research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new (monohydrate) form of 3,5-di­carb­­oxy­anilinium nitrate: crystal structure and Hirshfeld surface analysis

crossmark logo

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Frères Mentouri Constantine 1, 25017 Constantine, Algeria, and bLaboratoire de Technologie des Matériaux Avancés, École Nationale Polytechnique de Constantine Nouvelle Ville Universitaire, Ali Mendjeli, Constantine 25000, Algeria
*Correspondence e-mail: mboutebdja@gmail.com

Edited by A. S. Batsanov, University of Durham, United Kingdom (Received 31 August 2022; accepted 20 October 2022; online 1 November 2022)

The title compound, C8H8NO4+·NO3·H2O, crystallizes in the same space group (P21/c) as the previously reported dihydrate form [Liang & Zhu (2010[Liang, W.-X. & Zhu, Y.-T. (2010). Acta Cryst. E66, o667.]). Acta Cryst. E66, o667], but with two formula units per asymmetric unit instead of one. In the crystal, the components are linked into a three-dimensional network by classical inter­molecular O—H⋯O and N—H⋯O hydrogen bonds and ππ stacking inter­actions. A Hirshfeld surface (HS) analysis indicated that the most important contributions to the crystal packing are from H⋯O/O⋯H (52.4%), H⋯H (13.9%) and C⋯C (11.2%) for one cation and H⋯O/O⋯H (46.3%), H⋯H (20%) and O⋯C/C⋯O (10.6%) for the other.

1. Chemical context

The amphoteric 5-amino­isophtalic acid (5-AIP) has a well known ability to form supra­molecular assemblies with metal ions (Xin et al., 2021[Xin, Y., Zhou, J., Xing, Y. H., Bai, F. Y. & Sun, L. X. (2021). New J. Chem. 45, 3432-3440.]; Luo et al., 2011[Luo, Y., Calvez, G., Freslon, S., Bernot, K., Daiguebonne, C. & Guillou, O. (2011). Eur. J. Inorg. Chem. 2011, 3705-3716.]). As a result, it can operate like nodes similar to natural amino acids (Singh et al., 2019[Singh, M. P., Tarai, A. & Baruah, J. B. (2019). ChemistrySelect, 4, 5427-5436.]) (Fig. 1[link]). In addition, 5-AIP may self-assemble as a result of many hydrogen-bonding patterns. It forms salts with a Brønsted acid or base and its structural characteristics enable it to take on a variety of ionic forms (Nath & Baruah, 2012[Nath, B. & Baruah, J. B. (2012). Mol. Cryst. Liq. Cryst. 562, 242-253.]; McGuire et al., 2016[McGuire, S. C., Travis, S. C., Tuohey, D. W., Deering, T. J., Martin, B., Cox, J. M. & Benedict, J. B. (2016). Acta Cryst. E72, 639-642.]). Herein, we report on the synthesis and crystal structure of a new 3,5-di­carb­oxy­anilinium nitrate hydrate, (I)[link].

[Scheme 1]
[Figure 1]
Figure 1
Different neutral and ionic forms of 5-amino­isophthalic acid

2. Structural commentary

Compound (I)[link] differs from the previously reported crystal form of 3,5-di­carb­oxy­anilinium nitrate (Liang & Zhu, 2010[Liang, W.-X. & Zhu, Y.-T. (2010). Acta Cryst. E66, o667.]) by containing one water mol­ecule per formula unit, instead of two. The asymmetric unit comprises two formula units, i.e., two 3,5-di­carboxyl­anilinium cations (A and B), two nitrate anions (A and B) and two water mol­ecules (Fig. 2[link]a). All bond distances and angles fall within normal ranges as compared to similar mol­ecules (Wang & Zhang, 2006[Wang, G. X. & Zhang, Q. W. (2006). Z. Kristallogr. New Cryst. Struct. 221, 453-454.]; Dobson & Gerkin, 1998[Dobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 1503-1505.]; Nath & Baruah, 2012[Nath, B. & Baruah, J. B. (2012). Mol. Cryst. Liq. Cryst. 562, 242-253.]; Singh et al., 2019[Singh, M. P., Tarai, A. & Baruah, J. B. (2019). ChemistrySelect, 4, 5427-5436.]; Cai et al., 2020[Cai, B., Li, S.-J., Zhu, M.-E., Li, M.-Q. & Meng, Y. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1-2.]). The cations have similar conformations that differ mainly in the opposite orientations of one carb­oxy­lic group, as seen by the torsion angles C5—C4—C8—O3 of 6.0 (2)° in cation A and −178.43 (18)° in cation B. Mogul (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]) based on the Cambridge Structural Database (version 2022.2.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), indicated the single character of the C6—N1 bonds [1.457 (2) Å for A and 1.462 (2) Å for B], which have lengths close to the median of the 2198 found fragments of the same chemical nature. The C=O double bonds in the carb­oxy­lic groups [1.202 (2) to 1.241 (2) Å] are shorter than the C—O single bonds [1.285 (2) to 1.322 (2) Å, Table 1[link]]. The planarity of the cations varies slightly: the dihedral angles between the carb­oxy­lic group planes (C1, O1, O2) and (C8, O3, O4) and the ring plane are 7.85 (9) and 5.90 (9)°, respectively, in cation A, 5.93 (2) and 2.68 (2)° in cation B; all non-hydrogen atoms are coplanar within 0.083 Å in cation A and 0.052 Å in B.

Table 1
Selected geometric parameters (Å, °)

C6A—N1A 1.457 (2) N1B—C6B 1.463 (2)
O1A—C1A 1.286 (2) O1B—C1B 1.285 (2)
O2A—C1A 1.237 (2) O2B—C1B 1.241 (2)
O3A—C8A 1.322 (2) O3B—C8B 1.305 (2)
O4A—C8A 1.202 (2) O4B—C8B 1.203 (2)
       
O2A—C1A—O1A 124.42 (17) O2B—C1B—O1B 123.59 (17)
O4A—C8A—O3A 124.00 (16) O4B—C8B—O3B 124.69 (18)
[Figure 2]
Figure 2
(a) ORTEP view of the asymmetric unit of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed cyan lines. (b) Histogram comparing the C—N bond lengths generating using Mogul.

3. Supra­molecular features

An extensive network of moderate-to-strong N—H⋯O and O—H⋯O hydrogen bonds (Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]) exists in the crystal structure of (I)[link] (Table 2[link]). The supra­molecular motif can be described as two-dimensional layers that extend parallel to the crystallographic (101) plane (Fig. 3[link]a). In each layer, the 3,5-di­carb­oxy­anilinium A cations and the nitrate A anions are linked through bifurcated hydrogen bonds, forming chains of R12(4) rings that propagate parallel to the b axis (Fig. 3[link]a,b). In addition, the 3,5-di­carb­oxy­anilinium B cations and water mol­ecules form chains of R66(22) ring motifs that also extend along the b-axis direction (Fig. 3[link]a,c,d). These two types of chains are inter­connected via dimeric O—H⋯O hydrogen bonds, which occur between one of the carboxyl­ate groups of each of the A and B cations (within the asymmetric unit as defined here) and enclosing an R22(8) graph-set motif (Fig. 3[link]a,e). Furthermore, we can distinguish, as illustrated in Fig. 4[link], that the nitrate B anions are involved in the formation of alternating R66(26) and R88(34) ring motifs, generating ribbons that propagate along the a-axis direction, which in turn leads to the formation of a three-dimensional supra­molecular network.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2WA⋯O4B 0.93 (4) 2.11 (4) 2.911 (3) 143 (3)
O2W—H2WB⋯O1Bi 0.88 (4) 2.14 (4) 2.913 (2) 147 (3)
O3A—H3A⋯O5A 0.94 (3) 1.80 (3) 2.7399 (19) 173 (2)
O3B—H3B⋯O1W 0.86 (3) 1.76 (3) 2.604 (2) 165 (3)
O1W—H1WA⋯O2Wii 0.81 (3) 1.97 (3) 2.772 (2) 173 (3)
O1W—H1WB⋯O6Biii 0.88 (3) 1.88 (3) 2.762 (2) 175 (3)
C7A—H7A⋯O5Biv 0.93 2.54 3.236 (2) 131
N1B—H1BA⋯O7Av 0.94 (2) 2.01 (2) 2.938 (2) 173 (2)
N1B—H1BB⋯O5B 0.90 (2) 1.96 (2) 2.842 (2) 168 (2)
N1B—H1BC⋯O2Wvi 0.86 (3) 2.64 (2) 3.056 (3) 111.2 (17)
N1B—H1BC⋯O1Wvi 0.86 (3) 2.00 (3) 2.841 (2) 165 (2)
N1A—H1AA⋯O6Avii 0.81 (3) 2.38 (3) 3.104 (3) 150 (2)
N1A—H1AA⋯O5Avii 0.81 (3) 2.32 (3) 3.070 (2) 154 (2)
N1A—H1AB⋯O7Biv 0.90 (2) 2.25 (2) 2.934 (2) 132.1 (18)
N1A—H1AB⋯O5Biv 0.90 (2) 2.12 (2) 2.992 (2) 162.9 (19)
N1A—H1AC⋯O5Aviii 0.86 (2) 2.34 (2) 3.000 (2) 133.8 (19)
N1A—H1AC⋯O7Aviii 0.86 (2) 2.10 (3) 2.942 (2) 167 (2)
O1A—H1A⋯O2B 0.77 (4) 1.91 (4) 2.669 (2) 174 (4)
O1B—H1B⋯O2A 0.82 (3) 1.85 (3) 2.662 (2) 170 (3)
Symmetry codes: (i) [x, y-1, z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, -y, -z+1]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [-x+2, y-{\script{3\over 2}}, -z+{\script{1\over 2}}]; (vi) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) [x, -y+{\script{7\over 2}}, z+{\script{1\over 2}}]; (viii) [-x+2, -y+4, -z+1].
[Figure 3]
Figure 3
(a) Partial packing of (I)[link] showing the two-dimensional layers (viewed down the c and b axes); (b) the R12(4) motif formed by a N—H⋯O bifurcated hydrogen bond; (c) and (d) the R66(22) motifs formed by a combination of N—H⋯O and O—H⋯O hydrogen bonds; (e) the dimeric R22(8) motifs formed by O—H⋯O hydrogen bonds.
[Figure 4]
Figure 4
Partial packing of (I)[link] showing the ribbons formed by alternating R66(26) and R88(34) ring motifs.

Further examination reveals that the cohesion in the crystal structure is enhanced by offset or slipped ππ stacking inter­actions, involving the aromatic rings of the A and B cations, which appear in the direction of the crystallographic a axis (Fig. 5[link]). Two parallel rings A contact with a centroid-to-centroid distance Cg1⋯Cg1(2 − x, 3 − y, 1 − z) of 3.6768 (9) Å, while rings A and B (forming an inter­planar angle of 11.81°) contact with a Cg1⋯Cg2(x, 1 + y, z) distance of 3.7960 (9) Å. Note that the former ππ stacking inter­action reinforces the R22(8) ring described earlier.

[Figure 5]
Figure 5
Part of the crystal structure of (I)[link] showing the ππ stacking inter­actions, which appear parallel to the a axis.

4. Hirshfeld surface analysis

In order to visualize and qu­antify the inter­molecular inter­actions in compound (I)[link], we carried out a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) using CrystalExplorer21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) mapped in color with a normalized contact distance, dnorm, varying from red through white to blue depending on the distances compared to the sum of the van der Waals radii. The Hirshfeld surfaces mapped over dnorm, were calculated separately for cations A and B using a standard high surface resolution (Fig. 6[link]a). The red spots correspond to contacts shorter than the van der Waals radii sum of the closest atoms and relate to the presence of O—H⋯O and N—H⋯O hydrogen bonds in the crystal structure, whereas the faint-red spots (highlighted by red circles for clarity) represent weaker C—H⋯O inter­actions. The presence of characteristic red and blue triangles on the shape-index surface (Fig. 6[link]b) clearly suggest the presence of ππ inter­actions between the neighboring organic cations and the curvedness plots (Fig. 6[link]c) show flat surface patches characteristic of planar stacking.

[Figure 6]
Figure 6
The Hirshfeld surfaces of the organic cations A and B mapped over: (a) dnorm in the range −0.7489 to 1.2298 a.u., (b) shape-index and (c) curvedness.

The overall two-dimensional fingerprint plot and those delineated into O⋯H/H⋯O, H⋯H, C⋯C, O⋯C/C⋯O, O⋯O and C⋯H/H⋯C contacts for cations A and B are shown in Fig. 7[link] and their relative contributions to the HS are illustrated graphically in Fig. 8[link]. The most important contributions for both cations come from H⋯O/O⋯H contacts (52.4% for cation A and 46.3% for B), with characteristic `spikes' in the plots related to the presence of strong O—H⋯O and N—H⋯O hydrogen bonds. The second most important are H⋯H contacts, contributing 13.9% and 20% for cations A and B, respectively. These are followed for cation A by C⋯C contacts (11.2%), but for cation B by O⋯C/C⋯O contacts (10.6%), other contacts making less significant contributions.

[Figure 7]
Figure 7
Two-dimensional fingerprint plots of (I)[link], showing the percentage contributions of all contacts and those delineated into O⋯H/H⋯O, H⋯H, C⋯C, O⋯C/C⋯O, O⋯O and C⋯H/H⋯C contacts for the A and B organic cations.
[Figure 8]
Figure 8
Percentage contributions of contacts to the Hirshfeld surface in the cations of (I)[link].

5. Database survey

The Cambridge Structural Database (Version 2022.2.0 updated to June 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), was searched for structures with carbox­yl–carboxyl R22(8) graph-set motifs using ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for all searches, and filters were applied to ensure that only organic compounds and non-disordered mol­ecules were included. In addition, the searches were also limited to structures with low R-factor values (R < 0.05). The results of the searches were analyzed using Mercury (CSD Version 2022.2.0; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

The geometries of O—H⋯O hydrogen bonds from an analysis of 2883 crystal structures deposited in the CSD are illustrated in Fig. 9[link]. The relationship between the H⋯O distances and O—H⋯O angles is shown as a two-dimensional plot, the O⋯O distances being indicated by the color of the data points. The angle tends to increase as the O⋯O and H⋯O distances decrease. The greatest density of observed hydrogen bonds occurs in the range of 1.3–1.9 Å for the H⋯O distance, 2.6–2.8 Å for the O⋯O distances (indicated by green data points) and 160–180° for the O—H⋯O angle.

[Figure 9]
Figure 9
Scatterplot of O—H⋯O angle (°) against H⋯O distance (Å) for carb­oxy­lic acid to carb­oxy­lic acid type hydrogen bonds, with the O⋯O distance (Å) shown using a color scale (bottom).

6. Synthesis and crystallization

5-Amino­isophthalic acid (0.181 g, 1 mmol) dissolved in methanol (10 mL) was added under stirring to a methano­lic solution of Er(NO3)3·5H2O (0.110 g, 0.25 mmol). After several minutes of stirring, a brighter orange precipitate appeared and was filtered. After slowly evaporating the filtrate over one week, colorless single crystals of the title compound suitable for X-ray diffraction analysis were isolated.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms of the ammonium NH3+, carb­oxy­lic acid groups COOH and water mol­ecules were localized in difference-Fourier maps and refined with Uiso(H) set to 1.5Ueq(O) or 1.2Ueq(N). The C-bound H atoms were placed in calculated positions with a C—H distance of 0.93 Å and refined using a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Table 3
Experimental details

Crystal data
Chemical formula C8H8NO4+·NO3·H2O
Mr 262.18
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 14.7026 (4), 8.5449 (2), 16.9929 (4)
β (°) 92.800 (2)
V3) 2132.31 (9)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.15
Crystal size (mm) 0.14 × 0.12 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). BIS, APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.627, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 20897, 4881, 3653
Rint 0.069
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.142, 1.02
No. of reflections 4881
No. of parameters 368
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.36
Computer programs: BIS, APEX2 and SAINT (Bruker, 2014[Bruker (2014). BIS, APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: BIS (Bruker, 2014), APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

3,5-Dicarboxyanilinium nitrate monohydrate top
Crystal data top
C8H8NO4+·NO3·H2OF(000) = 1088
Mr = 262.18Dx = 1.633 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.7026 (4) ÅCell parameters from 5578 reflections
b = 8.5449 (2) Åθ = 2.4–28.9°
c = 16.9929 (4) ŵ = 0.15 mm1
β = 92.800 (2)°T = 298 K
V = 2132.31 (9) Å3Plate, colorless
Z = 80.14 × 0.12 × 0.1 mm
Data collection top
Bruker APEXII CCD
diffractometer
3653 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.069
φ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1819
Tmin = 0.627, Tmax = 0.746k = 1110
20897 measured reflectionsl = 2220
4881 independent reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: other
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0742P)2 + 0.5757P]
where P = (Fo2 + 2Fc2)/3
4881 reflections(Δ/σ)max = 0.001
368 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1B0.67893 (13)0.3682 (2)0.28611 (10)0.0301 (4)
O1A0.82519 (13)1.17198 (18)0.43486 (9)0.0423 (4)
O2W0.58027 (15)0.0690 (2)0.65998 (12)0.0603 (5)
H2WA0.546 (3)0.012 (5)0.622 (2)0.090*
H2WB0.615 (3)0.127 (4)0.631 (2)0.090*
O3A0.97439 (10)1.86406 (16)0.43414 (8)0.0346 (3)
H3A0.9913 (18)1.922 (3)0.3898 (16)0.052*
O2A0.78909 (12)1.14271 (17)0.56010 (9)0.0452 (4)
O4A0.92628 (11)1.69085 (17)0.34332 (8)0.0396 (4)
O3B0.56209 (12)0.38877 (19)0.62141 (9)0.0465 (4)
H3B0.539 (2)0.324 (4)0.6536 (18)0.070*
O1B0.70854 (12)0.86590 (18)0.53880 (9)0.0418 (4)
O4B0.55015 (15)0.17909 (18)0.54420 (10)0.0574 (5)
O2B0.75437 (11)0.88596 (16)0.41625 (8)0.0362 (3)
O6A1.10763 (13)1.85507 (18)0.24130 (10)0.0503 (4)
O5A1.03844 (10)2.02758 (17)0.30967 (9)0.0380 (4)
O7A1.18270 (10)2.05003 (17)0.29317 (9)0.0389 (4)
O1W0.49992 (10)0.22720 (19)0.73709 (9)0.0357 (3)
H1WA0.4800 (19)0.284 (3)0.7699 (16)0.053*
H1WB0.4622 (19)0.147 (3)0.7312 (15)0.053*
O7B0.70536 (11)0.14901 (17)0.22552 (10)0.0450 (4)
O5B0.76172 (10)0.07156 (17)0.26536 (9)0.0403 (4)
O6B0.62322 (10)0.01340 (18)0.28938 (9)0.0410 (4)
N2A1.11052 (12)1.97532 (18)0.28112 (9)0.0295 (4)
N2B0.69618 (11)0.02251 (18)0.25969 (10)0.0299 (4)
C1A0.82076 (13)1.2200 (2)0.50630 (11)0.0254 (4)
C2A0.85560 (12)1.3807 (2)0.52255 (10)0.0225 (4)
C3A0.88063 (11)1.4777 (2)0.46159 (10)0.0218 (4)
H3AA0.8769491.4416620.4098860.026*
C4A0.91116 (11)1.62859 (19)0.47816 (10)0.0206 (3)
C8A0.93717 (12)1.7299 (2)0.41105 (10)0.0244 (4)
C5A0.91825 (12)1.68168 (19)0.55568 (10)0.0219 (3)
H5A0.9392051.7822500.5670400.026*
C6A0.89382 (11)1.5833 (2)0.61539 (10)0.0212 (3)
N1A0.90040 (13)1.6379 (2)0.69669 (9)0.0267 (3)
C7A0.86173 (12)1.4334 (2)0.59991 (10)0.0230 (4)
H7A0.8445371.3690370.6407450.028*
C8B0.57193 (14)0.3132 (2)0.55560 (12)0.0321 (4)
C4B0.61297 (13)0.4121 (2)0.49363 (11)0.0268 (4)
C3B0.64094 (13)0.5653 (2)0.51020 (11)0.0261 (4)
H3BA0.6336180.6078880.5598530.031*
C2B0.67981 (12)0.6536 (2)0.45190 (11)0.0236 (4)
C1B0.71606 (12)0.8134 (2)0.46854 (11)0.0254 (4)
C7B0.69130 (12)0.5897 (2)0.37756 (10)0.0244 (4)
H7B0.7167290.6489050.3382900.029*
C6B0.66436 (12)0.4375 (2)0.36321 (10)0.0240 (4)
C5B0.62522 (13)0.3476 (2)0.42002 (11)0.0271 (4)
H5B0.6073140.2452260.4090390.033*
H1B0.7317 (17)0.954 (3)0.5397 (14)0.041*
H1BA0.7200 (16)0.426 (3)0.2570 (13)0.033*
H1BB0.7054 (15)0.273 (3)0.2872 (13)0.033*
H1BC0.6263 (18)0.350 (3)0.2638 (13)0.033*
H1AA0.9473 (17)1.618 (3)0.7214 (13)0.033*
H1AB0.8549 (16)1.593 (3)0.7224 (13)0.033*
H1AC0.8850 (15)1.734 (3)0.7023 (13)0.033*
H1A0.804 (3)1.090 (5)0.433 (2)0.087 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1B0.0342 (9)0.0260 (9)0.0305 (9)0.0018 (7)0.0048 (7)0.0073 (7)
O1A0.0685 (11)0.0235 (8)0.0348 (8)0.0118 (7)0.0009 (7)0.0098 (6)
O2W0.0750 (14)0.0476 (11)0.0614 (12)0.0152 (9)0.0353 (10)0.0080 (9)
O3A0.0509 (9)0.0253 (7)0.0279 (7)0.0142 (6)0.0051 (6)0.0020 (6)
O2A0.0679 (11)0.0298 (8)0.0381 (8)0.0217 (7)0.0046 (7)0.0034 (6)
O4A0.0628 (10)0.0343 (8)0.0219 (7)0.0123 (7)0.0033 (6)0.0008 (6)
O3B0.0690 (11)0.0400 (9)0.0318 (8)0.0176 (8)0.0154 (7)0.0013 (7)
O1B0.0616 (10)0.0277 (8)0.0375 (8)0.0182 (7)0.0179 (7)0.0130 (6)
O4B0.0931 (14)0.0302 (9)0.0507 (10)0.0227 (8)0.0230 (9)0.0021 (7)
O2B0.0534 (9)0.0237 (7)0.0320 (7)0.0118 (6)0.0081 (6)0.0002 (5)
O6A0.0677 (12)0.0278 (8)0.0560 (10)0.0005 (7)0.0081 (8)0.0119 (7)
O5A0.0419 (8)0.0315 (8)0.0419 (8)0.0004 (6)0.0170 (6)0.0065 (6)
O7A0.0353 (8)0.0388 (8)0.0425 (9)0.0050 (6)0.0013 (6)0.0046 (6)
O1W0.0359 (8)0.0355 (8)0.0365 (8)0.0048 (6)0.0102 (6)0.0007 (6)
O7B0.0558 (10)0.0263 (8)0.0541 (10)0.0004 (7)0.0153 (8)0.0108 (7)
O5B0.0417 (9)0.0335 (8)0.0467 (9)0.0101 (6)0.0127 (7)0.0036 (6)
O6B0.0338 (8)0.0393 (8)0.0508 (9)0.0046 (6)0.0117 (7)0.0038 (7)
N2A0.0394 (9)0.0220 (8)0.0273 (8)0.0009 (7)0.0050 (6)0.0059 (6)
N2B0.0354 (9)0.0247 (8)0.0298 (8)0.0019 (7)0.0050 (6)0.0011 (6)
C1A0.0306 (9)0.0202 (9)0.0254 (9)0.0024 (7)0.0009 (7)0.0008 (7)
C2A0.0251 (9)0.0176 (8)0.0248 (9)0.0016 (6)0.0005 (6)0.0004 (6)
C3A0.0233 (8)0.0218 (8)0.0202 (8)0.0007 (6)0.0006 (6)0.0023 (6)
C4A0.0219 (8)0.0199 (8)0.0202 (8)0.0008 (6)0.0012 (6)0.0019 (6)
C8A0.0286 (9)0.0210 (9)0.0236 (9)0.0010 (7)0.0022 (7)0.0024 (7)
C5A0.0253 (9)0.0166 (8)0.0236 (8)0.0017 (6)0.0007 (6)0.0017 (6)
C6A0.0229 (8)0.0219 (8)0.0188 (8)0.0020 (6)0.0013 (6)0.0025 (6)
N1A0.0345 (9)0.0258 (8)0.0200 (8)0.0003 (7)0.0030 (6)0.0031 (6)
C7A0.0267 (9)0.0198 (8)0.0227 (8)0.0010 (7)0.0032 (7)0.0011 (6)
C8B0.0361 (11)0.0265 (10)0.0339 (10)0.0055 (8)0.0040 (8)0.0051 (8)
C4B0.0291 (9)0.0212 (9)0.0303 (9)0.0025 (7)0.0017 (7)0.0032 (7)
C3B0.0282 (9)0.0232 (9)0.0273 (9)0.0019 (7)0.0038 (7)0.0018 (7)
C2B0.0230 (9)0.0189 (8)0.0288 (9)0.0012 (7)0.0010 (7)0.0017 (7)
C1B0.0281 (9)0.0206 (8)0.0277 (9)0.0000 (7)0.0027 (7)0.0018 (7)
C7B0.0280 (9)0.0189 (9)0.0264 (9)0.0001 (7)0.0034 (7)0.0010 (7)
C6B0.0247 (9)0.0219 (9)0.0254 (9)0.0004 (7)0.0003 (7)0.0033 (7)
C5B0.0300 (9)0.0187 (8)0.0324 (10)0.0045 (7)0.0005 (7)0.0009 (7)
Geometric parameters (Å, º) top
C6A—N1A1.457 (2)O6B—N2B1.246 (2)
N1B—H1BA0.94 (2)C1A—C2A1.486 (2)
N1B—H1BB0.90 (2)C2A—C3A1.390 (2)
N1B—H1BC0.86 (3)C2A—C7A1.388 (2)
O1A—C1A1.286 (2)C3A—H3AA0.9300
O2A—C1A1.237 (2)C3A—C4A1.390 (2)
O1A—H1A0.77 (4)C4A—C8A1.496 (2)
O2W—H2WA0.93 (4)C4A—C5A1.392 (2)
O2W—H2WB0.88 (4)C5A—H5A0.9300
O3A—H3A0.94 (3)C5A—C6A1.379 (2)
O3A—C8A1.322 (2)C6A—C7A1.386 (2)
O4A—C8A1.202 (2)N1A—H1AA0.81 (3)
N1B—C6B1.463 (2)N1A—H1AB0.90 (2)
O1B—C1B1.285 (2)N1A—H1AC0.86 (2)
O2B—C1B1.241 (2)C7A—H7A0.9300
O3B—H3B0.86 (3)C8B—C4B1.499 (2)
O3B—C8B1.305 (2)C4B—C3B1.397 (3)
O1B—H1B0.82 (3)C4B—C5B1.386 (3)
O4B—C8B1.203 (2)C3B—H3BA0.9300
O6A—N2A1.230 (2)C3B—C2B1.390 (2)
O5A—N2A1.268 (2)C2B—C1B1.488 (2)
O7A—N2A1.247 (2)C2B—C7B1.394 (2)
O1W—H1WA0.81 (3)C7B—H7B0.9300
O1W—H1WB0.88 (3)C7B—C6B1.378 (2)
O7B—N2B1.237 (2)C6B—C5B1.381 (2)
O5B—N2B1.255 (2)C5B—H5B0.9300
C6B—N1B—H1BA112.8 (13)C5A—C6A—N1A119.66 (15)
C6B—N1B—H1BB115.3 (14)C5A—C6A—C7A121.50 (15)
C6B—N1B—H1BC107.5 (15)C7A—C6A—N1A118.84 (15)
H1BA—N1B—H1BB101.1 (19)C6A—N1A—H1AA116.1 (16)
H1BA—N1B—H1BC117 (2)C6A—N1A—H1AB107.9 (14)
H1BB—N1B—H1BC103 (2)C6A—N1A—H1AC114.0 (15)
C1A—O1A—H1A107 (3)H1AA—N1A—H1AB107 (2)
H2WA—O2W—H2WB103 (3)H1AA—N1A—H1AC112 (2)
C8A—O3A—H3A109.6 (16)H1AB—N1A—H1AC98 (2)
C8B—O3B—H3B107 (2)C2A—C7A—H7A120.5
C1B—O1B—H1B106.3 (17)C6A—C7A—C2A119.04 (16)
H1WA—O1W—H1WB107 (3)C6A—C7A—H7A120.5
O6A—N2A—O5A119.84 (18)O3B—C8B—C4B112.86 (16)
O6A—N2A—O7A121.63 (17)O2B—C1B—O1B123.59 (17)
O7A—N2A—O5A118.51 (16)O4B—C8B—O3B124.69 (18)
O7B—N2B—O5B119.63 (16)O4B—C8B—C4B122.45 (18)
O7B—N2B—O6B121.39 (17)C3B—C4B—C8B120.73 (17)
O6B—N2B—O5B118.97 (16)C5B—C4B—C8B118.98 (16)
O1A—C1A—C2A115.93 (16)C5B—C4B—C3B120.27 (16)
O2A—C1A—O1A124.42 (17)C4B—C3B—H3BA120.3
O2A—C1A—C2A119.64 (16)C2B—C3B—C4B119.49 (17)
C3A—C2A—C1A120.90 (16)C2B—C3B—H3BA120.3
C7A—C2A—C1A118.78 (15)C3B—C2B—C1B121.24 (16)
C7A—C2A—C3A120.32 (16)C3B—C2B—C7B120.38 (16)
C2A—C3A—H3AA120.1C7B—C2B—C1B118.24 (16)
C4A—C3A—C2A119.79 (15)O1B—C1B—C2B116.78 (16)
C4A—C3A—H3AA120.1O2B—C1B—C2B119.57 (16)
C3A—C4A—C8A118.33 (15)C2B—C7B—H7B120.6
C3A—C4A—C5A120.17 (15)C6B—C7B—C2B118.89 (16)
C5A—C4A—C8A121.49 (15)C6B—C7B—H7B120.6
O3A—C8A—C4A113.16 (15)C7B—C6B—N1B119.14 (16)
O4A—C8A—O3A124.00 (16)C7B—C6B—C5B121.83 (16)
O4A—C8A—C4A122.84 (16)C5B—C6B—N1B119.03 (16)
C4A—C5A—H5A120.4C4B—C5B—H5B120.4
C6A—C5A—C4A119.17 (15)C6B—C5B—C4B119.13 (16)
C6A—C5A—H5A120.4C6B—C5B—H5B120.4
N1B—C6B—C5B—C4B178.76 (17)C5A—C4A—C8A—O3A6.0 (2)
O1A—C1A—C2A—C3A7.5 (3)C5A—C4A—C8A—O4A175.09 (18)
O1A—C1A—C2A—C7A173.26 (17)C5A—C6A—C7A—C2A1.1 (3)
O2A—C1A—C2A—C3A171.65 (18)N1A—C6A—C7A—C2A179.81 (16)
O2A—C1A—C2A—C7A7.6 (3)C7A—C2A—C3A—C4A0.6 (3)
O3B—C8B—C4B—C3B3.4 (3)C8B—C4B—C3B—C2B179.20 (17)
O3B—C8B—C4B—C5B178.43 (18)C8B—C4B—C5B—C6B178.95 (17)
O4B—C8B—C4B—C3B177.3 (2)C4B—C3B—C2B—C1B175.94 (17)
O4B—C8B—C4B—C5B0.9 (3)C4B—C3B—C2B—C7B0.3 (3)
C1A—C2A—C3A—C4A178.62 (16)C3B—C4B—C5B—C6B0.8 (3)
C1A—C2A—C7A—C6A179.75 (16)C3B—C2B—C1B—O1B0.9 (3)
C2A—C3A—C4A—C8A179.76 (16)C3B—C2B—C1B—O2B176.44 (18)
C2A—C3A—C4A—C5A1.2 (3)C3B—C2B—C7B—C6B0.6 (3)
C3A—C2A—C7A—C6A0.5 (3)C2B—C7B—C6B—N1B178.06 (17)
C3A—C4A—C8A—O3A173.07 (16)C2B—C7B—C6B—C5B0.9 (3)
C3A—C4A—C8A—O4A5.8 (3)C1B—C2B—C7B—C6B175.10 (16)
C3A—C4A—C5A—C6A0.6 (3)C7B—C2B—C1B—O1B176.57 (17)
C4A—C5A—C6A—N1A179.61 (16)C7B—C2B—C1B—O2B0.7 (3)
C4A—C5A—C6A—C7A0.5 (3)C7B—C6B—C5B—C4B0.2 (3)
C8A—C4A—C5A—C6A179.67 (16)C5B—C4B—C3B—C2B1.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O4B0.93 (4)2.11 (4)2.911 (3)143 (3)
O2W—H2WB···O1Bi0.88 (4)2.14 (4)2.913 (2)147 (3)
O2W—H2WB···O7Bii0.88 (4)2.79 (4)3.198 (3)110 (3)
O3A—H3A···O5A0.94 (3)1.80 (3)2.7399 (19)173 (2)
O3B—H3B···O1W0.86 (3)1.76 (3)2.604 (2)165 (3)
O1W—H1WA···O2Wiii0.81 (3)1.97 (3)2.772 (2)173 (3)
O1W—H1WB···O7Biv0.88 (3)2.60 (3)3.185 (2)124 (2)
O1W—H1WB···O6Biv0.88 (3)1.88 (3)2.762 (2)175 (3)
C7A—H7A···O5Bv0.932.543.236 (2)131
N1B—H1BA···O6Avi0.94 (2)2.60 (2)3.197 (3)121.7 (17)
N1B—H1BA···O7Avi0.94 (2)2.01 (2)2.938 (2)173 (2)
N1B—H1BB···O5B0.90 (2)1.96 (2)2.842 (2)168 (2)
N1B—H1BB···O6B0.90 (2)2.53 (2)3.142 (2)125.9 (18)
N1B—H1BC···O2Wvii0.86 (3)2.64 (2)3.056 (3)111.2 (17)
N1B—H1BC···O1Wvii0.86 (3)2.00 (3)2.841 (2)165 (2)
N1A—H1AA···O6Aviii0.81 (3)2.38 (3)3.104 (3)150 (2)
N1A—H1AA···O5Aviii0.81 (3)2.32 (3)3.070 (2)154 (2)
N1A—H1AB···O7Bv0.90 (2)2.25 (2)2.934 (2)132.1 (18)
N1A—H1AB···O5Bv0.90 (2)2.12 (2)2.992 (2)162.9 (19)
N1A—H1AC···O4Aviii0.86 (2)2.53 (2)2.899 (2)107.3 (17)
N1A—H1AC···O5Aix0.86 (2)2.34 (2)3.000 (2)133.8 (19)
N1A—H1AC···O7Aix0.86 (2)2.10 (3)2.942 (2)167 (2)
O1A—H1A···O2B0.77 (4)1.91 (4)2.669 (2)174 (4)
O1B—H1B···O2A0.82 (3)1.85 (3)2.662 (2)170 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1/2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y, z+1; (v) x, y+3/2, z+1/2; (vi) x+2, y3/2, z+1/2; (vii) x, y+1/2, z1/2; (viii) x, y+7/2, z+1/2; (ix) x+2, y+4, z+1.
 

Funding information

The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research, the Algerian Directorate-General for Scientific Research and Technological Development for support.

References

First citationBruker (2014). BIS, APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCai, B., Li, S.-J., Zhu, M.-E., Li, M.-Q. & Meng, Y. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1–2.  CAS Google Scholar
First citationDobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 1503–1505.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiang, W.-X. & Zhu, Y.-T. (2010). Acta Cryst. E66, o667.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLuo, Y., Calvez, G., Freslon, S., Bernot, K., Daiguebonne, C. & Guillou, O. (2011). Eur. J. Inorg. Chem. 2011, 3705–3716.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcGuire, S. C., Travis, S. C., Tuohey, D. W., Deering, T. J., Martin, B., Cox, J. M. & Benedict, J. B. (2016). Acta Cryst. E72, 639–642.  CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNath, B. & Baruah, J. B. (2012). Mol. Cryst. Liq. Cryst. 562, 242–253.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, M. P., Tarai, A. & Baruah, J. B. (2019). ChemistrySelect, 4, 5427–5436.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationWang, G. X. & Zhang, Q. W. (2006). Z. Kristallogr. New Cryst. Struct. 221, 453–454.  CrossRef CAS Google Scholar
First citationXin, Y., Zhou, J., Xing, Y. H., Bai, F. Y. & Sun, L. X. (2021). New J. Chem. 45, 3432–3440.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds