research communications
A new (monohydrate) form of 3,5-dicarboxyanilinium nitrate:
and Hirshfeld surface analysisaUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Frères Mentouri Constantine 1, 25017 Constantine, Algeria, and bLaboratoire de Technologie des Matériaux Avancés, École Nationale Polytechnique de Constantine Nouvelle Ville Universitaire, Ali Mendjeli, Constantine 25000, Algeria
*Correspondence e-mail: mboutebdja@gmail.com
The title compound, C8H8NO4+·NO3−·H2O, crystallizes in the same (P21/c) as the previously reported dihydrate form [Liang & Zhu (2010). Acta Cryst. E66, o667], but with two formula units per instead of one. In the crystal, the components are linked into a three-dimensional network by classical intermolecular O—H⋯O and N—H⋯O hydrogen bonds and π–π stacking interactions. A Hirshfeld surface (HS) analysis indicated that the most important contributions to the crystal packing are from H⋯O/O⋯H (52.4%), H⋯H (13.9%) and C⋯C (11.2%) for one cation and H⋯O/O⋯H (46.3%), H⋯H (20%) and O⋯C/C⋯O (10.6%) for the other.
CCDC reference: 2215274
1. Chemical context
The et al., 2021; Luo et al., 2011). As a result, it can operate like nodes similar to natural amino acids (Singh et al., 2019) (Fig. 1). In addition, 5-AIP may self-assemble as a result of many hydrogen-bonding patterns. It forms salts with a Brønsted acid or base and its structural characteristics enable it to take on a variety of ionic forms (Nath & Baruah, 2012; McGuire et al., 2016). Herein, we report on the synthesis and of a new 3,5-dicarboxyanilinium nitrate hydrate, (I).
5-aminoisophtalic acid (5-AIP) has a well known ability to form supramolecular assemblies with metal ions (Xin2. Structural commentary
Compound (I) differs from the previously reported crystal form of 3,5-dicarboxyanilinium nitrate (Liang & Zhu, 2010) by containing one water molecule per formula unit, instead of two. The comprises two formula units, i.e., two 3,5-dicarboxylanilinium cations (A and B), two nitrate anions (A and B) and two water molecules (Fig. 2a). All bond distances and angles fall within normal ranges as compared to similar molecules (Wang & Zhang, 2006; Dobson & Gerkin, 1998; Nath & Baruah, 2012; Singh et al., 2019; Cai et al., 2020). The cations have similar conformations that differ mainly in the opposite orientations of one carboxylic group, as seen by the torsion angles C5—C4—C8—O3 of 6.0 (2)° in cation A and −178.43 (18)° in cation B. Mogul (Bruno et al., 2004) based on the Cambridge Structural Database (version 2022.2.0; Groom et al., 2016), indicated the single character of the C6—N1 bonds [1.457 (2) Å for A and 1.462 (2) Å for B], which have lengths close to the median of the 2198 found fragments of the same chemical nature. The C=O double bonds in the carboxylic groups [1.202 (2) to 1.241 (2) Å] are shorter than the C—O single bonds [1.285 (2) to 1.322 (2) Å, Table 1]. The planarity of the cations varies slightly: the dihedral angles between the carboxylic group planes (C1, O1, O2) and (C8, O3, O4) and the ring plane are 7.85 (9) and 5.90 (9)°, respectively, in cation A, 5.93 (2) and 2.68 (2)° in cation B; all non-hydrogen atoms are coplanar within 0.083 Å in cation A and 0.052 Å in B.
|
3. Supramolecular features
An extensive network of moderate-to-strong N—H⋯O and O—H⋯O hydrogen bonds (Steiner, 2002) exists in the of (I) (Table 2). The supramolecular motif can be described as two-dimensional layers that extend parallel to the crystallographic (101) plane (Fig. 3a). In each layer, the 3,5-dicarboxyanilinium A cations and the nitrate A anions are linked through bifurcated hydrogen bonds, forming chains of R12(4) rings that propagate parallel to the b axis (Fig. 3a,b). In addition, the 3,5-dicarboxyanilinium B cations and water molecules form chains of R66(22) ring motifs that also extend along the b-axis direction (Fig. 3a,c,d). These two types of chains are interconnected via dimeric O—H⋯O hydrogen bonds, which occur between one of the carboxylate groups of each of the A and B cations (within the as defined here) and enclosing an R22(8) graph-set motif (Fig. 3a,e). Furthermore, we can distinguish, as illustrated in Fig. 4, that the nitrate B anions are involved in the formation of alternating R66(26) and R88(34) ring motifs, generating ribbons that propagate along the a-axis direction, which in turn leads to the formation of a three-dimensional supramolecular network.
Further examination reveals that the cohesion in the π–π stacking interactions, involving the aromatic rings of the A and B cations, which appear in the direction of the crystallographic a axis (Fig. 5). Two parallel rings A contact with a centroid-to-centroid distance Cg1⋯Cg1(2 − x, 3 − y, 1 − z) of 3.6768 (9) Å, while rings A and B (forming an interplanar angle of 11.81°) contact with a Cg1⋯Cg2(x, 1 + y, z) distance of 3.7960 (9) Å. Note that the former π–π stacking interaction reinforces the R22(8) ring described earlier.
is enhanced by offset or slipped4. Hirshfeld surface analysis
In order to visualize and quantify the intermolecular interactions in compound (I), we carried out a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009) using CrystalExplorer21 (Spackman et al., 2021) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) mapped in color with a normalized contact distance, dnorm, varying from red through white to blue depending on the distances compared to the sum of the van der Waals radii. The Hirshfeld surfaces mapped over dnorm, were calculated separately for cations A and B using a standard high surface resolution (Fig. 6a). The red spots correspond to contacts shorter than the van der Waals radii sum of the closest atoms and relate to the presence of O—H⋯O and N—H⋯O hydrogen bonds in the whereas the faint-red spots (highlighted by red circles for clarity) represent weaker C—H⋯O interactions. The presence of characteristic red and blue triangles on the shape-index surface (Fig. 6b) clearly suggest the presence of π–π interactions between the neighboring organic cations and the curvedness plots (Fig. 6c) show flat surface patches characteristic of planar stacking.
The overall two-dimensional fingerprint plot and those delineated into O⋯H/H⋯O, H⋯H, C⋯C, O⋯C/C⋯O, O⋯O and C⋯H/H⋯C contacts for cations A and B are shown in Fig. 7 and their relative contributions to the HS are illustrated graphically in Fig. 8. The most important contributions for both cations come from H⋯O/O⋯H contacts (52.4% for cation A and 46.3% for B), with characteristic `spikes' in the plots related to the presence of strong O—H⋯O and N—H⋯O hydrogen bonds. The second most important are H⋯H contacts, contributing 13.9% and 20% for cations A and B, respectively. These are followed for cation A by C⋯C contacts (11.2%), but for cation B by O⋯C/C⋯O contacts (10.6%), other contacts making less significant contributions.
5. Database survey
The Cambridge Structural Database (Version 2022.2.0 updated to June 2022; Groom et al., 2016), was searched for structures with carboxyl–carboxyl R22(8) graph-set motifs using ConQuest (Bruno et al., 2002) for all searches, and filters were applied to ensure that only organic compounds and non-disordered molecules were included. In addition, the searches were also limited to structures with low R-factor values (R < 0.05). The results of the searches were analyzed using Mercury (CSD Version 2022.2.0; Macrae et al., 2020).
The geometries of O—H⋯O hydrogen bonds from an analysis of 2883 crystal structures deposited in the CSD are illustrated in Fig. 9. The relationship between the H⋯O distances and O—H⋯O angles is shown as a two-dimensional plot, the O⋯O distances being indicated by the color of the data points. The angle tends to increase as the O⋯O and H⋯O distances decrease. The greatest density of observed hydrogen bonds occurs in the range of 1.3–1.9 Å for the H⋯O distance, 2.6–2.8 Å for the O⋯O distances (indicated by green data points) and 160–180° for the O—H⋯O angle.
6. Synthesis and crystallization
5-Aminoisophthalic acid (0.181 g, 1 mmol) dissolved in methanol (10 mL) was added under stirring to a methanolic solution of Er(NO3)3·5H2O (0.110 g, 0.25 mmol). After several minutes of stirring, a brighter orange precipitate appeared and was filtered. After slowly evaporating the filtrate over one week, colorless single crystals of the title compound suitable for X-ray were isolated.
7. Refinement
Crystal data, data collection and structure . The hydrogen atoms of the ammonium NH3+, carboxylic acid groups COOH and water molecules were localized in difference-Fourier maps and refined with Uiso(H) set to 1.5Ueq(O) or 1.2Ueq(N). The C-bound H atoms were placed in calculated positions with a C—H distance of 0.93 Å and refined using a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].
details are summarized in Table 3
|
Supporting information
CCDC reference: 2215274
https://doi.org/10.1107/S2056989022010167/zv2018sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022010167/zv2018Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022010167/zv2018Isup3.cml
Data collection: BIS (Bruker, 2014), APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C8H8NO4+·NO3−·H2O | F(000) = 1088 |
Mr = 262.18 | Dx = 1.633 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.7026 (4) Å | Cell parameters from 5578 reflections |
b = 8.5449 (2) Å | θ = 2.4–28.9° |
c = 16.9929 (4) Å | µ = 0.15 mm−1 |
β = 92.800 (2)° | T = 298 K |
V = 2132.31 (9) Å3 | Plate, colorless |
Z = 8 | 0.14 × 0.12 × 0.1 mm |
Bruker APEXII CCD diffractometer | 3653 reflections with I > 2σ(I) |
Mirror optics monochromator | Rint = 0.069 |
φ and ω scans | θmax = 27.5°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −18→19 |
Tmin = 0.627, Tmax = 0.746 | k = −11→10 |
20897 measured reflections | l = −22→20 |
4881 independent reflections |
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: other |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: mixed |
wR(F2) = 0.142 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0742P)2 + 0.5757P] where P = (Fo2 + 2Fc2)/3 |
4881 reflections | (Δ/σ)max = 0.001 |
368 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1B | 0.67893 (13) | 0.3682 (2) | 0.28611 (10) | 0.0301 (4) | |
O1A | 0.82519 (13) | 1.17198 (18) | 0.43486 (9) | 0.0423 (4) | |
O2W | 0.58027 (15) | −0.0690 (2) | 0.65998 (12) | 0.0603 (5) | |
H2WA | 0.546 (3) | −0.012 (5) | 0.622 (2) | 0.090* | |
H2WB | 0.615 (3) | −0.127 (4) | 0.631 (2) | 0.090* | |
O3A | 0.97439 (10) | 1.86406 (16) | 0.43414 (8) | 0.0346 (3) | |
H3A | 0.9913 (18) | 1.922 (3) | 0.3898 (16) | 0.052* | |
O2A | 0.78909 (12) | 1.14271 (17) | 0.56010 (9) | 0.0452 (4) | |
O4A | 0.92628 (11) | 1.69085 (17) | 0.34332 (8) | 0.0396 (4) | |
O3B | 0.56209 (12) | 0.38877 (19) | 0.62141 (9) | 0.0465 (4) | |
H3B | 0.539 (2) | 0.324 (4) | 0.6536 (18) | 0.070* | |
O1B | 0.70854 (12) | 0.86590 (18) | 0.53880 (9) | 0.0418 (4) | |
O4B | 0.55015 (15) | 0.17909 (18) | 0.54420 (10) | 0.0574 (5) | |
O2B | 0.75437 (11) | 0.88596 (16) | 0.41625 (8) | 0.0362 (3) | |
O6A | 1.10763 (13) | 1.85507 (18) | 0.24130 (10) | 0.0503 (4) | |
O5A | 1.03844 (10) | 2.02758 (17) | 0.30967 (9) | 0.0380 (4) | |
O7A | 1.18270 (10) | 2.05003 (17) | 0.29317 (9) | 0.0389 (4) | |
O1W | 0.49992 (10) | 0.22720 (19) | 0.73709 (9) | 0.0357 (3) | |
H1WA | 0.4800 (19) | 0.284 (3) | 0.7699 (16) | 0.053* | |
H1WB | 0.4622 (19) | 0.147 (3) | 0.7312 (15) | 0.053* | |
O7B | 0.70536 (11) | −0.14901 (17) | 0.22552 (10) | 0.0450 (4) | |
O5B | 0.76172 (10) | 0.07156 (17) | 0.26536 (9) | 0.0403 (4) | |
O6B | 0.62322 (10) | 0.01340 (18) | 0.28938 (9) | 0.0410 (4) | |
N2A | 1.11052 (12) | 1.97532 (18) | 0.28112 (9) | 0.0295 (4) | |
N2B | 0.69618 (11) | −0.02251 (18) | 0.25969 (10) | 0.0299 (4) | |
C1A | 0.82076 (13) | 1.2200 (2) | 0.50630 (11) | 0.0254 (4) | |
C2A | 0.85560 (12) | 1.3807 (2) | 0.52255 (10) | 0.0225 (4) | |
C3A | 0.88063 (11) | 1.4777 (2) | 0.46159 (10) | 0.0218 (4) | |
H3AA | 0.876949 | 1.441662 | 0.409886 | 0.026* | |
C4A | 0.91116 (11) | 1.62859 (19) | 0.47816 (10) | 0.0206 (3) | |
C8A | 0.93717 (12) | 1.7299 (2) | 0.41105 (10) | 0.0244 (4) | |
C5A | 0.91825 (12) | 1.68168 (19) | 0.55568 (10) | 0.0219 (3) | |
H5A | 0.939205 | 1.782250 | 0.567040 | 0.026* | |
C6A | 0.89382 (11) | 1.5833 (2) | 0.61539 (10) | 0.0212 (3) | |
N1A | 0.90040 (13) | 1.6379 (2) | 0.69669 (9) | 0.0267 (3) | |
C7A | 0.86173 (12) | 1.4334 (2) | 0.59991 (10) | 0.0230 (4) | |
H7A | 0.844537 | 1.369037 | 0.640745 | 0.028* | |
C8B | 0.57193 (14) | 0.3132 (2) | 0.55560 (12) | 0.0321 (4) | |
C4B | 0.61297 (13) | 0.4121 (2) | 0.49363 (11) | 0.0268 (4) | |
C3B | 0.64094 (13) | 0.5653 (2) | 0.51020 (11) | 0.0261 (4) | |
H3BA | 0.633618 | 0.607888 | 0.559853 | 0.031* | |
C2B | 0.67981 (12) | 0.6536 (2) | 0.45190 (11) | 0.0236 (4) | |
C1B | 0.71606 (12) | 0.8134 (2) | 0.46854 (11) | 0.0254 (4) | |
C7B | 0.69130 (12) | 0.5897 (2) | 0.37756 (10) | 0.0244 (4) | |
H7B | 0.716729 | 0.648905 | 0.338290 | 0.029* | |
C6B | 0.66436 (12) | 0.4375 (2) | 0.36321 (10) | 0.0240 (4) | |
C5B | 0.62522 (13) | 0.3476 (2) | 0.42002 (11) | 0.0271 (4) | |
H5B | 0.607314 | 0.245226 | 0.409039 | 0.033* | |
H1B | 0.7317 (17) | 0.954 (3) | 0.5397 (14) | 0.041* | |
H1BA | 0.7200 (16) | 0.426 (3) | 0.2570 (13) | 0.033* | |
H1BB | 0.7054 (15) | 0.273 (3) | 0.2872 (13) | 0.033* | |
H1BC | 0.6263 (18) | 0.350 (3) | 0.2638 (13) | 0.033* | |
H1AA | 0.9473 (17) | 1.618 (3) | 0.7214 (13) | 0.033* | |
H1AB | 0.8549 (16) | 1.593 (3) | 0.7224 (13) | 0.033* | |
H1AC | 0.8850 (15) | 1.734 (3) | 0.7023 (13) | 0.033* | |
H1A | 0.804 (3) | 1.090 (5) | 0.433 (2) | 0.087 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1B | 0.0342 (9) | 0.0260 (9) | 0.0305 (9) | −0.0018 (7) | 0.0048 (7) | −0.0073 (7) |
O1A | 0.0685 (11) | 0.0235 (8) | 0.0348 (8) | −0.0118 (7) | 0.0009 (7) | −0.0098 (6) |
O2W | 0.0750 (14) | 0.0476 (11) | 0.0614 (12) | 0.0152 (9) | 0.0353 (10) | 0.0080 (9) |
O3A | 0.0509 (9) | 0.0253 (7) | 0.0279 (7) | −0.0142 (6) | 0.0051 (6) | 0.0020 (6) |
O2A | 0.0679 (11) | 0.0298 (8) | 0.0381 (8) | −0.0217 (7) | 0.0046 (7) | 0.0034 (6) |
O4A | 0.0628 (10) | 0.0343 (8) | 0.0219 (7) | −0.0123 (7) | 0.0033 (6) | 0.0008 (6) |
O3B | 0.0690 (11) | 0.0400 (9) | 0.0318 (8) | −0.0176 (8) | 0.0154 (7) | 0.0013 (7) |
O1B | 0.0616 (10) | 0.0277 (8) | 0.0375 (8) | −0.0182 (7) | 0.0179 (7) | −0.0130 (6) |
O4B | 0.0931 (14) | 0.0302 (9) | 0.0507 (10) | −0.0227 (8) | 0.0230 (9) | 0.0021 (7) |
O2B | 0.0534 (9) | 0.0237 (7) | 0.0320 (7) | −0.0118 (6) | 0.0081 (6) | −0.0002 (5) |
O6A | 0.0677 (12) | 0.0278 (8) | 0.0560 (10) | 0.0005 (7) | 0.0081 (8) | −0.0119 (7) |
O5A | 0.0419 (8) | 0.0315 (8) | 0.0419 (8) | 0.0004 (6) | 0.0170 (6) | 0.0065 (6) |
O7A | 0.0353 (8) | 0.0388 (8) | 0.0425 (9) | −0.0050 (6) | 0.0013 (6) | 0.0046 (6) |
O1W | 0.0359 (8) | 0.0355 (8) | 0.0365 (8) | −0.0048 (6) | 0.0102 (6) | −0.0007 (6) |
O7B | 0.0558 (10) | 0.0263 (8) | 0.0541 (10) | 0.0004 (7) | 0.0153 (8) | −0.0108 (7) |
O5B | 0.0417 (9) | 0.0335 (8) | 0.0467 (9) | −0.0101 (6) | 0.0127 (7) | −0.0036 (6) |
O6B | 0.0338 (8) | 0.0393 (8) | 0.0508 (9) | 0.0046 (6) | 0.0117 (7) | −0.0038 (7) |
N2A | 0.0394 (9) | 0.0220 (8) | 0.0273 (8) | −0.0009 (7) | 0.0050 (6) | 0.0059 (6) |
N2B | 0.0354 (9) | 0.0247 (8) | 0.0298 (8) | 0.0019 (7) | 0.0050 (6) | 0.0011 (6) |
C1A | 0.0306 (9) | 0.0202 (9) | 0.0254 (9) | −0.0024 (7) | 0.0009 (7) | −0.0008 (7) |
C2A | 0.0251 (9) | 0.0176 (8) | 0.0248 (9) | −0.0016 (6) | 0.0005 (6) | 0.0004 (6) |
C3A | 0.0233 (8) | 0.0218 (8) | 0.0202 (8) | −0.0007 (6) | −0.0006 (6) | −0.0023 (6) |
C4A | 0.0219 (8) | 0.0199 (8) | 0.0202 (8) | 0.0008 (6) | 0.0012 (6) | 0.0019 (6) |
C8A | 0.0286 (9) | 0.0210 (9) | 0.0236 (9) | −0.0010 (7) | 0.0022 (7) | 0.0024 (7) |
C5A | 0.0253 (9) | 0.0166 (8) | 0.0236 (8) | −0.0017 (6) | 0.0007 (6) | −0.0017 (6) |
C6A | 0.0229 (8) | 0.0219 (8) | 0.0188 (8) | 0.0020 (6) | 0.0013 (6) | −0.0025 (6) |
N1A | 0.0345 (9) | 0.0258 (8) | 0.0200 (8) | −0.0003 (7) | 0.0030 (6) | −0.0031 (6) |
C7A | 0.0267 (9) | 0.0198 (8) | 0.0227 (8) | −0.0010 (7) | 0.0032 (7) | 0.0011 (6) |
C8B | 0.0361 (11) | 0.0265 (10) | 0.0339 (10) | −0.0055 (8) | 0.0040 (8) | 0.0051 (8) |
C4B | 0.0291 (9) | 0.0212 (9) | 0.0303 (9) | −0.0025 (7) | 0.0017 (7) | 0.0032 (7) |
C3B | 0.0282 (9) | 0.0232 (9) | 0.0273 (9) | −0.0019 (7) | 0.0038 (7) | −0.0018 (7) |
C2B | 0.0230 (9) | 0.0189 (8) | 0.0288 (9) | −0.0012 (7) | 0.0010 (7) | −0.0017 (7) |
C1B | 0.0281 (9) | 0.0206 (8) | 0.0277 (9) | 0.0000 (7) | 0.0027 (7) | −0.0018 (7) |
C7B | 0.0280 (9) | 0.0189 (9) | 0.0264 (9) | −0.0001 (7) | 0.0034 (7) | 0.0010 (7) |
C6B | 0.0247 (9) | 0.0219 (9) | 0.0254 (9) | −0.0004 (7) | 0.0003 (7) | −0.0033 (7) |
C5B | 0.0300 (9) | 0.0187 (8) | 0.0324 (10) | −0.0045 (7) | 0.0005 (7) | −0.0009 (7) |
C6A—N1A | 1.457 (2) | O6B—N2B | 1.246 (2) |
N1B—H1BA | 0.94 (2) | C1A—C2A | 1.486 (2) |
N1B—H1BB | 0.90 (2) | C2A—C3A | 1.390 (2) |
N1B—H1BC | 0.86 (3) | C2A—C7A | 1.388 (2) |
O1A—C1A | 1.286 (2) | C3A—H3AA | 0.9300 |
O2A—C1A | 1.237 (2) | C3A—C4A | 1.390 (2) |
O1A—H1A | 0.77 (4) | C4A—C8A | 1.496 (2) |
O2W—H2WA | 0.93 (4) | C4A—C5A | 1.392 (2) |
O2W—H2WB | 0.88 (4) | C5A—H5A | 0.9300 |
O3A—H3A | 0.94 (3) | C5A—C6A | 1.379 (2) |
O3A—C8A | 1.322 (2) | C6A—C7A | 1.386 (2) |
O4A—C8A | 1.202 (2) | N1A—H1AA | 0.81 (3) |
N1B—C6B | 1.463 (2) | N1A—H1AB | 0.90 (2) |
O1B—C1B | 1.285 (2) | N1A—H1AC | 0.86 (2) |
O2B—C1B | 1.241 (2) | C7A—H7A | 0.9300 |
O3B—H3B | 0.86 (3) | C8B—C4B | 1.499 (2) |
O3B—C8B | 1.305 (2) | C4B—C3B | 1.397 (3) |
O1B—H1B | 0.82 (3) | C4B—C5B | 1.386 (3) |
O4B—C8B | 1.203 (2) | C3B—H3BA | 0.9300 |
O6A—N2A | 1.230 (2) | C3B—C2B | 1.390 (2) |
O5A—N2A | 1.268 (2) | C2B—C1B | 1.488 (2) |
O7A—N2A | 1.247 (2) | C2B—C7B | 1.394 (2) |
O1W—H1WA | 0.81 (3) | C7B—H7B | 0.9300 |
O1W—H1WB | 0.88 (3) | C7B—C6B | 1.378 (2) |
O7B—N2B | 1.237 (2) | C6B—C5B | 1.381 (2) |
O5B—N2B | 1.255 (2) | C5B—H5B | 0.9300 |
C6B—N1B—H1BA | 112.8 (13) | C5A—C6A—N1A | 119.66 (15) |
C6B—N1B—H1BB | 115.3 (14) | C5A—C6A—C7A | 121.50 (15) |
C6B—N1B—H1BC | 107.5 (15) | C7A—C6A—N1A | 118.84 (15) |
H1BA—N1B—H1BB | 101.1 (19) | C6A—N1A—H1AA | 116.1 (16) |
H1BA—N1B—H1BC | 117 (2) | C6A—N1A—H1AB | 107.9 (14) |
H1BB—N1B—H1BC | 103 (2) | C6A—N1A—H1AC | 114.0 (15) |
C1A—O1A—H1A | 107 (3) | H1AA—N1A—H1AB | 107 (2) |
H2WA—O2W—H2WB | 103 (3) | H1AA—N1A—H1AC | 112 (2) |
C8A—O3A—H3A | 109.6 (16) | H1AB—N1A—H1AC | 98 (2) |
C8B—O3B—H3B | 107 (2) | C2A—C7A—H7A | 120.5 |
C1B—O1B—H1B | 106.3 (17) | C6A—C7A—C2A | 119.04 (16) |
H1WA—O1W—H1WB | 107 (3) | C6A—C7A—H7A | 120.5 |
O6A—N2A—O5A | 119.84 (18) | O3B—C8B—C4B | 112.86 (16) |
O6A—N2A—O7A | 121.63 (17) | O2B—C1B—O1B | 123.59 (17) |
O7A—N2A—O5A | 118.51 (16) | O4B—C8B—O3B | 124.69 (18) |
O7B—N2B—O5B | 119.63 (16) | O4B—C8B—C4B | 122.45 (18) |
O7B—N2B—O6B | 121.39 (17) | C3B—C4B—C8B | 120.73 (17) |
O6B—N2B—O5B | 118.97 (16) | C5B—C4B—C8B | 118.98 (16) |
O1A—C1A—C2A | 115.93 (16) | C5B—C4B—C3B | 120.27 (16) |
O2A—C1A—O1A | 124.42 (17) | C4B—C3B—H3BA | 120.3 |
O2A—C1A—C2A | 119.64 (16) | C2B—C3B—C4B | 119.49 (17) |
C3A—C2A—C1A | 120.90 (16) | C2B—C3B—H3BA | 120.3 |
C7A—C2A—C1A | 118.78 (15) | C3B—C2B—C1B | 121.24 (16) |
C7A—C2A—C3A | 120.32 (16) | C3B—C2B—C7B | 120.38 (16) |
C2A—C3A—H3AA | 120.1 | C7B—C2B—C1B | 118.24 (16) |
C4A—C3A—C2A | 119.79 (15) | O1B—C1B—C2B | 116.78 (16) |
C4A—C3A—H3AA | 120.1 | O2B—C1B—C2B | 119.57 (16) |
C3A—C4A—C8A | 118.33 (15) | C2B—C7B—H7B | 120.6 |
C3A—C4A—C5A | 120.17 (15) | C6B—C7B—C2B | 118.89 (16) |
C5A—C4A—C8A | 121.49 (15) | C6B—C7B—H7B | 120.6 |
O3A—C8A—C4A | 113.16 (15) | C7B—C6B—N1B | 119.14 (16) |
O4A—C8A—O3A | 124.00 (16) | C7B—C6B—C5B | 121.83 (16) |
O4A—C8A—C4A | 122.84 (16) | C5B—C6B—N1B | 119.03 (16) |
C4A—C5A—H5A | 120.4 | C4B—C5B—H5B | 120.4 |
C6A—C5A—C4A | 119.17 (15) | C6B—C5B—C4B | 119.13 (16) |
C6A—C5A—H5A | 120.4 | C6B—C5B—H5B | 120.4 |
N1B—C6B—C5B—C4B | 178.76 (17) | C5A—C4A—C8A—O3A | 6.0 (2) |
O1A—C1A—C2A—C3A | 7.5 (3) | C5A—C4A—C8A—O4A | −175.09 (18) |
O1A—C1A—C2A—C7A | −173.26 (17) | C5A—C6A—C7A—C2A | 1.1 (3) |
O2A—C1A—C2A—C3A | −171.65 (18) | N1A—C6A—C7A—C2A | −179.81 (16) |
O2A—C1A—C2A—C7A | 7.6 (3) | C7A—C2A—C3A—C4A | −0.6 (3) |
O3B—C8B—C4B—C3B | 3.4 (3) | C8B—C4B—C3B—C2B | 179.20 (17) |
O3B—C8B—C4B—C5B | −178.43 (18) | C8B—C4B—C5B—C6B | −178.95 (17) |
O4B—C8B—C4B—C3B | −177.3 (2) | C4B—C3B—C2B—C1B | −175.94 (17) |
O4B—C8B—C4B—C5B | 0.9 (3) | C4B—C3B—C2B—C7B | −0.3 (3) |
C1A—C2A—C3A—C4A | 178.62 (16) | C3B—C4B—C5B—C6B | −0.8 (3) |
C1A—C2A—C7A—C6A | −179.75 (16) | C3B—C2B—C1B—O1B | −0.9 (3) |
C2A—C3A—C4A—C8A | −179.76 (16) | C3B—C2B—C1B—O2B | 176.44 (18) |
C2A—C3A—C4A—C5A | 1.2 (3) | C3B—C2B—C7B—C6B | −0.6 (3) |
C3A—C2A—C7A—C6A | −0.5 (3) | C2B—C7B—C6B—N1B | −178.06 (17) |
C3A—C4A—C8A—O3A | −173.07 (16) | C2B—C7B—C6B—C5B | 0.9 (3) |
C3A—C4A—C8A—O4A | 5.8 (3) | C1B—C2B—C7B—C6B | 175.10 (16) |
C3A—C4A—C5A—C6A | −0.6 (3) | C7B—C2B—C1B—O1B | −176.57 (17) |
C4A—C5A—C6A—N1A | −179.61 (16) | C7B—C2B—C1B—O2B | 0.7 (3) |
C4A—C5A—C6A—C7A | −0.5 (3) | C7B—C6B—C5B—C4B | −0.2 (3) |
C8A—C4A—C5A—C6A | −179.67 (16) | C5B—C4B—C3B—C2B | 1.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H2WA···O4B | 0.93 (4) | 2.11 (4) | 2.911 (3) | 143 (3) |
O2W—H2WB···O1Bi | 0.88 (4) | 2.14 (4) | 2.913 (2) | 147 (3) |
O2W—H2WB···O7Bii | 0.88 (4) | 2.79 (4) | 3.198 (3) | 110 (3) |
O3A—H3A···O5A | 0.94 (3) | 1.80 (3) | 2.7399 (19) | 173 (2) |
O3B—H3B···O1W | 0.86 (3) | 1.76 (3) | 2.604 (2) | 165 (3) |
O1W—H1WA···O2Wiii | 0.81 (3) | 1.97 (3) | 2.772 (2) | 173 (3) |
O1W—H1WB···O7Biv | 0.88 (3) | 2.60 (3) | 3.185 (2) | 124 (2) |
O1W—H1WB···O6Biv | 0.88 (3) | 1.88 (3) | 2.762 (2) | 175 (3) |
C7A—H7A···O5Bv | 0.93 | 2.54 | 3.236 (2) | 131 |
N1B—H1BA···O6Avi | 0.94 (2) | 2.60 (2) | 3.197 (3) | 121.7 (17) |
N1B—H1BA···O7Avi | 0.94 (2) | 2.01 (2) | 2.938 (2) | 173 (2) |
N1B—H1BB···O5B | 0.90 (2) | 1.96 (2) | 2.842 (2) | 168 (2) |
N1B—H1BB···O6B | 0.90 (2) | 2.53 (2) | 3.142 (2) | 125.9 (18) |
N1B—H1BC···O2Wvii | 0.86 (3) | 2.64 (2) | 3.056 (3) | 111.2 (17) |
N1B—H1BC···O1Wvii | 0.86 (3) | 2.00 (3) | 2.841 (2) | 165 (2) |
N1A—H1AA···O6Aviii | 0.81 (3) | 2.38 (3) | 3.104 (3) | 150 (2) |
N1A—H1AA···O5Aviii | 0.81 (3) | 2.32 (3) | 3.070 (2) | 154 (2) |
N1A—H1AB···O7Bv | 0.90 (2) | 2.25 (2) | 2.934 (2) | 132.1 (18) |
N1A—H1AB···O5Bv | 0.90 (2) | 2.12 (2) | 2.992 (2) | 162.9 (19) |
N1A—H1AC···O4Aviii | 0.86 (2) | 2.53 (2) | 2.899 (2) | 107.3 (17) |
N1A—H1AC···O5Aix | 0.86 (2) | 2.34 (2) | 3.000 (2) | 133.8 (19) |
N1A—H1AC···O7Aix | 0.86 (2) | 2.10 (3) | 2.942 (2) | 167 (2) |
O1A—H1A···O2B | 0.77 (4) | 1.91 (4) | 2.669 (2) | 174 (4) |
O1B—H1B···O2A | 0.82 (3) | 1.85 (3) | 2.662 (2) | 170 (3) |
Symmetry codes: (i) x, y−1, z; (ii) x, −y−1/2, z+1/2; (iii) −x+1, y+1/2, −z+3/2; (iv) −x+1, −y, −z+1; (v) x, −y+3/2, z+1/2; (vi) −x+2, y−3/2, −z+1/2; (vii) x, −y+1/2, z−1/2; (viii) x, −y+7/2, z+1/2; (ix) −x+2, −y+4, −z+1. |
Funding information
The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research, the Algerian Directorate-General for Scientific Research and Technological Development for support.
References
Bruker (2014). BIS, APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. Web of Science CrossRef PubMed CAS Google Scholar
Cai, B., Li, S.-J., Zhu, M.-E., Li, M.-Q. & Meng, Y. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1–2. CAS Google Scholar
Dobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 1503–1505. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Liang, W.-X. & Zhu, Y.-T. (2010). Acta Cryst. E66, o667. Web of Science CSD CrossRef IUCr Journals Google Scholar
Luo, Y., Calvez, G., Freslon, S., Bernot, K., Daiguebonne, C. & Guillou, O. (2011). Eur. J. Inorg. Chem. 2011, 3705–3716. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McGuire, S. C., Travis, S. C., Tuohey, D. W., Deering, T. J., Martin, B., Cox, J. M. & Benedict, J. B. (2016). Acta Cryst. E72, 639–642. CSD CrossRef IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Nath, B. & Baruah, J. B. (2012). Mol. Cryst. Liq. Cryst. 562, 242–253. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, M. P., Tarai, A. & Baruah, J. B. (2019). ChemistrySelect, 4, 5427–5436. Web of Science CSD CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76. Web of Science CrossRef CAS Google Scholar
Wang, G. X. & Zhang, Q. W. (2006). Z. Kristallogr. New Cryst. Struct. 221, 453–454. CrossRef CAS Google Scholar
Xin, Y., Zhou, J., Xing, Y. H., Bai, F. Y. & Sun, L. X. (2021). New J. Chem. 45, 3432–3440. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.