research communications
and Hirshfeld surface analysis of dichlorido{2,2′-[oxybis(methylidene)]dipyridine}mercury(II)
aDepartment of Chemistry, William & Mary, Williamsburg, VA 23187-8795, USA
*Correspondence e-mail: dcbebo@wm.edu
The series of divalent metal chloride complexes of 2,2′-[oxybis(methylidene)]dipyridine (L) was extended with the preparation of the title compound, [HgCl2(C12H12N2O)] or [HgLCl2] (1). The Hg2+ complex crystallizes in P21/n, isomorphic with dichloride Co2+, Cu2+, Zn2+ and Cd2+ complexes of L. Metal ions of the isotypic complexes are coordinated by two chlorine atoms, as well as the oxygen atom and both nitrogen atoms of L. The complexes have a square-pyramidal coordination geometry with a chlorine atom in the apical position. Supramolecular interactions in 1 include offset face-to-face interactions between inversion-related complexes, leading to the formation of sheets parallel to the ab plane. Weak intermolecular H⋯Cl contacts link the sheets. Hirshfeld surface analysis indicates that H⋯H (36.5%), Cl⋯H/H⋯Cl (36.5%) and C⋯H/H⋯C (11.6%) interactions are dominant.
Keywords: crystal structure; mercury complex; Hirshfeld surface analysis.
CCDC reference: 2219283
1. Chemical context
Structural comparisons of group 12 metal ions in similar environments can help improve understanding of the effects of metal-ion replacement on the biological properties of organic molecules. Ether-containing bioactive compounds with group 12 metal ion-dependent bioactivity include et al., 2010; Kim et al., 2011; Li et al., 2017), ionophores (Ivanova et al., 2011), and pharmaceuticals (Zhang et al., 2014). Recent studies of 2,2′-[oxybis(methylidene)]dipyridine (L) with group 12 perchlorate salts revealed bis-tridentate chelate [ML2](ClO4)2 complexes with either meridional octahedral (M = Zn2+ or Cd2+) or trigonal–prismatic (M = Hg2+) metal-ion coordination (Sturner et al., 2022). Isotypic square-pyramidal [MLCl2] complexes of Zn2+ (τ = 0.03) and Cd2+ (τ = 0.11) have been reported previously (Addison et al., 1984; Li, 2008a,b). Herein, the preparation, and Hirshfeld surface analysis of dichlorido{2,2′-[oxybis(methylidene)]dipyridine}mercury(II) is reported.
(Sreenivasulu2. Structural commentary
Complex 1 crystallizes in the monoclinic P21/n as a monomer (Fig. 1). The tridentate ligand and two chlorides provide a slightly distorted square-pyramidal geometry (τ = 0.07; Table 1) to the metal ion (Addison et al. 1984). In the complex, tridentate L has an asymmetrical, slightly bent conformation in the basal plane with an N1—Hg1—N2 angle of 129.28 (8)°. Both chelate rings have an with O1 in the flap position. The mercury atom is 0.8100 (9) Å above the basal plane. The apical Hg—Cl distance is 0.0083 Å longer than the basal Hg—Cl distance.
|
3. Supramolecular features
The packing of 1 is stabilized by π–π stacking interactions (Fig. 2) and van der Waals interactions (Fig. 3). On the apical side of 1, pyridyl rings (centroids Cg1: N1/C1–C5; Cg2: N2/C8–C12) are stacked against separate inversion-related equivalents with a small offset (Table 2). In contrast, the basal face features an extended ligand conformation placing the N2 pyridyl rings across from the chelate rings of an inversion-related molecule (Fig. 2) with large offsets between the pyridyl ring centroids of the opposing ligand (Table 2). Although the large centroid offsets preclude π–π stacking interactions on the basal face, the predominantly planar ligand allows the inner and outer edges of N2 pyridyl rings to nestle along the inner edges of opposing N2 and N1 pyridyl rings, respectively (Fig. 2).
Aromatic stacking interactions contribute to formation of sheets parallel to the ab plane. Adjacent sheets are related by a 21 screw axis. Intermolecular van der Waals interactions, some of which could be described as weak hydrogen bonds involving C—H donors and Cl acceptors (Table 3; Brammer et al., 2001), occur within and between the sheets.
4. Hirshfeld surface analysis
Intermolecular interactions were investigated by quantitative analysis of the Hirshfeld surface and visualized with CrystalExplorer 21.5 (Spackman et al., 2021). Five hourglass features appeared on the Hirshfeld surface of 1 plotted over shape index (Fig. 4). Both hourglass features on the apical side reflect self-complementary face-to-face bump and hollow alignments between inversion-related pyridyl rings involved in π–π stacking. The hourglass features associated with O1 and C12 on the basal face arise from the bend of the O atom in the flap position of the chelate rings towards the inversion-related molecule (Fig. 2), resulting in notably shorter interatomic distances than for adjacent atoms (Table 4). The last hourglass feature reflects surface complementarity near the interior edges of inversion-related N2 pyridyl rings with a centroid offset of 3.452 Å. Additional blue and red horseshoe-shaped regions on the basal face correlate with a bump along the C9—C10 outer edge of the N2 pyridyl ring nesting against a hollow looping around N1, respectively.
|
The Hirshfeld surface of 1 mapped with the function dnorm, the sum of the distances from a surface point to the nearest interior (di) and exterior (de) atoms normalized by the van der Waals (vdW) radii of the corresponding atom (rvdW), is shown in Fig. 5. Contacts shorter than the sums of vdW radii are shown in red, those longer in blue, and those approximately equal as white spots. The most intense red spots correspond to a series of intermolecular contacts between the peripheral chlorine atoms and hydrogen atoms with Cl⋯H distances of 2.7319–2.8616 Å (Table 4), some of which could be regarded as weak hydrogen bonds (Brammer et al. 2001). There are also very faint red spots on the basal planes associated with an O1⋯C12 contact.
The overall 2D fingerprint plot for 1 is provided in Fig. 6a. Interactions delineated into Cl⋯H/H⋯Cl (36.5%), H⋯H (36.5%) and H⋯Cl/H⋯Cl (11.6%) contacts are shown in Fig. 6b–d. Other minor contributions to the Hirshfeld surface are from C⋯C (4.1%), N⋯H/H⋯N (3.1%), O⋯C/C⋯O (2.8%), N⋯C/C⋯N (2.7%), Hg⋯C/C⋯Hg (0.7%), Hg⋯H/H⋯Hg (0.7%), O⋯N/N⋯O (0.7%), and Cl⋯C/C⋯Cl (0.5%) interactions.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.43, update of June 2022; Groom et al., 2016) for complexes of mercury bound to an ether oxygen, two nitrogen and two chloride atoms yielded seven hits. Unlike the bis-aliphatic ether component of 1, all reported structures involved derivatized anisole ligands.
A search of the Cambridge Structural Database (CSD, Version 5.43, update of June 2022; Groom et al., 2016) for L yielded fourteen hits. Four [MLCl2] complexes isotypic with 1 have been reported with M = Co (refcode RAVMOU; Misawa-Suzuki et al., 2022), Cu (refcode UGANIA; Li, 2008a), Zn (refcode UGANOG; Li, 2008b) and Cd (refcode TIGJID; Li, 2007). The isotypic complexes have square-pyramidal coordination geometries (τ = 0.03–0.14) and extended ligand conformations with slightly smaller pyridyl ring dihedral angles (range 12.88–16.85°) compared to 1. An extended conformation of L has also been reported in meridional octahedral complexes [CrLCl3]·H2O (refcode ZAXBUX; Chen et al., 2012), [FeLCl3] (refcode RAVXEV; Misawa-Suzuki et al., 2022), [CoL2](PF6)2 (refcode RAVLAF; Misawa-Suzuki et al., 2022), [CdL2](ClO4)2·CH3CN (refcode VAXXOL; Sturner et al., 2022), and [ZnL2](ClO4)2·CH3CN (refcode VAYCEH; Sturner et al., 2022), as well as the discrete square-planar and square-pyramidal cations of [CuLCl][CuLCl(H2O)](ClO4)2 (refcode FOWJAD: Li et al., 2009). In contrast, substantially bent conformations of L are observed in slightly distorted octahedral facial complexes [RhLCl3]·CH2Cl2 (refcode AWOQIN; Ojwach et al., 2011), [MoL(CO)3] (refcode GUGWAG; Nanty et al., 2000) and (2,2′-bipyridine)(2,2′-[oxybis(methylidene)]dipyridine)(perchlorato)copper(II) perchlorate (refcode IXUYEF; Cheng et al., 2004) and distorted trigonal–prismatic [HgL2](ClO4)2 (refcode VAXXUR; Sturner et al., 2022). The published structures document the coordinative flexibility of L.
6. Synthesis and crystallization
A solution of L (41 mg, 205 µmol) in 3 mL methanol was added to one equivalent of HgCl2 (55 mg, 203 µmol) in 12 mL of methanol with stirring. The resulting precipitate was dissolved with the addition of 35 mL of methanol. The solution was filtered through Celite and fractionated. Pale-pink needles were obtained through slow evaporation (52 mg, 110 µmol, 54% yield), m.p.: 423–426 K. 1H NMR (CD3CN, nominally 2 mM, 293 K) δ: 8.69 (d, 2H, J = 5.4 Hz), 7.95 (ddd, 2H, J = 8.0, 8.0, 1.9 Hz), 7.53 (m, 2H), 4.88 (s, 4H). IR (ATR) ν/cm−1: 3080(w), 3069(w), 3028(w), 2864(w), 1602(s), 1574(m), 1487(m), 1465(m), 1449(s), 1406(m), 1385(w), 1364(m), 1301(m), 1288(s), 1250(m), 1231(w), 1221(m), 1163(m), 1155(m), 1130(s), 1109(m), 1099(s), 1051(m), 1030(m), 1016(s), 1003(m), 995(m), 972(w), 961(w), 889(w), 851(m), 826(w), 816(w), 810(w), 773(s), 762(s), 723(s), 667(w), 646(m), 640(s), 629(m). Elemental analysis calculated for C12H12HgN2O: C, 30.55; H, 2.56; N, 5.94. Found: C, 30.54; H, 2.51; N, 5.90%.
7. Refinement
Crystal data, data collection and structure . The hydrogen atoms were placed in calculated positions with C—H distances of 0.95 Å (aromatic) and 0.99 Å (methylene) and refined as riding atoms with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 5
|
Supporting information
CCDC reference: 2219283
https://doi.org/10.1107/S2056989022010878/yz2024sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022010878/yz2024Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022010878/yz2024Isup3.cdx
Data collection: APEX3 (Bruker, 2015); cell
SAINT-Plus (Bruker, 2012); data reduction: SAINT-Plus (Bruker, 2012); program(s) used to solve structure: SHELXS2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/5 (Sheldrick, 2015b); molecular graphics: ShelXle (Hübschle, 2011); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020), CrystalExplorer 21.5 (Spackman et al., 2021), OLEX2 (Dolomanov et al., 2009), and publCIF (Westrip, 2010).[HgCl2(C12H12N2O)] | F(000) = 880 |
Mr = 471.73 | Dx = 2.254 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.0202 (6) Å | Cell parameters from 9936 reflections |
b = 12.587 (1) Å | θ = 2.9–26.1° |
c = 13.7761 (11) Å | µ = 11.44 mm−1 |
β = 91.290 (1)° | T = 100 K |
V = 1390.35 (19) Å3 | Needle, pink |
Z = 4 | 0.46 × 0.16 × 0.14 mm |
Bruker SMART APEXII CCD diffractometer | 2763 independent reflections |
Radiation source: fine-focus sealed tube | 2638 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ω and ψ scans | θmax = 26.1°, θmin = 2.2° |
Absorption correction: numerical (SADABS; Krause et al., 2015) | h = −9→9 |
Tmin = 0.144, Tmax = 0.486 | k = −15→15 |
20815 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: other |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.014 | H-atom parameters constrained |
wR(F2) = 0.034 | w = 1/[σ2(Fo2) + (0.0174P)2 + 1.5258P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
2763 reflections | Δρmax = 0.87 e Å−3 |
163 parameters | Δρmin = −0.32 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.38378 (2) | 0.68896 (2) | 0.36993 (2) | 0.01728 (4) | |
Cl1 | 0.55569 (8) | 0.63592 (5) | 0.23324 (5) | 0.02356 (14) | |
Cl2 | 0.12028 (8) | 0.78490 (5) | 0.34042 (5) | 0.02342 (14) | |
O1 | 0.4165 (2) | 0.66608 (14) | 0.55572 (13) | 0.0180 (4) | |
N1 | 0.5538 (3) | 0.81512 (16) | 0.44555 (17) | 0.0188 (5) | |
N2 | 0.2909 (3) | 0.52695 (17) | 0.42871 (15) | 0.0165 (4) | |
C1 | 0.6644 (3) | 0.8701 (2) | 0.3933 (2) | 0.0244 (6) | |
H1 | 0.672585 | 0.855181 | 0.326020 | 0.029* | |
C2 | 0.7663 (3) | 0.9472 (2) | 0.4339 (2) | 0.0294 (7) | |
H2 | 0.842884 | 0.985000 | 0.395143 | 0.035* | |
C3 | 0.7549 (4) | 0.9686 (2) | 0.5324 (2) | 0.0309 (7) | |
H3 | 0.821863 | 1.022269 | 0.562062 | 0.037* | |
C4 | 0.6442 (3) | 0.9103 (2) | 0.5865 (2) | 0.0257 (6) | |
H4 | 0.636434 | 0.922285 | 0.654331 | 0.031* | |
C5 | 0.5445 (3) | 0.8344 (2) | 0.54108 (19) | 0.0182 (5) | |
C6 | 0.4211 (3) | 0.7698 (2) | 0.59698 (19) | 0.0211 (5) | |
H6B | 0.455937 | 0.765959 | 0.666302 | 0.025* | |
H6A | 0.309279 | 0.802897 | 0.592423 | 0.025* | |
C7 | 0.2934 (3) | 0.5986 (2) | 0.59428 (18) | 0.0197 (5) | |
H7A | 0.191536 | 0.639976 | 0.607620 | 0.024* | |
H7B | 0.334940 | 0.567189 | 0.656137 | 0.024* | |
C8 | 0.2531 (3) | 0.5114 (2) | 0.52223 (18) | 0.0173 (5) | |
C9 | 0.1749 (3) | 0.4187 (2) | 0.55252 (19) | 0.0203 (5) | |
H9 | 0.151175 | 0.408214 | 0.619088 | 0.024* | |
C10 | 0.1324 (3) | 0.3420 (2) | 0.4844 (2) | 0.0229 (6) | |
H10 | 0.075338 | 0.279417 | 0.503154 | 0.027* | |
C11 | 0.1740 (3) | 0.3577 (2) | 0.3883 (2) | 0.0215 (6) | |
H11 | 0.148269 | 0.305511 | 0.340459 | 0.026* | |
C12 | 0.2539 (3) | 0.4508 (2) | 0.36382 (19) | 0.0204 (5) | |
H12 | 0.283764 | 0.461234 | 0.298171 | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.01956 (6) | 0.01822 (6) | 0.01414 (6) | −0.00100 (4) | 0.00190 (4) | 0.00056 (3) |
Cl1 | 0.0263 (3) | 0.0269 (3) | 0.0177 (3) | 0.0048 (3) | 0.0053 (3) | 0.0001 (3) |
Cl2 | 0.0203 (3) | 0.0259 (3) | 0.0241 (3) | 0.0031 (3) | 0.0017 (3) | 0.0013 (3) |
O1 | 0.0181 (9) | 0.0178 (9) | 0.0181 (9) | −0.0010 (7) | 0.0033 (7) | −0.0015 (7) |
N1 | 0.0179 (11) | 0.0155 (11) | 0.0229 (12) | 0.0018 (8) | 0.0003 (9) | 0.0010 (8) |
N2 | 0.0146 (10) | 0.0185 (11) | 0.0165 (10) | 0.0019 (8) | −0.0002 (8) | 0.0004 (8) |
C1 | 0.0230 (14) | 0.0212 (13) | 0.0291 (15) | 0.0012 (11) | 0.0045 (11) | 0.0046 (11) |
C2 | 0.0193 (14) | 0.0205 (14) | 0.0485 (19) | −0.0029 (11) | 0.0022 (13) | 0.0095 (13) |
C3 | 0.0234 (15) | 0.0177 (14) | 0.051 (2) | −0.0022 (11) | −0.0094 (14) | −0.0026 (13) |
C4 | 0.0249 (14) | 0.0213 (14) | 0.0306 (15) | 0.0027 (11) | −0.0059 (12) | −0.0049 (11) |
C5 | 0.0176 (13) | 0.0155 (12) | 0.0212 (13) | 0.0045 (10) | −0.0024 (11) | −0.0011 (10) |
C6 | 0.0226 (14) | 0.0216 (13) | 0.0191 (13) | 0.0004 (11) | 0.0013 (11) | −0.0054 (11) |
C7 | 0.0200 (13) | 0.0233 (13) | 0.0158 (12) | −0.0017 (10) | 0.0036 (10) | 0.0017 (10) |
C8 | 0.0130 (12) | 0.0201 (13) | 0.0189 (13) | 0.0036 (10) | −0.0005 (10) | 0.0034 (10) |
C9 | 0.0162 (12) | 0.0231 (13) | 0.0216 (13) | 0.0023 (10) | 0.0010 (10) | 0.0064 (11) |
C10 | 0.0148 (13) | 0.0179 (13) | 0.0360 (16) | −0.0006 (10) | −0.0011 (11) | 0.0065 (11) |
C11 | 0.0183 (13) | 0.0195 (13) | 0.0264 (14) | −0.0002 (11) | −0.0041 (11) | −0.0036 (11) |
C12 | 0.0209 (13) | 0.0211 (13) | 0.0191 (13) | 0.0032 (11) | −0.0010 (10) | 0.0009 (10) |
Hg1—N2 | 2.323 (2) | C4—C5 | 1.386 (4) |
Hg1—N1 | 2.324 (2) | C4—H4 | 0.9500 |
Hg1—Cl1 | 2.4515 (6) | C5—C6 | 1.506 (4) |
Hg1—Cl2 | 2.4598 (7) | C6—H6B | 0.9900 |
Hg1—O1 | 2.5831 (18) | C6—H6A | 0.9900 |
O1—C7 | 1.415 (3) | C7—C8 | 1.510 (4) |
O1—C6 | 1.424 (3) | C7—H7A | 0.9900 |
N1—C5 | 1.342 (4) | C7—H7B | 0.9900 |
N1—C1 | 1.346 (4) | C8—C9 | 1.393 (4) |
N2—C12 | 1.340 (3) | C9—C10 | 1.384 (4) |
N2—C8 | 1.344 (3) | C9—H9 | 0.9500 |
C1—C2 | 1.379 (4) | C10—C11 | 1.386 (4) |
C1—H1 | 0.9500 | C10—H10 | 0.9500 |
C2—C3 | 1.389 (5) | C11—C12 | 1.381 (4) |
C2—H2 | 0.9500 | C11—H11 | 0.9500 |
C3—C4 | 1.382 (4) | C12—H12 | 0.9500 |
C3—H3 | 0.9500 | ||
N2—Hg1—N1 | 129.28 (8) | N1—C5—C4 | 121.5 (3) |
N2—Hg1—Cl1 | 102.65 (5) | N1—C5—C6 | 117.1 (2) |
N1—Hg1—Cl1 | 101.29 (6) | C4—C5—C6 | 121.4 (2) |
N2—Hg1—Cl2 | 101.97 (5) | O1—C6—C5 | 107.6 (2) |
N1—Hg1—Cl2 | 103.41 (6) | O1—C6—H6B | 110.2 |
Cl1—Hg1—Cl2 | 120.18 (2) | C5—C6—H6B | 110.2 |
N2—Hg1—O1 | 65.35 (6) | O1—C6—H6A | 110.2 |
N1—Hg1—O1 | 65.59 (7) | C5—C6—H6A | 110.2 |
Cl1—Hg1—O1 | 133.20 (4) | H6B—C6—H6A | 108.5 |
Cl2—Hg1—O1 | 106.62 (4) | O1—C7—C8 | 109.3 (2) |
C7—O1—C6 | 114.40 (19) | O1—C7—H7A | 109.8 |
C7—O1—Hg1 | 112.52 (14) | C8—C7—H7A | 109.8 |
C6—O1—Hg1 | 107.13 (14) | O1—C7—H7B | 109.8 |
C5—N1—C1 | 118.9 (2) | C8—C7—H7B | 109.8 |
C5—N1—Hg1 | 121.20 (18) | H7A—C7—H7B | 108.3 |
C1—N1—Hg1 | 119.92 (19) | N2—C8—C9 | 121.4 (2) |
C12—N2—C8 | 118.9 (2) | N2—C8—C7 | 118.3 (2) |
C12—N2—Hg1 | 117.63 (17) | C9—C8—C7 | 120.2 (2) |
C8—N2—Hg1 | 122.88 (17) | C10—C9—C8 | 119.1 (2) |
N1—C1—C2 | 122.5 (3) | C10—C9—H9 | 120.4 |
N1—C1—H1 | 118.7 | C8—C9—H9 | 120.4 |
C2—C1—H1 | 118.7 | C9—C10—C11 | 119.2 (2) |
C1—C2—C3 | 118.7 (3) | C9—C10—H10 | 120.4 |
C1—C2—H2 | 120.6 | C11—C10—H10 | 120.4 |
C3—C2—H2 | 120.6 | C12—C11—C10 | 118.5 (2) |
C4—C3—C2 | 118.8 (3) | C12—C11—H11 | 120.7 |
C4—C3—H3 | 120.6 | C10—C11—H11 | 120.7 |
C2—C3—H3 | 120.6 | N2—C12—C11 | 122.8 (2) |
C3—C4—C5 | 119.5 (3) | N2—C12—H12 | 118.6 |
C3—C4—H4 | 120.2 | C11—C12—H12 | 118.6 |
C5—C4—H4 | 120.2 | ||
C5—N1—C1—C2 | −1.4 (4) | C6—O1—C7—C8 | 157.7 (2) |
Hg1—N1—C1—C2 | 178.8 (2) | Hg1—O1—C7—C8 | 35.2 (2) |
N1—C1—C2—C3 | 0.3 (4) | C12—N2—C8—C9 | −0.7 (4) |
C1—C2—C3—C4 | 1.3 (4) | Hg1—N2—C8—C9 | 170.47 (18) |
C2—C3—C4—C5 | −1.7 (4) | C12—N2—C8—C7 | −179.2 (2) |
C1—N1—C5—C4 | 1.0 (4) | Hg1—N2—C8—C7 | −8.0 (3) |
Hg1—N1—C5—C4 | −179.25 (19) | O1—C7—C8—N2 | −20.4 (3) |
C1—N1—C5—C6 | −179.0 (2) | O1—C7—C8—C9 | 161.1 (2) |
Hg1—N1—C5—C6 | 0.8 (3) | N2—C8—C9—C10 | −1.3 (4) |
C3—C4—C5—N1 | 0.6 (4) | C7—C8—C9—C10 | 177.1 (2) |
C3—C4—C5—C6 | −179.4 (3) | C8—C9—C10—C11 | 2.3 (4) |
C7—O1—C6—C5 | −174.0 (2) | C9—C10—C11—C12 | −1.3 (4) |
Hg1—O1—C6—C5 | −48.6 (2) | C8—N2—C12—C11 | 1.8 (4) |
N1—C5—C6—O1 | 35.2 (3) | Hg1—N2—C12—C11 | −169.8 (2) |
C4—C5—C6—O1 | −144.8 (2) | C10—C11—C12—N2 | −0.8 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···Cl1i | 0.95 | 2.73 | 3.623 (3) | 157 |
C6—H6B···Cl2ii | 0.99 | 2.79 | 3.746 (3) | 164 |
C6—H6A···Cl1iii | 0.99 | 2.94 | 3.711 (3) | 135 |
C11—H11···Cl1iv | 0.95 | 2.86 | 3.722 (3) | 151 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) x+1/2, −y+3/2, z+1/2; (iii) x−1/2, −y+3/2, z+1/2; (iv) −x+1/2, y−1/2, −z+1/2. |
Cg1 and Cg2 are the centroids of the N1/C1–C5 and N2/C8–C12 rings, respectively. |
Centroids | Dihedral angle between rings | Centroid–centroid distance | Centroid–plane distance | Centroid offset |
Cg1···Cg1i | 0.00 | 3.718 (2) | 3.573 (2) | 1.028 |
Cg2···Cg2ii | 0.00 | 4.002 (2) | 3.563 (4) | 1.822 |
Cg2···Cg2iii | 0.00 | 5.005 (2) | 3.536 (4) | 3.542 |
Cg1···Cg2iii | 18.38 (12) | 4.2944 (15) | 2.826 (4) | 3.233 |
Cg2···Cg1iii | 18.38 (12) | 4.2944 (15) | 3.702 (3) | 2.176 |
Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 1. |
Atoms | Distance | Atoms | Distance |
Cl1···H2i | 2.732 | Cl2···H6Bii | 2.785 |
Cl2···H3iii | 2.808 | Cl2···H10iv | 2.813 |
H11···Cl1v | 2.862 | O1···C12vi | 3.201 (3) |
Symmetry codes: (i) -x + 3/2, y - 1/2, -z + 1/2; (ii) x - 1/2, -y + 3/2, z - 1/2 ; (iii) -x + 1, -y + 2, -z + 1; (iv) -x, -y + 1, -z + 1; (v) -x + 1/2, y - 1/2, -z + 1/2; (vi) -x + 1, -y + 1, -z + 1. |
Acknowledgements
The authors thank Professor Robert Pike for consulting on this work and for the extraordinary patience he has demonstrated while providing training in X-ray crystallography over the past seventeen years.
Funding information
Funding for this research was provided by: William & Mary; National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. 0443345).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290. Web of Science CrossRef CAS Google Scholar
Bruker (2012). SAINT-Plus. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Bruker (2015). APEX3. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Chen, F., Lu, X., Chen, X., Li, H. & Hu, Y. (2012). Inorg. Chim. Acta, 387, 407–411. CSD CrossRef CAS Google Scholar
Cheng, Y., Chen, H., Tsai, S., Su, C., Tsang, H., Kuo, T., Tsai, Y., Liao, F. & Wang, S. (2004). Eur. J. Inorg. Chem. pp. 2180–2188. CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Ivanova, J., Pantcheva, I. N., Mitewa, M., Simova, S., Tanabe, M. & Osakada, K. (2011). Chem. Cent. J. 5, 52. CrossRef PubMed Google Scholar
Kim, E., Pai, T. & Han, O. (2011). J. Agric. Food Chem. 59, 3606–3612. CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Li, H., Xie, L. M. & Zhang, S. G. (2009). Acta Cryst. E65, m933. CSD CrossRef IUCr Journals Google Scholar
Li, J. M. (2007). Acta Cryst. E63, m2241. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, J. M. (2008a). Acta Cryst. E64, m1467. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, J. M. (2008b). Acta Cryst. E64, m1468. CSD CrossRef IUCr Journals Google Scholar
Li, X., Jiang, X., Sun, J., Zhu, C., Li, X., Tian, L., Liu, L. & Bai, W. (2017). Ann. N. Y. Acad. Sci. 1398, 5–19. CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Misawa-Suzuki, T., Ikeda, R., Komatsu, R., Toriba, R., Miyamoto, R. & Nagao, H. (2022). Polyhedron, 218, 115735. Google Scholar
Nanty, D., Laurent, M., Khan, M. A. & Ashby, M. T. (2000). Acta Cryst. C56, 35–36. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ojwach, S. O., Omondi, B. & Darkwa, J. (2011). Acta Cryst. E67, m1097. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sreenivasulu, K., Raghu, P. & Nair, K. M. (2010). J. Food Sci. 75, H123–H128. CrossRef CAS PubMed Google Scholar
Sturner, M. A., Starr, I. J., Owusu-Koramoah, J. E., Brewster, A. D., Pike, R. D. & Bebout, D. C. (2022). Polyhedron, 217, 115727. CSD CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, W., Zhi, J., Cui, Y., Zhang, F., Habyarimana, A., Cambier, C. & Gustin, P. (2014). PLoS One, 9, e109136. CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.