5231 (17)
C13—H13b1.081 (15)C13'—H13c1.076 (15)
C13—C141.5168 (15)C13'—H13d1.086 (16)
C14—H14a1.095 (16)C13'—C14'1.5182 (16)
C14—H14b1.077 (16)C14'—H14c1.080 (18)
C14—N21.4709 (13)C14'—H14d1.135 (16)
N1—O21.2494 (11)C14'—N2'1.4740 (14)
N2—C2—S1113.15 (7)C4—N3—C2123.92 (9)
N3—C2—S1127.50 (8)N3'—C2'—N2'119.40 (9)
N3—C2—N2119.35 (9)S1'—C2'—N2'114.27 (8)
N3—C4—C4A121.86 (9)S1'—C2'—N3'126.32 (8)
O1—C4—C4A118.01 (9)N3'—C4'—C4A'120.89 (9)
O1—C4—N3120.13 (10)O1'—C4'—C4A'118.45 (10)
C5—C4A—C4116.16 (9)O1'—C4'—N3'120.62 (10)
C8A—C4A—C4123.38 (9)C5'—C4A'—C4'118.26 (9)
C8A—C4A—C5120.45 (9)C8A'—C4A'—C4'122.71 (9)
H5—C5—C4A119.2 (7)C8A'—C4A'—C5'119.01 (10)
C6—C5—C4A120.55 (10)H5'—C5'—C4A'118.7 (8)
C6—C5—H5120.3 (7)C6'—C5'—C4A'120.32 (10)
C7—C6—C5120.27 (9)C6'—C5'—H5'120.9 (8)
C9—C6—C5121.30 (10)C7'—C6'—C5'121.59 (10)
C9—C6—C7118.36 (10)C9'—C6'—C5'118.16 (10)
H7—C7—C6124.0 (8)C9'—C6'—C7'120.08 (10)
C8—C7—C6119.63 (10)H7'—C7'—C6'120.2 (8)
C8—C7—H7116.4 (8)C8'—C7'—C6'118.92 (10)
C8A—C8—C7121.38 (9)C8'—C7'—H7'120.9 (8)
N1—C8—C7117.09 (9)C8A'—C8'—C7'119.41 (9)
N1—C8—C8A121.53 (8)N1'—C8'—C7'128.73 (9)
C8—C8A—C4A117.63 (9)N1'—C8'—C8A'111.85 (8)
S1—C8A—C4A121.80 (8)C8'—C8A'—C4A'120.65 (9)
S1—C8A—C8120.55 (7)S1'—C8A'—C4A'123.16 (8)
F3—C9—C6112.03 (9)S1'—C8A'—C8'116.19 (7)
F1—C9—C6111.19 (10)F1'—C9'—C6'110.62 (10)
F1—C9—F3107.41 (11)F2'—C9'—C6'112.50 (10)
F2—C9—C6112.17 (10)F2'—C9'—F1'107.08 (11)
F2—C9—F3107.29 (10)F3'—C9'—C6'113.43 (10)
F2—C9—F1106.44 (10)F3'—C9'—F1'106.67 (11)
H10b—C10—H10a108.0 (11)F3'—C9'—F2'106.14 (10)
C11—C10—H10a109.9 (7)H10d—C10'—H10c110.6 (12)
C11—C10—H10b108.8 (8)C11'—C10'—H10c108.7 (9)
N2—C10—H10a110.6 (7)C11'—C10'—H10d109.9 (8)
N2—C10—H10b107.1 (8)N2'—C10'—H10c108.0 (9)
N2—C10—C11112.23 (9)N2'—C10'—H10d108.7 (8)
H11a—C11—C10107.7 (8)N2'—C10'—C11'110.86 (10)
H11b—C11—C10108.8 (9)H11c—C11'—C10'107.8 (9)
H11b—C11—H11a108.3 (12)H11d—C11'—C10'106.0 (9)
C12—C11—C10111.03 (10)H11d—C11'—H11c108.3 (12)
C12—C11—H11a107.6 (8)C12'—C11'—C10'111.95 (10)
C12—C11—H11b113.2 (9)C12'—C11'—H11c110.9 (9)
H12a—C12—C11110.1 (8)C12'—C11'—H11d111.6 (9)
H12b—C12—C11110.0 (9)H12c—C12'—C11'109.3 (9)
H12b—C12—H12a109.3 (12)H12d—C12'—C11'108.4 (8)
C13—C12—C11108.02 (9)H12d—C12'—H12c109.8 (12)
C13—C12—H12a107.2 (8)C13'—C12'—C11'109.74 (10)
C13—C12—H12b112.2 (9)C13'—C12'—H12c110.4 (9)
H13a—C13—C12109.9 (8)C13'—C12'—H12d109.2 (8)
H13b—C13—C12111.6 (8)H13c—C13'—C12'109.7 (8)
H13b—C13—H13a107.4 (11)H13d—C13'—C12'111.8 (9)
C14—C13—C12111.74 (9)H13d—C13'—H13c106.8 (12)
C14—C13—H13a106.9 (8)C14'—C13'—C12'110.73 (11)
C14—C13—H13b109.2 (8)C14'—C13'—H13c108.1 (8)
H14a—C14—C13110.8 (9)C14'—C13'—H13d109.5 (8)
H14b—C14—C13112.7 (8)H14c—C14'—C13'112.5 (9)
H14b—C14—H14a107.6 (12)H14d—C14'—C13'112.1 (8)
N2—C14—C13111.16 (9)H14d—C14'—H14c108.1 (12)
N2—C14—H14a107.1 (9)N2'—C14'—C13'110.78 (9)
N2—C14—H14b107.2 (8)N2'—C14'—H14c107.0 (9)
C8A—S1—C2101.43 (5)N2'—C14'—H14d106.0 (8)
O2—N1—C8117.93 (8)C8'—N1'—N1122.53 (9)
N1'—N1—C8114.91 (8)C10'—N2'—C2'124.91 (9)
N1'—N1—O2127.16 (9)C14'—N2'—C2'120.14 (9)
C10—N2—C2123.85 (9)C14'—N2'—C10'113.32 (9)
C14—N2—C2119.79 (9)C4'—N3'—C2'125.14 (9)
C14—N2—C10114.52 (8)C8A'—S1'—C2'100.51 (5)
C2—N2—C10—C11144.51 (11)N1—N1'—C8'—C7'1.88 (12)
C2—N2—C14—C13143.83 (10)N1—N1'—C8'—C8A'176.68 (10)
C2—N3—C4—C4A0.99 (12)C2'—N2'—C10'—C11'139.53 (12)
C2—N3—C4—O1179.08 (10)C2'—N2'—C14'—C13'136.81 (12)
C4—C4A—C5—C6179.66 (9)C2'—N3'—C4'—C4A'6.44 (12)
C4—C4A—C8A—C8177.90 (9)C2'—N3'—C4'—O1'175.95 (11)
C4—C4A—C8A—S13.77 (11)C4'—C4A'—C5'—C6'179.23 (9)
C4A—C5—C6—C71.77 (12)C4'—C4A'—C8A'—C8'176.45 (9)
C4A—C5—C6—C9174.91 (10)C4'—C4A'—C8A'—S1'3.91 (11)
C4A—C8A—C8—C73.38 (11)C4A'—C5'—C6'—C7'1.93 (12)
C4A—C8A—C8—N1177.15 (8)C4A'—C5'—C6'—C9'177.12 (10)
C5—C6—C7—C81.37 (12)C4A'—C8A'—C8'—C7'3.52 (11)
C5—C6—C9—F3156.95 (12)C4A'—C8A'—C8'—N1'175.19 (10)
C5—C6—C9—F182.85 (11)C5'—C6'—C7'—C8'0.29 (12)
C5—C6—C9—F236.21 (11)C5'—C6'—C9'—F1'65.33 (12)
C6—C7—C8—C8A1.25 (12)C5'—C6'—C9'—F2'54.37 (11)
C6—C7—C8—N1179.25 (9)C5'—C6'—C9'—F3'174.86 (11)
C7—C8—C8A—S1174.97 (8)C6'—C7'—C8'—C8A'2.38 (12)
C7—C8—N1—O2174.00 (9)C6'—C7'—C8'—N1'176.08 (9)
C7—C8—N1—N1'6.35 (11)C7'—C8'—C8A'—S1'176.14 (8)
C8—N1—N1'—C8'178.86 (8)C10'—C11'—C12'—C13'54.26 (12)
C10—C11—C12—C1357.50 (11)C10'—N2'—C14'—C13'57.05 (11)
C10—N2—C14—C1351.03 (10)C11'—C12'—C13'—C14'55.55 (12)
C11—C12—C13—C1458.50 (11)C12'—C13'—C14'—N2'56.80 (11)
C12—C13—C14—N255.30 (10)
 

Footnotes

1Dedicated to Professor George M. Sheldrick on the occasion of his 80th birthday.

Acknowledgements

We would like to thank Dr Thomas Weyhermüller for providing measurement time at the X-ray diffraction facility of the Max-Planck-Institut für Chemische Energiekonversion (Mülheim an der Ruhr, Germany), and Heike Schucht and Elke Dreher for technical assistance. We acknowledge the financial support within the funding programme Open Access Publishing by the German Research Foundation (DFG).

References

First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBelligund, K., Mathew, T., Hunt, J. R., Nirmalchandar, A., Haiges, R., Dawlaty, J. & Prakash, G. K. S. (2019). J. Am. Chem. Soc. 141, 15921–15931.  CSD CrossRef CAS PubMed Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2017). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCCDC (2017). CSD web interface – intuitive, cross-platform, web-based access to CSD data. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, UK.  Google Scholar
First citationChen, Y.-F., Chen, J., Lin, L.-J. & Chuang, G. J. (2017). J. Org. Chem. 82, 11626–11630.  CSD CrossRef CAS PubMed Google Scholar
First citationChikhale, R. V., Barmade, M. A., Murumkar, P. R. & Yadav, M. R. (2018). J. Med. Chem. 61, 8563–8593.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCole, K. P., Johnson, M. D., Laurila, M. E. & Stout, J. R. (2017). React. Chem. Eng. 2, 288–294.  CrossRef CAS Google Scholar
First citationDelhaes, P. (2001). Graphite and Precursors. London: CRC Press.  Google Scholar
First citationDembitsky, V. M., Gloriozova, T. A. & Poroikov, V. V. (2017). Nat. Prod. Bioprospect. 7, 151–169.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGonzález Martínez, S. P. & Bernès, S. (2007). Acta Cryst. E63, o3639.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHeravi, M. M., Ghavidel, M. & Mohammadkhani, L. (2018). RSC Adv. 8, 27832–27862.  CrossRef CAS PubMed Google Scholar
First citationKitaigorodskii, A. I. (1973). Molecular crystals and molecules. London: Academic Press.  Google Scholar
First citationKleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, M., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationLiu, R., Krchnak, V., Brown, S. N. & Miller, M. J. (2019). ACS Med. Chem. Lett. 10, 1462–1466.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMakarov, V., Manina, G., Mikusova, K., Möllmann, U., Ryabova, O., Saint-Joanis, B., Dhar, N., Pasca, M. R., Buroni, S., Lucarelli, A. P., Milano, A., De Rossi, E., Belanova, M., Bobovska, A., Dianiskova, P., Kordulakova, J., Sala, C., Fullam, E., Schneider, P., McKinney, J. D., Brodin, P., Christophe, T., Waddell, S., Butcher, P., Albrethsen, J., Rosenkrands, I., Brosch, R., Nandi, V., Bharath, S., Gaonkar, S., Shandil, R. K., Balasubramanian, V., Balganesh, T., Tyagi, S., Grosset, J., Riccardi, G. & Cole, S. T. (2009). Science, 324, 801–804.  CrossRef PubMed CAS Google Scholar
First citationMeglitskii, V. A. & Kvasha, N. M. (1972). Fibre Chem. 3, 327–329.  CrossRef Google Scholar
First citationMidgley, L., Bourhis, L. J., Dolomanov, O. V., Grabowsky, S., Kleemiss, F., Puschmann, H. & Peyerimhoff, N. (2021). J. Chem. Phys. 152, 224108.  Google Scholar
First citationNeese, F., Wennmohs, F., Becker, U. & Riplinger, C. (2020). J. Chem. Phys. 152, 224108.  Web of Science CrossRef PubMed Google Scholar
First citationNeres, J., Pojer, F., Molteni, E., Chiarelli, L. R., Dhar, N., Boy-Röttger, S., Buroni, S., Fullam, E., Degiacomi, G., Lucarelli, A. P., Read, R. J., Zanoni, G., Edmondson, D. E., De Rossi, E., Pasca, M. R., McKinney, J. D., Dyson, P. J., Riccardi, G., Mattevi, A., Cole, S. T. & Binda, C. (2012). Sci. Transl. Med. 4, 150r, a121.  Google Scholar
First citationRichter, A., Narula, G., Rudolph, I., Seidel, R. W., Wagner, C., Av-Gay, Y. & Imming, P. (2022c). ChemMedChem, 17, e202100733.  PubMed Google Scholar
First citationRichter, A., Patzer, M., Goddard, R., Lingnau, J. B., Imming, P. & Seidel, R. W. (2022a). J. Mol. Struct. 1248, 131419.  CSD CrossRef Google Scholar
First citationRichter, A., Rudolph, I., Möllmann, U., Voigt, K., Chung, C., Singh, O. M. P., Rees, M., Mendoza-Losana, A., Bates, R., Ballell, L., Batt, S., Veerapen, N., Fütterer, K., Besra, G., Imming, P. & Argyrou, A. (2018). Sci. Rep. 8, 13473.  Web of Science CrossRef PubMed Google Scholar
First citationRichter, A., Seidel, R. W., Graf, J., Goddard, R., Lehmann, C., Schlegel, T., Khater, N. & Imming, P. (2022b). ChemMedChem, 17, e202200021.  PubMed Google Scholar
First citationScilabra, P., Terraneo, G. & Resnati, G. (2019). Acc. Chem. Res. 52, 1313–1324.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiwari, R., Moraski, G. C., Krchňák, V., Miller, P. A., Colon-Martinez, M., Herrero, E., Oliver, A. G. & Miller, M. J. (2013). J. Am. Chem. Soc. 135, 3539–3549.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTrefzer, C., Rengifo-Gonzalez, M., Hinner, M. J., Schneider, P., Makarov, V., Cole, S. T. & Johnsson, K. (2010). J. Am. Chem. Soc. 132, 13663–13665.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTrefzer, C., Škovierová, H., Buroni, S., Bobovská, A., Nenci, S., Molteni, E., Pojer, F., Pasca, M. R., Makarov, V., Cole, S. T., Riccardi, G., Mikušová, K. & Johnsson, K. (2012). J. Am. Chem. Soc. 134, 912–915.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTsuji, T., Takashima, H., Takeuchi, H., Egawa, T. & Konaka, S. (2000). J. Mol. Struct. 554, 203–210.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWibowo, M. & Ding, L. (2020). J. Nat. Prod. 83, 3482–3491.  CrossRef CAS PubMed Google Scholar
First citationZhang, G. & Aldrich, C. C. (2019). Acta Cryst. C75, 1031–1035.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, D., Cui, X., Yang, F., Zhang, Q., Zhu, Y. & Wu, Y. (2015). Org. Chem. Front. 2, 951–955.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds