research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Solvothermal synthesis and crystal structures of two new cadmium coordination polymers containing polynitrile ligands

crossmark logo

aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, cChemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
*Correspondence e-mail: fatima.setifi@univ-setif.dz, m.aldouh@hu.edu.ye

Edited by A. S. Batsanov, University of Durham, United Kingdom (Received 30 September 2022; accepted 5 November 2022; online 17 November 2022)

Two new coordination polymers of cadmium-containing polynitrile ligands have been synthesized using sovothermal methods. In both poly[trans,trans,trans-bis­(μ-dicyanamido-κ2N1:N3)bis­(2-methyl­benzimidazole-κN)cadmium(II)], [Cd(C2N3)2(C8H8N2)2]n, (I), and poly[trans,trans,trans-bis­(2-methyl­benz­imidazole-κN)bis­(μ-tri­cyano­methanido-κ2N:N′)cadmium(II)], [Cd(C4N3)2(C8H8N2)2]n, (II), the Cd atom lies on a centre of inversion, in space groups P21/n and P21/c, respectively. In each polymer, each anionic ligand acts as a bridge between two metal centres, forming sheets of 24-membered rings, and in each structure a single N—H⋯N hydrogen bond links the polymer sheets to form a three-dimensional framework structure. Comparisons are made with the structures of some related complexes.

1. Chemical context

The d10 metal complexes of zinc(II) and cadmium(II) with a variety of ligands have attracted considerable attention in recent years because of their luminescence properties (Merabet et al., 2017[Lehchili, F., Setifi, F., Liu, X., Saneei, A., Kučeráková, M., Setifi, Z., Dušek, M., Poupon, M., Pourayoubi, M. & Reedijk, J. (2017). Polyhedron, 131, 27-33.]; Wang et al., 2017[Wang, Y., Jia, W., Chen, R., Zhao, X.-J. & Wang, Z.-L. (2017). Chem. Commun. 53, 636-639.]). Polynitrile compounds derived from transition-metal ions are of great inter­est from the perspective of their magnetic and luminescence properties, rich mol­ecular architectures and for their topologies (Atmani et al., 2008[Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921-924.]; Benmansour et al., 2008[Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S., Coronado, E. & Salaün, J. (2008). J. Mol. Struct. 890, 255-262.], 2010[Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468-1478.], 2012[Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359-2365.]; Setifi et al., 2009[Setifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). Inorg. Chem. 48, 1269-1271.]; Yuste et al., 2009[Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287-1294.]; Setifi, Lehchili et al., 2014[Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338-341.]; Setifi, Setifi, El Ammari et al., 2014[Setifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014). Acta Cryst. C70, 19-22.]; Addala et al., 2015[Addala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307-310.]; Dmitrienko et al., 2020[Dmitrienko, A. O., Buzin, M. I., Setifi, Z., Setifi, F., Alexandrov, E. V., Voronova, E. D. & Vologzhanina, A. V. (2020). Dalton Trans. 49, 7084-7092.]; Merabet et al., 2022[Merabet, L., Vologzhanina, A. V., Setifi, Z., Kaboub, L. & Setifi, F. (2022). CrystEngComm, 24, 4740-4747.]).

Two of these small bridging polynitrile ligands that have received a lot of attention in the past decade are the dicyan­amide, [N(CN)2] (dca), and tri­cyano­methanide [C(CN)3] (tcm), ions. This is partly due to their ability to produce a wide variety of coordination compounds with different nuclearity ranging from simple mononuclear to polynuclear species with complex structures (Batten & Murray, 2003[Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103-130.]; Setifi, Setifi, Saadi et al., 2014[Setifi, Z., Setifi, F., Saadi, M., Rouag, D.-A. & Glidewell, C. (2014). Acta Cryst. C70, 359-363.]; Świtlicka-Olszewska et al., 2016[Świtlicka-Olszewska, A., Palion-Gazda, J., Klemens, T., Machura, B., Vallejo, J., Cano, J., Lloret, F. & Julve, M. (2016). Dalton Trans. 45, 10181-10193.]). Different bonding modes are observed in the polynuclear complexes bridged by the dca and tcm ligands, which results in the formation of polymeric assemblies in one, two or three dimensions (Batten & Murray 2003[Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103-130.]).

As a part of our continuing study of the structural and luminescence properties of CdII complexes containing both polynitrile and polypyridyl units (Merabet et al., 2017[Lehchili, F., Setifi, F., Liu, X., Saneei, A., Kučeráková, M., Setifi, Z., Dušek, M., Poupon, M., Pourayoubi, M. & Reedijk, J. (2017). Polyhedron, 131, 27-33.]; Addala et al., 2019[Addala, A., Poupon, M., Bernès, S., Kürkçüoğlu, G. S., Liu, X., Lehchili, F., Kučeráková, M., Dušek, M., Setifi, F., Setifi, Z. & Reedijk, J. (2019). Polyhedron, 170, 271-277.]), we report here the synthesis, and the crystal and mol­ecular structure of two two-dimensional coordination polymers of cadmium containing either dicyanamide (dca) or tri­cyano­methanide (tcm) anions with 2-methyl-1H-benz­imid­azole (2-MeBzlm) as co-ligand, namely poly[trans,trans,trans-bis­(μ-dicyanamido-κ2N1:N3)bis­(2-methyl­benz­imid­azole-κN)cadmium(II)] (I)[link] (Fig. 1[link]) and poly[trans,trans,trans-bis­(2-methyl­benzimidazole-κN)bis­(μ-tri­cyano­meth­anido-κ2N:N′)cadmium(II)] (II)[link] (Fig. 2[link]).

[Scheme 1]
[Figure 1]
Figure 1
The coordination polyhedron in compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and the atoms marked `b', `c' and `e' are at the symmetry positions ([{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z), (1 − x, 1 − y, 1 − z) and ([{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z), respectively.
[Figure 2]
Figure 2
The coordination polyhedron in compound (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and the atoms marked `a', `c' and `e' are at the symmetry positions (1 − x, −[{1\over 2}] + y, [{1\over 2}] − z), (1 − x, 1 − y, 1 − z) and (x, 1.5 − y, [{1\over 2}] + z), respectively.

2. Structural commentary

Despite the close similarity in their chemical constitutions (Figs. 1[link] and 2[link]) and the fact that both crystallize in space group No. 14 (Table 3[link]), they are not isomorphous, as the cell dimensions b clearly show. In each compound, the octa­hedral CdII centre lies on a centre of inversion, coordinated by a pair of neutral 2-methyl­benzimidazole ligands, coordinated via atom N3 (Figs. 1[link] and 2[link]) and by cyano N atoms from four anionic ligands of type [X(CN)2], where X represents N in (I)[link] and C—CN in (II)[link]. Each anionic ligand coordinates to two Cd centres, generating sheets of 24-membered rings, lying parallel to (10[\overline{1}]) in (I)[link] and to (100) in (II)[link] (Figs. 3[link] and 4[link]).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula [Cd(C2N3)2(C8H8N2)2] [Cd(C4N3)2(C8H8N2)2]
Mr 508.84 556.88
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 297 300
a, b, c (Å) 9.3472 (2), 8.2386 (2), 13.7448 (4) 9.4395 (4), 12.1219 (5), 10.9675 (5)
β (°) 101.908 (1) 107.342 (2)
V3) 1035.68 (5) 1197.91 (9)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.09 0.95
Crystal size (mm) 0.50 × 0.34 × 0.21 0.48 × 0.36 × 0.22
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Eos, Gemini Rigaku Oxford Diffraction Xcalibur, Eos, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.613, 0.796 0.627, 0.812
No. of measured, independent and observed [I > 2σ(I)] reflections 47562, 3954, 3176 41742, 3664, 2869
Rint 0.057 0.050
(sin θ/λ)max−1) 0.770 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.060, 1.10 0.023, 0.060, 1.15
No. of reflections 3954 3664
No. of parameters 147 165
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.39 0.36, −0.32
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).
[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link] showing the formation of a coordination polymer sheet lying parallel to (10[\overline{1}]). For the sake of clarity, the 2-methyl­benzimidazole ligands have been omitted.
[Figure 4]
Figure 4
Part of the crystal structure of compound (II)[link] showing the formation of a coordination polymer sheet lying parallel to (100). For the sake of clarity, the 2-methyl­benzimidazole ligands have been omitted.

In each compound, the Cd—N distance for the neutral 2-methyl­benzimidazole ligand is significantly less than the distances for the anionic ligands (Table 1[link]). In both compounds, the C≡N bonds within the anionic ligands are somewhat long for their type [mean value (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]) = 1.136 Å; upper quartile value = 1.142 Å] while the C—C bonds in the anionic ligand in (II)[link] are somewhat short for their type (mean value 1.431 Å; lower quartile value 1.425 Å). These values are consistent, in each case, with the delocalization of the negative charge over the entire anionic ligand which, in the case of compound (II)[link], is also reflected in the planarity of the anionic ligand, where the maximum deviation from the mean plane through the ligand atoms is only 0.054 (2) Å, for atom C31. Although only two of the three independent cyano groups in (II)[link] are coordinated to the metal centre, there are no significant differences between the C—C and C≡N distances in the uncoordinated group and the two coordinated groups (Table 1[link]).

Table 1
Selected bond distances (Å)

Parameter (I) (II)
Cd1—N3 2.3094 (11) 2.2813 (14)
Cd1—N32 2.3574 (14) 2.3845 (17)
Cd1—N33i 2.3729 (14) 2.4265 (17)
N31—C32 1.3081 (19)  
N31—C33 1.3056 (18)  
C31—C32   1.401 (2)
C31—C33   1.396 (2)
C31—C34   1.407 (2)
C32—N32 1.1455 (19) 1.144 (2)
C33—N33 1.1501 (18) 1.151 (2)
C34—N34   1.141 (3)
Symmetry codes: (i) [{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z for (I)[link] and 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z for (II)[link].

3. Supra­molecular features

The central unit X of the anionic ligand plays no role in the coordination in either compound, but it is involved in hydrogen bonding in both (Table 2[link]). In each structure, the coordination polymer sheets are linked into a three-dimensional array by a single N—H⋯N hydrogen bond, in which the acceptor for (I)[link] is the central N atom of the dicyanamido ligand, while in (II)[link] the acceptor is the N atom of the uncoordinated cyano group in the tri­cyano­methanido ligand (Table 2[link]). In (I)[link], the action of the hydrogen bond links the complexes into a hydrogen-bonded sheet of R22(20) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) rings lying parallel to (101) (Fig. 5[link]). The combination of the polymer sheets parallel to (10[\overline{1}]) and the hydrogen-bonded sheets parallel to (101) generates a three-dimensional structure. By contrast, in (II)[link], the hydrogen bonding generates a chain of spiro-fused R22(20) rings running parallel to [101] (Fig. 6[link]), which again links the coordination polymer sheets into a three-dimensional structure. For both structures, C—H⋯π(arene), anion–π(arene) and aromatic ππ stacking inter­actions are absent.

Table 2
Hydrogen-bond parameters (Å, °)

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(I) N1—H1⋯N31ii 0.79 (2) 2.327 (19) 3.0447 (19) 151.3 (17)
(II) N1—H1⋯N34iii 0.80 (2) 2.12 (2) 2.906 (3) 171 (3)
Symmetry codes: (ii) −[{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z; (iii) −x, 1 − y, −z.
[Figure 5]
Figure 5
Part of the crystal structure of compound (I)[link] showing the formation of a hydrogen-bonded sheet of R22(20) rings lying parallel to (101). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 6]
Figure 6
Part of the crystal structure of compound (II)[link] showing the formation of a chain of R22(20) rings running parallel to [101]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted. The Cd atoms marked with an asterisk (*) or a hash (#) are at (−1/2, 1/2, −1/2) and (3/2, 1/2, 3/2), respectively.

4. Database survey

Coordination compounds containing either dicyanamide (dca) or tri­cyano­methanide (tcm) ligands were the subject, some years ago, of a comprehensive review that covered a wide range of both metal centres and co-ligands (Batten & Murray, 2003[Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103-130.]), and here we focus on just a few examples that are most closely related to the compounds (I)[link] and (II)[link] reported here.

Structures have been reported for (2,2′-bipy)2Cd(dca)2 (Mal et al., 2012[Mal, D., Sen, R., Brandao, P. & Lin, Z. (2012). Acta Cryst. E68, m1428.]) and for cadmium complexes of both dac and tcm containing 4-amino-3,5-bis­(pyridine-2-yl)-1,2,4-triazole as the neutral co-ligand (Setifi et al., 2017[Setifi, Z., Zambon, D., Setifi, F., El-Ghozzi, M., Mahiou, R. & Glidewell, C. (2017). Acta Cryst. C73, 674-681.]), but these compounds all comprise monomeric complexes in which the octa­hedral units are linked only by hydrogen bonds and ππ stacking inter­actions. Although the two triazole complexes both crystallize in space group P[\overline{1}], they are not isomorphous: this behaviour mirrors that of compounds (I)[link] and (II)[link] reported here.

However, [Cd(1,10-phen)(dca)2] forms a two-dimensional coordination polymer in which each dca bridges two metal centres but where some of the Cd⋯Cd links involve just one dca ligand and some involve two, forming a sheet containing both 12-membered and 36-membered rings (Luo et al., 2002[Luo, J.-H., Hong, M.-C., Cao, R., Liang, Y.-C., Zhao, Y., Wang, R. & Weng, J. (2002). Polyhedron, 21, 893-898.]), in contrast to the 24-membered rings found in compounds (I)[link] and (II)[link]. The compound [Cd(dipm)(dca)2], where (dipm) represents bis­(pyrimidin-2-yl)amine, forms a three-dimensional coordination polymer framework in which each dca ligand bridges two cadmium centres such that each Cd atom is directly linked to four others (van Albada et al., 2009[Albada, G. A. van, van der Horst, M. G., Teat, S. J., Gamez, P., Roubeau, O., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2009). Polyhedron, 28, 1541-1545.]).

5. Synthesis and crystallization

All chemical reagents and solvents are commercially available and were used as received, without further purification. For the synthesis of compounds (I)[link] and (II)[link], a mixture of 2-methyl-1H-benzimidazole (26 mg, 0.2 mmol), cadmium acetate dihydrate (27 mg, 0.1 mmol). and 0.2 mmol of either Na(dca) [for (I)] or K(tcm) [for (II)] in a mixture of water and ethanol (3:1 v/v, 20 ml) was sealed in a Teflon-lined autoclave and heated at 438 K for 2 days. After cooling to room temperature at a rate of 10 K h−1, yellow crystals were collected by filtration. Compound (I)[link]: yield 40%; analysis, found C 47.1, H 3.3, N 27.4%; C20H16CdN10 requires C 47.2, H 3.2, N 27.5%. Compound (II)[link]: yield 45%; analysis, found C 51.5, H 3.1, N 24.9%; C24H16CdN10 requires C 51.8, H 2.9, N 25.2%.

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 3[link]. All H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances of 0.93 Å (aromatic) or 0.96 Å (meth­yl), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for the other H atoms bonded to C atoms. For the H atoms bonded to N atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N), giving N—H distances of 0.79 (2) Å in (I)[link] and 0.80 (3) Å in (II)[link].

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2020).

Poly[trans,trans,trans-bis(µ-dicyanamido-κ2N1:N3)bis(2-methylbenzimidazole-κN)cadmium(II)] (I) top
Crystal data top
[Cd(C2N3)2(C8H8N2)2]F(000) = 508
Mr = 508.84Dx = 1.632 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.3472 (2) ÅCell parameters from 3954 reflections
b = 8.2386 (2) Åθ = 2.4–33.4°
c = 13.7448 (4) ŵ = 1.09 mm1
β = 101.908 (1)°T = 297 K
V = 1035.68 (5) Å3Block, yellow
Z = 20.50 × 0.34 × 0.21 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Eos, Gemini
diffractometer
3954 independent reflections
Radiation source: fine-focus sealed X-raytube3176 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 33.2°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1413
Tmin = 0.613, Tmax = 0.796k = 1212
47562 measured reflectionsl = 2121
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0235P)2 + 0.3418P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.060(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.37 e Å3
3954 reflectionsΔρmin = 0.39 e Å3
147 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0321 (14)
Primary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.50000.50000.02892 (5)
N10.09686 (13)0.32891 (17)0.59585 (11)0.0397 (3)
H10.042 (2)0.258 (2)0.6014 (15)0.048*
C20.21647 (14)0.31228 (17)0.55561 (11)0.0341 (3)
N30.29030 (12)0.44940 (16)0.55912 (9)0.0309 (2)
C3A0.21417 (14)0.56257 (18)0.60516 (10)0.0305 (2)
C40.24340 (16)0.72464 (19)0.63016 (11)0.0381 (3)
H40.32430.77730.61530.046*
C50.1469 (2)0.8046 (2)0.67824 (13)0.0471 (4)
H50.16360.91300.69570.056*
C60.0256 (2)0.7261 (2)0.70091 (15)0.0557 (5)
H60.03620.78340.73350.067*
C70.00496 (19)0.5667 (3)0.67648 (15)0.0518 (4)
H70.08630.51480.69120.062*
C7A0.09181 (16)0.48644 (17)0.62846 (12)0.0358 (3)
C210.2554 (2)0.1554 (2)0.51506 (15)0.0495 (4)
H21A0.33030.10310.56310.074*
H21B0.29060.17450.45520.074*
H21C0.17050.08700.50060.074*
N310.34628 (14)0.34457 (19)0.16293 (10)0.0433 (3)
C320.37029 (14)0.36394 (18)0.25940 (11)0.0348 (3)
N320.40344 (15)0.3836 (2)0.34355 (11)0.0520 (4)
C330.21918 (15)0.29123 (17)0.11597 (10)0.0331 (3)
N330.11198 (15)0.24538 (19)0.06690 (10)0.0462 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02177 (6)0.04283 (9)0.02187 (7)0.00136 (5)0.00381 (4)0.00049 (5)
N10.0306 (5)0.0428 (7)0.0481 (7)0.0057 (5)0.0140 (5)0.0036 (6)
C20.0299 (6)0.0372 (6)0.0360 (7)0.0018 (5)0.0089 (5)0.0005 (5)
N30.0273 (5)0.0350 (5)0.0322 (5)0.0006 (4)0.0101 (4)0.0019 (4)
C3A0.0271 (5)0.0375 (6)0.0278 (5)0.0024 (5)0.0080 (4)0.0002 (5)
C40.0374 (7)0.0412 (7)0.0367 (7)0.0002 (6)0.0102 (5)0.0035 (6)
C50.0542 (9)0.0460 (8)0.0430 (8)0.0081 (7)0.0146 (7)0.0079 (7)
C60.0549 (10)0.0642 (11)0.0558 (10)0.0162 (8)0.0294 (9)0.0033 (9)
C70.0416 (8)0.0623 (11)0.0598 (11)0.0081 (8)0.0295 (8)0.0043 (9)
C7A0.0278 (6)0.0457 (8)0.0360 (7)0.0020 (5)0.0114 (5)0.0036 (5)
C210.0499 (9)0.0379 (8)0.0634 (11)0.0046 (7)0.0182 (8)0.0075 (7)
N310.0344 (6)0.0633 (8)0.0321 (6)0.0085 (6)0.0069 (5)0.0073 (6)
C320.0269 (5)0.0421 (7)0.0347 (7)0.0012 (5)0.0049 (5)0.0068 (5)
N320.0392 (7)0.0806 (11)0.0346 (7)0.0079 (7)0.0037 (5)0.0142 (7)
C330.0358 (6)0.0366 (6)0.0279 (6)0.0022 (5)0.0088 (5)0.0043 (5)
N330.0417 (6)0.0580 (8)0.0385 (7)0.0116 (6)0.0075 (5)0.0127 (6)
Geometric parameters (Å, º) top
Cd1—N32.3094 (11)C4—H40.9300
Cd1—N3i2.3094 (11)C5—C61.395 (3)
Cd1—N322.3574 (14)C5—H50.9300
Cd1—N32i2.3574 (14)C6—C71.371 (3)
Cd1—N33ii2.3729 (14)C6—H60.9300
Cd1—N33iii2.3729 (14)C7—C7A1.392 (2)
N1—C21.3528 (18)C7—H70.9300
N1—C7A1.377 (2)C21—H21A0.9600
N1—H10.79 (2)C21—H21B0.9600
C2—N31.3194 (18)C21—H21C0.9600
C2—C211.482 (2)N31—C331.3056 (18)
N3—C3A1.4008 (18)N31—C321.3081 (19)
C3A—C41.392 (2)C32—N321.1455 (19)
C3A—C7A1.3983 (19)C33—N331.1501 (18)
C4—C51.389 (2)N33—Cd1iv2.3729 (14)
N3—Cd1—N3i180.0C5—C4—C3A117.30 (14)
N3—Cd1—N3293.12 (5)C5—C4—H4121.3
N3i—Cd1—N3286.88 (5)C3A—C4—H4121.3
N3—Cd1—N32i86.88 (5)C4—C5—C6121.57 (16)
N3i—Cd1—N32i93.12 (5)C4—C5—H5119.2
N32—Cd1—N32i180.00 (4)C6—C5—H5119.2
N3—Cd1—N33ii92.78 (5)C7—C6—C5121.85 (15)
N3i—Cd1—N33ii87.22 (5)C7—C6—H6119.1
N32—Cd1—N33ii93.56 (6)C5—C6—H6119.1
N32i—Cd1—N33ii86.44 (6)C6—C7—C7A116.61 (16)
N3—Cd1—N33iii87.22 (5)C6—C7—H7121.7
N3i—Cd1—N33iii92.78 (5)C7A—C7—H7121.7
N32—Cd1—N33iii86.44 (6)N1—C7A—C7132.17 (15)
N32i—Cd1—N33iii93.56 (6)N1—C7A—C3A105.29 (12)
N33ii—Cd1—N33iii180.0C7—C7A—C3A122.53 (15)
C2—N1—C7A108.37 (12)C2—C21—H21A109.5
C2—N1—H1124.9 (14)C2—C21—H21B109.5
C7A—N1—H1126.7 (14)H21A—C21—H21B109.5
N3—C2—N1111.63 (13)C2—C21—H21C109.5
N3—C2—C21126.37 (13)H21A—C21—H21C109.5
N1—C2—C21121.99 (13)H21B—C21—H21C109.5
C2—N3—C3A106.01 (11)C33—N31—C32119.37 (13)
C2—N3—Cd1128.11 (9)N32—C32—N31174.18 (15)
C3A—N3—Cd1125.87 (9)C32—N32—Cd1162.06 (15)
C4—C3A—C7A120.14 (13)N33—C33—N31173.85 (15)
C4—C3A—N3131.15 (13)C33—N33—Cd1iv140.21 (14)
C7A—C3A—N3108.70 (13)
C7A—N1—C2—N30.36 (18)C3A—C4—C5—C60.1 (3)
C7A—N1—C2—C21178.79 (15)C4—C5—C6—C70.4 (3)
N1—C2—N3—C3A0.33 (17)C5—C6—C7—C7A0.5 (3)
C21—C2—N3—C3A178.78 (15)C2—N1—C7A—C7178.60 (19)
N1—C2—N3—Cd1178.65 (10)C2—N1—C7A—C3A0.23 (17)
C21—C2—N3—Cd12.2 (2)C6—C7—C7A—N1178.30 (19)
C2—N3—C3A—C4178.46 (15)C6—C7—C7A—C3A0.4 (3)
Cd1—N3—C3A—C42.5 (2)C4—C3A—C7A—N1178.84 (13)
C2—N3—C3A—C7A0.17 (16)N3—C3A—C7A—N10.03 (17)
Cd1—N3—C3A—C7A178.83 (10)C4—C3A—C7A—C70.1 (2)
C7A—C3A—C4—C50.0 (2)N3—C3A—C7A—C7178.93 (16)
N3—C3A—C4—C5178.51 (15)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N31v0.79 (2)2.327 (19)3.0447 (19)151.3 (17)
Symmetry code: (v) x1/2, y+1/2, z+1/2.
Poly[trans,trans,trans-bis(2-methylbenzimidazole-κN)bis(µ-tricyanomethanido-κ2N:N')cadmium(II)] (II) top
Crystal data top
[Cd(C4N3)2(C8H8N2)2]F(000) = 556
Mr = 556.88Dx = 1.544 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.4395 (4) ÅCell parameters from 3664 reflections
b = 12.1219 (5) Åθ = 2.3–30.6°
c = 10.9675 (5) ŵ = 0.95 mm1
β = 107.342 (2)°T = 300 K
V = 1197.91 (9) Å3Block, yellow
Z = 20.48 × 0.36 × 0.22 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Eos, Gemini
diffractometer
3664 independent reflections
Radiation source: fine-focus sealed X-raytube2869 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 30.6°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1313
Tmin = 0.627, Tmax = 0.812k = 1717
41742 measured reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0175P)2 + 0.6078P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.060(Δ/σ)max = 0.001
S = 1.15Δρmax = 0.36 e Å3
3664 reflectionsΔρmin = 0.32 e Å3
165 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0182 (9)
Primary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.50000.50000.02855 (6)
N10.01561 (17)0.54588 (14)0.31770 (16)0.0392 (3)
H10.057 (3)0.5291 (19)0.262 (2)0.047*
C20.15085 (19)0.50291 (14)0.32869 (16)0.0329 (3)
N30.25220 (15)0.53853 (12)0.43361 (13)0.0307 (3)
C3A0.17551 (17)0.60782 (13)0.49471 (16)0.0306 (3)
C40.2229 (2)0.66514 (14)0.60956 (18)0.0377 (4)
H40.32070.66040.66140.045*
C50.1199 (3)0.72950 (16)0.6442 (2)0.0492 (5)
H50.14970.76950.71990.059*
C60.0273 (3)0.73568 (18)0.5684 (3)0.0544 (5)
H60.09310.78070.59390.065*
C70.0774 (2)0.67687 (17)0.4569 (2)0.0495 (5)
H70.17630.67940.40740.059*
C7A0.02632 (19)0.61325 (14)0.42113 (18)0.0359 (4)
C210.1739 (2)0.42717 (19)0.2308 (2)0.0498 (5)
H21A0.26810.39100.26350.075*
H21B0.17230.46830.15570.075*
H21C0.09620.37300.20970.075*
C310.43763 (19)0.62012 (14)0.06929 (16)0.0331 (3)
C320.48307 (19)0.57340 (14)0.19170 (17)0.0335 (3)
N320.5172 (2)0.53331 (16)0.29060 (16)0.0463 (4)
C330.49794 (19)0.72007 (15)0.04552 (18)0.0366 (4)
N330.5467 (2)0.80337 (14)0.02750 (18)0.0493 (4)
C340.3206 (2)0.57001 (16)0.02502 (18)0.0399 (4)
N340.2261 (2)0.5271 (2)0.09988 (19)0.0639 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02870 (9)0.02952 (9)0.02575 (9)0.00129 (6)0.00556 (6)0.00031 (6)
N10.0298 (7)0.0451 (8)0.0354 (8)0.0072 (6)0.0016 (6)0.0055 (7)
C20.0320 (7)0.0355 (8)0.0283 (7)0.0068 (7)0.0046 (6)0.0005 (7)
N30.0299 (6)0.0320 (6)0.0280 (7)0.0027 (5)0.0053 (5)0.0021 (5)
C3A0.0289 (7)0.0291 (7)0.0336 (8)0.0025 (6)0.0088 (6)0.0029 (6)
C40.0397 (9)0.0358 (8)0.0393 (10)0.0030 (7)0.0143 (7)0.0021 (7)
C50.0593 (12)0.0394 (10)0.0567 (13)0.0013 (9)0.0295 (10)0.0071 (9)
C60.0532 (12)0.0443 (11)0.0757 (16)0.0099 (9)0.0345 (12)0.0052 (10)
C70.0341 (9)0.0478 (11)0.0676 (14)0.0077 (8)0.0167 (9)0.0170 (10)
C7A0.0309 (8)0.0356 (8)0.0398 (9)0.0030 (6)0.0085 (7)0.0083 (7)
C210.0488 (11)0.0607 (12)0.0369 (10)0.0145 (10)0.0082 (9)0.0151 (9)
C310.0338 (8)0.0333 (8)0.0288 (8)0.0009 (6)0.0044 (6)0.0015 (6)
C320.0328 (8)0.0354 (8)0.0312 (9)0.0003 (6)0.0077 (6)0.0030 (6)
N320.0488 (9)0.0564 (9)0.0313 (8)0.0008 (8)0.0085 (7)0.0050 (7)
C330.0358 (8)0.0359 (8)0.0353 (9)0.0049 (7)0.0065 (7)0.0018 (7)
N330.0497 (9)0.0371 (8)0.0577 (11)0.0016 (7)0.0107 (8)0.0084 (8)
C340.0366 (9)0.0477 (10)0.0319 (9)0.0004 (8)0.0050 (7)0.0055 (7)
N340.0508 (11)0.0863 (15)0.0426 (11)0.0169 (10)0.0043 (9)0.0005 (10)
Geometric parameters (Å, º) top
Cd1—N32.2813 (14)C5—C61.392 (3)
Cd1—N3i2.2813 (14)C5—H50.9300
Cd1—N322.3845 (17)C6—C71.372 (3)
Cd1—N32i2.3845 (17)C6—H60.9300
Cd1—N33ii2.4265 (17)C7—C7A1.391 (3)
Cd1—N33iii2.4265 (17)C7—H70.9300
N1—C21.351 (2)C21—H21A0.9600
N1—C7A1.377 (3)C21—H21B0.9600
N1—H10.80 (3)C21—H21C0.9600
C2—N31.330 (2)C31—C331.396 (2)
C2—C211.477 (3)C31—C321.401 (2)
N3—C3A1.403 (2)C31—C341.407 (2)
C3A—C41.391 (2)C32—N321.144 (2)
C3A—C7A1.400 (2)C33—N331.151 (2)
C4—C51.386 (3)N33—Cd1iv2.4264 (17)
C4—H40.9300C34—N341.141 (3)
N3—Cd1—N3i180.0C5—C4—H4121.1
N3—Cd1—N3290.89 (6)C3A—C4—H4121.1
N3i—Cd1—N3289.11 (6)C4—C5—C6121.6 (2)
N3—Cd1—N32i89.11 (6)C4—C5—H5119.2
N3i—Cd1—N32i90.89 (6)C6—C5—H5119.2
N32—Cd1—N32i180.0C7—C6—C5121.45 (19)
N3—Cd1—N33ii88.27 (6)C7—C6—H6119.3
N3i—Cd1—N33ii91.73 (6)C5—C6—H6119.3
N32—Cd1—N33ii83.76 (6)C6—C7—C7A117.05 (19)
N32i—Cd1—N33ii96.24 (6)C6—C7—H7121.5
N3—Cd1—N33iii91.73 (6)C7A—C7—H7121.5
N3i—Cd1—N33iii88.27 (6)N1—C7A—C7132.53 (18)
N32—Cd1—N33iii96.24 (6)N1—C7A—C3A105.14 (15)
N32i—Cd1—N33iii83.76 (6)C7—C7A—C3A122.33 (18)
N33ii—Cd1—N33iii180.0C2—C21—H21A109.5
C2—N1—C7A108.66 (15)C2—C21—H21B109.5
C2—N1—H1123.1 (17)H21A—C21—H21B109.5
C7A—N1—H1128.1 (17)C2—C21—H21C109.5
N3—C2—N1111.65 (16)H21A—C21—H21C109.5
N3—C2—C21127.35 (17)H21B—C21—H21C109.5
N1—C2—C21121.00 (16)C33—C31—C32120.29 (16)
C2—N3—C3A105.49 (14)C33—C31—C34120.81 (16)
C2—N3—Cd1127.90 (12)C32—C31—C34118.62 (16)
C3A—N3—Cd1126.59 (10)N32—C32—C31178.2 (2)
C4—C3A—C7A119.70 (16)C32—N32—Cd1154.77 (16)
C4—C3A—N3131.24 (15)N33—C33—C31178.8 (2)
C7A—C3A—N3109.05 (15)C33—N33—Cd1iv144.66 (16)
C5—C4—C3A117.83 (18)N34—C34—C31178.4 (2)
C7A—N1—C2—N30.5 (2)C3A—C4—C5—C61.1 (3)
C7A—N1—C2—C21179.83 (17)C4—C5—C6—C71.1 (3)
N1—C2—N3—C3A0.92 (19)C5—C6—C7—C7A1.8 (3)
C21—C2—N3—C3A179.79 (18)C2—N1—C7A—C7179.92 (19)
N1—C2—N3—Cd1177.68 (11)C2—N1—C7A—C3A0.17 (19)
C21—C2—N3—Cd11.6 (3)C6—C7—C7A—N1179.71 (19)
C2—N3—C3A—C4177.72 (18)C6—C7—C7A—C3A0.4 (3)
Cd1—N3—C3A—C43.7 (3)C4—C3A—C7A—N1178.17 (15)
C2—N3—C3A—C7A1.01 (18)N3—C3A—C7A—N10.73 (18)
Cd1—N3—C3A—C7A177.61 (11)C4—C3A—C7A—C71.7 (3)
C7A—C3A—C4—C52.4 (3)N3—C3A—C7A—C7179.35 (16)
N3—C3A—C4—C5178.93 (18)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N34v0.80 (2)2.12 (2)2.906 (3)171 (3)
Symmetry code: (v) x, y+1, z.
Selected bond distances (Å) top
Parameter(I)(II)
Cd1—N32.3094 (11)2.2813 (14)
Cd1—N322.3574 (14)2.3845 (17)
Cd1—N33i2.3729 (14)2.4265 (17)
N31—C321.3081 (19)
N31—C331.3056 (18)
C31—C321.401 (2)
C31—C331.396 (2)
C31—C341.407 (2)
C32—N321.1455 (19)1.144 (2)
C33—N331.1501 (18)1.151 (2)
C34—N341.141 (3)
Symmetry codes: (i) 1/2 + x, 1/2 - y, 1/2 + z for (I) and 1 - x, -1/2 + y, 1/2 - z for (II).
Hydrogen bond parameters (Å, °) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)N1—H1···N31ii0.79 (2)2.327 (19)3.0447 (19)151.3 (17)
(II)N1—H1···N34iii0.80 (2)2.12 (2)2.906 (3)171 (3)
Symmetry codes: (ii) -1/2 + x, 1/2 - y, 1/2 + z; (iii) -x, 1 - y, -z.
 

Acknowledgements

Author contributions are as follows. Conceptualization, ZS and MHAD; methodology, ZS and MHAD; investigation, LM and LK; writing (original draft), CG and ZS; writing (review and editing of the manuscript), CG, FS and ZS; visualization, ZS and FS; funding acquisition, ZS and MHAD; resources, FS; supervision, FS.

Funding information

Funding for this research was provided by: the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique); the Algerian DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique; PRFU project (grant No. B00L01UN190120230003).

References

First citationAddala, A., Poupon, M., Bernès, S., Kürkçüoğlu, G. S., Liu, X., Lehchili, F., Kučeráková, M., Dušek, M., Setifi, F., Setifi, Z. & Reedijk, J. (2019). Polyhedron, 170, 271–277.  CSD CrossRef CAS Google Scholar
First citationAddala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310.  Web of Science CSD CrossRef CAS Google Scholar
First citationAlbada, G. A. van, van der Horst, M. G., Teat, S. J., Gamez, P., Roubeau, O., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2009). Polyhedron, 28, 1541–1545.  CSD CrossRef Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAtmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921–924.  Web of Science CSD CrossRef CAS Google Scholar
First citationBatten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103–130.  Web of Science CrossRef CAS Google Scholar
First citationBenmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.  Web of Science CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Gómez-García, C. J., Triki, S., Coronado, E. & Salaün, J. (2008). J. Mol. Struct. 890, 255–262.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDmitrienko, A. O., Buzin, M. I., Setifi, Z., Setifi, F., Alexandrov, E. V., Voronova, E. D. & Vologzhanina, A. V. (2020). Dalton Trans. 49, 7084–7092.  CSD CrossRef CAS PubMed Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationLehchili, F., Setifi, F., Liu, X., Saneei, A., Kučeráková, M., Setifi, Z., Dušek, M., Poupon, M., Pourayoubi, M. & Reedijk, J. (2017). Polyhedron, 131, 27–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuo, J.-H., Hong, M.-C., Cao, R., Liang, Y.-C., Zhao, Y., Wang, R. & Weng, J. (2002). Polyhedron, 21, 893–898.  CSD CrossRef CAS Google Scholar
First citationMal, D., Sen, R., Brandao, P. & Lin, Z. (2012). Acta Cryst. E68, m1428.  CSD CrossRef IUCr Journals Google Scholar
First citationMerabet, L., Vologzhanina, A. V., Setifi, Z., Kaboub, L. & Setifi, F. (2022). CrystEngComm, 24, 4740–4747.  CSD CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationSetifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). Inorg. Chem. 48, 1269–1271.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSetifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338–341.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014). Acta Cryst. C70, 19–22.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, Z., Setifi, F., Saadi, M., Rouag, D.-A. & Glidewell, C. (2014). Acta Cryst. C70, 359–363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, Z., Zambon, D., Setifi, F., El-Ghozzi, M., Mahiou, R. & Glidewell, C. (2017). Acta Cryst. C73, 674–681.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationŚwitlicka-Olszewska, A., Palion-Gazda, J., Klemens, T., Machura, B., Vallejo, J., Cano, J., Lloret, F. & Julve, M. (2016). Dalton Trans. 45, 10181–10193.  PubMed Google Scholar
First citationWang, Y., Jia, W., Chen, R., Zhao, X.-J. & Wang, Z.-L. (2017). Chem. Commun. 53, 636–639.  CSD CrossRef CAS Google Scholar
First citationYuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds