research communications
of a new europium(III) compound based on thiopheneacrylic acid
aThammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand, and bNuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand
*Correspondence e-mail: kc@tu.ac.th
A europium(III) coordination compound based on thiopheneacrylic acid (Htpa), triaquatris[3-(thiophen-2-yl)prop-2-enoato-κ2O,O′]europium(III)–3-(thiophen-2-yl)prop-2-enoic acid (1/3), [Eu(C7H5O2S)3(H2O)3]·3C7H6O2S or [Eu(tpa)3(H2O)3]·3(Htpa) (1), where tpa is the conjugate base of Htpa, has been synthesized and structurally characterized. Compound 1 crystallizes in the trigonal R3. The structure of 1 consists of a discrete molecular complex [Eu(tpa)3(H2O)3] species and the Htpa molecule. In the crystal, the two components are involved in O—H⋯O [ring motif R22(8)] and C—H⋯π hydrogen-bonding interactions. These interactions were further investigated by Hirshfeld surface analysis, which showed high contributions of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H contacts to the total Hirshfeld surfaces.
Keywords: crystal structure; europium(III); coordination compound; hydrogen bonds; lanthanide.
CCDC reference: 2226237
1. Chemical context
In crystal engineering, non-covalent interactions are used as a tool in the design and synthesis of functional crystalline materials with predictable structures and desirable physical properties (Desiraju, 2013; Mirzaei et al., 2014). Despite the significant number of structures known, this still remains a challenging task, and more especially for the lanthanide-based systems. This is due to the high and variable exhibited by the 4f metals and their small energy difference among various coordination geometries, which can give rise to the appearance of multiple-connected framework structures with a variety of topologies (Sairenji et al., 2016). In recent years, the design and synthesis of porous materials combining crystal engineering and coordination chemistry have attracted great attention because of their appealing structures and their potential applications in catalysis, ion-exchange, molecular adsorption and chemical sensing (Cawthray et al., 2015; Pan et al., 2021; Theppitak et al., 2021; Jiajaroen et al., 2022). However, the successful construction of such materials comes only from understanding and controlling the relationship between the geometry frameworks and the involved intermolecular interactions. In this work, we report the synthesis and supramolecular structure of a new europium(III) compound based on thiopheneacrylate (tpa), [Eu(tpa)3(H2O)3]·3(Htpa)] (1). The intermolecular interactions involved in the formation of the supramolecular structure of the title compound 1 are discussed in detail. In addition, a Hirshfeld surface analysis was performed to investigate the intermolecular interactions.
2. Structural commentary
Single crystal X-ray structural analysis reveals that the title compound 1 crystallizes in the trigonal system with R3. The (Parsons et al., 2013) of −0.025 (2) demonstrates the enantiomeric purity of the tested single crystal. The consists of one crystallographically independent EuIII ion, one tpa ligand, one Htpa molecule and one coordinated water molecule. As shown in Fig. 1, the structure of 1 consists of a discrete molecular complex [Eu(tpa)3(H2O)3] and the Htpa molecule. In the discrete complex species, the deprotonated carboxylic group of tpa ligand adopts a μ1-κ2O,O′-chelating coordination mode to the EuIII ion. The central EuIII ion is nine-coordinated with six oxygen atoms from three different tpa ligands and three oxygen atoms from coordinated water molecules. With the assistance of the SHAPE program (Llunell et al., 2013), the coordination geometry around the EuIII center in 1 could be described as a distorted spherical tricapped trigonal prism [TCTPR-9; shape, D3h symmetry; distortion (τ), 2.761], wherein a trigonal–prismatic geometry is formed by the vertical pairs: O1⋯O3′, O1′⋯O3′′, and O1′′··O3, while the O2, O2′, and O3′′ atoms act as caps as shown in Fig. 2. The Eu—O bond lengths range from 2.400 (2) to 2.511 (2) Å, and the bond angles range from 51.62 (5) to 157.80 (6)°, which are in the normal ranges of those observed in the reported europium(III) compounds (Behrsing et al., 2016; Sun et al., 2016; Alexander et al., 2019). In addition, the [Eu(tpa)3(H2O)3] complex interacts with the Htpa molecule through the formation of an R22(8) ring motif in terms of graph-set notation (Etter et al., 1990).
3. Supramolecular features
As depicted in Fig. 3, the discrete complex [Eu(tpa)3(H2O)3] forms a supramolecular chain extending parallel to the c axis with its symmetry-related molecules through classical O—H⋯O hydrogen-bonding interactions (Table 1) between the coordinated water molecules and the carboxylate groups of tpa ligands, which can be described by the R22(8) graph-set motif. The chains are further linked via C—H⋯π interactions involving the thiophene moieties of adjacent tpa ligands [C7—H7⋯Cg distance = 3.869 (3); symmetry code = − + y − x, −4/3 − x, − + z] . As a result (illustrated in Fig. 4), a three-dimensional hydrogen-bonded network is created with large channels running along the crystallographic c-axis direction. The Htpa molecules are located in the cavities of the network, and are hydrogen bonded to both the tpa and water molecules through intermolecular O—H⋯O interactions with the R22(8) ring motif. It should be noted that no evidence for π–π stacking interactions of neighboring aromatic thiophene rings is observed.
4. Hirshfeld surface analysis
The Hirshfeld surfaces and two-dimensional fingerprint plots was generated using CrystalExplorer 21.5 (Spackman et al., 2021) in order to quantify and visualize the intermolecular interactions in the of the title compound 1. As can be seen in Fig. 5, the Hirshfeld surfaces mapped over dnorm shows the most intense red spots around the carboxylate groups and water molecules resulting from the O—H⋯O hydrogen-bonding interactions between the complex [Eu(tpa)3(H2O)3] species and the Htpa molecules. Furthermore, analysis of the two-dimensional fingerprint plots, Fig. 6, reveals that H⋯H (32.1%) contacts, which represent van der Waals interactions, are the major contributors toward the Hirshfeld surface. Meanwhile, H⋯C/C⋯H (24.9%, i.e. C—H⋯π) and H⋯O/O⋯H (22.0%, i.e. O—H⋯O) contacts also make a significant contribution. The H⋯S/S⋯H (14.8%), C⋯O/O⋯C (3.1%) and C⋯S/S⋯C (1.6%) contacts make a small contribution to the entire Hirshfeld surface. Therefore, it can be concluded that O—H⋯O and C—H⋯π hydrogen bonds as well as H⋯H and H⋯S van der Waals contacts contribute significantly to the overall stability of the packing arrangement of the of the title compound 1.
5. Infrared spectroscopy
The infrared (IR) spectrum of the title compound 1 was recorded on a Perkin Elmer model Spectrum 100 spectrometer using the attenuated total reflectance (ATR) mode in the range of 650–4000 cm−1. As can be seen in Fig. 7, the broad absorption bands in the region 3020–3400 cm−1 are assigned to the stretching vibrations of the hydroxyl (O—H) groups. The band at 2978 cm−1 corresponds to the C—H stretching vibrations. The strong band at 1670 cm−1 indicates the existence of the carboxylic groups while the strong bands appearing in the region 1305–1610 cm−1 can be ascribed to the asymmetric and symmetric stretching vibrations of the carboxylate groups. The bands at 705 and 750 cm−1 can be assigned to C—S stretching vibrations.
6. Thermal stability
The thermal stability of the title compound 1 was studied by thermogravimetric analysis (TGA). The sample was studied on TGA55 TA Instrument from room temperature to 1073 K under a N2 atmosphere (heating rate of 10oC min−1). As shown in Fig. 8, the TGA curve of 1 displays two steps of weight loss. The first weight loss of 52.1% from 325–500 K can be ascribed to the removal of water and Htpa molecules (calculated 50.7%). Then the structure begins to collapse at around 630 K.
7. Database survey
A ConQuest search for the metal complexes bearing the thiopheneacrylate ligand in the Cambridge Structural Database (CSD version 5.42, September 2021 update; Bruno et al., 2002; Groom et al., 2016) resulted in ten hits, namely, the complexes with the MoV ion (GAKPUF, Vrdoljak et al., 2010; DAMRUG, Alberding et al., 2011), SbV ion (GIFPET, GIFPIX, Sarwar et al., 2018), SnIV ion (NUJGII, Danish et al., 1996; RIWBII, Parvez et al., 1997; TEDTIF, TEDTOL, Danish et al., 1995), GaIII ion (YUWCAV, Uhl et al., 2010), and PdII ion (ZIJNAK, Vasseur et al., 2018). In these complexes, the tpa ligand displays four distinct coordination modes with the carboxylate anions being monodentate μ1-κ1O (GIFPET, GIFPIX), bidentate chelating μ1-κ2O,O′ (RIWBII, ZIJNAK, similar to that found in the title compound 1) and μ2-κO:κO (DAMRUG, GAKPUF, NUJGII, YUWCAV), or bidentate bridging μ2-κO:κO′ (TEDTIF, TEDTOL). In addition, 69 hits for lanthanide complexes with the [Ln(COO)3(H2O)3] coordination sphere similar to that in the title compound 1 were found. Twelve of them viz. CSD refcodes HIVCEW, HIVCIA, HIVCOG, HIVCUM, HIVDAT (Marques et al., 2013), LOMNAE (Tsaryuk et al., 2014), VUSGIZ, VUSGOF, VUSGUL (Zeng & Pan, 1992), XILLUA (Kameshwar et al., 2007a), XILNUC (Kameshwar et al., 2007b), and YENHOO (Rzaczynska & Belskii, 1994) crystallized in the trigonal system with R3, and the central Ln3+ cation exhibiting a nine-coordinated tricapped trigonal–prismatic (TTP) geometry.
8. Synthesis and crystallization
All reagents were purchased as analytical grade and used without further purification. The Htpa ligand (30.8 mg, 0.2 mmol) was dissolved in an isopropanol solution (2 ml) and was then added dropwise to an aqueous solution (5 ml) of Eu(NO3)3·6H2O (44.61 mg, 0.1 mmol). The mixture was stirred for 1 h at room temperature and then filtered to remove any undissolved solid. The solution was slowly evaporated at room temperature. Colorless block-shaped crystals of 1 were obtained in 20% yield (8.9 mg) based on Eu3+ source.
9. Refinement
Crystal data, data collection and structure . All non-hydrogen atoms were refined anisotropically. Hydrogen atoms attached to carbon atoms were refined in the riding-model approximation with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). Hydrogen atoms bounded to oxygen atoms of coordinated water (O3) and carboxylic acid (O4) were located from difference-Fourier maps but were refined with distance restraints of O—H = 0.84 ± 0.01 Å and with Uiso(H) = 1.5Ueq(O). The thiophene ring of the Htpa molecule was found to be disordered over two positions and the site occupancies of the disordered fragments were refined to 0.778 (4) and 0.222 (4). The restraints of the SADI, RIGU and FLAT commands were applied to accommodate the disordered thiophene ring.
details are summarized in Table 2Supporting information
CCDC reference: 2226237
https://doi.org/10.1107/S2056989022011884/jq2020sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022011884/jq2020Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022011884/jq2020Isup3.cdx
Data collection: APEX4 (Bruker, 2019); cell
SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).[Eu(C7H5O2S)3(H2O)3]·3C7H6O2S | Dx = 1.552 Mg m−3 |
Mr = 1128.05 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3 | Cell parameters from 9889 reflections |
a = 26.5369 (6) Å | θ = 2.7–30.4° |
c = 5.9386 (1) Å | µ = 1.62 mm−1 |
V = 3621.72 (17) Å3 | T = 296 K |
Z = 3 | Block, colourless |
F(000) = 1710 | 0.28 × 0.22 × 0.12 mm |
Bruker D8 QUEST CMOS diffractometer | 4921 independent reflections |
Radiation source: sealed x-ray tube, Mo | 4921 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 7.39 pixels mm-1 | θmax = 30.6°, θmin = 2.7° |
φ and ω scans | h = −37→37 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −37→37 |
Tmin = 0.690, Tmax = 0.746 | l = −8→8 |
54319 measured reflections |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0145P)2 + 0.9645P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.015 | (Δ/σ)max = 0.001 |
wR(F2) = 0.032 | Δρmax = 0.21 e Å−3 |
S = 1.07 | Δρmin = −0.25 e Å−3 |
4921 reflections | Extinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
252 parameters | Extinction coefficient: 0.00059 (8) |
88 restraints | Absolute structure: Flack x determined using 2459 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Hydrogen site location: mixed | Absolute structure parameter: −0.024 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Eu1 | 0.333333 | 0.666667 | 0.48411 (2) | 0.02639 (5) | |
S1 | 0.36988 (4) | 0.42204 (3) | 0.93748 (13) | 0.05608 (18) | |
S2 | 0.07634 (8) | 0.25613 (8) | 0.0719 (3) | 0.0619 (4) | 0.778 (4) |
S2A | 0.0659 (6) | 0.3006 (7) | −0.330 (2) | 0.075 (2) | 0.222 (4) |
O1 | 0.36847 (8) | 0.62424 (7) | 0.7756 (3) | 0.0377 (3) | |
O2 | 0.30981 (8) | 0.56296 (7) | 0.5258 (3) | 0.0445 (4) | |
O3 | 0.26557 (8) | 0.60435 (7) | 0.2042 (3) | 0.0391 (3) | |
H3A | 0.2574 (13) | 0.5703 (7) | 0.197 (5) | 0.031 (7)* | |
H3B | 0.2612 (13) | 0.6169 (12) | 0.083 (3) | 0.051 (8)* | |
O4 | 0.24635 (12) | 0.45449 (9) | 0.3997 (5) | 0.0819 (8) | |
H4 | 0.2673 (14) | 0.4894 (8) | 0.436 (6) | 0.077 (11)* | |
O5 | 0.22298 (10) | 0.48956 (8) | 0.1065 (4) | 0.0591 (5) | |
C1 | 0.34166 (10) | 0.57296 (10) | 0.6978 (4) | 0.0327 (4) | |
C2 | 0.34785 (11) | 0.52549 (10) | 0.7943 (4) | 0.0405 (5) | |
H2 | 0.330251 | 0.489999 | 0.719057 | 0.049* | |
C3 | 0.37665 (11) | 0.52981 (11) | 0.9802 (4) | 0.0403 (5) | |
H3 | 0.391555 | 0.564646 | 1.059115 | 0.048* | |
C4 | 0.38750 (10) | 0.48571 (10) | 1.0746 (4) | 0.0395 (5) | |
C5 | 0.41575 (12) | 0.48962 (11) | 1.2707 (4) | 0.0477 (6) | |
H5 | 0.428911 | 0.520927 | 1.369331 | 0.057* | |
C6 | 0.42297 (13) | 0.44089 (13) | 1.3086 (5) | 0.0548 (7) | |
H6 | 0.441164 | 0.436683 | 1.435195 | 0.066* | |
C7 | 0.40079 (14) | 0.40149 (13) | 1.1425 (5) | 0.0541 (7) | |
H7 | 0.402122 | 0.367138 | 1.139609 | 0.065* | |
C8 | 0.21768 (11) | 0.44876 (11) | 0.2140 (5) | 0.0476 (6) | |
C9 | 0.17650 (12) | 0.38762 (11) | 0.1581 (5) | 0.0513 (6) | |
H9 | 0.174401 | 0.358161 | 0.249464 | 0.062* | |
C10 | 0.14254 (11) | 0.37414 (12) | −0.0201 (5) | 0.0496 (6) | |
H10 | 0.148027 | 0.405028 | −0.110983 | 0.060* | 0.778 (4) |
H10A | 0.146668 | 0.403635 | −0.116266 | 0.060* | 0.222 (4) |
C11 | 0.0978 (3) | 0.3170 (2) | −0.0906 (16) | 0.050 (2) | 0.778 (4) |
C11A | 0.0989 (6) | 0.3144 (9) | −0.070 (5) | 0.051 (7) | 0.222 (4) |
C12 | 0.0688 (7) | 0.3046 (7) | −0.282 (2) | 0.080 (3) | 0.778 (4) |
H12 | 0.072978 | 0.332514 | −0.386972 | 0.097* | 0.778 (4) |
C12A | 0.0791 (12) | 0.2676 (11) | 0.049 (5) | 0.085 (11) | 0.222 (4) |
H12A | 0.092117 | 0.267347 | 0.194105 | 0.102* | 0.222 (4) |
C13 | 0.0297 (3) | 0.2428 (3) | −0.3118 (14) | 0.080 (2) | 0.778 (4) |
H13 | 0.007440 | 0.226422 | −0.440497 | 0.095* | 0.778 (4) |
C13A | 0.0345 (12) | 0.2148 (11) | −0.063 (4) | 0.063 (6) | 0.222 (4) |
H13A | 0.016090 | 0.177634 | −0.001909 | 0.076* | 0.222 (4) |
C14 | 0.0292 (4) | 0.2116 (4) | −0.1301 (15) | 0.073 (2) | 0.778 (4) |
H14 | 0.006362 | 0.171352 | −0.117203 | 0.087* | 0.778 (4) |
C14A | 0.0245 (10) | 0.2287 (9) | −0.269 (5) | 0.075 (8) | 0.222 (4) |
H14A | −0.002560 | 0.201670 | −0.368413 | 0.090* | 0.222 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Eu1 | 0.02863 (5) | 0.02863 (5) | 0.02191 (6) | 0.01432 (3) | 0.000 | 0.000 |
S1 | 0.0759 (5) | 0.0441 (3) | 0.0540 (4) | 0.0343 (3) | −0.0218 (3) | −0.0081 (3) |
S2 | 0.0656 (9) | 0.0470 (7) | 0.0633 (8) | 0.0208 (6) | −0.0086 (6) | −0.0082 (5) |
S2A | 0.067 (4) | 0.078 (4) | 0.069 (5) | 0.029 (3) | −0.032 (3) | −0.025 (3) |
O1 | 0.0486 (10) | 0.0343 (8) | 0.0331 (8) | 0.0229 (7) | −0.0127 (7) | −0.0072 (6) |
O2 | 0.0589 (10) | 0.0349 (8) | 0.0390 (8) | 0.0228 (8) | −0.0222 (7) | −0.0056 (6) |
O3 | 0.0454 (9) | 0.0355 (9) | 0.0316 (8) | 0.0168 (8) | −0.0122 (7) | 0.0017 (7) |
O4 | 0.0987 (18) | 0.0395 (11) | 0.0989 (19) | 0.0282 (12) | −0.0581 (15) | −0.0183 (11) |
O5 | 0.0659 (13) | 0.0417 (10) | 0.0584 (12) | 0.0184 (9) | −0.0173 (10) | −0.0091 (9) |
C1 | 0.0378 (11) | 0.0333 (10) | 0.0296 (10) | 0.0197 (9) | −0.0047 (8) | −0.0011 (8) |
C2 | 0.0485 (13) | 0.0355 (11) | 0.0410 (11) | 0.0236 (10) | −0.0105 (10) | −0.0018 (9) |
C3 | 0.0484 (13) | 0.0383 (11) | 0.0400 (12) | 0.0260 (10) | −0.0104 (10) | −0.0042 (9) |
C4 | 0.0435 (12) | 0.0381 (11) | 0.0391 (11) | 0.0220 (10) | −0.0072 (9) | 0.0003 (9) |
C5 | 0.0566 (15) | 0.0428 (13) | 0.0455 (13) | 0.0264 (12) | −0.0154 (11) | −0.0030 (10) |
C6 | 0.0565 (16) | 0.0552 (15) | 0.0552 (15) | 0.0298 (13) | −0.0139 (12) | 0.0118 (12) |
C7 | 0.0628 (17) | 0.0456 (14) | 0.0621 (17) | 0.0333 (13) | −0.0067 (14) | 0.0098 (12) |
C8 | 0.0432 (13) | 0.0411 (12) | 0.0607 (15) | 0.0229 (11) | −0.0098 (11) | −0.0137 (11) |
C9 | 0.0528 (15) | 0.0400 (13) | 0.0625 (17) | 0.0243 (12) | −0.0142 (12) | −0.0133 (11) |
C10 | 0.0483 (14) | 0.0447 (13) | 0.0571 (15) | 0.0242 (11) | −0.0070 (11) | −0.0108 (11) |
C11 | 0.049 (4) | 0.046 (2) | 0.054 (3) | 0.022 (2) | −0.009 (3) | −0.009 (2) |
C11A | 0.025 (9) | 0.058 (6) | 0.069 (15) | 0.019 (6) | −0.010 (8) | −0.028 (8) |
C12 | 0.073 (5) | 0.065 (4) | 0.069 (5) | 0.008 (4) | −0.025 (4) | −0.012 (4) |
C12A | 0.090 (17) | 0.054 (8) | 0.083 (15) | 0.014 (8) | −0.008 (10) | −0.023 (8) |
C13 | 0.055 (3) | 0.074 (5) | 0.070 (3) | 0.003 (3) | −0.021 (2) | −0.018 (3) |
C13A | 0.063 (11) | 0.051 (7) | 0.074 (15) | 0.027 (7) | −0.002 (9) | −0.016 (7) |
C14 | 0.058 (3) | 0.055 (3) | 0.073 (5) | 0.003 (2) | −0.002 (3) | −0.018 (3) |
C14A | 0.061 (12) | 0.026 (7) | 0.096 (15) | −0.011 (6) | −0.021 (10) | −0.002 (7) |
Eu1—O1i | 2.4868 (16) | C3—C4 | 1.451 (3) |
Eu1—O1ii | 2.4868 (16) | C4—C5 | 1.361 (3) |
Eu1—O1 | 2.4868 (16) | C5—H5 | 0.9300 |
Eu1—O2ii | 2.5113 (16) | C5—C6 | 1.417 (4) |
Eu1—O2 | 2.5112 (16) | C6—H6 | 0.9300 |
Eu1—O2i | 2.5113 (16) | C6—C7 | 1.340 (4) |
Eu1—O3i | 2.3996 (15) | C7—H7 | 0.9300 |
Eu1—O3ii | 2.3997 (15) | C8—C9 | 1.471 (3) |
Eu1—O3 | 2.3997 (15) | C9—H9 | 0.9300 |
S1—C4 | 1.716 (2) | C9—C10 | 1.318 (4) |
S1—C7 | 1.703 (3) | C10—H10 | 0.9300 |
S2—C11 | 1.715 (9) | C10—H10A | 0.9300 |
S2—C14 | 1.710 (7) | C10—C11 | 1.443 (6) |
S2A—C11A | 1.72 (3) | C10—C11A | 1.452 (17) |
S2A—C14A | 1.70 (2) | C11—C12 | 1.322 (14) |
O1—C1 | 1.266 (3) | C11A—C12A | 1.29 (3) |
O2—O4iii | 11.564 (3) | C12—H12 | 0.9300 |
O2—C1 | 1.266 (3) | C12—C13 | 1.446 (15) |
O3—H3A | 0.818 (13) | C12A—H12A | 0.9300 |
O3—H3B | 0.826 (13) | C12A—C13A | 1.47 (3) |
O4—H4 | 0.836 (14) | C13—H13 | 0.9300 |
O4—C8 | 1.305 (3) | C13—C14 | 1.358 (9) |
O5—C8 | 1.203 (3) | C13A—H13A | 0.9300 |
C1—C2 | 1.466 (3) | C13A—C14A | 1.34 (2) |
C2—H2 | 0.9300 | C14—H14 | 0.9300 |
C2—C3 | 1.315 (3) | C14A—H14A | 0.9300 |
C3—H3 | 0.9300 | ||
O1i—Eu1—O1ii | 76.88 (6) | C2—C3—H3 | 116.7 |
O1i—Eu1—O1 | 76.88 (6) | C2—C3—C4 | 126.5 (2) |
O1ii—Eu1—O1 | 76.88 (6) | C4—C3—H3 | 116.7 |
O1—Eu1—O2ii | 79.32 (6) | C3—C4—S1 | 123.01 (17) |
O1—Eu1—O2i | 126.87 (6) | C5—C4—S1 | 110.47 (18) |
O1ii—Eu1—O2 | 126.87 (6) | C5—C4—C3 | 126.4 (2) |
O1i—Eu1—O2i | 51.62 (5) | C4—C5—H5 | 123.6 |
O1ii—Eu1—O2ii | 51.62 (5) | C4—C5—C6 | 112.8 (2) |
O1ii—Eu1—O2i | 79.33 (6) | C6—C5—H5 | 123.6 |
O1—Eu1—O2 | 51.62 (5) | C5—C6—H6 | 123.6 |
O1i—Eu1—O2 | 79.33 (6) | C7—C6—C5 | 112.8 (2) |
O1i—Eu1—O2ii | 126.87 (6) | C7—C6—H6 | 123.6 |
O2ii—Eu1—O2 | 119.037 (14) | S1—C7—H7 | 124.1 |
O2i—Eu1—O2 | 119.040 (14) | C6—C7—S1 | 111.7 (2) |
O2i—Eu1—O2ii | 119.038 (14) | C6—C7—H7 | 124.1 |
O3i—Eu1—O1 | 157.80 (6) | O4—C8—C9 | 112.8 (2) |
O3i—Eu1—O1ii | 91.68 (6) | O5—C8—O4 | 123.0 (2) |
O3ii—Eu1—O1ii | 119.45 (5) | O5—C8—C9 | 124.1 (3) |
O3ii—Eu1—O1i | 157.80 (6) | C8—C9—H9 | 119.6 |
O3—Eu1—O1ii | 157.80 (6) | C10—C9—C8 | 120.7 (3) |
O3ii—Eu1—O1 | 91.68 (6) | C10—C9—H9 | 119.7 |
O3—Eu1—O1 | 119.45 (5) | C9—C10—H10 | 116.2 |
O3—Eu1—O1i | 91.68 (6) | C9—C10—H10A | 119.2 |
O3i—Eu1—O1i | 119.45 (5) | C9—C10—C11 | 127.5 (5) |
O3—Eu1—O2ii | 141.12 (6) | C9—C10—C11A | 121.6 (13) |
O3—Eu1—O2 | 67.86 (5) | C11—C10—H10 | 116.2 |
O3ii—Eu1—O2ii | 67.86 (5) | C11A—C10—H10A | 119.2 |
O3ii—Eu1—O2i | 141.12 (6) | C10—C11—S2 | 122.5 (7) |
O3i—Eu1—O2 | 141.12 (6) | C12—C11—S2 | 111.9 (8) |
O3i—Eu1—O2i | 67.86 (5) | C12—C11—C10 | 125.6 (10) |
O3ii—Eu1—O2 | 78.67 (7) | C10—C11A—S2A | 117 (2) |
O3i—Eu1—O2ii | 78.67 (7) | C12A—C11A—S2A | 111.6 (16) |
O3—Eu1—O2i | 78.67 (7) | C12A—C11A—C10 | 131 (3) |
O3i—Eu1—O3ii | 77.30 (7) | C11—C12—H12 | 123.7 |
O3—Eu1—O3ii | 77.30 (7) | C11—C12—C13 | 112.6 (12) |
O3i—Eu1—O3 | 77.30 (7) | C13—C12—H12 | 123.7 |
C7—S1—C4 | 92.19 (13) | C11A—C12A—H12A | 122.7 |
C14—S2—C11 | 92.3 (5) | C11A—C12A—C13A | 115 (3) |
C14A—S2A—C11A | 91.3 (14) | C13A—C12A—H12A | 122.7 |
C1—O1—Eu1 | 95.50 (12) | C12—C13—H13 | 123.9 |
Eu1—O2—O4iii | 150.31 (5) | C14—C13—C12 | 112.2 (8) |
C1—O2—Eu1 | 94.35 (13) | C14—C13—H13 | 123.9 |
C1—O2—O4iii | 109.24 (13) | O3ii—C13A—H13A | 143.0 |
Eu1—O3—H3A | 119 (2) | C12A—C13A—H13A | 125.4 |
Eu1—O3—H3B | 122 (2) | C14A—C13A—C12A | 109 (2) |
H3A—O3—H3B | 113 (3) | C14A—C13A—H13A | 125.4 |
C8—O4—H4 | 112 (3) | S2—C14—H14 | 124.6 |
O1—C1—C2 | 122.4 (2) | C13—C14—S2 | 110.8 (6) |
O2—C1—O1 | 118.50 (19) | C13—C14—H14 | 124.6 |
O2—C1—C2 | 119.0 (2) | S2A—C14A—H14A | 123.3 |
C1—C2—H2 | 117.9 | C13A—C14A—S2A | 113 (2) |
C3—C2—C1 | 124.3 (2) | C13A—C14A—H14A | 123.3 |
C3—C2—H2 | 117.9 | ||
Eu1—O1—C1—O2 | −1.5 (2) | C7—S1—C4—C3 | 175.6 (2) |
Eu1—O1—C1—C2 | 176.2 (2) | C7—S1—C4—C5 | −0.3 (2) |
Eu1—O2—C1—O1 | 1.5 (2) | C8—C9—C10—C11 | −176.2 (4) |
Eu1—O2—C1—C2 | −176.33 (19) | C8—C9—C10—C11A | −175.8 (6) |
S1—C4—C5—C6 | 0.0 (3) | C9—C10—C11—S2 | 7.3 (6) |
S2—C11—C12—C13 | −4.1 (14) | C9—C10—C11—C12 | −172.7 (10) |
S2A—C11A—C12A—C13A | 0.4 (6) | C9—C10—C11A—S2A | −169.2 (7) |
O1—C1—C2—C3 | 6.8 (4) | C9—C10—C11A—C12A | 11.0 (8) |
O2—C1—C2—C3 | −175.5 (3) | C10—C11—C12—C13 | 175.8 (6) |
O3ii—C13A—C14A—S2A | −5.5 (5) | C10—C11A—C12A—C13A | −179.8 (3) |
O4iii—O2—C1—O1 | 163.18 (17) | C11—S2—C14—C13 | −1.1 (6) |
O4iii—O2—C1—C2 | −14.6 (2) | C11—C12—C13—C14 | 3.4 (14) |
O4—C8—C9—C10 | 177.6 (3) | C11A—S2A—C14A—C13A | −0.2 (5) |
O5—C8—C9—C10 | 0.6 (5) | C11A—C12A—C13A—O3ii | 18.1 (16) |
C1—C2—C3—C4 | −175.5 (2) | C11A—C12A—C13A—C14A | −0.5 (8) |
C2—C3—C4—S1 | 6.9 (4) | C12—C13—C14—S2 | −1.0 (9) |
C2—C3—C4—C5 | −177.8 (3) | C12A—C13A—C14A—S2A | 0.5 (7) |
C3—C4—C5—C6 | −175.7 (3) | C14—S2—C11—C10 | −176.9 (4) |
C4—S1—C7—C6 | 0.6 (3) | C14—S2—C11—C12 | 3.1 (9) |
C4—C5—C6—C7 | 0.4 (4) | C14A—S2A—C11A—C10 | −179.9 (2) |
C5—C6—C7—S1 | −0.7 (4) | C14A—S2A—C11A—C12A | −0.1 (4) |
Symmetry codes: (i) −x+y, −x+1, z; (ii) −y+1, x−y+1, z; (iii) −y+2/3, x−y+1/3, z−2/3. |
Cg1 is the centroid of the S1/C4–C7 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O5 | 0.82 (1) | 1.94 (2) | 2.729 (3) | 162 (3) |
O3—H3B···O1iv | 0.82 (1) | 1.89 (2) | 2.693 (2) | 165 (3) |
O4—H4···O2 | 0.84 (1) | 1.78 (2) | 2.614 (3) | 177 (4) |
C7—H7···Cg1v | 0.93 | 3.10 | 3.869 (3) | 141 |
Symmetry codes: (iv) −x+y, −x+1, z−1; (v) −x+y−2/3, −x−4/3, z−1/3. |
Acknowledgements
This study was partially supported by the Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa).
Funding information
Funding for this research was provided by: Thailand Institute of Nuclear Technology (Public Organization), Thailand, through its program of TINT to University (grant to Kittipong Chainok); The Research Professional Development Project under the Science Achievement Scholarship of Thailand (SAST) (scholarship to Suwadee Jiajaroen).
References
Alberding, B. G., Chisholm, M. H., Lear, B. J., Naseri, V. & Reed, C. R. (2011). Dalton Trans. 40, 10658–10663. CrossRef CAS PubMed Google Scholar
Alexander, D., Thomas, K., Joy, M., Biju, P. R., Unnikrishnan, N. V. & Joseph, C. (2019). Acta Cryst. C75, 589–597. CrossRef IUCr Journals Google Scholar
Behrsing, T., Deacon, G. B., Luu, J., Junk, P. C., Skelton, B. W. & White, A. W. (2016). Polyhedron, 120, 69–81. CrossRef CAS Google Scholar
Bruker (2019). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cawthray, J. F., Creagh, A. L., Haynes, C. A. & Orvig, C. (2015). Inorg. Chem. 54, 1440–1445. CrossRef CAS PubMed Google Scholar
Danish, M., Ali, S., Mazhar, M. & Badshah, A. (1996). Main Group Met. Chem. 19, 121–131. CrossRef CAS Google Scholar
Danish, M., Ali, S., Mazhar, M., Badshah, A., Masood, T. & Tiekink, E. R. T. (1995). Main Group Met. Chem. 18, 27–34. CrossRef CAS Google Scholar
Desiraju, G. R. (2013). J. Am. Chem. Soc. 135, 9952–9967. Web of Science CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jiajaroen, S., Dungkaew, W., Kielar, F., Sukwattanasinitt, M., Sahasithiwat, S., Zenno, H., Hayami, S., Azam, M., Al-Resayes, S. I. & Chainok, K. (2022). Dalton Trans. 51, 7420–7435. CrossRef CAS PubMed Google Scholar
Kameshwar, P. M., Wadawale, A. & Ajgaonkar, V. R. (2007a). Acta Cryst. E63, m2584. CrossRef IUCr Journals Google Scholar
Kameshwar, P. M., Wadawale, A. & Ajgaonkar, V. R. (2007b). Acta Cryst. E63, m2598. CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Llunell, M., Casanova, D., Cirera, A., Alemany, A. & Alvarez, S. (2013). SHAPE. University of Barcelona, Barcelona, Spain. Google Scholar
Marques, L. F., Cantaruti Júnior, A. A. B., Correa, C. C., Lahoud, M. G., da Silva, R. R., Ribeiro, S. J. L. & Machado, F. C. (2013). J. Photochem. Photobiol. Chem. 252, 69–76. CrossRef CAS Google Scholar
Mirzaei, M., Eshtiagh-Hosseini, H., Karrabi, Z., Molčanov, K., Eydizadeh, E., Mague, J. T., Bauzá, A. & Frontera, A. (2014). CrystEngComm, 16, 5352–5363. Web of Science CSD CrossRef CAS Google Scholar
Pan, Z., Zhang, J., Guo, L., Yang, H., Li, J. & Cui, C. (2021). Inorg. Chem. 60, 12696–12702. CrossRef CAS PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Parvez, M., Ali, S., Masood, T. M., Mazhar, M. & Danish, M. (1997). Acta Cryst. C53, 1211–1213. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Rzaczynska, Z. & Belskii, V. K. (1994). Pol. J. Chem. 68, 369–375. CAS Google Scholar
Sairenji, S., Akine, S. & Nabeshima, T. (2016). Dalton Trans. 45, 14902–14906. CrossRef CAS PubMed Google Scholar
Sarwar, S., Iftikhar, T., Rauf, M. K., Badshah, A., Waseem, D., Tahir, M. N., Khan, K. M. & Khan, G. M. (2018). Inorg. Chim. Acta, 476, 12–19. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, Y.-Q., Wan, F., Li, X.-X., Lin, J., Wu, T., Zheng, S.-T. & Bu, X. (2016). Chem. Commun. 52, 10125–10128. CrossRef CAS Google Scholar
Theppitak, C., Jiajaroen, S., Chongboriboon, N., Chanthee, S., Kielar, F., Dungkaew, W., Sukwattanasinitt, M. & Chainok, K. (2021). Molecules, 26, 4428. CrossRef PubMed Google Scholar
Tsaryuk, V., Vologzhanina, A., Zhuravlev, K., Kudryashova, V., Szostak, R. & Zolin, V. (2014). J. Photochem. Photobiol. Chem. 285, 52–61. CrossRef CAS Google Scholar
Uhl, W., Bock, H. R., Hepp, A., Rogel, F. & Voss, M. (2010). Z. Anorg. Allg. Chem. 636, 1255–1262. CrossRef CAS Google Scholar
Vasseur, A., Membrat, R., Palpacelli, D., Giorgi, M., Nuel, D., Giordano, L. & Martinez, A. (2018). Chem. Commun. 54, 10132–10135. CrossRef CAS Google Scholar
Vrdoljak, V., Prugovečki, B., Matković-Čalogović, D., Novak, P. & Cindrić, M. (2010). Inorg. Chim. Acta, 363, 3516–3522. CrossRef CAS Google Scholar
Zeng, H.-D. & Pan, K.-Z. (1992). Chin. J. Struct. Chem. 11, 388. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.