research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of di­chlorido­{2,2′-[oxybis(methyl­­idene)]di­pyridine}­mercury(II)

crossmark logo

aDepartment of Chemistry, William & Mary, Williamsburg, VA 23187-8795, USA
*Correspondence e-mail: dcbebo@wm.edu

Edited by C. Schulzke, Universität Greifswald, Germany (Received 30 September 2022; accepted 12 November 2022; online 17 November 2022)

The series of divalent metal chloride complexes of 2,2′-[oxybis(methyl­idene)]di­pyridine (L) was extended with the preparation of the title compound, [HgCl2(C12H12N2O)] or [HgLCl2] (1). The Hg2+ complex crystallizes in P21/n, isomorphic with dichloride Co2+, Cu2+, Zn2+ and Cd2+ complexes of L. Metal ions of the isotypic complexes are coordinated by two chlorine atoms, as well as the oxygen atom and both nitro­gen atoms of L. The complexes have a square-pyramidal coordination geometry with a chlorine atom in the apical position. Supra­molecular inter­actions in 1 include offset face-to-face inter­actions between inversion-related complexes, leading to the formation of sheets parallel to the ab plane. Weak inter­molecular H⋯Cl contacts link the sheets. Hirshfeld surface analysis indicates that H⋯H (36.5%), Cl⋯H/H⋯Cl (36.5%) and C⋯H/H⋯C (11.6%) inter­actions are dominant.

1. Chemical context

Structural comparisons of group 12 metal ions in similar environments can help improve understanding of the effects of metal-ion replacement on the biological properties of organic mol­ecules. Ether-containing bioactive compounds with group 12 metal ion-dependent bioactivity include flavonoids (Sreenivasulu et al., 2010[Sreenivasulu, K., Raghu, P. & Nair, K. M. (2010). J. Food Sci. 75, H123-H128.]; Kim et al., 2011[Kim, E., Pai, T. & Han, O. (2011). J. Agric. Food Chem. 59, 3606-3612.]; Li et al., 2017[Li, X., Jiang, X., Sun, J., Zhu, C., Li, X., Tian, L., Liu, L. & Bai, W. (2017). Ann. N. Y. Acad. Sci. 1398, 5-19.]), ionophores (Ivanova et al., 2011[Ivanova, J., Pantcheva, I. N., Mitewa, M., Simova, S., Tanabe, M. & Osakada, K. (2011). Chem. Cent. J. 5, 52.]), and pharmaceuticals (Zhang et al., 2014[Zhang, W., Zhi, J., Cui, Y., Zhang, F., Habyarimana, A., Cambier, C. & Gustin, P. (2014). PLoS One, 9, e109136.]). Recent studies of 2,2′-[oxybis(methyl­idene)]di­pyridine (L) with group 12 perchlorate salts revealed bis-tridentate chelate [ML2](ClO4)2 complexes with either merid­ional octa­hedral (M = Zn2+ or Cd2+) or trigonal–prismatic (M = Hg2+) metal-ion coordination (Sturner et al., 2022[Sturner, M. A., Starr, I. J., Owusu-Koramoah, J. E., Brewster, A. D., Pike, R. D. & Bebout, D. C. (2022). Polyhedron, 217, 115727.]). Isotypic square-pyramidal [MLCl2] complexes of Zn2+ (τ = 0.03) and Cd2+ (τ = 0.11) have been reported previously (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]; Li, 2008a[Li, J. M. (2008a). Acta Cryst. E64, m1467.],b[Li, J. M. (2008b). Acta Cryst. E64, m1468.]). Herein, the preparation, crystal structure and Hirshfeld surface analysis of di­chlorido­{2,2′-[oxybis(methyl­idene)]di­pyridine}­mercury(II) is reported.

[Scheme 1]

2. Structural commentary

Complex 1 crystallizes in the monoclinic space group P21/n as a monomer (Fig. 1[link]). The tridentate ligand and two chlorides provide a slightly distorted square-pyramidal geometry (τ = 0.07; Table 1[link]) to the metal ion (Addison et al. 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). In the complex, tridentate L has an asymmetrical, slightly bent conformation in the basal plane with an N1—Hg1—N2 angle of 129.28 (8)°. Both chelate rings have an envelope conformation with O1 in the flap position. The mercury atom is 0.8100 (9) Å above the basal plane. The apical Hg—Cl distance is 0.0083 Å longer than the basal Hg—Cl distance.

Table 1
Selected geometric parameters (Å, °)

Hg1—N2 2.323 (2) Hg1—Cl2 2.4598 (7)
Hg1—N1 2.324 (2) Hg1—O1 2.5831 (18)
Hg1—Cl1 2.4515 (6)    
       
N2—Hg1—N1 129.28 (8) Cl1—Hg1—Cl2 120.18 (2)
N2—Hg1—Cl1 102.65 (5) N2—Hg1—O1 65.35 (6)
N1—Hg1—Cl1 101.29 (6) N1—Hg1—O1 65.59 (7)
N2—Hg1—Cl2 101.97 (5) Cl1—Hg1—O1 133.20 (4)
N1—Hg1—Cl2 103.41 (6) Cl2—Hg1—O1 106.62 (4)
[Figure 1]
Figure 1
The mol­ecular structure of 1 with the atom-numbering scheme generated with ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]). Displacement ellipsoids are drawn at the 50% probability level and H atoms are displayed as small spheres of arbitrary radii.

3. Supra­molecular features

The packing of 1 is stabilized by ππ stacking inter­actions (Fig. 2[link]) and van der Waals inter­actions (Fig. 3[link]). On the apical side of 1, pyridyl rings (centroids Cg1: N1/C1–C5; Cg2: N2/C8–C12) are stacked against separate inversion-related equivalents with a small offset (Table 2[link]). In contrast, the basal face features an extended ligand conformation placing the N2 pyridyl rings across from the chelate rings of an inversion-related mol­ecule (Fig. 2[link]) with large offsets between the pyridyl ring centroids of the opposing ligand (Table 2[link]). Although the large centroid offsets preclude ππ stacking inter­actions on the basal face, the predominantly planar ligand allows the inner and outer edges of N2 pyridyl rings to nestle along the inner edges of opposing N2 and N1 pyridyl rings, respectively (Fig. 2[link]).

Table 2
Overview of pyrid­yl–pyridyl ring geometry metrics (Å, °) for [HgLCl2] (1)

Cg1 and Cg2 are the centroids of the N1/C1–C5 and N2/C8–C12 rings, respectively.

Centroids Dihedral angle between rings Centroid–centroid distance Centroid–plane distance Centroid offset
Cg1⋯Cg1i 0.00 3.718 (2) 3.573 (2) 1.028
Cg2⋯Cg2ii 0.00 4.002 (2) 3.563 (4) 1.822
Cg2⋯Cg2iii 0.00 5.005 (2) 3.536 (4) 3.542
Cg1⋯Cg2iii 18.38 (12) 4.2944 (15) 2.826 (4) 3.233
Cg2⋯Cg1iii 18.38 (12) 4.2944 (15) 3.702 (3) 2.176
Symmetry codes: (i) −x + 1, −y + 2, −z + 1; (ii) −x, −y + 1, −z + 1; (iii) −x + 1, −y + 1, −z + 1.
[Figure 2]
Figure 2
Offset face-to-face pyridyl ring arrangement between inversion-related mol­ecules of 1 illustrated using Mercury 2020.1 (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). Ring centroids are shown as red spheres. Blue dashed lines show centroid–centroid distances (for numerical data, see Table 2[link]).
[Figure 3]
Figure 3
Crystal packing of compound 1 illustrated using Mercury 2020.1 (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). Face-to-face aromatic inter­actions occur within sheets of mol­ecules in the ab plane. Short inter­atomic contacts within and between the sheets of 1 are shown by blue dashed lines (for numerical data, see Table 4[link]).

Aromatic stacking inter­actions contribute to formation of sheets parallel to the ab plane. Adjacent sheets are related by a 21 screw axis. Inter­molecular van der Waals inter­actions, some of which could be described as weak hydrogen bonds involving C—H donors and Cl acceptors (Table 3[link]; Brammer et al., 2001[Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277-290.]), occur within and between the sheets.

Table 3
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl1i 0.95 2.73 3.623 (3) 157
C6—H6B⋯Cl2ii 0.99 2.79 3.746 (3) 164
C6—H6A⋯Cl1iii 0.99 2.94 3.711 (3) 135
C11—H11⋯Cl1iv 0.95 2.86 3.722 (3) 151
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

4. Hirshfeld surface analysis

Inter­molecular inter­actions were investigated by qu­anti­tative analysis of the Hirshfeld surface and visualized with CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Five hourglass features appeared on the Hirshfeld surface of 1 plotted over shape index (Fig. 4[link]). Both hourglass features on the apical side reflect self-complementary face-to-face bump and hollow alignments between inversion-related pyridyl rings involved in ππ stacking. The hourglass features associated with O1 and C12 on the basal face arise from the bend of the O atom in the flap position of the chelate rings towards the inversion-related mol­ecule (Fig. 2[link]), resulting in notably shorter inter­atomic distances than for adjacent atoms (Table 4[link]). The last hourglass feature reflects surface complementarity near the inter­ior edges of inversion-related N2 pyridyl rings with a centroid offset of 3.452 Å. Additional blue and red horseshoe-shaped regions on the basal face correlate with a bump along the C9—C10 outer edge of the N2 pyridyl ring nesting against a hollow looping around N1, respectively.

Table 4
Short inter­atomic contacts (Å) in [HgLCl2] (1)

Atoms Distance Atoms Distance
Cl1⋯H2i 2.732 Cl2⋯H6Bii 2.785
Cl2⋯H3iii 2.808 Cl2⋯H10iv 2.813
H11⋯Cl1v 2.862 O1⋯C12vi 3.201 (3)
Symmetry codes: (i) −x + [{3\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (ii) x − [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (iii) −x + 1, −y + 2, −z + 1; (iv) −x, −y + 1, −z + 1; (v) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (vi) −x + 1, −y + 1, −z + 1.
[Figure 4]
Figure 4
(a) Apical and (b) basal plane views of the Hirshfeld surface of 1 plotted over shape index generated with CrystalExplorer 21.5 (Spackman et al. 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Blue and red areas represent bumps and hollow regions, respectively, on the shape-index surface.

The Hirshfeld surface of 1 mapped with the function dnorm, the sum of the distances from a surface point to the nearest inter­ior (di) and exterior (de) atoms normalized by the van der Waals (vdW) radii of the corresponding atom (rvdW), is shown in Fig. 5[link]. Contacts shorter than the sums of vdW radii are shown in red, those longer in blue, and those approximately equal as white spots. The most intense red spots correspond to a series of inter­molecular contacts between the peripheral chlorine atoms and hydrogen atoms with Cl⋯H distances of 2.7319–2.8616 Å (Table 4[link]), some of which could be regarded as weak hydrogen bonds (Brammer et al. 2001[Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277-290.]). There are also very faint red spots on the basal planes associated with an O1⋯C12 contact.

[Figure 5]
Figure 5
Views of the (a) apical and (b) basal plane Hirshfeld surface of 1 plotted over normalized contact distance (dnorm) in the range from −0.1617 to 1.4660 a.u. generated with CrystalExplorer 21.5 (Spackman et al. 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Inter­molecular contacts closer than the sum of their van der Waals radii are highlighted in red on the dnorm surface. Contacts near and longer than the sum of van der Waals radii are shown in white and blue, respectively.

The overall 2D fingerprint plot for 1 is provided in Fig. 6[link]a. Inter­actions delineated into Cl⋯H/H⋯Cl (36.5%), H⋯H (36.5%) and H⋯Cl/H⋯Cl (11.6%) contacts are shown in Fig. 6[link]bd. Other minor contributions to the Hirshfeld surface are from C⋯C (4.1%), N⋯H/H⋯N (3.1%), O⋯C/C⋯O (2.8%), N⋯C/C⋯N (2.7%), Hg⋯C/C⋯Hg (0.7%), Hg⋯H/H⋯Hg (0.7%), O⋯N/N⋯O (0.7%), and Cl⋯C/C⋯Cl (0.5%) inter­actions.

[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for 1, showing (a) all inter­actions, and components delineated into (b) Cl⋯H/H⋯Cl, (c) H⋯H, and (d) C⋯H/H⋯C inter­actions generated with CrystalExplorer 21.5 (Spackman et al. 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The di and de values are closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, update of June 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for complexes of mercury bound to an ether oxygen, two nitro­gen and two chloride atoms yielded seven hits. Unlike the bis-aliphatic ether component of 1, all reported structures involved derivatized anisole ligands.

A search of the Cambridge Structural Database (CSD, Version 5.43, update of June 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for L yielded fourteen hits. Four [MLCl2] complexes isotypic with 1 have been reported with M = Co (refcode RAVMOU; Misawa-Suzuki et al., 2022[Misawa-Suzuki, T., Ikeda, R., Komatsu, R., Toriba, R., Miyamoto, R. & Nagao, H. (2022). Polyhedron, 218, 115735.]), Cu (refcode UGANIA; Li, 2008a[Li, J. M. (2008a). Acta Cryst. E64, m1467.]), Zn (refcode UGANOG; Li, 2008b[Li, J. M. (2008b). Acta Cryst. E64, m1468.]) and Cd (refcode TIGJID; Li, 2007[Li, J. M. (2007). Acta Cryst. E63, m2241.]). The isotypic complexes have square-pyramidal coordination geometries (τ = 0.03–0.14) and extended ligand conformations with slightly smaller pyridyl ring dihedral angles (range 12.88–16.85°) compared to 1. An extended conformation of L has also been reported in merid­ional octa­hedral complexes [CrLCl3]·H2O (refcode ZAXBUX; Chen et al., 2012[Chen, F., Lu, X., Chen, X., Li, H. & Hu, Y. (2012). Inorg. Chim. Acta, 387, 407-411.]), [FeLCl3] (refcode RAVXEV; Misawa-Suzuki et al., 2022[Misawa-Suzuki, T., Ikeda, R., Komatsu, R., Toriba, R., Miyamoto, R. & Nagao, H. (2022). Polyhedron, 218, 115735.]), [CoL2](PF6)2 (refcode RAVLAF; Misawa-Suzuki et al., 2022[Misawa-Suzuki, T., Ikeda, R., Komatsu, R., Toriba, R., Miyamoto, R. & Nagao, H. (2022). Polyhedron, 218, 115735.]), [CdL2](ClO4)2·CH3CN (refcode VAXXOL; Sturner et al., 2022[Sturner, M. A., Starr, I. J., Owusu-Koramoah, J. E., Brewster, A. D., Pike, R. D. & Bebout, D. C. (2022). Polyhedron, 217, 115727.]), and [ZnL2](ClO4)2·CH3CN (refcode VAYCEH; Sturner et al., 2022[Sturner, M. A., Starr, I. J., Owusu-Koramoah, J. E., Brewster, A. D., Pike, R. D. & Bebout, D. C. (2022). Polyhedron, 217, 115727.]), as well as the discrete square-planar and square-pyramidal cations of [CuLCl][CuLCl(H2O)](ClO4)2 (refcode FOWJAD: Li et al., 2009[Li, H., Xie, L. M. & Zhang, S. G. (2009). Acta Cryst. E65, m933.]). In contrast, substanti­ally bent conformations of L are observed in slightly distorted octa­hedral facial complexes [RhLCl3]·CH2Cl2 (refcode AWOQIN; Ojwach et al., 2011[Ojwach, S. O., Omondi, B. & Darkwa, J. (2011). Acta Cryst. E67, m1097.]), [MoL(CO)3] (refcode GUGWAG; Nanty et al., 2000[Nanty, D., Laurent, M., Khan, M. A. & Ashby, M. T. (2000). Acta Cryst. C56, 35-36.]) and (2,2′-bi­pyridine)(2,2′-[oxybis(methyl­idene)]di­pyridine)(perchlor­ato)copper(II) perchlorate (refcode IXUYEF; Cheng et al., 2004[Cheng, Y., Chen, H., Tsai, S., Su, C., Tsang, H., Kuo, T., Tsai, Y., Liao, F. & Wang, S. (2004). Eur. J. Inorg. Chem. pp. 2180-2188.]) and distorted trigonal–prismatic [HgL2](ClO4)2 (refcode VAXXUR; Sturner et al., 2022[Sturner, M. A., Starr, I. J., Owusu-Koramoah, J. E., Brewster, A. D., Pike, R. D. & Bebout, D. C. (2022). Polyhedron, 217, 115727.]). The published structures document the coordinative flexibility of L.

6. Synthesis and crystallization

A solution of L (41 mg, 205 µmol) in 3 mL methanol was added to one equivalent of HgCl2 (55 mg, 203 µmol) in 12 mL of methanol with stirring. The resulting precipitate was dissolved with the addition of 35 mL of methanol. The solution was filtered through Celite and fractionated. Pale-pink needles were obtained through slow evaporation (52 mg, 110 µmol, 54% yield), m.p.: 423–426 K. 1H NMR (CD3CN, nominally 2 mM, 293 K) δ: 8.69 (d, 2H, J = 5.4 Hz), 7.95 (ddd, 2H, J = 8.0, 8.0, 1.9 Hz), 7.53 (m, 2H), 4.88 (s, 4H). IR (ATR) ν/cm−1: 3080(w), 3069(w), 3028(w), 2864(w), 1602(s), 1574(m), 1487(m), 1465(m), 1449(s), 1406(m), 1385(w), 1364(m), 1301(m), 1288(s), 1250(m), 1231(w), 1221(m), 1163(m), 1155(m), 1130(s), 1109(m), 1099(s), 1051(m), 1030(m), 1016(s), 1003(m), 995(m), 972(w), 961(w), 889(w), 851(m), 826(w), 816(w), 810(w), 773(s), 762(s), 723(s), 667(w), 646(m), 640(s), 629(m). Elemental analysis calculated for C12H12HgN2O: C, 30.55; H, 2.56; N, 5.94. Found: C, 30.54; H, 2.51; N, 5.90%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The hydrogen atoms were placed in calculated positions with C—H distances of 0.95 Å (aromatic) and 0.99 Å (methyl­ene) and refined as riding atoms with Uiso(H) = 1.2Ueq(C).

Table 5
Experimental details

Crystal data
Chemical formula [HgCl2(C12H12N2O)]
Mr 471.73
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 8.0202 (6), 12.587 (1), 13.7761 (11)
β (°) 91.290 (1)
V3) 1390.35 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 11.44
Crystal size (mm) 0.46 × 0.16 × 0.14
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.144, 0.486
No. of measured, independent and observed [I > 2σ(I)] reflections 20815, 2763, 2638
Rint 0.022
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.034, 1.09
No. of reflections 2763
No. of parameters 163
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.87, −0.32
Computer programs: APEX3 (Bruker, 2015[Bruker (2015). APEX3. Bruker AXS Inc. Madison, Wisconsin, USA.]), SAINT-Plus (Bruker, 2012[Bruker (2012). SAINT-Plus. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/5 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ShelXle (Hübschle, 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), CrystalExplorer21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT-Plus (Bruker, 2012); data reduction: SAINT-Plus (Bruker, 2012); program(s) used to solve structure: SHELXS2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/5 (Sheldrick, 2015b); molecular graphics: ShelXle (Hübschle, 2011); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020), CrystalExplorer 21.5 (Spackman et al., 2021), OLEX2 (Dolomanov et al., 2009), and publCIF (Westrip, 2010).

Dichlorido{2,2'-[oxybis(methylidene)]dipyridine}mercury(II) top
Crystal data top
[HgCl2(C12H12N2O)]F(000) = 880
Mr = 471.73Dx = 2.254 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.0202 (6) ÅCell parameters from 9936 reflections
b = 12.587 (1) Åθ = 2.9–26.1°
c = 13.7761 (11) ŵ = 11.44 mm1
β = 91.290 (1)°T = 100 K
V = 1390.35 (19) Å3Needle, pink
Z = 40.46 × 0.16 × 0.14 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2763 independent reflections
Radiation source: fine-focus sealed tube2638 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and ψ scansθmax = 26.1°, θmin = 2.2°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 99
Tmin = 0.144, Tmax = 0.486k = 1515
20815 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: other
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.014H-atom parameters constrained
wR(F2) = 0.034 w = 1/[σ2(Fo2) + (0.0174P)2 + 1.5258P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2763 reflectionsΔρmax = 0.87 e Å3
163 parametersΔρmin = 0.32 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.38378 (2)0.68896 (2)0.36993 (2)0.01728 (4)
Cl10.55569 (8)0.63592 (5)0.23324 (5)0.02356 (14)
Cl20.12028 (8)0.78490 (5)0.34042 (5)0.02342 (14)
O10.4165 (2)0.66608 (14)0.55572 (13)0.0180 (4)
N10.5538 (3)0.81512 (16)0.44555 (17)0.0188 (5)
N20.2909 (3)0.52695 (17)0.42871 (15)0.0165 (4)
C10.6644 (3)0.8701 (2)0.3933 (2)0.0244 (6)
H10.6725850.8551810.3260200.029*
C20.7663 (3)0.9472 (2)0.4339 (2)0.0294 (7)
H20.8428840.9850000.3951430.035*
C30.7549 (4)0.9686 (2)0.5324 (2)0.0309 (7)
H30.8218631.0222690.5620620.037*
C40.6442 (3)0.9103 (2)0.5865 (2)0.0257 (6)
H40.6364340.9222850.6543310.031*
C50.5445 (3)0.8344 (2)0.54108 (19)0.0182 (5)
C60.4211 (3)0.7698 (2)0.59698 (19)0.0211 (5)
H6B0.4559370.7659590.6663020.025*
H6A0.3092790.8028970.5924230.025*
C70.2934 (3)0.5986 (2)0.59428 (18)0.0197 (5)
H7A0.1915360.6399760.6076200.024*
H7B0.3349400.5671890.6561370.024*
C80.2531 (3)0.5114 (2)0.52223 (18)0.0173 (5)
C90.1749 (3)0.4187 (2)0.55252 (19)0.0203 (5)
H90.1511750.4082140.6190880.024*
C100.1324 (3)0.3420 (2)0.4844 (2)0.0229 (6)
H100.0753380.2794170.5031540.027*
C110.1740 (3)0.3577 (2)0.3883 (2)0.0215 (6)
H110.1482690.3055110.3404590.026*
C120.2539 (3)0.4508 (2)0.36382 (19)0.0204 (5)
H120.2837640.4612340.2981710.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.01956 (6)0.01822 (6)0.01414 (6)0.00100 (4)0.00190 (4)0.00056 (3)
Cl10.0263 (3)0.0269 (3)0.0177 (3)0.0048 (3)0.0053 (3)0.0001 (3)
Cl20.0203 (3)0.0259 (3)0.0241 (3)0.0031 (3)0.0017 (3)0.0013 (3)
O10.0181 (9)0.0178 (9)0.0181 (9)0.0010 (7)0.0033 (7)0.0015 (7)
N10.0179 (11)0.0155 (11)0.0229 (12)0.0018 (8)0.0003 (9)0.0010 (8)
N20.0146 (10)0.0185 (11)0.0165 (10)0.0019 (8)0.0002 (8)0.0004 (8)
C10.0230 (14)0.0212 (13)0.0291 (15)0.0012 (11)0.0045 (11)0.0046 (11)
C20.0193 (14)0.0205 (14)0.0485 (19)0.0029 (11)0.0022 (13)0.0095 (13)
C30.0234 (15)0.0177 (14)0.051 (2)0.0022 (11)0.0094 (14)0.0026 (13)
C40.0249 (14)0.0213 (14)0.0306 (15)0.0027 (11)0.0059 (12)0.0049 (11)
C50.0176 (13)0.0155 (12)0.0212 (13)0.0045 (10)0.0024 (11)0.0011 (10)
C60.0226 (14)0.0216 (13)0.0191 (13)0.0004 (11)0.0013 (11)0.0054 (11)
C70.0200 (13)0.0233 (13)0.0158 (12)0.0017 (10)0.0036 (10)0.0017 (10)
C80.0130 (12)0.0201 (13)0.0189 (13)0.0036 (10)0.0005 (10)0.0034 (10)
C90.0162 (12)0.0231 (13)0.0216 (13)0.0023 (10)0.0010 (10)0.0064 (11)
C100.0148 (13)0.0179 (13)0.0360 (16)0.0006 (10)0.0011 (11)0.0065 (11)
C110.0183 (13)0.0195 (13)0.0264 (14)0.0002 (11)0.0041 (11)0.0036 (11)
C120.0209 (13)0.0211 (13)0.0191 (13)0.0032 (11)0.0010 (10)0.0009 (10)
Geometric parameters (Å, º) top
Hg1—N22.323 (2)C4—C51.386 (4)
Hg1—N12.324 (2)C4—H40.9500
Hg1—Cl12.4515 (6)C5—C61.506 (4)
Hg1—Cl22.4598 (7)C6—H6B0.9900
Hg1—O12.5831 (18)C6—H6A0.9900
O1—C71.415 (3)C7—C81.510 (4)
O1—C61.424 (3)C7—H7A0.9900
N1—C51.342 (4)C7—H7B0.9900
N1—C11.346 (4)C8—C91.393 (4)
N2—C121.340 (3)C9—C101.384 (4)
N2—C81.344 (3)C9—H90.9500
C1—C21.379 (4)C10—C111.386 (4)
C1—H10.9500C10—H100.9500
C2—C31.389 (5)C11—C121.381 (4)
C2—H20.9500C11—H110.9500
C3—C41.382 (4)C12—H120.9500
C3—H30.9500
N2—Hg1—N1129.28 (8)N1—C5—C4121.5 (3)
N2—Hg1—Cl1102.65 (5)N1—C5—C6117.1 (2)
N1—Hg1—Cl1101.29 (6)C4—C5—C6121.4 (2)
N2—Hg1—Cl2101.97 (5)O1—C6—C5107.6 (2)
N1—Hg1—Cl2103.41 (6)O1—C6—H6B110.2
Cl1—Hg1—Cl2120.18 (2)C5—C6—H6B110.2
N2—Hg1—O165.35 (6)O1—C6—H6A110.2
N1—Hg1—O165.59 (7)C5—C6—H6A110.2
Cl1—Hg1—O1133.20 (4)H6B—C6—H6A108.5
Cl2—Hg1—O1106.62 (4)O1—C7—C8109.3 (2)
C7—O1—C6114.40 (19)O1—C7—H7A109.8
C7—O1—Hg1112.52 (14)C8—C7—H7A109.8
C6—O1—Hg1107.13 (14)O1—C7—H7B109.8
C5—N1—C1118.9 (2)C8—C7—H7B109.8
C5—N1—Hg1121.20 (18)H7A—C7—H7B108.3
C1—N1—Hg1119.92 (19)N2—C8—C9121.4 (2)
C12—N2—C8118.9 (2)N2—C8—C7118.3 (2)
C12—N2—Hg1117.63 (17)C9—C8—C7120.2 (2)
C8—N2—Hg1122.88 (17)C10—C9—C8119.1 (2)
N1—C1—C2122.5 (3)C10—C9—H9120.4
N1—C1—H1118.7C8—C9—H9120.4
C2—C1—H1118.7C9—C10—C11119.2 (2)
C1—C2—C3118.7 (3)C9—C10—H10120.4
C1—C2—H2120.6C11—C10—H10120.4
C3—C2—H2120.6C12—C11—C10118.5 (2)
C4—C3—C2118.8 (3)C12—C11—H11120.7
C4—C3—H3120.6C10—C11—H11120.7
C2—C3—H3120.6N2—C12—C11122.8 (2)
C3—C4—C5119.5 (3)N2—C12—H12118.6
C3—C4—H4120.2C11—C12—H12118.6
C5—C4—H4120.2
C5—N1—C1—C21.4 (4)C6—O1—C7—C8157.7 (2)
Hg1—N1—C1—C2178.8 (2)Hg1—O1—C7—C835.2 (2)
N1—C1—C2—C30.3 (4)C12—N2—C8—C90.7 (4)
C1—C2—C3—C41.3 (4)Hg1—N2—C8—C9170.47 (18)
C2—C3—C4—C51.7 (4)C12—N2—C8—C7179.2 (2)
C1—N1—C5—C41.0 (4)Hg1—N2—C8—C78.0 (3)
Hg1—N1—C5—C4179.25 (19)O1—C7—C8—N220.4 (3)
C1—N1—C5—C6179.0 (2)O1—C7—C8—C9161.1 (2)
Hg1—N1—C5—C60.8 (3)N2—C8—C9—C101.3 (4)
C3—C4—C5—N10.6 (4)C7—C8—C9—C10177.1 (2)
C3—C4—C5—C6179.4 (3)C8—C9—C10—C112.3 (4)
C7—O1—C6—C5174.0 (2)C9—C10—C11—C121.3 (4)
Hg1—O1—C6—C548.6 (2)C8—N2—C12—C111.8 (4)
N1—C5—C6—O135.2 (3)Hg1—N2—C12—C11169.8 (2)
C4—C5—C6—O1144.8 (2)C10—C11—C12—N20.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl1i0.952.733.623 (3)157
C6—H6B···Cl2ii0.992.793.746 (3)164
C6—H6A···Cl1iii0.992.943.711 (3)135
C11—H11···Cl1iv0.952.863.722 (3)151
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x1/2, y+3/2, z+1/2; (iv) x+1/2, y1/2, z+1/2.
Overview of pyridyl–pyridyl ring geometry metrics (Å, °) for [HgLCl2] (1) top
Cg1 and Cg2 are the centroids of the N1/C1–C5 and N2/C8–C12 rings, respectively.
CentroidsDihedral angle between ringsCentroid–centroid distanceCentroid–plane distanceCentroid offset
Cg1···Cg1i0.003.718 (2)3.573 (2)1.028
Cg2···Cg2ii0.004.002 (2)3.563 (4)1.822
Cg2···Cg2iii0.005.005 (2)3.536 (4)3.542
Cg1···Cg2iii18.38 (12)4.2944 (15)2.826 (4)3.233
Cg2···Cg1iii18.38 (12)4.2944 (15)3.702 (3)2.176
Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 1.
Short inter­atomic contacts (Å) in [HgLCl2] (1) top
AtomsDistanceAtomsDistance
Cl1···H2i2.732Cl2···H6Bii2.785
Cl2···H3iii2.808Cl2···H10iv2.813
H11···Cl1v2.862O1···C12vi3.201 (3)
Symmetry codes: (i) -x + 3/2, y - 1/2, -z + 1/2; (ii) x - 1/2, -y + 3/2, z - 1/2 ; (iii) -x + 1, -y + 2, -z + 1; (iv) -x, -y + 1, -z + 1; (v) -x + 1/2, y - 1/2, -z + 1/2; (vi) -x + 1, -y + 1, -z + 1.
 

Acknowledgements

The authors thank Professor Robert Pike for consulting on this work and for the extraordinary patience he has demonstrated while providing training in X-ray crystallography over the past seventeen years.

Funding information

Funding for this research was provided by: William & Mary; National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. 0443345).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBrammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2012). SAINT-Plus. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). APEX3. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationChen, F., Lu, X., Chen, X., Li, H. & Hu, Y. (2012). Inorg. Chim. Acta, 387, 407–411.  CSD CrossRef CAS Google Scholar
First citationCheng, Y., Chen, H., Tsai, S., Su, C., Tsang, H., Kuo, T., Tsai, Y., Liao, F. & Wang, S. (2004). Eur. J. Inorg. Chem. pp. 2180–2188.  CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIvanova, J., Pantcheva, I. N., Mitewa, M., Simova, S., Tanabe, M. & Osakada, K. (2011). Chem. Cent. J. 5, 52.  CrossRef PubMed Google Scholar
First citationKim, E., Pai, T. & Han, O. (2011). J. Agric. Food Chem. 59, 3606–3612.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, H., Xie, L. M. & Zhang, S. G. (2009). Acta Cryst. E65, m933.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, J. M. (2007). Acta Cryst. E63, m2241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J. M. (2008a). Acta Cryst. E64, m1467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J. M. (2008b). Acta Cryst. E64, m1468.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, X., Jiang, X., Sun, J., Zhu, C., Li, X., Tian, L., Liu, L. & Bai, W. (2017). Ann. N. Y. Acad. Sci. 1398, 5–19.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMisawa-Suzuki, T., Ikeda, R., Komatsu, R., Toriba, R., Miyamoto, R. & Nagao, H. (2022). Polyhedron, 218, 115735.  Google Scholar
First citationNanty, D., Laurent, M., Khan, M. A. & Ashby, M. T. (2000). Acta Cryst. C56, 35–36.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOjwach, S. O., Omondi, B. & Darkwa, J. (2011). Acta Cryst. E67, m1097.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreenivasulu, K., Raghu, P. & Nair, K. M. (2010). J. Food Sci. 75, H123–H128.  CrossRef CAS PubMed Google Scholar
First citationSturner, M. A., Starr, I. J., Owusu-Koramoah, J. E., Brewster, A. D., Pike, R. D. & Bebout, D. C. (2022). Polyhedron, 217, 115727.  CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Zhi, J., Cui, Y., Zhang, F., Habyarimana, A., Cambier, C. & Gustin, P. (2014). PLoS One, 9, e109136.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds