research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of cis(S),trans(O,Nbpy)-(2,2′-bipyrid­yl-κ2N,N′)bis­­(di­methyl sulfoxide-κS)[phen­yl(pyridin-2-yl)methanone-κ2N,O]ruthenium(II) bis­­(tri­fluoro­methane­sulfonate)

crossmark logo

aDepartment of Engineering Science, Faculty of Engineering, Osaka, Electro-Communication University, 18-8 Hatsucho, Neyagawa, Osaka 572-8530, Japan, and bDepartment of Applied Chemistry, School of Science and Engineering, Meiji, University, 1-1-1 Higashimita, Tama, Kanagawa 214-8571, Japan
*Correspondence e-mail: m-toyama@osakac.ac.jp

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 23 August 2022; accepted 24 October 2022; online 10 November 2022)

The mol­ecular and crystal structures of the title complex, [Ru(C10H8N2)(C12H9NO)(C2H6OS)2](CF3O3S)2 or cis(S),trans(O,Nbpy)-[Ru(bpy)(ppk)(dmso-S)2](OTf)2 {bpy = 2,2′-bi­pyridine, ppk = phenyl-2-pyridyl ketone [IUPAC nomenclature: phenyl(pyridine-2-yl)methanone], dmso = dimethyl sulfoxide, and OTf = tri­fluoro­methane­sulfonate}, are reported. The Ru2+ ion has a distorted octa­hedral geometry with two bpy N atoms, the N and O atoms of ppk, and two S atoms of two cis dmso-S ligands. The carbonyl O atom of ppk is trans to bpy, and the N atom of pyridyl is trans to the dmso-S ligand [trans(O,Nbpy) geometry]. One of the tri­fluoro­methane­sulfonate anions is disordered over three positions, with occupancies of 0.4, 0.4, and 0.2, respectively, in the refined model. The original disordered and SQUEEZE [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] models were found to be almost equivalent, indicating that both the SQUEEZE and the original disordered model are satisfactory.

1. Chemical context

Polypyridyl ruthenium(II) complexes have gained inter­est because of their unique photochemical and photophysical properties. Many homoleptic and bis-heteroleptic polypyridyl ruthenium(II) complexes have been synthesized, and their properties have been investigated (Gao et al., 2008[Gao, F., Wang, Y., Shi, D., Zhang, J., Wang, M., Jing, X., Humphry-Baker, R., Wang, P., Zakeeruddin, S. M. & Grätzel, M. (2008). J. Am. Chem. Soc. 130, 10720-10728.]; Patra et al., 2021[Patra, S. K., Sen, B., Rabha, M. & Khatua, S. (2021). New J. Chem. 46, 169-177.]). However, there are fewer studies on tris­heteroleptic complexes, i.e. [Ru(L1-L1)(L2-L2)(L3-L3)]2+, than on bis­heteroleptic complexes, i.e. [Ru(L-L1)2(L2-L2)]2+, (Spiccia et al., 2004[Spiccia, L., Deacon, G. B. & Kepert, C. M. (2004). Coord. Chem. Rev. 248, 1329-1341.]). The difference can be traced to the limited suitable precursors for the tris­heteroleptic complexes, such as cis-[Ru(L1-L1)(L2-L2)(X)2]2+ (X = labile monodentate ligand) complexes. We have reported the synthesis, crystal structure, and substitution reaction of trans(O,S)-[Ru(bpy)(dmso-S)2(dmso-O)2](OTf)2 (bpy = 2,2′-bi­pyridine, dmso = dimethyl sulfoxide, and OTf = tri­fluoro­methane­sulfonate), in which two dmso-O ligands were easily substituted by another bidentate ligand, e.g., 1,10-phenanthroline (phen), to form cis-[Ru(bpy)(phen)(dmso-S)2](OTf)2 (Toyama et al., 2018[Toyama, M., Fujimoto, D., Matsuoka, Y., Asano, Y. & Nagao, N. (2018). Eur. J. Inorg. Chem. 2018, 4349-4360.]). To investigate the potential synthetic utility of trans(O,S)-[Ru(bpy)(dmso-S)2(dmso-O)2](OTf)2 as a precursor, further complexes with different types of ligands must be synthesized. To this end, we became inter­ested in unsymmetrical bidentate κ2N,O-pyridyl ligands because of the selectivity and reactivity of the resulting geometrical isomers. We have previously reported the syntheses and structures of heteroleptic ruthenium(II) complexes with picolinate (pic) (Toyama et al., 2017[Toyama, M., Nakayasu, T. & Nagao, N. (2017). X-ray Struct. Anal. Online, 33, 11-13.]) and 2-picolinamide (H2pia) (Toyama et al., 2019[Toyama, M., Fujii, Y. & Endo, M. (2019). Inorg. Chim. Acta, 486, 304-313.]), which are coordinated to the Ru2+ ion via a pyridyl N and a carbonic O or a carbonyl O atom. In our current work, phenyl-2-pyridyl ketone [ppk, IUPAC nomenclature : phenyl(pyridine-2-yl)methanone] has been chosen as a κ2N,O-pyridyl ligand. Herein, we report the crystal structure of cis(S),trans(O,Nbpy)-[Ru(bpy)(ppk)(dmso-S)2](OTf)2. Notably, ppk is an analog of di-2-pyridyl ketone (dpk), which has three coordination modes: dpk–κ2N,O, dpk–κ2N,N′, and dpk–OH-κ3N,O,N′ (Toyama et al., 2007[Toyama, M., Nakahara, M. & Nagao, N. (2007). Bull. Chem. Soc. Jpn, 80, 937-950.]) and has attracted significant research attention. However, it is difficult to synthesize and control the stereoselectivity of complexes with dpk ligands. The ppk ligand is known to be analogous to the dpk ligand in the κ2N,O coordination mode and hence has been used in our current synthesis to ease the complexity of syntheses with the dpk ligand.

[Scheme 1]

2. Structural commentary

An ORTEP view of cis(S),trans(O,Nbpy)-[Ru(bpy)(ppk)(dmso-S)2](OTf)2 is shown in Fig. 1[link]. The Ru2+ ion has a distorted octa­hedral geometry with two bpy N atoms, the N and O atoms of ppk, and the S atoms of the two dmso-S ligands, which are cis to each other. The O atom of the carbonyl group of the ppk ligand is trans to the bpy ligand, and the N atom of the pyridyl group is trans to the dmso-S ligand, i.e., the trans(O,Nbpy)-isomer. Three isomers of [Ru(bpy)(ppk)(dmso)2]2+ are possible depending on the geometry of the two dmso ligands and the orientation of the ppk ligand: trans(dmso)-, cis(dmso),trans(O,Nbpy)-, and cis(dmso),trans(N,Nbpy)-isomers. The starting complex, trans(O,S)-[Ru(bpy)(dmso-S)2(dmso-O)2](OTf)2 has two inert cis dmso-S ligands and two labile cis dmso-O ligands. The inert dmso-S ligands in the starting complex were retained during the reaction to afford an isomer with cis(dmso)-geometry, that is, the cis(S)-geometry. The bpy ligand is located in the equatorial plane. The dmso-O ligand at the axial site is more labile than that at the equatorial site (Toyama et al., 2018[Toyama, M., Fujimoto, D., Matsuoka, Y., Asano, Y. & Nagao, N. (2018). Eur. J. Inorg. Chem. 2018, 4349-4360.]). Hence, the pyridyl N atom of the ppk ligand attacks the labile axial dmso-O atom first, followed by the equatorial dmso-O, resulting in a trans(O,Nbpy)-geometry.

[Figure 1]
Figure 1
ORTEP view of the cation of the title complex, cis(S),trans(O,Nbpy)-[Ru(bpy)(ppk)(dmso-S)2](OTf)2, showing 50% probability ellipsoids. Two OTf anions were omitted for clarity.

Selected bond lengths and angles are listed in Table 1[link]. For Ru—N(bpy), the Ru1—N1 bond trans to S1 [2.0905 (16) Å] is slightly longer than the Ru1—N2 bond trans to O1 [2.0705 (16) Å]. Both these bonds are slightly longer than the previously reported Ru—N bonds in [Ru(bpy)2(N-O)]2+ [N-O = pic or H2pia, which are the N,O bidentate ligands; 2.031–2.059 Å; Toyama et al., 2017[Toyama, M., Nakayasu, T. & Nagao, N. (2017). X-ray Struct. Anal. Online, 33, 11-13.], 2019[Toyama, M., Fujii, Y. & Endo, M. (2019). Inorg. Chim. Acta, 486, 304-313.]], but are similar to those in [Ru(bpy)(phen)(dmso-S)2]2+ (2.092 and 2.087 Å; Toyama et al., 2018[Toyama, M., Fujimoto, D., Matsuoka, Y., Asano, Y. & Nagao, N. (2018). Eur. J. Inorg. Chem. 2018, 4349-4360.]). These elongations are due to the electronic and steric effects of the two dmso ligands.

Table 1
Selected bond lengths and angles (Å, °)

Ru1—N1 2.0905 (16) Ru1—N2 2.0705 (16)
Ru1—N3 2.105 (2) Ru1—O1 2.0898 (14)
Ru1–S1 2.2845 (6) Ru1—S2 2.2789 (6)
O1—C16 1.254 (3)    
N1—Ru1—N2 78.46 (6) N3—Ru1—O1 77.20 (7)
S1—Ru1—S2 87.93 (3)    

The H10 atom of pyridyl-N2 of bpy shows hydrogen-bonding inter­actions with the O2 atom of dmso-S1 [H10⋯O2 = 2.33 Å, Fig. 2[link]]. The torsion angle N2—Ru1—S1—O2 is 47.01 (6)°. The O2 atom of dmso-S1 orients toward the dmso-S2 ligand to reduce the steric hindrance with the pyridyl-N2 atom of the bpy ligand. The rotation of the dmso-S1 ligand is restricted by the pyridyl-N2 group of the bpy ligand. Moreover, hydrogen-bonding inter­actions can be observed between the neighboring methyl H atoms and the O atoms of the dmso-S1 and dmso-S2 ligands (H24A⋯O3 = 2.45 Å and H25A⋯O2 = 2.62 Å, Fig. 2[link]). The rotation of the dmso-S2 ligand is also restricted by the dmso-S1 ligand. Hence, the two dmso-S ligands are cis to each other. A similar conformation in which the two dmso ligands are in the cis position has also been observed in [Ru(bpy)(phen)(dmso-S)2]2+ (Toyama et al., 2018[Toyama, M., Fujimoto, D., Matsuoka, Y., Asano, Y. & Nagao, N. (2018). Eur. J. Inorg. Chem. 2018, 4349-4360.]).

[Figure 2]
Figure 2
Capped stick model of the cation of the title complex. Three hydrogen-bonding inter­actions, O2⋯H10, O3⋯H24A, and O2⋯H25A, and a short H22(ph)⋯H12(py) contact in the ppk ligand are shown.

The Ru1—S1 bond length [2.2845 (8) Å] is similar to the corresponding bond length in the starting complex [2.2723 (5) Å; Toyama et al., 2018[Toyama, M., Fujimoto, D., Matsuoka, Y., Asano, Y. & Nagao, N. (2018). Eur. J. Inorg. Chem. 2018, 4349-4360.]]. However, the Ru1—S2 bond [2.2790 (6) Å] is longer than that of the starting complex [2.2063 (5) Å; Toyama et al., 2018[Toyama, M., Fujimoto, D., Matsuoka, Y., Asano, Y. & Nagao, N. (2018). Eur. J. Inorg. Chem. 2018, 4349-4360.]] because of the trans influence (π-backdonation) of the pyridyl-N3 group in ppk. In this complex, both dmso-S ligands are trans to the pyridine rings, implying that the Ru1—S1 and Ru1—S2 bond lengths are similar. Therefore, the trans influences of pyridyl groups of ppk and bpy are comparable. For the Ru-ppk moiety, the Ru1—N3 [2.105 (2) Å] and Ru1—O1 bond lengths [2.0898 (14) Å] are similar to the corresponding lengths in trans(Cl)-[RuCl2(dpk-κ2N,O)(dmso-S)2] [2.113 (2) and 2.089 (2) Å, respectively; Toyama et al., 2007[Toyama, M., Nakahara, M. & Nagao, N. (2007). Bull. Chem. Soc. Jpn, 80, 937-950.]]. Moreover, the O1—C16 bond length [1.254 (3) Å] in the ketone group is comparable to the corresponding bond length in the Ru-dpk complex [1.243 (3) Å; Toyama et al., 2007[Toyama, M., Nakahara, M. & Nagao, N. (2007). Bull. Chem. Soc. Jpn, 80, 937-950.]], indicating that the former is also a double bond, C=O. The dihedral angle between pyridyl-N3 and the phenyl group is 129.26 (13)°, and the ortho proton (H22) in the phenyl group is in contact with the 3-position proton (H12) in the pyridyl-N3 group (H12⋯H22 = 2.32 Å, Fig. 2[link]).

One of the tri­fluoro­methane­sulfonate anions is disordered over three positions, referred to as A, B, and C, with occupancies of 0.4, 0.4, and 0.2, respectively, in the refined model. To confirm the validity of the application of SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]), a region of the disordered OTf anion was corrected using the SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) routine in the PLATON program (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). The SQUEEZE model converged at R1[F2 > 2σ (F2)] = 0.0315, wR(F2) = 0.0712, GOF = 1.05, mean s (C-C) = 0.0037 Å, and rmax = 0.84 eÅ−3. The SQUEEZE model is an alternative to the original disordered model, with R1[F2 > 2s (F2)] = 0.0348, wR(F2) = 0.0806, GOF = 1.08, mean σ(C—C) = 0.0041 Å, and rmax = 0.86 eÅ−3. However, both the models are nearly equivalent, indicating that both the SQUEEZE and the original disordered model are satisfactory.

3. Supra­molecular features

As shown in Fig. 3[link], the O5 atom of OTf-S3 forms hydrogen-bonding inter­actions (Table 2[link]) with the H5 atom of the bpy ligand and the H26A atom of dmso-S2. As shown in Fig. 4[link], the O4 atom of OTf-S3 forms hydrogen-bonding inter­actions with the H4 and H5 atoms of bpy and H9 atom of bpy in a neighboring complex cation to form chains along the b-axis direction. Moreover, the F2 atom of OTf-S3 inter­acts with the H25A atom of dmso-S2 in the neighboring complex cation, and the rotation of the CF3 moiety of OTf-S3 is restricted by hydrogen-bonding inter­actions in the chain. In addition, the O6 atom of OTf-S3 inter­acts with atoms H25C and H26B of dmso-S2 in a neighboring complex cation in another chain to cross-link two neighboring chains and form a ladder-like double-chain structure. Consequently, the OTf-S3 anions are located inside the double chains and properly accommodated between the bpy ligand in the cation and phenyl group of the ppk ligand in the other cation. In contrast, the OTf-S4 anions are located between the double chains but are disordered and not properly accommodated in the void between the double chains.

Table 2
Hydrogen-bond geometry (Å, °) for disordered model[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O5 0.95 2.56 3.436 (3) 152
C26—H26A⋯O5 0.98 2.57 3.543 (3) 171
C4—H4⋯O4 0.95 2.55 3.184 (3) 125
C5—H5⋯O4 0.95 2.63 3.236 (3) 122
C9—H9⋯O4i 0.95 2.54 3.314 (3) 139
C25—H25A⋯F2i 0.98 2.65 3.067 (2) 106
C25—H25C⋯O6ii 0.98 2.49 3.404 (3) 156
C26—H26B⋯O6ii 0.98 2.67 3.530 (3) 146
C25—H25C⋯O6ii 0.98 2.49 3.404 (3) 1556
C26—H26B⋯O6ii 0.98 2.67 3.530 (3) 146
Symmetry codes: (i) [x, y-1, z]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Capped stick models of a cation and an OTf-S3 ion in the title complex. Short contacts between the complex cation and the OTf-S3 anion are shown.
[Figure 4]
Figure 4
Hydrogen-bonded chain consisting of cations and an OTf-S3 ion in the crystal. [Symmetry codes: (1) x, 1 + y, z; (2) x, −1 + y, z; (3) x, −2 + y, z]

4. Synthesis and crystallization

The title complex was prepared by the same procedure used for cis-[Ru(bpy)(phen)(dmso-S)2](OTf)2 (Toyama et al., 2018[Toyama, M., Fujimoto, D., Matsuoka, Y., Asano, Y. & Nagao, N. (2018). Eur. J. Inorg. Chem. 2018, 4349-4360.]). The reaction of trans(O,S)-[Ru(bpy)(dmso-S)2(dmso-O)2](OTf)2 with ppk in acetone at room temperature afforded cis(S),trans(O,Nbpy)-[Ru(bpy)(ppk)(dmso-S)2](OTf)2. Single crystals suitable for X-ray structural analysis were obtained by the vapor diffusion of diethyl ether into a mixed solution of DMSO and ethanol (1:3) of cis(S),trans(O,Nbpy)-[Ru(bpy)(ppk)(dmso-S)2](OTf)2.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms attached to the carbon were included as riding contributions to the idealized positions [C—H = 0.95 Å (CH) or 0.98 Å (CH3)]. The isotropic displacement parameters were fixed at Uiso(H) = 1.2Ueq(C) for CH, and 1.5Ueq(C) for CH3. One of the tri­fluoro­methane­sulfonate anions is disordered over three positions (referred to as A, B, and C) with occupancies of 0.4, 0.4, and 0.2, respectively, in the refined model. Restraints (DFIX, DANG, and DELU) were used to correct the geometry and displacement parameters of the disordered OTf ions. To confirm the validity of the disordered model, the SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) routine in the PLATON program (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) was used to generate a modified dataset in which the contribution of the disordered OTf anion to the structure amplitudes was discarded. The void volume of 511 Å3 occupied by the disordered OTf anion (14.8% of the unit-cell volume) contains 298 electrons, corresponding to approximately four OTf anions (296 electrons).

Table 3
Experimental details

  Disordered model SQUEEZEd model
Crystal data
Chemical formula [Ru(C10H8N2)(C12H9NO)(C2H6OS)2](CF3O3S)2 [Ru(C10H8N2)(C12H9NO)(C2H6OS)2](CF3O3S)2
Mr 894.85 894.85
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 173 173
a, b, c (Å) 17.3772 (4), 12.2931 (2), 16.3443 (4) 17.3772 (4), 12.2931 (2), 16.3443 (4)
β (°) 98.895 (2) 98.895 (2)
V3) 3449.47 (13) 3449.47 (13)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.79 0.79
Crystal size (mm) 0.10 × 0.05 × 0.05 0.10 × 0.05 × 0.05
 
Data collection
Diffractometer Rigaku Mercury70 Rigaku Mercury70
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.921, 0.962 0.921, 0.962
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 42165, 9317, 8290 42165, 9317, 8290
Rint 0.019 0.019
(sin θ/λ)max−1) 0.711 0.711
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.081, 1.08 0.032, 0.071, 1.05
No. of reflections 9317 9317
No. of parameters 608 392
No. of restraints 29 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.86, −0.87 0.84, −0.88
Computer programs: CrystalClear-SM Expert (Rigaku, 2016[Rigaku (2016). CrystalClear-SM. Rigaku Corporation, Tokyo, Japan.]), CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), CrystalStructure (Rigaku, 2019[Rigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2016) for disordered_model. For both structures, cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: CrystalStructure (Rigaku, 2019), publCIF (Westrip, 2010).

(2,2'-Bipyridyl-κ2N,N')bis(dimethyl sulfoxide-κS)[phenyl(pyridin-2-yl)methanone-κ2N,O]ruthenium(II) bis(trifluoromethanesulfonate) (disordered_model) top
Crystal data top
[Ru(C10H8N2)(C12H9NO)(C2H6OS)2](CF3O3S)2F(000) = 1808.00
Mr = 894.85Dx = 1.723 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.3772 (4) ÅCell parameters from 31997 reflections
b = 12.2931 (2) Åθ = 2.2–30.5°
c = 16.3443 (4) ŵ = 0.79 mm1
β = 98.895 (2)°T = 173 K
V = 3449.47 (13) Å3Block, orange
Z = 40.10 × 0.05 × 0.05 mm
Data collection top
Rigaku Mercury70
diffractometer
8290 reflections with F2 > 2.0σ(F2)
Detector resolution: 14.629 pixels mm-1Rint = 0.019
ω scansθmax = 30.4°, θmin = 2.0°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 2323
Tmin = 0.921, Tmax = 0.962k = 1616
42165 measured reflectionsl = 2322
9317 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0283P)2 + 3.9158P]
where P = (Fo2 + 2Fc2)/3
9317 reflections(Δ/σ)max = 0.001
608 parametersΔρmax = 0.86 e Å3
29 restraintsΔρmin = 0.87 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.21892 (2)0.05017 (2)0.20103 (2)0.02633 (5)
S10.27377 (5)0.04295 (5)0.10369 (4)0.04978 (18)
S20.10233 (3)0.03559 (4)0.11611 (3)0.02870 (10)
S30.07625 (4)0.46067 (4)0.18347 (3)0.03402 (12)
F10.03511 (10)0.58328 (12)0.05158 (8)0.0487 (4)
F20.04294 (10)0.66781 (10)0.16804 (9)0.0480 (4)
F30.14701 (9)0.62211 (12)0.12006 (9)0.0489 (4)
O10.24410 (9)0.19932 (12)0.14980 (9)0.0332 (3)
O20.23265 (16)0.14256 (15)0.07013 (12)0.0683 (7)
O30.10620 (11)0.06064 (13)0.02803 (9)0.0403 (4)
O40.12551 (12)0.48455 (14)0.26074 (10)0.0484 (4)
O50.10877 (12)0.38520 (13)0.13067 (11)0.0479 (4)
O60.00431 (11)0.44379 (14)0.19017 (12)0.0484 (4)
N20.19998 (10)0.08308 (13)0.27279 (10)0.0272 (3)
N10.17314 (10)0.12390 (12)0.29825 (9)0.0247 (3)
N30.32656 (11)0.09263 (17)0.27151 (13)0.0406 (4)
C10.16540 (12)0.05711 (15)0.36240 (12)0.0279 (4)
C20.14501 (15)0.09718 (18)0.43554 (13)0.0369 (5)
H20.13940.04920.47980.044*
C30.13286 (16)0.20791 (18)0.44327 (14)0.0399 (5)
H30.11960.23680.49320.048*
C40.14022 (14)0.27586 (17)0.37750 (13)0.0350 (5)
H40.13160.35190.38130.042*
C50.16033 (12)0.23126 (15)0.30602 (13)0.0292 (4)
H50.16530.27800.26080.035*
C60.17955 (13)0.05890 (15)0.34785 (12)0.0282 (4)
C70.17177 (15)0.13966 (17)0.40547 (13)0.0384 (5)
H70.15840.12100.45790.046*
C80.18351 (16)0.24741 (18)0.38621 (14)0.0414 (5)
H80.17920.30320.42540.050*
C90.20155 (15)0.27232 (17)0.30936 (13)0.0381 (5)
H90.20820.34590.29400.046*
C100.20990 (14)0.18875 (16)0.25483 (13)0.0349 (5)
H100.22330.20660.20220.042*
C110.35019 (15)0.1962 (2)0.2582 (2)0.0520 (7)
C120.41884 (19)0.2382 (3)0.3007 (3)0.0886 (14)
H120.43510.30990.28990.106*
C130.4634 (2)0.1735 (4)0.3591 (4)0.121 (2)
H130.51060.20080.38910.145*
C140.4398 (2)0.0708 (4)0.3737 (3)0.0983 (16)
H140.47040.02550.41310.118*
C150.37045 (17)0.0340 (3)0.3300 (2)0.0649 (9)
H150.35300.03660.34200.078*
C160.29958 (14)0.25231 (19)0.18898 (16)0.0400 (5)
C170.31305 (14)0.3652 (2)0.16364 (17)0.0436 (5)
C180.30673 (18)0.3877 (2)0.07992 (19)0.0540 (7)
H180.29560.33100.04040.065*
C190.3167 (2)0.4937 (2)0.0537 (2)0.0652 (9)
H190.31400.50860.00370.078*
C200.33044 (19)0.5763 (2)0.1095 (3)0.0703 (10)
H200.33620.64860.09090.084*
C210.3360 (2)0.5550 (3)0.1929 (3)0.0716 (10)
H210.34530.61280.23180.086*
C220.32810 (18)0.4488 (2)0.2206 (2)0.0585 (7)
H220.33300.43390.27820.070*
C230.3719 (2)0.0815 (3)0.1403 (2)0.0880 (14)
H23A0.37330.12970.18820.106*
H23B0.40300.01630.15660.106*
H23C0.39330.11950.09620.106*
C240.2881 (2)0.0413 (2)0.01819 (18)0.0623 (9)
H24A0.23790.07150.00760.075*
H24B0.31040.00220.02260.075*
H24C0.32370.10080.03780.075*
C250.05597 (16)0.09281 (17)0.11911 (13)0.0384 (5)
H25A0.09060.15010.10430.046*
H25B0.00740.09310.07960.046*
H25C0.04440.10610.17510.046*
C260.02969 (14)0.12177 (18)0.14662 (15)0.0371 (5)
H26A0.04640.19780.14480.045*
H26B0.02190.10330.20310.045*
H26C0.01930.11170.10880.045*
C270.07521 (15)0.58964 (17)0.12770 (13)0.0353 (5)
S4A0.48251 (10)0.24864 (15)0.37611 (11)0.0429 (4)0.4
F4A0.4352 (6)0.4487 (7)0.3753 (8)0.126 (5)0.4
F5A0.3693 (6)0.3243 (13)0.4437 (10)0.173 (8)0.4
F6A0.4788 (6)0.3941 (10)0.4918 (6)0.113 (5)0.4
O7A0.5571 (5)0.2950 (10)0.3698 (7)0.068 (2)0.4
O8A0.4295 (10)0.2279 (15)0.2996 (9)0.067 (4)0.4
O9A0.4780 (12)0.1661 (11)0.4350 (7)0.125 (6)0.4
C28A0.4392 (8)0.3598 (9)0.4252 (8)0.090 (4)0.4
S4B0.4632 (3)0.3128 (5)0.3742 (4)0.0781 (13)0.2
F4B0.5073 (15)0.1612 (13)0.4572 (16)0.125 (10)0.2
F5B0.3966 (12)0.214 (2)0.4748 (17)0.124 (10)0.2
F6B0.5118 (12)0.3220 (14)0.5283 (8)0.089 (5)0.2
O7B0.4210 (10)0.4114 (9)0.3856 (10)0.063 (5)0.2
O8B0.5444 (5)0.3400 (14)0.380 (2)0.098 (9)0.2
O9B0.441 (2)0.2190 (19)0.323 (2)0.094 (10)0.2
C28B0.4695 (12)0.2511 (13)0.4737 (10)0.131 (13)0.2
S4C0.41337 (10)0.26601 (16)0.40330 (12)0.0500 (4)0.4
F4C0.5126 (9)0.4124 (11)0.3749 (7)0.187 (6)0.4
F5C0.5622 (4)0.2694 (12)0.4263 (10)0.169 (6)0.4
F6C0.5134 (7)0.3747 (11)0.5027 (8)0.107 (4)0.4
O7C0.3645 (5)0.3697 (9)0.3964 (6)0.080 (3)0.4
O8C0.4107 (9)0.2271 (13)0.3201 (8)0.057 (3)0.4
O9C0.4163 (13)0.1813 (12)0.4598 (8)0.146 (9)0.4
C28C0.4981 (4)0.3400 (5)0.4304 (4)0.0430 (15)0.4
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.03761 (9)0.02047 (7)0.02264 (8)0.00535 (6)0.01015 (6)0.00556 (6)
S10.0815 (5)0.0380 (3)0.0382 (3)0.0272 (3)0.0356 (3)0.0154 (2)
S20.0468 (3)0.0203 (2)0.0192 (2)0.00074 (19)0.00577 (19)0.00434 (16)
S30.0545 (3)0.0198 (2)0.0293 (2)0.0034 (2)0.0115 (2)0.00168 (18)
F10.0732 (10)0.0421 (8)0.0295 (7)0.0040 (7)0.0041 (7)0.0053 (6)
F20.0813 (11)0.0224 (6)0.0434 (8)0.0104 (6)0.0190 (7)0.0012 (5)
F30.0626 (9)0.0412 (8)0.0459 (8)0.0064 (7)0.0174 (7)0.0077 (6)
O10.0419 (8)0.0264 (7)0.0339 (8)0.0030 (6)0.0139 (6)0.0078 (6)
O20.143 (2)0.0320 (9)0.0398 (10)0.0161 (11)0.0446 (12)0.0018 (8)
O30.0635 (11)0.0365 (8)0.0208 (7)0.0041 (8)0.0063 (7)0.0096 (6)
O40.0784 (13)0.0313 (8)0.0331 (8)0.0002 (8)0.0009 (8)0.0052 (7)
O50.0773 (13)0.0265 (8)0.0434 (9)0.0104 (8)0.0202 (9)0.0021 (7)
O60.0581 (11)0.0397 (9)0.0506 (10)0.0023 (8)0.0190 (9)0.0084 (8)
N20.0413 (9)0.0198 (7)0.0212 (7)0.0039 (6)0.0073 (7)0.0035 (6)
N10.0340 (8)0.0191 (7)0.0211 (7)0.0013 (6)0.0047 (6)0.0011 (6)
N30.0321 (9)0.0406 (10)0.0487 (11)0.0054 (8)0.0056 (8)0.0151 (9)
C10.0415 (11)0.0215 (8)0.0209 (8)0.0006 (8)0.0052 (7)0.0002 (7)
C20.0604 (14)0.0281 (10)0.0241 (9)0.0014 (10)0.0120 (9)0.0001 (8)
C30.0633 (15)0.0301 (11)0.0283 (10)0.0045 (10)0.0132 (10)0.0059 (8)
C40.0491 (13)0.0234 (9)0.0324 (10)0.0030 (9)0.0065 (9)0.0042 (8)
C50.0383 (11)0.0203 (8)0.0290 (9)0.0014 (8)0.0049 (8)0.0011 (7)
C60.0432 (11)0.0211 (8)0.0205 (8)0.0017 (8)0.0055 (8)0.0016 (7)
C70.0678 (15)0.0262 (10)0.0227 (9)0.0023 (10)0.0117 (10)0.0049 (8)
C80.0709 (16)0.0246 (10)0.0295 (10)0.0003 (10)0.0097 (11)0.0090 (8)
C90.0637 (15)0.0196 (9)0.0304 (10)0.0041 (9)0.0057 (10)0.0031 (8)
C100.0594 (14)0.0221 (9)0.0242 (9)0.0069 (9)0.0097 (9)0.0011 (7)
C110.0337 (12)0.0491 (15)0.0728 (19)0.0020 (11)0.0065 (12)0.0237 (14)
C120.0450 (17)0.077 (2)0.134 (4)0.0191 (16)0.0167 (19)0.049 (2)
C130.053 (2)0.113 (4)0.176 (5)0.028 (2)0.046 (3)0.074 (4)
C140.054 (2)0.093 (3)0.133 (4)0.0064 (19)0.032 (2)0.059 (3)
C150.0400 (14)0.0660 (19)0.084 (2)0.0024 (13)0.0056 (14)0.0409 (17)
C160.0376 (12)0.0347 (11)0.0505 (13)0.0034 (9)0.0153 (10)0.0105 (10)
C170.0386 (12)0.0330 (11)0.0601 (15)0.0006 (9)0.0103 (11)0.0093 (11)
C180.0654 (18)0.0359 (13)0.0605 (17)0.0002 (12)0.0093 (14)0.0126 (12)
C190.073 (2)0.0428 (15)0.077 (2)0.0031 (14)0.0023 (17)0.0248 (15)
C200.0601 (18)0.0333 (14)0.110 (3)0.0073 (12)0.0098 (18)0.0211 (16)
C210.0611 (19)0.0404 (15)0.109 (3)0.0063 (14)0.0001 (19)0.0076 (17)
C220.0545 (16)0.0459 (15)0.074 (2)0.0077 (13)0.0051 (14)0.0002 (14)
C230.095 (3)0.097 (3)0.086 (2)0.068 (2)0.058 (2)0.051 (2)
C240.093 (2)0.0563 (17)0.0492 (15)0.0332 (16)0.0482 (16)0.0272 (13)
C250.0630 (15)0.0239 (9)0.0275 (10)0.0093 (10)0.0048 (10)0.0036 (8)
C260.0410 (12)0.0303 (10)0.0391 (12)0.0040 (9)0.0037 (9)0.0028 (9)
C270.0539 (13)0.0249 (9)0.0286 (10)0.0024 (9)0.0113 (9)0.0023 (8)
S4A0.0488 (9)0.0355 (8)0.0449 (9)0.0039 (7)0.0086 (7)0.0100 (7)
F4A0.099 (7)0.060 (5)0.195 (11)0.037 (5)0.055 (6)0.042 (5)
F5A0.079 (7)0.223 (16)0.242 (15)0.054 (8)0.105 (9)0.159 (13)
F6A0.143 (9)0.109 (8)0.101 (6)0.056 (7)0.071 (6)0.088 (7)
O7A0.051 (4)0.067 (5)0.093 (5)0.011 (4)0.035 (4)0.026 (5)
O8A0.069 (9)0.059 (5)0.061 (7)0.015 (5)0.033 (6)0.024 (6)
O9A0.184 (15)0.118 (11)0.075 (6)0.094 (10)0.029 (8)0.025 (6)
C28A0.119 (11)0.071 (7)0.087 (8)0.036 (7)0.040 (7)0.053 (7)
S4B0.076 (3)0.077 (4)0.086 (4)0.011 (3)0.026 (3)0.008 (3)
F4B0.15 (2)0.053 (9)0.18 (2)0.068 (13)0.049 (15)0.023 (10)
F5B0.099 (11)0.112 (17)0.18 (2)0.006 (11)0.095 (13)0.061 (15)
F6B0.113 (11)0.103 (12)0.048 (6)0.000 (11)0.003 (7)0.028 (7)
O7B0.092 (13)0.052 (10)0.050 (7)0.021 (9)0.028 (8)0.007 (6)
O8B0.064 (11)0.043 (9)0.21 (3)0.022 (8)0.080 (15)0.022 (14)
O9B0.085 (16)0.080 (14)0.094 (18)0.043 (12)0.057 (14)0.007 (12)
C28B0.23 (4)0.074 (16)0.083 (16)0.07 (2)0.00 (2)0.005 (14)
S4C0.0421 (8)0.0549 (10)0.0551 (10)0.0193 (7)0.0142 (7)0.0171 (8)
F4C0.246 (15)0.152 (9)0.185 (10)0.155 (11)0.099 (11)0.035 (10)
F5C0.041 (3)0.233 (17)0.234 (15)0.027 (6)0.024 (6)0.112 (12)
F6C0.079 (6)0.085 (7)0.150 (10)0.029 (6)0.006 (6)0.013 (6)
O7C0.043 (4)0.100 (7)0.098 (6)0.026 (4)0.014 (4)0.045 (5)
O8C0.080 (8)0.041 (4)0.051 (6)0.002 (5)0.007 (4)0.021 (4)
O9C0.25 (2)0.092 (10)0.085 (8)0.089 (14)0.019 (11)0.008 (6)
C28C0.039 (3)0.050 (4)0.040 (3)0.032 (3)0.004 (3)0.022 (3)
Geometric parameters (Å, º) top
Ru1—N22.0705 (16)C14—C151.378 (5)
Ru1—O12.0898 (14)C14—H140.9500
Ru1—N12.0905 (16)C15—H150.9500
Ru1—N32.105 (2)C16—C171.477 (3)
Ru1—S22.2789 (6)C17—C181.384 (4)
Ru1—S12.2845 (6)C17—C221.384 (4)
S1—O21.480 (2)C18—C191.391 (4)
S1—C231.781 (4)C18—H180.9500
S1—C241.787 (2)C19—C201.360 (5)
S2—O31.4839 (15)C19—H190.9500
S2—C251.776 (2)C20—C211.377 (5)
S2—C261.777 (2)C20—H200.9500
S3—O61.436 (2)C21—C221.396 (4)
S3—O51.4407 (17)C21—H210.9500
S3—O41.4421 (18)C22—H220.9500
S3—C271.827 (2)C23—H23A0.9800
F1—C271.331 (3)C23—H23B0.9800
F2—C271.337 (2)C23—H23C0.9800
F3—C271.334 (3)C24—H24A0.9800
O1—C161.254 (3)C24—H24B0.9800
N2—C101.349 (2)C24—H24C0.9800
N2—C61.362 (2)C25—H25A0.9800
N1—C51.348 (2)C25—H25B0.9800
N1—C11.355 (2)C25—H25C0.9800
N3—C151.338 (3)C26—H26A0.9800
N3—C111.366 (3)C26—H26B0.9800
C1—C21.389 (3)C26—H26C0.9800
C1—C61.473 (3)S4A—O9A1.409 (12)
C2—C31.386 (3)S4A—O7A1.435 (8)
C2—H20.9500S4A—O8A1.456 (11)
C3—C41.383 (3)S4A—C28A1.806 (10)
C3—H30.9500F4A—C28A1.359 (13)
C4—C51.383 (3)F5A—C28A1.367 (11)
C4—H40.9500F6A—C28A1.267 (15)
C5—H50.9500S4B—O8B1.438 (5)
C6—C71.389 (3)S4B—O9B1.439 (5)
C7—C81.384 (3)S4B—O7B1.444 (5)
C7—H70.9500S4B—C28B1.784 (16)
C8—C91.375 (3)F4B—C28B1.335 (16)
C8—H80.9500F5B—C28B1.350 (18)
C9—C101.382 (3)F6B—C28B1.375 (16)
C9—H90.9500S4C—O9C1.387 (13)
C10—H100.9500S4C—O8C1.435 (11)
C11—C121.384 (4)S4C—O7C1.526 (9)
C11—C161.490 (4)S4C—C28C1.730 (6)
C12—C131.384 (5)F4C—C28C1.323 (11)
C12—H120.9500F5C—C28C1.421 (11)
C13—C141.359 (6)F6C—C28C1.245 (11)
C13—H130.9500
N2—Ru1—O1169.28 (6)O1—C16—C17119.2 (2)
N2—Ru1—N178.46 (6)O1—C16—C11117.7 (2)
O1—Ru1—N192.98 (6)C17—C16—C11123.2 (2)
N2—Ru1—N395.27 (7)C18—C17—C22119.6 (3)
O1—Ru1—N377.20 (7)C18—C17—C16118.3 (2)
N1—Ru1—N383.51 (7)C22—C17—C16122.0 (3)
N2—Ru1—S294.50 (5)C17—C18—C19119.8 (3)
O1—Ru1—S292.67 (5)C17—C18—H18120.1
N1—Ru1—S295.17 (5)C19—C18—H18120.1
N3—Ru1—S2169.66 (5)C20—C19—C18120.7 (3)
N2—Ru1—S196.77 (5)C20—C19—H19119.7
O1—Ru1—S191.43 (4)C18—C19—H19119.7
N1—Ru1—S1174.49 (5)C19—C20—C21120.0 (3)
N3—Ru1—S194.26 (6)C19—C20—H20120.0
S2—Ru1—S187.93 (3)C21—C20—H20120.0
O2—S1—C23106.67 (18)C20—C21—C22120.2 (3)
O2—S1—C24107.89 (15)C20—C21—H21119.9
C23—S1—C24100.07 (16)C22—C21—H21119.9
O2—S1—Ru1116.32 (9)C17—C22—C21119.6 (3)
C23—S1—Ru1112.34 (14)C17—C22—H22120.2
C24—S1—Ru1112.18 (9)C21—C22—H22120.2
O3—S2—C25107.45 (10)S1—C23—H23A109.5
O3—S2—C26106.81 (11)S1—C23—H23B109.5
C25—S2—C26100.20 (12)H23A—C23—H23B109.5
O3—S2—Ru1113.90 (8)S1—C23—H23C109.5
C25—S2—Ru1114.67 (8)H23A—C23—H23C109.5
C26—S2—Ru1112.67 (8)H23B—C23—H23C109.5
O6—S3—O5115.46 (12)S1—C24—H24A109.5
O6—S3—O4114.59 (12)S1—C24—H24B109.5
O5—S3—O4114.90 (12)H24A—C24—H24B109.5
O6—S3—C27103.23 (11)S1—C24—H24C109.5
O5—S3—C27103.57 (10)H24A—C24—H24C109.5
O4—S3—C27102.65 (10)H24B—C24—H24C109.5
C16—O1—Ru1116.30 (14)S2—C25—H25A109.5
C10—N2—C6117.79 (16)S2—C25—H25B109.5
C10—N2—Ru1127.01 (13)H25A—C25—H25B109.5
C6—N2—Ru1115.09 (13)S2—C25—H25C109.5
C5—N1—C1118.88 (17)H25A—C25—H25C109.5
C5—N1—Ru1125.73 (13)H25B—C25—H25C109.5
C1—N1—Ru1114.87 (12)S2—C26—H26A109.5
C15—N3—C11117.6 (2)S2—C26—H26B109.5
C15—N3—Ru1128.15 (19)H26A—C26—H26B109.5
C11—N3—Ru1114.06 (16)S2—C26—H26C109.5
N1—C1—C2121.35 (18)H26A—C26—H26C109.5
N1—C1—C6115.02 (16)H26B—C26—H26C109.5
C2—C1—C6123.63 (18)F1—C27—F3106.99 (18)
C3—C2—C1119.3 (2)F1—C27—F2107.71 (19)
C3—C2—H2120.3F3—C27—F2107.51 (18)
C1—C2—H2120.3F1—C27—S3112.25 (15)
C4—C3—C2119.3 (2)F3—C27—S3111.65 (16)
C4—C3—H3120.4F2—C27—S3110.50 (14)
C2—C3—H3120.4O9A—S4A—O7A118.8 (9)
C3—C4—C5118.88 (19)O9A—S4A—O8A111.5 (10)
C3—C4—H4120.6O7A—S4A—O8A117.8 (9)
C5—C4—H4120.6O9A—S4A—C28A99.8 (8)
N1—C5—C4122.32 (19)O7A—S4A—C28A100.1 (5)
N1—C5—H5118.8O8A—S4A—C28A105.2 (8)
C4—C5—H5118.8F6A—C28A—F4A102.6 (10)
N2—C6—C7121.39 (18)F6A—C28A—F5A107.5 (10)
N2—C6—C1115.48 (16)F4A—C28A—F5A115.1 (15)
C7—C6—C1123.12 (18)F6A—C28A—S4A115.1 (11)
C8—C7—C6119.78 (19)F4A—C28A—S4A109.1 (8)
C8—C7—H7120.1F5A—C28A—S4A107.6 (7)
C6—C7—H7120.1O8B—S4B—O9B113.5 (17)
C9—C8—C7118.90 (19)O8B—S4B—O7B108.0 (11)
C9—C8—H8120.6O9B—S4B—O7B130.5 (15)
C7—C8—H8120.6O8B—S4B—C28B96.7 (14)
C8—C9—C10119.0 (2)O9B—S4B—C28B99.2 (19)
C8—C9—H9120.5O7B—S4B—C28B101.5 (9)
C10—C9—H9120.5F4B—C28B—F5B102 (2)
N2—C10—C9123.08 (19)F4B—C28B—F6B115 (2)
N2—C10—H10118.5F5B—C28B—F6B128 (2)
C9—C10—H10118.5F4B—C28B—S4B97.4 (14)
N3—C11—C12121.7 (3)F5B—C28B—S4B103.3 (14)
N3—C11—C16113.3 (2)F6B—C28B—S4B105.8 (12)
C12—C11—C16124.7 (3)O9C—S4C—O8C111.9 (9)
C11—C12—C13118.5 (3)O9C—S4C—O7C129.7 (10)
C11—C12—H12120.7O8C—S4C—O7C105.8 (8)
C13—C12—H12120.7O9C—S4C—C28C106.4 (7)
C14—C13—C12120.2 (4)O8C—S4C—C28C108.6 (7)
C14—C13—H13119.9O7C—S4C—C28C91.3 (5)
C12—C13—H13119.9F6C—C28C—F4C112.7 (9)
C13—C14—C15118.5 (3)F6C—C28C—F5C101.6 (10)
C13—C14—H14120.7F4C—C28C—F5C98.4 (10)
C15—C14—H14120.7F6C—C28C—S4C118.1 (7)
N3—C15—C14123.3 (3)F4C—C28C—S4C115.0 (7)
N3—C15—H15118.3F5C—C28C—S4C108.0 (6)
C14—C15—H15118.3
C5—N1—C1—C20.3 (3)C11—C16—C17—C2246.8 (4)
Ru1—N1—C1—C2171.93 (17)C22—C17—C18—C191.0 (4)
C5—N1—C1—C6179.25 (19)C16—C17—C18—C19178.1 (3)
Ru1—N1—C1—C68.5 (2)C17—C18—C19—C201.9 (5)
N1—C1—C2—C30.5 (4)C18—C19—C20—C211.3 (5)
C6—C1—C2—C3180.0 (2)C19—C20—C21—C220.3 (5)
C1—C2—C3—C40.9 (4)C18—C17—C22—C210.6 (4)
C2—C3—C4—C50.7 (4)C16—C17—C22—C21176.4 (3)
C1—N1—C5—C40.6 (3)C20—C21—C22—C171.3 (5)
Ru1—N1—C5—C4170.71 (16)O6—S3—C27—F163.67 (19)
C3—C4—C5—N10.1 (3)O5—S3—C27—F157.06 (19)
C10—N2—C6—C72.2 (3)O4—S3—C27—F1176.93 (17)
Ru1—N2—C6—C7174.22 (18)O6—S3—C27—F3176.19 (15)
C10—N2—C6—C1176.9 (2)O5—S3—C27—F363.08 (18)
Ru1—N2—C6—C16.7 (2)O4—S3—C27—F356.79 (18)
N1—C1—C6—N21.3 (3)O6—S3—C27—F256.59 (19)
C2—C1—C6—N2179.2 (2)O5—S3—C27—F2177.32 (17)
N1—C1—C6—C7177.8 (2)O4—S3—C27—F262.81 (19)
C2—C1—C6—C71.7 (4)O9A—S4A—C28A—F6A67.7 (12)
N2—C6—C7—C81.2 (4)O7A—S4A—C28A—F6A54.1 (11)
C1—C6—C7—C8177.8 (2)O8A—S4A—C28A—F6A176.8 (13)
C6—C7—C8—C91.0 (4)O9A—S4A—C28A—F4A177.6 (10)
C7—C8—C9—C102.1 (4)O7A—S4A—C28A—F4A60.6 (10)
C6—N2—C10—C91.1 (4)O8A—S4A—C28A—F4A62.1 (12)
Ru1—N2—C10—C9174.88 (18)O9A—S4A—C28A—F5A52.1 (14)
C8—C9—C10—N21.1 (4)O7A—S4A—C28A—F5A173.9 (13)
C15—N3—C11—C122.9 (5)O8A—S4A—C28A—F5A63.5 (15)
Ru1—N3—C11—C12178.7 (3)O8B—S4B—C28B—F4B71.2 (17)
C15—N3—C11—C16177.0 (3)O9B—S4B—C28B—F4B44 (2)
Ru1—N3—C11—C167.2 (3)O7B—S4B—C28B—F4B178.8 (17)
N3—C11—C12—C131.3 (7)O8B—S4B—C28B—F5B175.8 (18)
C16—C11—C12—C13174.7 (4)O9B—S4B—C28B—F5B61 (2)
C11—C12—C13—C140.3 (9)O7B—S4B—C28B—F5B74.2 (18)
C12—C13—C14—C151.0 (9)O8B—S4B—C28B—F6B47.7 (17)
C11—N3—C15—C143.7 (6)O9B—S4B—C28B—F6B162.9 (19)
Ru1—N3—C15—C14178.7 (3)O7B—S4B—C28B—F6B62.3 (16)
C13—C14—C15—N32.7 (8)O9C—S4C—C28C—F6C54.8 (13)
Ru1—O1—C16—C17170.77 (17)O8C—S4C—C28C—F6C175.4 (12)
Ru1—O1—C16—C1110.7 (3)O7C—S4C—C28C—F6C77.4 (10)
N3—C11—C16—O12.2 (4)O9C—S4C—C28C—F4C168.2 (13)
C12—C11—C16—O1171.7 (3)O8C—S4C—C28C—F4C47.6 (12)
N3—C11—C16—C17179.4 (2)O7C—S4C—C28C—F4C59.5 (10)
C12—C11—C16—C176.7 (5)O9C—S4C—C28C—F5C59.5 (12)
O1—C16—C17—C1842.3 (3)O8C—S4C—C28C—F5C61.0 (11)
C11—C16—C17—C18136.2 (3)O7C—S4C—C28C—F5C168.2 (9)
O1—C16—C17—C22134.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O50.952.563.436 (3)152
C26—H26A···O50.982.573.543 (3)171
C4—H4···O40.952.553.184 (3)125
C5—H5···O40.952.633.236 (3)122
C9—H9···O4i0.952.543.314 (3)139
C25—H25A···F2i0.982.653.067 (2)106
C25—H25C···O6ii0.982.493.404 (3)156
C26—H26B···O6ii0.982.673.530 (3)146
C25—H25C···O6ii0.982.493.404 (3)1556
C26—H26B···O6ii0.982.673.530 (3)146
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1/2.
(Squeezed_model) top
Crystal data top
C28H29F6N3O9RuS4F(000) = 1808.00
Mr = 894.85Dx = 1.723 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.3772 (4) ÅCell parameters from 31997 reflections
b = 12.2931 (2) Åθ = 2.2–30.5°
c = 16.3443 (4) ŵ = 0.79 mm1
β = 98.895 (2)°T = 173 K
V = 3449.47 (13) Å3Block, orange
Z = 40.10 × 0.05 × 0.05 mm
Data collection top
Rigaku Mercury70
diffractometer
8290 reflections with F2 > 2.0σ(F2)
Detector resolution: 14.629 pixels mm-1Rint = 0.019
ω scansθmax = 30.4°, θmin = 2.0°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 2323
Tmin = 0.921, Tmax = 0.962k = 1616
42165 measured reflectionsl = 2322
9317 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0242P)2 + 3.2481P]
where P = (Fo2 + 2Fc2)/3
9317 reflections(Δ/σ)max < 0.001
392 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.88 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.21892 (2)0.05017 (2)0.20103 (2)0.02636 (4)
S10.27378 (4)0.04295 (4)0.10370 (3)0.04980 (16)
S20.10234 (3)0.03559 (3)0.11611 (3)0.02876 (9)
S30.07627 (3)0.46067 (4)0.18348 (3)0.03408 (10)
F10.03507 (9)0.58331 (11)0.05157 (7)0.0488 (3)
F20.04294 (9)0.66787 (9)0.16804 (8)0.0479 (3)
F30.14705 (8)0.62215 (11)0.12006 (8)0.0489 (3)
O10.24409 (8)0.19932 (10)0.14977 (8)0.0332 (3)
O20.23263 (14)0.14250 (13)0.07011 (10)0.0683 (6)
O30.10620 (9)0.06063 (12)0.02799 (8)0.0404 (3)
O40.12550 (11)0.48452 (12)0.26071 (9)0.0484 (4)
O50.10880 (11)0.38527 (12)0.13066 (10)0.0479 (4)
O60.00432 (10)0.44374 (13)0.19013 (10)0.0483 (4)
N20.20000 (9)0.08312 (11)0.27273 (9)0.0272 (3)
N10.17312 (9)0.12391 (11)0.29822 (8)0.0248 (3)
N30.32653 (10)0.09260 (15)0.27153 (12)0.0407 (4)
C10.16540 (11)0.05712 (14)0.36240 (10)0.0280 (3)
C20.14500 (13)0.09717 (16)0.43552 (11)0.0369 (4)
H20.13940.04920.47980.044*
C30.13283 (14)0.20795 (16)0.44327 (12)0.0399 (5)
H30.11960.23680.49320.048*
C40.14025 (12)0.27582 (15)0.37749 (12)0.0350 (4)
H40.13170.35180.38130.042*
C50.16035 (11)0.23127 (14)0.30601 (11)0.0293 (4)
H50.16530.27800.26080.035*
C60.17960 (11)0.05895 (14)0.34786 (10)0.0283 (3)
C70.17188 (14)0.13966 (15)0.40550 (11)0.0384 (4)
H70.15870.12100.45800.046*
C80.18354 (14)0.24735 (16)0.38619 (12)0.0415 (5)
H80.17920.30320.42540.050*
C90.20157 (13)0.27230 (15)0.30937 (12)0.0381 (4)
H90.20820.34580.29400.046*
C100.20995 (13)0.18874 (14)0.25485 (11)0.0347 (4)
H100.22330.20660.20230.042*
C110.35012 (13)0.1962 (2)0.25811 (17)0.0520 (6)
C120.41880 (17)0.2384 (3)0.3007 (2)0.0890 (12)
H120.43490.31010.29010.107*
C130.4635 (2)0.1735 (4)0.3593 (3)0.1220 (19)
H130.51060.20090.38940.146*
C140.43982 (19)0.0708 (3)0.3736 (3)0.0986 (14)
H140.47040.02530.41280.118*
C150.37040 (15)0.0341 (2)0.32992 (19)0.0651 (8)
H150.35290.03640.34200.078*
C160.29956 (12)0.25231 (17)0.18902 (14)0.0402 (5)
C170.31303 (13)0.36515 (17)0.16368 (15)0.0438 (5)
C180.30677 (16)0.3878 (2)0.07994 (17)0.0542 (6)
H180.29570.33100.04040.065*
C190.31671 (18)0.4937 (2)0.0538 (2)0.0654 (8)
H190.31380.50860.00360.079*
C200.33052 (17)0.5763 (2)0.1096 (2)0.0704 (9)
H200.33630.64860.09090.084*
C210.33610 (17)0.5550 (2)0.1931 (2)0.0714 (9)
H210.34550.61270.23190.086*
C220.32804 (16)0.4488 (2)0.2206 (2)0.0585 (6)
H220.33280.43390.27820.070*
C230.3718 (2)0.0814 (3)0.1402 (2)0.0882 (13)
H23A0.37330.12890.18860.106*
H23B0.40310.01620.15580.106*
H23C0.39310.12030.09630.106*
C240.28800 (18)0.0412 (2)0.01821 (15)0.0621 (8)
H24A0.23790.07150.00750.075*
H24B0.31020.00230.02260.075*
H24C0.32370.10070.03780.075*
C250.05595 (14)0.09282 (15)0.11908 (12)0.0382 (4)
H25A0.09060.15010.10450.046*
H25B0.00750.09320.07940.046*
H25C0.04410.10600.17490.046*
C260.02972 (12)0.12184 (16)0.14662 (13)0.0371 (4)
H26A0.04620.19790.14420.045*
H26B0.02240.10400.20330.045*
H26C0.01940.11130.10910.045*
C270.07526 (13)0.58962 (15)0.12773 (12)0.0356 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.03765 (8)0.02051 (7)0.02267 (7)0.00532 (5)0.01014 (5)0.00555 (5)
S10.0815 (4)0.0381 (3)0.0382 (3)0.0271 (3)0.0355 (3)0.0154 (2)
S20.0468 (3)0.02038 (18)0.01935 (18)0.00077 (17)0.00577 (17)0.00437 (14)
S30.0546 (3)0.01982 (19)0.0294 (2)0.00343 (18)0.0115 (2)0.00172 (16)
F10.0737 (9)0.0423 (7)0.0292 (6)0.0041 (6)0.0038 (6)0.0052 (5)
F20.0807 (9)0.0225 (5)0.0433 (7)0.0104 (6)0.0188 (6)0.0011 (5)
F30.0626 (8)0.0413 (7)0.0456 (7)0.0065 (6)0.0172 (6)0.0078 (6)
O10.0417 (7)0.0264 (6)0.0340 (7)0.0029 (5)0.0139 (6)0.0078 (5)
O20.1423 (19)0.0322 (8)0.0403 (9)0.0156 (10)0.0448 (11)0.0021 (7)
O30.0637 (9)0.0365 (7)0.0208 (6)0.0040 (7)0.0062 (6)0.0096 (5)
O40.0786 (12)0.0312 (7)0.0331 (7)0.0002 (7)0.0007 (7)0.0051 (6)
O50.0772 (11)0.0265 (7)0.0434 (8)0.0106 (7)0.0200 (8)0.0022 (6)
O60.0577 (10)0.0394 (8)0.0512 (9)0.0023 (7)0.0191 (8)0.0080 (7)
N20.0412 (8)0.0200 (6)0.0213 (7)0.0040 (6)0.0073 (6)0.0036 (5)
N10.0344 (7)0.0190 (6)0.0211 (6)0.0014 (5)0.0049 (5)0.0010 (5)
N30.0319 (8)0.0408 (9)0.0492 (10)0.0052 (7)0.0058 (7)0.0147 (8)
C10.0417 (9)0.0216 (7)0.0209 (7)0.0005 (7)0.0052 (7)0.0003 (6)
C20.0607 (13)0.0280 (9)0.0237 (8)0.0012 (8)0.0119 (8)0.0002 (7)
C30.0631 (13)0.0302 (9)0.0283 (9)0.0046 (9)0.0133 (9)0.0057 (7)
C40.0494 (11)0.0232 (8)0.0326 (9)0.0029 (8)0.0067 (8)0.0044 (7)
C50.0382 (9)0.0203 (7)0.0294 (8)0.0013 (7)0.0049 (7)0.0010 (6)
C60.0432 (10)0.0212 (7)0.0206 (7)0.0018 (7)0.0057 (7)0.0015 (6)
C70.0675 (14)0.0266 (9)0.0225 (8)0.0022 (9)0.0119 (9)0.0048 (7)
C80.0709 (15)0.0246 (9)0.0295 (9)0.0001 (9)0.0097 (9)0.0090 (7)
C90.0634 (13)0.0197 (8)0.0306 (9)0.0043 (8)0.0056 (9)0.0030 (7)
C100.0587 (12)0.0224 (8)0.0241 (8)0.0067 (8)0.0095 (8)0.0012 (7)
C110.0338 (11)0.0485 (13)0.0732 (16)0.0016 (9)0.0066 (11)0.0239 (12)
C120.0449 (15)0.078 (2)0.134 (3)0.0196 (14)0.0173 (17)0.050 (2)
C130.0526 (18)0.114 (3)0.179 (4)0.027 (2)0.046 (2)0.076 (3)
C140.0547 (17)0.092 (3)0.134 (3)0.0068 (17)0.0337 (19)0.058 (2)
C150.0406 (12)0.0655 (17)0.084 (2)0.0029 (12)0.0055 (12)0.0411 (15)
C160.0380 (10)0.0345 (10)0.0508 (12)0.0034 (8)0.0154 (9)0.0109 (9)
C170.0386 (11)0.0330 (10)0.0607 (14)0.0006 (8)0.0106 (10)0.0094 (10)
C180.0653 (16)0.0358 (11)0.0614 (15)0.0004 (11)0.0094 (12)0.0124 (11)
C190.0731 (18)0.0432 (14)0.0769 (19)0.0032 (13)0.0022 (15)0.0248 (13)
C200.0600 (16)0.0336 (12)0.110 (3)0.0071 (11)0.0093 (16)0.0202 (14)
C210.0610 (17)0.0405 (13)0.108 (3)0.0067 (12)0.0001 (17)0.0079 (15)
C220.0548 (15)0.0461 (13)0.0732 (18)0.0079 (11)0.0051 (13)0.0001 (12)
C230.095 (2)0.098 (2)0.086 (2)0.068 (2)0.0578 (19)0.0509 (19)
C240.093 (2)0.0563 (15)0.0486 (13)0.0328 (14)0.0476 (14)0.0269 (11)
C250.0627 (13)0.0238 (8)0.0273 (9)0.0092 (8)0.0044 (9)0.0035 (7)
C260.0411 (10)0.0304 (9)0.0390 (10)0.0041 (8)0.0037 (8)0.0028 (8)
C270.0545 (12)0.0252 (8)0.0290 (9)0.0025 (8)0.0117 (8)0.0020 (7)
Geometric parameters (Å, º) top
Ru1—N22.0702 (14)C8—C91.375 (3)
Ru1—O12.0900 (12)C8—H80.9500
Ru1—N12.0904 (14)C9—C101.382 (3)
Ru1—N32.1047 (18)C9—H90.9500
Ru1—S22.2789 (5)C10—H100.9500
Ru1—S12.2844 (5)C11—C121.386 (4)
S1—O21.480 (2)C11—C161.489 (3)
S1—C231.780 (3)C12—C131.387 (4)
S1—C241.786 (2)C12—H120.9500
S2—O31.4843 (13)C13—C141.359 (5)
S2—C251.7765 (19)C13—H130.9500
S2—C261.778 (2)C14—C151.379 (4)
S3—O61.4364 (17)C14—H140.9500
S3—O51.4405 (15)C15—H150.9500
S3—O41.4414 (16)C16—C171.477 (3)
S3—C271.8270 (19)C17—C221.384 (4)
F1—C271.332 (2)C17—C181.384 (3)
F2—C271.338 (2)C18—C191.390 (3)
F3—C271.334 (2)C18—H180.9500
O1—C161.254 (3)C19—C201.360 (4)
N2—C101.348 (2)C19—H190.9500
N2—C61.363 (2)C20—C211.378 (5)
N1—C51.348 (2)C20—H200.9500
N1—C11.355 (2)C21—C221.395 (4)
N3—C151.336 (3)C21—H210.9500
N3—C111.366 (3)C22—H220.9500
C1—C21.388 (2)C23—H23A0.9800
C1—C61.474 (2)C23—H23B0.9800
C2—C31.387 (3)C23—H23C0.9800
C2—H20.9500C24—H24A0.9800
C3—C41.383 (3)C24—H24B0.9800
C3—H30.9500C24—H24C0.9800
C4—C51.383 (3)C25—H25A0.9800
C4—H40.9500C25—H25B0.9800
C5—H50.9500C25—H25C0.9800
C6—C71.389 (2)C26—H26A0.9800
C7—C81.383 (3)C26—H26B0.9800
C7—H70.9500C26—H26C0.9800
N2—Ru1—O1169.32 (6)N2—C10—C9123.11 (17)
N2—Ru1—N178.50 (5)N2—C10—H10118.4
O1—Ru1—N192.98 (5)C9—C10—H10118.4
N2—Ru1—N395.26 (6)N3—C11—C12121.6 (2)
O1—Ru1—N377.22 (6)N3—C11—C16113.4 (2)
N1—Ru1—N383.51 (7)C12—C11—C16124.7 (2)
N2—Ru1—S294.50 (4)C11—C12—C13118.6 (3)
O1—Ru1—S292.65 (4)C11—C12—H12120.7
N1—Ru1—S295.15 (4)C13—C12—H12120.7
N3—Ru1—S2169.67 (5)C14—C13—C12120.1 (3)
N2—Ru1—S196.74 (4)C14—C13—H13120.0
O1—Ru1—S191.42 (4)C12—C13—H13120.0
N1—Ru1—S1174.50 (4)C13—C14—C15118.6 (3)
N3—Ru1—S194.26 (6)C13—C14—H14120.7
S2—Ru1—S187.93 (2)C15—C14—H14120.7
O2—S1—C23106.70 (16)N3—C15—C14123.4 (3)
O2—S1—C24107.83 (13)N3—C15—H15118.3
C23—S1—C24100.07 (14)C14—C15—H15118.3
O2—S1—Ru1116.31 (8)O1—C16—C17119.14 (19)
C23—S1—Ru1112.37 (12)O1—C16—C11117.65 (18)
C24—S1—Ru1112.18 (8)C17—C16—C11123.2 (2)
O3—S2—C25107.43 (9)C22—C17—C18119.5 (2)
O3—S2—C26106.80 (9)C22—C17—C16122.1 (2)
C25—S2—C26100.23 (10)C18—C17—C16118.3 (2)
O3—S2—Ru1113.91 (7)C17—C18—C19119.8 (3)
C25—S2—Ru1114.69 (7)C17—C18—H18120.1
C26—S2—Ru1112.64 (7)C19—C18—H18120.1
O6—S3—O5115.44 (10)C20—C19—C18120.7 (3)
O6—S3—O4114.63 (10)C20—C19—H19119.6
O5—S3—O4114.90 (10)C18—C19—H19119.6
O6—S3—C27103.25 (10)C19—C20—C21120.0 (3)
O5—S3—C27103.52 (9)C19—C20—H20120.0
O4—S3—C27102.64 (9)C21—C20—H20120.0
C16—O1—Ru1116.26 (12)C20—C21—C22120.1 (3)
C10—N2—C6117.74 (15)C20—C21—H21119.9
C10—N2—Ru1127.07 (12)C22—C21—H21119.9
C6—N2—Ru1115.07 (11)C17—C22—C21119.8 (3)
C5—N1—C1118.87 (15)C17—C22—H22120.1
C5—N1—Ru1125.74 (12)C21—C22—H22120.1
C1—N1—Ru1114.86 (11)S1—C23—H23A109.5
C15—N3—C11117.7 (2)S1—C23—H23B109.5
C15—N3—Ru1128.20 (17)H23A—C23—H23B109.5
C11—N3—Ru1113.98 (14)S1—C23—H23C109.5
N1—C1—C2121.36 (16)H23A—C23—H23C109.5
N1—C1—C6115.02 (14)H23B—C23—H23C109.5
C2—C1—C6123.62 (16)S1—C24—H24A109.5
C3—C2—C1119.32 (17)S1—C24—H24B109.5
C3—C2—H2120.3H24A—C24—H24B109.5
C1—C2—H2120.3S1—C24—H24C109.5
C4—C3—C2119.19 (17)H24A—C24—H24C109.5
C4—C3—H3120.4H24B—C24—H24C109.5
C2—C3—H3120.4S2—C25—H25A109.5
C3—C4—C5118.95 (17)S2—C25—H25B109.5
C3—C4—H4120.5H25A—C25—H25B109.5
C5—C4—H4120.5S2—C25—H25C109.5
N1—C5—C4122.31 (16)H25A—C25—H25C109.5
N1—C5—H5118.8H25B—C25—H25C109.5
C4—C5—H5118.8S2—C26—H26A109.5
N2—C6—C7121.42 (16)S2—C26—H26B109.5
N2—C6—C1115.46 (14)H26A—C26—H26B109.5
C7—C6—C1123.11 (16)S2—C26—H26C109.5
C8—C7—C6119.74 (17)H26A—C26—H26C109.5
C8—C7—H7120.1H26B—C26—H26C109.5
C6—C7—H7120.1F1—C27—F3106.99 (16)
C9—C8—C7118.95 (17)F1—C27—F2107.62 (17)
C9—C8—H8120.5F3—C27—F2107.49 (16)
C7—C8—H8120.5F1—C27—S3112.25 (14)
C8—C9—C10118.98 (17)F3—C27—S3111.71 (14)
C8—C9—H9120.5F2—C27—S3110.53 (13)
C10—C9—H9120.5
C5—N1—C1—C20.2 (3)C11—C12—C13—C140.3 (8)
Ru1—N1—C1—C2171.93 (15)C12—C13—C14—C151.1 (8)
C5—N1—C1—C6179.31 (16)C11—N3—C15—C143.7 (5)
Ru1—N1—C1—C68.5 (2)Ru1—N3—C15—C14178.8 (3)
N1—C1—C2—C30.5 (3)C13—C14—C15—N32.9 (7)
C6—C1—C2—C3180.0 (2)Ru1—O1—C16—C17170.77 (15)
C1—C2—C3—C40.9 (3)Ru1—O1—C16—C1110.8 (2)
C2—C3—C4—C50.6 (3)N3—C11—C16—O12.3 (3)
C1—N1—C5—C40.5 (3)C12—C11—C16—O1171.8 (3)
Ru1—N1—C5—C4170.68 (14)N3—C11—C16—C17179.3 (2)
C3—C4—C5—N10.1 (3)C12—C11—C16—C176.5 (4)
C10—N2—C6—C72.2 (3)O1—C16—C17—C22134.7 (2)
Ru1—N2—C6—C7174.17 (16)C11—C16—C17—C2246.9 (3)
C10—N2—C6—C1176.87 (17)O1—C16—C17—C1842.3 (3)
Ru1—N2—C6—C16.7 (2)C11—C16—C17—C18136.0 (3)
N1—C1—C6—N21.2 (2)C22—C17—C18—C190.9 (4)
C2—C1—C6—N2179.24 (18)C16—C17—C18—C19178.0 (2)
N1—C1—C6—C7177.82 (19)C17—C18—C19—C201.8 (4)
C2—C1—C6—C71.7 (3)C18—C19—C20—C211.1 (5)
N2—C6—C7—C81.3 (3)C19—C20—C21—C220.4 (5)
C1—C6—C7—C8177.7 (2)C18—C17—C22—C210.5 (4)
C6—C7—C8—C90.9 (4)C16—C17—C22—C21176.5 (2)
C7—C8—C9—C102.1 (3)C20—C21—C22—C171.2 (4)
C6—N2—C10—C91.0 (3)O6—S3—C27—F163.58 (16)
Ru1—N2—C10—C9174.89 (16)O5—S3—C27—F157.13 (17)
C8—C9—C10—N21.1 (3)O4—S3—C27—F1176.98 (15)
C15—N3—C11—C122.7 (4)O6—S3—C27—F3176.23 (14)
Ru1—N3—C11—C12178.5 (3)O5—S3—C27—F363.06 (16)
C15—N3—C11—C16177.1 (2)O4—S3—C27—F356.79 (16)
Ru1—N3—C11—C167.1 (3)O6—S3—C27—F256.58 (17)
N3—C11—C12—C131.1 (6)O5—S3—C27—F2177.29 (15)
C16—C11—C12—C13174.8 (4)O4—S3—C27—F262.86 (17)
Selected bond lengths and angles (Å, °) top
Ru1—N12.0905 (16)Ru1—N22.0705 (16)
Ru1—N32.105 (2)Ru1—O12.0898 (14)
Ru1–S12.2845 (6)Ru1—S22.2789 (6)
O1—C161.254 (3)
N1—Ru1—N278.46 (6)N3—Ru1—O177.20 (7)
S1—Ru1—S287.93 (3)
 

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Funding information

Funding for this research was provided by: JSPS KAKENHI (grant No. JP20K05589).

References

First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, F., Wang, Y., Shi, D., Zhang, J., Wang, M., Jing, X., Humphry-Baker, R., Wang, P., Zakeeruddin, S. M. & Grätzel, M. (2008). J. Am. Chem. Soc. 130, 10720–10728.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPatra, S. K., Sen, B., Rabha, M. & Khatua, S. (2021). New J. Chem. 46, 169–177.  Web of Science CrossRef Google Scholar
First citationRigaku (2016). CrystalClear-SM. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpiccia, L., Deacon, G. B. & Kepert, C. M. (2004). Coord. Chem. Rev. 248, 1329–1341.  Web of Science CrossRef CAS Google Scholar
First citationToyama, M., Fujii, Y. & Endo, M. (2019). Inorg. Chim. Acta, 486, 304–313.  Web of Science CSD CrossRef CAS Google Scholar
First citationToyama, M., Fujimoto, D., Matsuoka, Y., Asano, Y. & Nagao, N. (2018). Eur. J. Inorg. Chem. 2018, 4349–4360.  Web of Science CSD CrossRef CAS Google Scholar
First citationToyama, M., Nakahara, M. & Nagao, N. (2007). Bull. Chem. Soc. Jpn, 80, 937–950.  Web of Science CSD CrossRef CAS Google Scholar
First citationToyama, M., Nakayasu, T. & Nagao, N. (2017). X-ray Struct. Anal. Online, 33, 11–13.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds