research communications
Solvothermal synthesis and crystal structures of two new cadmium coordination polymers containing polynitrile ligands
aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, cChemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
*Correspondence e-mail: fatima.setifi@univ-setif.dz, m.aldouh@hu.edu.ye
Two new coordination polymers of cadmium-containing polynitrile ligands have been synthesized using sovothermal methods. In both poly[trans,trans,trans-bis(μ-dicyanamido-κ2N1:N3)bis(2-methylbenzimidazole-κN)cadmium(II)], [Cd(C2N3)2(C8H8N2)2]n, (I), and poly[trans,trans,trans-bis(2-methylbenzimidazole-κN)bis(μ-tricyanomethanido-κ2N:N′)cadmium(II)], [Cd(C4N3)2(C8H8N2)2]n, (II), the Cd atom lies on a centre of inversion, in space groups P21/n and P21/c, respectively. In each polymer, each anionic ligand acts as a bridge between two metal centres, forming sheets of 24-membered rings, and in each structure a single N—H⋯N hydrogen bond links the polymer sheets to form a three-dimensional framework structure. Comparisons are made with the structures of some related complexes.
1. Chemical context
The d10 metal complexes of zinc(II) and cadmium(II) with a variety of ligands have attracted considerable attention in recent years because of their luminescence properties (Merabet et al., 2017; Wang et al., 2017). Polynitrile compounds derived from transition-metal ions are of great interest from the perspective of their magnetic and luminescence properties, rich molecular architectures and for their topologies (Atmani et al., 2008; Benmansour et al., 2008, 2010, 2012; Setifi et al., 2009; Yuste et al., 2009; Setifi, Lehchili et al., 2014; Setifi, Setifi, El Ammari et al., 2014; Addala et al., 2015; Dmitrienko et al., 2020; Merabet et al., 2022).
Two of these small bridging polynitrile ligands that have received a lot of attention in the past decade are the dicyanamide, [N(CN)2]− (dca), and tricyanomethanide [C(CN)3]− (tcm), ions. This is partly due to their ability to produce a wide variety of coordination compounds with different nuclearity ranging from simple mononuclear to polynuclear species with complex structures (Batten & Murray, 2003; Setifi, Setifi, Saadi et al., 2014; Świtlicka-Olszewska et al., 2016). Different bonding modes are observed in the polynuclear complexes bridged by the dca and tcm ligands, which results in the formation of polymeric assemblies in one, two or three dimensions (Batten & Murray 2003).
As a part of our continuing study of the structural and luminescence properties of CdII complexes containing both polynitrile and polypyridyl units (Merabet et al., 2017; Addala et al., 2019), we report here the synthesis, and the crystal and molecular structure of two two-dimensional coordination polymers of cadmium containing either dicyanamide (dca−) or tricyanomethanide (tcm−) anions with 2-methyl-1H-benzimidazole (2-MeBzlm) as co-ligand, namely poly[trans,trans,trans-bis(μ-dicyanamido-κ2N1:N3)bis(2-methylbenzimidazole-κN)cadmium(II)] (I) (Fig. 1) and poly[trans,trans,trans-bis(2-methylbenzimidazole-κN)bis(μ-tricyanomethanido-κ2N:N′)cadmium(II)] (II) (Fig. 2).
2. Structural commentary
Despite the close similarity in their chemical constitutions (Figs. 1 and 2) and the fact that both crystallize in No. 14 (Table 3), they are not isomorphous, as the cell dimensions b clearly show. In each compound, the octahedral CdII centre lies on a centre of inversion, coordinated by a pair of neutral 2-methylbenzimidazole ligands, coordinated via atom N3 (Figs. 1 and 2) and by cyano N atoms from four anionic ligands of type [X(CN)2]−, where X represents N in (I) and C—CN in (II). Each anionic ligand coordinates to two Cd centres, generating sheets of 24-membered rings, lying parallel to (10) in (I) and to (100) in (II) (Figs. 3 and 4).
In each compound, the Cd—N distance for the neutral 2-methylbenzimidazole ligand is significantly less than the distances for the anionic ligands (Table 1). In both compounds, the C≡N bonds within the anionic ligands are somewhat long for their type [mean value (Allen et al., 1987) = 1.136 Å; upper quartile value = 1.142 Å] while the C—C bonds in the anionic ligand in (II) are somewhat short for their type (mean value 1.431 Å; lower quartile value 1.425 Å). These values are consistent, in each case, with the delocalization of the negative charge over the entire anionic ligand which, in the case of compound (II), is also reflected in the planarity of the anionic ligand, where the maximum deviation from the mean plane through the ligand atoms is only 0.054 (2) Å, for atom C31. Although only two of the three independent cyano groups in (II) are coordinated to the metal centre, there are no significant differences between the C—C and C≡N distances in the uncoordinated group and the two coordinated groups (Table 1).
|
3. Supramolecular features
The central unit X of the anionic ligand plays no role in the coordination in either compound, but it is involved in hydrogen bonding in both (Table 2). In each structure, the coordination polymer sheets are linked into a three-dimensional array by a single N—H⋯N hydrogen bond, in which the acceptor for (I) is the central N atom of the dicyanamido ligand, while in (II) the acceptor is the N atom of the uncoordinated cyano group in the tricyanomethanido ligand (Table 2). In (I), the action of the hydrogen bond links the complexes into a hydrogen-bonded sheet of R22(20) (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995) rings lying parallel to (101) (Fig. 5). The combination of the polymer sheets parallel to (10) and the hydrogen-bonded sheets parallel to (101) generates a three-dimensional structure. By contrast, in (II), the hydrogen bonding generates a chain of spiro-fused R22(20) rings running parallel to [101] (Fig. 6), which again links the coordination polymer sheets into a three-dimensional structure. For both structures, C—H⋯π(arene), anion–π(arene) and aromatic π–π stacking interactions are absent.
4. Database survey
Coordination compounds containing either dicyanamide (dca) or tricyanomethanide (tcm) ligands were the subject, some years ago, of a comprehensive review that covered a wide range of both metal centres and co-ligands (Batten & Murray, 2003), and here we focus on just a few examples that are most closely related to the compounds (I) and (II) reported here.
Structures have been reported for (2,2′-bipy)2Cd(dca)2 (Mal et al., 2012) and for cadmium complexes of both dac and tcm containing 4-amino-3,5-bis(pyridine-2-yl)-1,2,4-triazole as the neutral co-ligand (Setifi et al., 2017), but these compounds all comprise monomeric complexes in which the octahedral units are linked only by hydrogen bonds and π–π stacking interactions. Although the two triazole complexes both crystallize in P, they are not isomorphous: this behaviour mirrors that of compounds (I) and (II) reported here.
However, [Cd(1,10-phen)(dca)2] forms a two-dimensional coordination polymer in which each dca bridges two metal centres but where some of the Cd⋯Cd links involve just one dca ligand and some involve two, forming a sheet containing both 12-membered and 36-membered rings (Luo et al., 2002), in contrast to the 24-membered rings found in compounds (I) and (II). The compound [Cd(dipm)(dca)2], where (dipm) represents bis(pyrimidin-2-yl)amine, forms a three-dimensional coordination polymer framework in which each dca ligand bridges two cadmium centres such that each Cd atom is directly linked to four others (van Albada et al., 2009).
5. Synthesis and crystallization
All chemical reagents and solvents are commercially available and were used as received, without further purification. For the synthesis of compounds (I) and (II), a mixture of 2-methyl-1H-benzimidazole (26 mg, 0.2 mmol), cadmium acetate dihydrate (27 mg, 0.1 mmol). and 0.2 mmol of either Na(dca) [for (I)] or K(tcm) [for (II)] in a mixture of water and ethanol (3:1 v/v, 20 ml) was sealed in a Teflon-lined autoclave and heated at 438 K for 2 days. After cooling to room temperature at a rate of 10 K h−1, yellow crystals were collected by filtration. Compound (I): yield 40%; analysis, found C 47.1, H 3.3, N 27.4%; C20H16CdN10 requires C 47.2, H 3.2, N 27.5%. Compound (II): yield 45%; analysis, found C 51.5, H 3.1, N 24.9%; C24H16CdN10 requires C 51.8, H 2.9, N 25.2%.
6. Refinement
Crystal data, data collection and . All H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances of 0.93 Å (aromatic) or 0.96 Å (methyl), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for the other H atoms bonded to C atoms. For the H atoms bonded to N atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N), giving N—H distances of 0.79 (2) Å in (I) and 0.80 (3) Å in (II).
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989022010672/zv2020sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022010672/zv2020Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989022010672/zv2020IIsup3.hkl
For both structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2020).[Cd(C2N3)2(C8H8N2)2] | F(000) = 508 |
Mr = 508.84 | Dx = 1.632 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.3472 (2) Å | Cell parameters from 3954 reflections |
b = 8.2386 (2) Å | θ = 2.4–33.4° |
c = 13.7448 (4) Å | µ = 1.09 mm−1 |
β = 101.908 (1)° | T = 297 K |
V = 1035.68 (5) Å3 | Block, yellow |
Z = 2 | 0.50 × 0.34 × 0.21 mm |
Rigaku Oxford Diffraction Xcalibur, Eos, Gemini diffractometer | 3954 independent reflections |
Radiation source: fine-focus sealed X-raytube | 3176 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
ω scans | θmax = 33.2°, θmin = 2.4° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | h = −14→13 |
Tmin = 0.613, Tmax = 0.796 | k = −12→12 |
47562 measured reflections | l = −21→21 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.021 | w = 1/[σ2(Fo2) + (0.0235P)2 + 0.3418P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.060 | (Δ/σ)max < 0.001 |
S = 1.10 | Δρmax = 0.37 e Å−3 |
3954 reflections | Δρmin = −0.39 e Å−3 |
147 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0321 (14) |
Primary atom site location: difference Fourier map |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.5000 | 0.5000 | 0.5000 | 0.02892 (5) | |
N1 | 0.09686 (13) | 0.32891 (17) | 0.59585 (11) | 0.0397 (3) | |
H1 | 0.042 (2) | 0.258 (2) | 0.6014 (15) | 0.048* | |
C2 | 0.21647 (14) | 0.31228 (17) | 0.55561 (11) | 0.0341 (3) | |
N3 | 0.29030 (12) | 0.44940 (16) | 0.55912 (9) | 0.0309 (2) | |
C3A | 0.21417 (14) | 0.56257 (18) | 0.60516 (10) | 0.0305 (2) | |
C4 | 0.24340 (16) | 0.72464 (19) | 0.63016 (11) | 0.0381 (3) | |
H4 | 0.3243 | 0.7773 | 0.6153 | 0.046* | |
C5 | 0.1469 (2) | 0.8046 (2) | 0.67824 (13) | 0.0471 (4) | |
H5 | 0.1636 | 0.9130 | 0.6957 | 0.056* | |
C6 | 0.0256 (2) | 0.7261 (2) | 0.70091 (15) | 0.0557 (5) | |
H6 | −0.0362 | 0.7834 | 0.7335 | 0.067* | |
C7 | −0.00496 (19) | 0.5667 (3) | 0.67648 (15) | 0.0518 (4) | |
H7 | −0.0863 | 0.5148 | 0.6912 | 0.062* | |
C7A | 0.09181 (16) | 0.48644 (17) | 0.62846 (12) | 0.0358 (3) | |
C21 | 0.2554 (2) | 0.1554 (2) | 0.51506 (15) | 0.0495 (4) | |
H21A | 0.3303 | 0.1031 | 0.5631 | 0.074* | |
H21B | 0.2906 | 0.1745 | 0.4552 | 0.074* | |
H21C | 0.1705 | 0.0870 | 0.5006 | 0.074* | |
N31 | 0.34628 (14) | 0.34457 (19) | 0.16293 (10) | 0.0433 (3) | |
C32 | 0.37029 (14) | 0.36394 (18) | 0.25940 (11) | 0.0348 (3) | |
N32 | 0.40344 (15) | 0.3836 (2) | 0.34355 (11) | 0.0520 (4) | |
C33 | 0.21918 (15) | 0.29123 (17) | 0.11597 (10) | 0.0331 (3) | |
N33 | 0.11198 (15) | 0.24538 (19) | 0.06690 (10) | 0.0462 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.02177 (6) | 0.04283 (9) | 0.02187 (7) | 0.00136 (5) | 0.00381 (4) | 0.00049 (5) |
N1 | 0.0306 (5) | 0.0428 (7) | 0.0481 (7) | −0.0057 (5) | 0.0140 (5) | 0.0036 (6) |
C2 | 0.0299 (6) | 0.0372 (6) | 0.0360 (7) | −0.0018 (5) | 0.0089 (5) | 0.0005 (5) |
N3 | 0.0273 (5) | 0.0350 (5) | 0.0322 (5) | −0.0006 (4) | 0.0101 (4) | −0.0019 (4) |
C3A | 0.0271 (5) | 0.0375 (6) | 0.0278 (5) | 0.0024 (5) | 0.0080 (4) | 0.0002 (5) |
C4 | 0.0374 (7) | 0.0412 (7) | 0.0367 (7) | −0.0002 (6) | 0.0102 (5) | −0.0035 (6) |
C5 | 0.0542 (9) | 0.0460 (8) | 0.0430 (8) | 0.0081 (7) | 0.0146 (7) | −0.0079 (7) |
C6 | 0.0549 (10) | 0.0642 (11) | 0.0558 (10) | 0.0162 (8) | 0.0294 (9) | −0.0033 (9) |
C7 | 0.0416 (8) | 0.0623 (11) | 0.0598 (11) | 0.0081 (8) | 0.0295 (8) | 0.0043 (9) |
C7A | 0.0278 (6) | 0.0457 (8) | 0.0360 (7) | 0.0020 (5) | 0.0114 (5) | 0.0036 (5) |
C21 | 0.0499 (9) | 0.0379 (8) | 0.0634 (11) | −0.0046 (7) | 0.0182 (8) | −0.0075 (7) |
N31 | 0.0344 (6) | 0.0633 (8) | 0.0321 (6) | −0.0085 (6) | 0.0069 (5) | −0.0073 (6) |
C32 | 0.0269 (5) | 0.0421 (7) | 0.0347 (7) | −0.0012 (5) | 0.0049 (5) | −0.0068 (5) |
N32 | 0.0392 (7) | 0.0806 (11) | 0.0346 (7) | −0.0079 (7) | 0.0037 (5) | −0.0142 (7) |
C33 | 0.0358 (6) | 0.0366 (6) | 0.0279 (6) | −0.0022 (5) | 0.0088 (5) | −0.0043 (5) |
N33 | 0.0417 (6) | 0.0580 (8) | 0.0385 (7) | −0.0116 (6) | 0.0075 (5) | −0.0127 (6) |
Cd1—N3 | 2.3094 (11) | C4—H4 | 0.9300 |
Cd1—N3i | 2.3094 (11) | C5—C6 | 1.395 (3) |
Cd1—N32 | 2.3574 (14) | C5—H5 | 0.9300 |
Cd1—N32i | 2.3574 (14) | C6—C7 | 1.371 (3) |
Cd1—N33ii | 2.3729 (14) | C6—H6 | 0.9300 |
Cd1—N33iii | 2.3729 (14) | C7—C7A | 1.392 (2) |
N1—C2 | 1.3528 (18) | C7—H7 | 0.9300 |
N1—C7A | 1.377 (2) | C21—H21A | 0.9600 |
N1—H1 | 0.79 (2) | C21—H21B | 0.9600 |
C2—N3 | 1.3194 (18) | C21—H21C | 0.9600 |
C2—C21 | 1.482 (2) | N31—C33 | 1.3056 (18) |
N3—C3A | 1.4008 (18) | N31—C32 | 1.3081 (19) |
C3A—C4 | 1.392 (2) | C32—N32 | 1.1455 (19) |
C3A—C7A | 1.3983 (19) | C33—N33 | 1.1501 (18) |
C4—C5 | 1.389 (2) | N33—Cd1iv | 2.3729 (14) |
N3—Cd1—N3i | 180.0 | C5—C4—C3A | 117.30 (14) |
N3—Cd1—N32 | 93.12 (5) | C5—C4—H4 | 121.3 |
N3i—Cd1—N32 | 86.88 (5) | C3A—C4—H4 | 121.3 |
N3—Cd1—N32i | 86.88 (5) | C4—C5—C6 | 121.57 (16) |
N3i—Cd1—N32i | 93.12 (5) | C4—C5—H5 | 119.2 |
N32—Cd1—N32i | 180.00 (4) | C6—C5—H5 | 119.2 |
N3—Cd1—N33ii | 92.78 (5) | C7—C6—C5 | 121.85 (15) |
N3i—Cd1—N33ii | 87.22 (5) | C7—C6—H6 | 119.1 |
N32—Cd1—N33ii | 93.56 (6) | C5—C6—H6 | 119.1 |
N32i—Cd1—N33ii | 86.44 (6) | C6—C7—C7A | 116.61 (16) |
N3—Cd1—N33iii | 87.22 (5) | C6—C7—H7 | 121.7 |
N3i—Cd1—N33iii | 92.78 (5) | C7A—C7—H7 | 121.7 |
N32—Cd1—N33iii | 86.44 (6) | N1—C7A—C7 | 132.17 (15) |
N32i—Cd1—N33iii | 93.56 (6) | N1—C7A—C3A | 105.29 (12) |
N33ii—Cd1—N33iii | 180.0 | C7—C7A—C3A | 122.53 (15) |
C2—N1—C7A | 108.37 (12) | C2—C21—H21A | 109.5 |
C2—N1—H1 | 124.9 (14) | C2—C21—H21B | 109.5 |
C7A—N1—H1 | 126.7 (14) | H21A—C21—H21B | 109.5 |
N3—C2—N1 | 111.63 (13) | C2—C21—H21C | 109.5 |
N3—C2—C21 | 126.37 (13) | H21A—C21—H21C | 109.5 |
N1—C2—C21 | 121.99 (13) | H21B—C21—H21C | 109.5 |
C2—N3—C3A | 106.01 (11) | C33—N31—C32 | 119.37 (13) |
C2—N3—Cd1 | 128.11 (9) | N32—C32—N31 | 174.18 (15) |
C3A—N3—Cd1 | 125.87 (9) | C32—N32—Cd1 | 162.06 (15) |
C4—C3A—C7A | 120.14 (13) | N33—C33—N31 | 173.85 (15) |
C4—C3A—N3 | 131.15 (13) | C33—N33—Cd1iv | 140.21 (14) |
C7A—C3A—N3 | 108.70 (13) | ||
C7A—N1—C2—N3 | −0.36 (18) | C3A—C4—C5—C6 | 0.1 (3) |
C7A—N1—C2—C21 | 178.79 (15) | C4—C5—C6—C7 | −0.4 (3) |
N1—C2—N3—C3A | 0.33 (17) | C5—C6—C7—C7A | 0.5 (3) |
C21—C2—N3—C3A | −178.78 (15) | C2—N1—C7A—C7 | −178.60 (19) |
N1—C2—N3—Cd1 | −178.65 (10) | C2—N1—C7A—C3A | 0.23 (17) |
C21—C2—N3—Cd1 | 2.2 (2) | C6—C7—C7A—N1 | 178.30 (19) |
C2—N3—C3A—C4 | 178.46 (15) | C6—C7—C7A—C3A | −0.4 (3) |
Cd1—N3—C3A—C4 | −2.5 (2) | C4—C3A—C7A—N1 | −178.84 (13) |
C2—N3—C3A—C7A | −0.17 (16) | N3—C3A—C7A—N1 | −0.03 (17) |
Cd1—N3—C3A—C7A | 178.83 (10) | C4—C3A—C7A—C7 | 0.1 (2) |
C7A—C3A—C4—C5 | 0.0 (2) | N3—C3A—C7A—C7 | 178.93 (16) |
N3—C3A—C4—C5 | −178.51 (15) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, −y+1/2, z+1/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) −x+1/2, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N31v | 0.79 (2) | 2.327 (19) | 3.0447 (19) | 151.3 (17) |
Symmetry code: (v) x−1/2, −y+1/2, z+1/2. |
[Cd(C4N3)2(C8H8N2)2] | F(000) = 556 |
Mr = 556.88 | Dx = 1.544 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.4395 (4) Å | Cell parameters from 3664 reflections |
b = 12.1219 (5) Å | θ = 2.3–30.6° |
c = 10.9675 (5) Å | µ = 0.95 mm−1 |
β = 107.342 (2)° | T = 300 K |
V = 1197.91 (9) Å3 | Block, yellow |
Z = 2 | 0.48 × 0.36 × 0.22 mm |
Rigaku Oxford Diffraction Xcalibur, Eos, Gemini diffractometer | 3664 independent reflections |
Radiation source: fine-focus sealed X-raytube | 2869 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
ω scans | θmax = 30.6°, θmin = 2.3° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | h = −13→13 |
Tmin = 0.627, Tmax = 0.812 | k = −17→17 |
41742 measured reflections | l = −15→15 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.023 | w = 1/[σ2(Fo2) + (0.0175P)2 + 0.6078P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.060 | (Δ/σ)max = 0.001 |
S = 1.15 | Δρmax = 0.36 e Å−3 |
3664 reflections | Δρmin = −0.32 e Å−3 |
165 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0182 (9) |
Primary atom site location: difference Fourier map |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.5000 | 0.5000 | 0.5000 | 0.02855 (6) | |
N1 | 0.01561 (17) | 0.54588 (14) | 0.31770 (16) | 0.0392 (3) | |
H1 | −0.057 (3) | 0.5291 (19) | 0.262 (2) | 0.047* | |
C2 | 0.15085 (19) | 0.50291 (14) | 0.32869 (16) | 0.0329 (3) | |
N3 | 0.25220 (15) | 0.53853 (12) | 0.43361 (13) | 0.0307 (3) | |
C3A | 0.17551 (17) | 0.60782 (13) | 0.49471 (16) | 0.0306 (3) | |
C4 | 0.2229 (2) | 0.66514 (14) | 0.60956 (18) | 0.0377 (4) | |
H4 | 0.3207 | 0.6604 | 0.6614 | 0.045* | |
C5 | 0.1199 (3) | 0.72950 (16) | 0.6442 (2) | 0.0492 (5) | |
H5 | 0.1497 | 0.7695 | 0.7199 | 0.059* | |
C6 | −0.0273 (3) | 0.73568 (18) | 0.5684 (3) | 0.0544 (5) | |
H6 | −0.0931 | 0.7807 | 0.5939 | 0.065* | |
C7 | −0.0774 (2) | 0.67687 (17) | 0.4569 (2) | 0.0495 (5) | |
H7 | −0.1763 | 0.6794 | 0.4074 | 0.059* | |
C7A | 0.02632 (19) | 0.61325 (14) | 0.42113 (18) | 0.0359 (4) | |
C21 | 0.1739 (2) | 0.42717 (19) | 0.2308 (2) | 0.0498 (5) | |
H21A | 0.2681 | 0.3910 | 0.2635 | 0.075* | |
H21B | 0.1723 | 0.4683 | 0.1557 | 0.075* | |
H21C | 0.0962 | 0.3730 | 0.2097 | 0.075* | |
C31 | 0.43763 (19) | 0.62012 (14) | 0.06929 (16) | 0.0331 (3) | |
C32 | 0.48307 (19) | 0.57340 (14) | 0.19170 (17) | 0.0335 (3) | |
N32 | 0.5172 (2) | 0.53331 (16) | 0.29060 (16) | 0.0463 (4) | |
C33 | 0.49794 (19) | 0.72007 (15) | 0.04552 (18) | 0.0366 (4) | |
N33 | 0.5467 (2) | 0.80337 (14) | 0.02750 (18) | 0.0493 (4) | |
C34 | 0.3206 (2) | 0.57001 (16) | −0.02502 (18) | 0.0399 (4) | |
N34 | 0.2261 (2) | 0.5271 (2) | −0.09988 (19) | 0.0639 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.02870 (9) | 0.02952 (9) | 0.02575 (9) | 0.00129 (6) | 0.00556 (6) | −0.00031 (6) |
N1 | 0.0298 (7) | 0.0451 (8) | 0.0354 (8) | −0.0072 (6) | −0.0016 (6) | 0.0055 (7) |
C2 | 0.0320 (7) | 0.0355 (8) | 0.0283 (7) | −0.0068 (7) | 0.0046 (6) | 0.0005 (7) |
N3 | 0.0299 (6) | 0.0320 (6) | 0.0280 (7) | −0.0027 (5) | 0.0053 (5) | −0.0021 (5) |
C3A | 0.0289 (7) | 0.0291 (7) | 0.0336 (8) | −0.0025 (6) | 0.0088 (6) | 0.0029 (6) |
C4 | 0.0397 (9) | 0.0358 (8) | 0.0393 (10) | −0.0030 (7) | 0.0143 (7) | −0.0021 (7) |
C5 | 0.0593 (12) | 0.0394 (10) | 0.0567 (13) | −0.0013 (9) | 0.0295 (10) | −0.0071 (9) |
C6 | 0.0532 (12) | 0.0443 (11) | 0.0757 (16) | 0.0099 (9) | 0.0345 (12) | 0.0052 (10) |
C7 | 0.0341 (9) | 0.0478 (11) | 0.0676 (14) | 0.0077 (8) | 0.0167 (9) | 0.0170 (10) |
C7A | 0.0309 (8) | 0.0356 (8) | 0.0398 (9) | −0.0030 (6) | 0.0085 (7) | 0.0083 (7) |
C21 | 0.0488 (11) | 0.0607 (12) | 0.0369 (10) | −0.0145 (10) | 0.0082 (9) | −0.0151 (9) |
C31 | 0.0338 (8) | 0.0333 (8) | 0.0288 (8) | 0.0009 (6) | 0.0044 (6) | 0.0015 (6) |
C32 | 0.0328 (8) | 0.0354 (8) | 0.0312 (9) | −0.0003 (6) | 0.0077 (6) | −0.0030 (6) |
N32 | 0.0488 (9) | 0.0564 (9) | 0.0313 (8) | −0.0008 (8) | 0.0085 (7) | 0.0050 (7) |
C33 | 0.0358 (8) | 0.0359 (8) | 0.0353 (9) | 0.0049 (7) | 0.0065 (7) | 0.0018 (7) |
N33 | 0.0497 (9) | 0.0371 (8) | 0.0577 (11) | 0.0016 (7) | 0.0107 (8) | 0.0084 (8) |
C34 | 0.0366 (9) | 0.0477 (10) | 0.0319 (9) | −0.0004 (8) | 0.0050 (7) | 0.0055 (7) |
N34 | 0.0508 (11) | 0.0863 (15) | 0.0426 (11) | −0.0169 (10) | −0.0043 (9) | −0.0005 (10) |
Cd1—N3 | 2.2813 (14) | C5—C6 | 1.392 (3) |
Cd1—N3i | 2.2813 (14) | C5—H5 | 0.9300 |
Cd1—N32 | 2.3845 (17) | C6—C7 | 1.372 (3) |
Cd1—N32i | 2.3845 (17) | C6—H6 | 0.9300 |
Cd1—N33ii | 2.4265 (17) | C7—C7A | 1.391 (3) |
Cd1—N33iii | 2.4265 (17) | C7—H7 | 0.9300 |
N1—C2 | 1.351 (2) | C21—H21A | 0.9600 |
N1—C7A | 1.377 (3) | C21—H21B | 0.9600 |
N1—H1 | 0.80 (3) | C21—H21C | 0.9600 |
C2—N3 | 1.330 (2) | C31—C33 | 1.396 (2) |
C2—C21 | 1.477 (3) | C31—C32 | 1.401 (2) |
N3—C3A | 1.403 (2) | C31—C34 | 1.407 (2) |
C3A—C4 | 1.391 (2) | C32—N32 | 1.144 (2) |
C3A—C7A | 1.400 (2) | C33—N33 | 1.151 (2) |
C4—C5 | 1.386 (3) | N33—Cd1iv | 2.4264 (17) |
C4—H4 | 0.9300 | C34—N34 | 1.141 (3) |
N3—Cd1—N3i | 180.0 | C5—C4—H4 | 121.1 |
N3—Cd1—N32 | 90.89 (6) | C3A—C4—H4 | 121.1 |
N3i—Cd1—N32 | 89.11 (6) | C4—C5—C6 | 121.6 (2) |
N3—Cd1—N32i | 89.11 (6) | C4—C5—H5 | 119.2 |
N3i—Cd1—N32i | 90.89 (6) | C6—C5—H5 | 119.2 |
N32—Cd1—N32i | 180.0 | C7—C6—C5 | 121.45 (19) |
N3—Cd1—N33ii | 88.27 (6) | C7—C6—H6 | 119.3 |
N3i—Cd1—N33ii | 91.73 (6) | C5—C6—H6 | 119.3 |
N32—Cd1—N33ii | 83.76 (6) | C6—C7—C7A | 117.05 (19) |
N32i—Cd1—N33ii | 96.24 (6) | C6—C7—H7 | 121.5 |
N3—Cd1—N33iii | 91.73 (6) | C7A—C7—H7 | 121.5 |
N3i—Cd1—N33iii | 88.27 (6) | N1—C7A—C7 | 132.53 (18) |
N32—Cd1—N33iii | 96.24 (6) | N1—C7A—C3A | 105.14 (15) |
N32i—Cd1—N33iii | 83.76 (6) | C7—C7A—C3A | 122.33 (18) |
N33ii—Cd1—N33iii | 180.0 | C2—C21—H21A | 109.5 |
C2—N1—C7A | 108.66 (15) | C2—C21—H21B | 109.5 |
C2—N1—H1 | 123.1 (17) | H21A—C21—H21B | 109.5 |
C7A—N1—H1 | 128.1 (17) | C2—C21—H21C | 109.5 |
N3—C2—N1 | 111.65 (16) | H21A—C21—H21C | 109.5 |
N3—C2—C21 | 127.35 (17) | H21B—C21—H21C | 109.5 |
N1—C2—C21 | 121.00 (16) | C33—C31—C32 | 120.29 (16) |
C2—N3—C3A | 105.49 (14) | C33—C31—C34 | 120.81 (16) |
C2—N3—Cd1 | 127.90 (12) | C32—C31—C34 | 118.62 (16) |
C3A—N3—Cd1 | 126.59 (10) | N32—C32—C31 | 178.2 (2) |
C4—C3A—C7A | 119.70 (16) | C32—N32—Cd1 | 154.77 (16) |
C4—C3A—N3 | 131.24 (15) | N33—C33—C31 | 178.8 (2) |
C7A—C3A—N3 | 109.05 (15) | C33—N33—Cd1iv | 144.66 (16) |
C5—C4—C3A | 117.83 (18) | N34—C34—C31 | 178.4 (2) |
C7A—N1—C2—N3 | −0.5 (2) | C3A—C4—C5—C6 | 1.1 (3) |
C7A—N1—C2—C21 | −179.83 (17) | C4—C5—C6—C7 | 1.1 (3) |
N1—C2—N3—C3A | 0.92 (19) | C5—C6—C7—C7A | −1.8 (3) |
C21—C2—N3—C3A | −179.79 (18) | C2—N1—C7A—C7 | 179.92 (19) |
N1—C2—N3—Cd1 | −177.68 (11) | C2—N1—C7A—C3A | −0.17 (19) |
C21—C2—N3—Cd1 | 1.6 (3) | C6—C7—C7A—N1 | −179.71 (19) |
C2—N3—C3A—C4 | 177.72 (18) | C6—C7—C7A—C3A | 0.4 (3) |
Cd1—N3—C3A—C4 | −3.7 (3) | C4—C3A—C7A—N1 | −178.17 (15) |
C2—N3—C3A—C7A | −1.01 (18) | N3—C3A—C7A—N1 | 0.73 (18) |
Cd1—N3—C3A—C7A | 177.61 (11) | C4—C3A—C7A—C7 | 1.7 (3) |
C7A—C3A—C4—C5 | −2.4 (3) | N3—C3A—C7A—C7 | −179.35 (16) |
N3—C3A—C4—C5 | 178.93 (18) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+1, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N34v | 0.80 (2) | 2.12 (2) | 2.906 (3) | 171 (3) |
Symmetry code: (v) −x, −y+1, −z. |
Parameter | (I) | (II) |
Cd1—N3 | 2.3094 (11) | 2.2813 (14) |
Cd1—N32 | 2.3574 (14) | 2.3845 (17) |
Cd1—N33i | 2.3729 (14) | 2.4265 (17) |
N31—C32 | 1.3081 (19) | |
N31—C33 | 1.3056 (18) | |
C31—C32 | 1.401 (2) | |
C31—C33 | 1.396 (2) | |
C31—C34 | 1.407 (2) | |
C32—N32 | 1.1455 (19) | 1.144 (2) |
C33—N33 | 1.1501 (18) | 1.151 (2) |
C34—N34 | 1.141 (3) |
Symmetry codes: (i) 1/2 + x, 1/2 - y, 1/2 + z for (I) and 1 - x, -1/2 + y, 1/2 - z for (II). |
Compound | D—H···A | D—H | H···A | D···A | D—H···A |
(I) | N1—H1···N31ii | 0.79 (2) | 2.327 (19) | 3.0447 (19) | 151.3 (17) |
(II) | N1—H1···N34iii | 0.80 (2) | 2.12 (2) | 2.906 (3) | 171 (3) |
Symmetry codes: (ii) -1/2 + x, 1/2 - y, 1/2 + z; (iii) -x, 1 - y, -z. |
Acknowledgements
Author contributions are as follows. Conceptualization, ZS and MHAD; methodology, ZS and MHAD; investigation, LM and LK; writing (original draft), CG and ZS; writing (review and editing of the manuscript), CG, FS and ZS; visualization, ZS and FS; funding acquisition, ZS and MHAD; resources, FS; supervision, FS.
Funding information
Funding for this research was provided by: the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique); the Algerian DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique; PRFU project (grant No. B00L01UN190120230003).
References
Addala, A., Poupon, M., Bernès, S., Kürkçüoğlu, G. S., Liu, X., Lehchili, F., Kučeráková, M., Dušek, M., Setifi, F., Setifi, Z. & Reedijk, J. (2019). Polyhedron, 170, 271–277. CSD CrossRef CAS Google Scholar
Addala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310. Web of Science CSD CrossRef CAS Google Scholar
Albada, G. A. van, van der Horst, M. G., Teat, S. J., Gamez, P., Roubeau, O., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2009). Polyhedron, 28, 1541–1545. CSD CrossRef Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CrossRef Web of Science Google Scholar
Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921–924. Web of Science CSD CrossRef CAS Google Scholar
Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103–130. Web of Science CrossRef CAS Google Scholar
Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478. Web of Science CrossRef CAS Google Scholar
Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S., Coronado, E. & Salaün, J. (2008). J. Mol. Struct. 890, 255–262. Web of Science CSD CrossRef CAS Google Scholar
Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Dmitrienko, A. O., Buzin, M. I., Setifi, Z., Setifi, F., Alexandrov, E. V., Voronova, E. D. & Vologzhanina, A. V. (2020). Dalton Trans. 49, 7084–7092. CSD CrossRef CAS PubMed Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Lehchili, F., Setifi, F., Liu, X., Saneei, A., Kučeráková, M., Setifi, Z., Dušek, M., Poupon, M., Pourayoubi, M. & Reedijk, J. (2017). Polyhedron, 131, 27–33. Web of Science CSD CrossRef CAS Google Scholar
Luo, J.-H., Hong, M.-C., Cao, R., Liang, Y.-C., Zhao, Y., Wang, R. & Weng, J. (2002). Polyhedron, 21, 893–898. CSD CrossRef CAS Google Scholar
Mal, D., Sen, R., Brandao, P. & Lin, Z. (2012). Acta Cryst. E68, m1428. CSD CrossRef IUCr Journals Google Scholar
Merabet, L., Vologzhanina, A. V., Setifi, Z., Kaboub, L. & Setifi, F. (2022). CrystEngComm, 24, 4740–4747. CSD CrossRef CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA. Google Scholar
Setifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). Inorg. Chem. 48, 1269–1271. Web of Science CSD CrossRef PubMed CAS Google Scholar
Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338–341. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Setifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014). Acta Cryst. C70, 19–22. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Setifi, Z., Setifi, F., Saadi, M., Rouag, D.-A. & Glidewell, C. (2014). Acta Cryst. C70, 359–363. Web of Science CSD CrossRef IUCr Journals Google Scholar
Setifi, Z., Zambon, D., Setifi, F., El-Ghozzi, M., Mahiou, R. & Glidewell, C. (2017). Acta Cryst. C73, 674–681. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Świtlicka-Olszewska, A., Palion-Gazda, J., Klemens, T., Machura, B., Vallejo, J., Cano, J., Lloret, F. & Julve, M. (2016). Dalton Trans. 45, 10181–10193. PubMed Google Scholar
Wang, Y., Jia, W., Chen, R., Zhao, X.-J. & Wang, Z.-L. (2017). Chem. Commun. 53, 636–639. CSD CrossRef CAS Google Scholar
Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.