research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a new europium(III) compound based on thio­phene­acrylic acid

crossmark logo

aThammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand, and bNuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand
*Correspondence e-mail: kc@tu.ac.th

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 11 July 2022; accepted 13 December 2022; online 1 January 2023)

A europium(III) coordination compound based on thio­phene­acrylic acid (Htpa), tri­aqua­tris­[3-(thio­phen-2-yl)prop-2-enoato-κ2O,O′]europium(III)–3-(thio­phen-2-yl)prop-2-enoic acid (1/3), [Eu(C7H5O2S)3(H2O)3]·3C7H6O2S or [Eu(tpa)3(H2O)3]·3(Htpa) (1), where tpa is the conjugate base of Htpa, has been synthesized and structurally characterized. Compound 1 crystallizes in the trigonal space group R3. The structure of 1 consists of a discrete mol­ecular complex [Eu(tpa)3(H2O)3] species and the Htpa mol­ecule. In the crystal, the two components are involved in O—H⋯O [ring motif R22(8)] and C—H⋯π hydrogen-bonding inter­actions. These inter­actions were further investigated by Hirshfeld surface analysis, which showed high contributions of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H contacts to the total Hirshfeld surfaces.

1. Chemical context

In crystal engineering, non-covalent inter­actions are used as a tool in the design and synthesis of functional crystalline materials with predictable structures and desirable physical properties (Desiraju, 2013[Desiraju, G. R. (2013). J. Am. Chem. Soc. 135, 9952-9967.]; Mirzaei et al., 2014[Mirzaei, M., Eshtiagh-Hosseini, H., Karrabi, Z., Molčanov, K., Eydizadeh, E., Mague, J. T., Bauzá, A. & Frontera, A. (2014). CrystEngComm, 16, 5352-5363.]). Despite the significant number of structures known, this still remains a challenging task, and more especially for the lanthanide-based systems. This is due to the high and variable coordination number exhibited by the 4f metals and their small energy difference among various coordination geometries, which can give rise to the appearance of multiple-connected framework structures with a variety of topologies (Sairenji et al., 2016[Sairenji, S., Akine, S. & Nabeshima, T. (2016). Dalton Trans. 45, 14902-14906.]). In recent years, the design and synthesis of porous materials combining crystal engineering and coordination chemistry have attracted great attention because of their appealing structures and their potential applications in catalysis, ion-exchange, mol­ecular adsorption and chemical sensing (Cawthray et al., 2015[Cawthray, J. F., Creagh, A. L., Haynes, C. A. & Orvig, C. (2015). Inorg. Chem. 54, 1440-1445.]; Pan et al., 2021[Pan, Z., Zhang, J., Guo, L., Yang, H., Li, J. & Cui, C. (2021). Inorg. Chem. 60, 12696-12702.]; Theppitak et al., 2021[Theppitak, C., Jiajaroen, S., Chongboriboon, N., Chanthee, S., Kielar, F., Dungkaew, W., Sukwattanasinitt, M. & Chainok, K. (2021). Molecules, 26, 4428.]; Jiajaroen et al., 2022[Jiajaroen, S., Dungkaew, W., Kielar, F., Sukwattanasinitt, M., Sahasithiwat, S., Zenno, H., Hayami, S., Azam, M., Al-Resayes, S. I. & Chainok, K. (2022). Dalton Trans. 51, 7420-7435.]). However, the successful construction of such materials comes only from understanding and controlling the relationship between the geometry frameworks and the involved inter­molecular inter­actions. In this work, we report the synthesis and supra­molecular structure of a new europium(III) compound based on thio­phene­acrylate (tpa), [Eu(tpa)3(H2O)3]·3(Htpa)] (1). The inter­molecular inter­actions involved in the formation of the supra­molecular structure of the title compound 1 are discussed in detail. In addition, a Hirshfeld surface analysis was performed to investigate the inter­molecular inter­actions.

[Scheme 1]

2. Structural commentary

Single crystal X-ray structural analysis reveals that the title compound 1 crystallizes in the trigonal system with space group R3. The Flack parameter (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) of −0.025 (2) demonstrates the enanti­omeric purity of the tested single crystal. The asymmetric unit consists of one crystallographically independent EuIII ion, one tpa ligand, one Htpa mol­ecule and one coordinated water mol­ecule. As shown in Fig. 1[link], the structure of 1 consists of a discrete mol­ecular complex [Eu(tpa)3(H2O)3] and the Htpa mol­ecule. In the discrete complex species, the deprotonated carb­oxy­lic group of tpa ligand adopts a μ1-κ2O,O′-chelating coordination mode to the EuIII ion. The central EuIII ion is nine-coordinated with six oxygen atoms from three different tpa ligands and three oxygen atoms from coordinated water mol­ecules. With the assistance of the SHAPE program (Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, A., Alemany, A. & Alvarez, S. (2013). SHAPE. University of Barcelona, Barcelona, Spain.]), the coordination geometry around the EuIII center in 1 could be described as a distorted spherical tricapped trigonal prism [TCTPR-9; shape, D3h symmetry; distortion (τ), 2.761], wherein a trigonal–prismatic geometry is formed by the vertical pairs: O1⋯O3′, O1′⋯O3′′, and O1′′··O3, while the O2, O2′, and O3′′ atoms act as caps as shown in Fig. 2[link]. The Eu—O bond lengths range from 2.400 (2) to 2.511 (2) Å, and the bond angles range from 51.62 (5) to 157.80 (6)°, which are in the normal ranges of those observed in the reported europium(III) compounds (Behrsing et al., 2016[Behrsing, T., Deacon, G. B., Luu, J., Junk, P. C., Skelton, B. W. & White, A. W. (2016). Polyhedron, 120, 69-81.]; Sun et al., 2016[Sun, Y.-Q., Wan, F., Li, X.-X., Lin, J., Wu, T., Zheng, S.-T. & Bu, X. (2016). Chem. Commun. 52, 10125-10128.]; Alexander et al., 2019[Alexander, D., Thomas, K., Joy, M., Biju, P. R., Unnikrishnan, N. V. & Joseph, C. (2019). Acta Cryst. C75, 589-597.]). In addition, the [Eu(tpa)3(H2O)3] complex inter­acts with the Htpa mol­ecule through the formation of an R22(8) ring motif in terms of graph-set notation (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Figure 1]
Figure 1
Mol­ecular structure of the title compound 1. Displacement ellipsoids are drawn at the 30% probability level. All hydrogen atoms were omitted for clarity. Symmetry codes: (i) −x + y, −x + 1, z; (ii) −y + 1, x − y + 1, z.
[Figure 2]
Figure 2
View of the distorted spherical tricapped trigonal prism (TCTPR-9) of the central EuIII ion in the title compound 1. Symmetry codes: (i) −x + y, −x + 1, z; (ii) −y + 1, x − y + 1, z.

3. Supra­molecular features

As depicted in Fig. 3[link], the discrete complex [Eu(tpa)3(H2O)3] forms a supra­molecular chain extending parallel to the c axis with its symmetry-related mol­ecules through classical O—H⋯O hydrogen-bonding inter­actions (Table 1[link]) between the coordinated water mol­ecules and the carboxyl­ate groups of tpa ligands, which can be described by the R22(8) graph-set motif. The chains are further linked via C—H⋯π inter­actions involving the thio­phene moieties of adjacent tpa ligands [C7—H7⋯Cg distance = 3.869 (3); symmetry code = −[{2\over 3}] + y − x, −4/3 − x, −[{1\over 3}] + z] . As a result (illustrated in Fig. 4[link]), a three-dimensional hydrogen-bonded network is created with large channels running along the crystallographic c-axis direction. The Htpa mol­ecules are located in the cavities of the network, and are hydrogen bonded to both the tpa and water mol­ecules through inter­molecular O—H⋯O inter­actions with the R22(8) ring motif. It should be noted that no evidence for ππ stacking inter­actions of neighboring aromatic thio­phene rings is observed.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the S1/C4–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O5 0.82 (1) 1.94 (2) 2.729 (3) 162 (3)
O3—H3B⋯O1i 0.82 (1) 1.89 (2) 2.693 (2) 165 (3)
O4—H4⋯O2 0.84 (1) 1.78 (2) 2.614 (3) 177 (4)
C7—H7⋯Cg1ii 0.93 3.10 3.869 (3) 141
Symmetry codes: (i) [-x+y, -x+1, z-1]; (ii) [-x+y-{\script{2\over 3}}, -x-{\script{4\over 3}}, z-{\script{1\over 3}}].
[Figure 3]
Figure 3
The one-dimensional hydrogen-bonded chain in the title compound 1 running parallel to the c axis.
[Figure 4]
Figure 4
Crystal packing diagram of the title compound 1, showing the three-dimensional hydrogen-bonded networks of the complex [Eu(tpa)3(H2O)3] species with the Htpa mol­ecules in space-filling representation.

4. Hirshfeld surface analysis

The Hirshfeld surfaces and two-dimensional fingerprint plots was generated using CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) in order to qu­antify and visualize the inter­molecular inter­actions in the crystal structure of the title compound 1. As can be seen in Fig. 5[link], the Hirshfeld surfaces mapped over dnorm shows the most intense red spots around the carboxyl­ate groups and water mol­ecules resulting from the O—H⋯O hydrogen-bonding inter­actions between the complex [Eu(tpa)3(H2O)3] species and the Htpa mol­ecules. Furthermore, analysis of the two-dimensional fingerprint plots, Fig. 6[link], reveals that H⋯H (32.1%) contacts, which represent van der Waals inter­actions, are the major contributors toward the Hirshfeld surface. Meanwhile, H⋯C/C⋯H (24.9%, i.e. C—H⋯π) and H⋯O/O⋯H (22.0%, i.e. O—H⋯O) contacts also make a significant contribution. The H⋯S/S⋯H (14.8%), C⋯O/O⋯C (3.1%) and C⋯S/S⋯C (1.6%) contacts make a small contribution to the entire Hirshfeld surface. Therefore, it can be concluded that O—H⋯O and C—H⋯π hydrogen bonds as well as H⋯H and H⋯S van der Waals contacts contribute significantly to the overall stability of the packing arrangement of the crystal structure of the title compound 1.

[Figure 5]
Figure 5
Hirshfeld surface mapped over dnorm of the title compound 1, highlighting the O—H⋯O inter­actions.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots of the title compound 1, showing (a) all inter­actions, and those delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯S/S⋯H, (f) O⋯C/C⋯O, (g) S⋯C/C⋯S, (h) C⋯C, (i) S⋯S, and (j) O⋯O contacts [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

5. Infrared spectroscopy

The infrared (IR) spectrum of the title compound 1 was recorded on a Perkin Elmer model Spectrum 100 spectrometer using the attenuated total reflectance (ATR) mode in the range of 650–4000 cm−1. As can be seen in Fig. 7[link], the broad absorption bands in the region 3020–3400 cm−1 are assigned to the stretching vibrations of the hydroxyl (O—H) groups. The band at 2978 cm−1 corresponds to the C—H stretching vibrations. The strong band at 1670 cm−1 indicates the existence of the carb­oxy­lic groups while the strong bands appearing in the region 1305–1610 cm−1 can be ascribed to the asymmetric and symmetric stretching vibrations of the carboxyl­ate groups. The bands at 705 and 750 cm−1 can be assigned to C—S stretching vibrations.

[Figure 7]
Figure 7
IR spectrum of the title compound 1.

6. Thermal stability

The thermal stability of the title compound 1 was studied by thermogravimetric analysis (TGA). The sample was studied on TGA55 TA Instrument from room temperature to 1073 K under a N2 atmosphere (heating rate of 10oC min−1). As shown in Fig. 8[link], the TGA curve of 1 displays two steps of weight loss. The first weight loss of 52.1% from 325–500 K can be ascribed to the removal of water and Htpa mol­ecules (calculated 50.7%). Then the structure begins to collapse at around 630 K.

[Figure 8]
Figure 8
TGA curve of the title compound 1.

7. Database survey

A ConQuest search for the metal complexes bearing the thio­phene­acrylate ligand in the Cambridge Structural Database (CSD version 5.42, September 2021 update; Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) resulted in ten hits, namely, the complexes with the MoV ion (GAKPUF, Vrdoljak et al., 2010[Vrdoljak, V., Prugovečki, B., Matković-Čalogović, D., Novak, P. & Cindrić, M. (2010). Inorg. Chim. Acta, 363, 3516-3522.]; DAMRUG, Alberding et al., 2011[Alberding, B. G., Chisholm, M. H., Lear, B. J., Naseri, V. & Reed, C. R. (2011). Dalton Trans. 40, 10658-10663.]), SbV ion (GIFPET, GIFPIX, Sarwar et al., 2018[Sarwar, S., Iftikhar, T., Rauf, M. K., Badshah, A., Waseem, D., Tahir, M. N., Khan, K. M. & Khan, G. M. (2018). Inorg. Chim. Acta, 476, 12-19.]), SnIV ion (NUJGII, Danish et al., 1996[Danish, M., Ali, S., Mazhar, M. & Badshah, A. (1996). Main Group Met. Chem. 19, 121-131.]; RIWBII, Parvez et al., 1997[Parvez, M., Ali, S., Masood, T. M., Mazhar, M. & Danish, M. (1997). Acta Cryst. C53, 1211-1213.]; TEDTIF, TEDTOL, Danish et al., 1995[Danish, M., Ali, S., Mazhar, M., Badshah, A., Masood, T. & Tiekink, E. R. T. (1995). Main Group Met. Chem. 18, 27-34.]), GaIII ion (YUWCAV, Uhl et al., 2010[Uhl, W., Bock, H. R., Hepp, A., Rogel, F. & Voss, M. (2010). Z. Anorg. Allg. Chem. 636, 1255-1262.]), and PdII ion (ZIJNAK, Vasseur et al., 2018[Vasseur, A., Membrat, R., Palpacelli, D., Giorgi, M., Nuel, D., Giordano, L. & Martinez, A. (2018). Chem. Commun. 54, 10132-10135.]). In these complexes, the tpa ligand displays four distinct coordination modes with the carboxyl­ate anions being monodentate μ1-κ1O (GIFPET, GIFPIX), bidentate chelating μ1-κ2O,O′ (RIWBII, ZIJNAK, similar to that found in the title compound 1) and μ2-κO:κO (DAMRUG, GAKPUF, NUJGII, YUWCAV), or bidentate bridging μ2-κO:κO′ (TEDTIF, TEDTOL). In addition, 69 hits for lanthanide complexes with the [Ln(COO)3(H2O)3] coord­ination sphere similar to that in the title compound 1 were found. Twelve of them viz. CSD refcodes HIVCEW, HIVCIA, HIVCOG, HIVCUM, HIVDAT (Marques et al., 2013[Marques, L. F., Cantaruti Júnior, A. A. B., Correa, C. C., Lahoud, M. G., da Silva, R. R., Ribeiro, S. J. L. & Machado, F. C. (2013). J. Photochem. Photobiol. Chem. 252, 69-76.]), LOMNAE (Tsaryuk et al., 2014[Tsaryuk, V., Vologzhanina, A., Zhuravlev, K., Kudryashova, V., Szostak, R. & Zolin, V. (2014). J. Photochem. Photobiol. Chem. 285, 52-61.]), VUSGIZ, VUSGOF, VUSGUL (Zeng & Pan, 1992[Zeng, H.-D. & Pan, K.-Z. (1992). Chin. J. Struct. Chem. 11, 388.]), XILLUA (Kameshwar et al., 2007a[Kameshwar, P. M., Wadawale, A. & Ajgaonkar, V. R. (2007a). Acta Cryst. E63, m2584.]), XILNUC (Kameshwar et al., 2007b[Kameshwar, P. M., Wadawale, A. & Ajgaonkar, V. R. (2007b). Acta Cryst. E63, m2598.]), and YENHOO (Rzaczynska & Belskii, 1994[Rzaczynska, Z. & Belskii, V. K. (1994). Pol. J. Chem. 68, 369-375.]) crystallized in the trigonal system with space group R3, and the central Ln3+ cation exhibiting a nine-coordinated tricapped trigonal–prismatic (TTP) geometry.

8. Synthesis and crystallization

All reagents were purchased as analytical grade and used without further purification. The Htpa ligand (30.8 mg, 0.2 mmol) was dissolved in an iso­propanol solution (2 ml) and was then added dropwise to an aqueous solution (5 ml) of Eu(NO3)3·6H2O (44.61 mg, 0.1 mmol). The mixture was stirred for 1 h at room temperature and then filtered to remove any undissolved solid. The solution was slowly evaporated at room temperature. Colorless block-shaped crystals of 1 were obtained in 20% yield (8.9 mg) based on Eu3+ source.

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms attached to carbon atoms were refined in the riding-model approximation with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). Hydrogen atoms bounded to oxygen atoms of coordinated water (O3) and carb­oxy­lic acid (O4) were located from difference-Fourier maps but were refined with distance restraints of O—H = 0.84 ± 0.01 Å and with Uiso(H) = 1.5Ueq(O). The thio­phene ring of the Htpa mol­ecule was found to be disordered over two positions and the site occupancies of the disordered fragments were refined to 0.778 (4) and 0.222 (4). The restraints of the SADI, RIGU and FLAT commands were applied to accommodate the disordered thio­phene ring.

Table 2
Experimental details

Crystal data
Chemical formula [Eu(C7H5O2S)3(H2O)3]·3C7H6O2S
Mr 1128.05
Crystal system, space group Trigonal, R3
Temperature (K) 296
a, c (Å) 26.5369 (6), 5.9386 (1)
V3) 3621.72 (17)
Z 3
Radiation type Mo Kα
μ (mm−1) 1.62
Crystal size (mm) 0.28 × 0.22 × 0.12
 
Data collection
Diffractometer Bruker D8 QUEST CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.690, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 54319, 4921, 4921
Rint 0.036
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.032, 1.07
No. of reflections 4921
No. of parameters 252
No. of restraints 88
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.25
Absolute structure Flack x determined using 2459 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.024 (2)
Computer programs: APEX4 and SAINT (Bruker, 2019[Bruker (2019). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX4 (Bruker, 2019); cell refinement: SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Triaquatris[3-(thiophen-2-yl)prop-2-enoato-κ2O,O'}europium(III)–3-(thiophen-2-yl)prop-2-enoic acid (1/3) top
Crystal data top
[Eu(C7H5O2S)3(H2O)3]·3C7H6O2SDx = 1.552 Mg m3
Mr = 1128.05Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 9889 reflections
a = 26.5369 (6) Åθ = 2.7–30.4°
c = 5.9386 (1) ŵ = 1.62 mm1
V = 3621.72 (17) Å3T = 296 K
Z = 3Block, colourless
F(000) = 17100.28 × 0.22 × 0.12 mm
Data collection top
Bruker D8 QUEST CMOS
diffractometer
4921 independent reflections
Radiation source: sealed x-ray tube, Mo4921 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 7.39 pixels mm-1θmax = 30.6°, θmin = 2.7°
φ and ω scansh = 3737
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 3737
Tmin = 0.690, Tmax = 0.746l = 88
54319 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0145P)2 + 0.9645P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.015(Δ/σ)max = 0.001
wR(F2) = 0.032Δρmax = 0.21 e Å3
S = 1.07Δρmin = 0.25 e Å3
4921 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
252 parametersExtinction coefficient: 0.00059 (8)
88 restraintsAbsolute structure: Flack x determined using 2459 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: mixedAbsolute structure parameter: 0.024 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Eu10.3333330.6666670.48411 (2)0.02639 (5)
S10.36988 (4)0.42204 (3)0.93748 (13)0.05608 (18)
S20.07634 (8)0.25613 (8)0.0719 (3)0.0619 (4)0.778 (4)
S2A0.0659 (6)0.3006 (7)0.330 (2)0.075 (2)0.222 (4)
O10.36847 (8)0.62424 (7)0.7756 (3)0.0377 (3)
O20.30981 (8)0.56296 (7)0.5258 (3)0.0445 (4)
O30.26557 (8)0.60435 (7)0.2042 (3)0.0391 (3)
H3A0.2574 (13)0.5703 (7)0.197 (5)0.031 (7)*
H3B0.2612 (13)0.6169 (12)0.083 (3)0.051 (8)*
O40.24635 (12)0.45449 (9)0.3997 (5)0.0819 (8)
H40.2673 (14)0.4894 (8)0.436 (6)0.077 (11)*
O50.22298 (10)0.48956 (8)0.1065 (4)0.0591 (5)
C10.34166 (10)0.57296 (10)0.6978 (4)0.0327 (4)
C20.34785 (11)0.52549 (10)0.7943 (4)0.0405 (5)
H20.3302510.4899990.7190570.049*
C30.37665 (11)0.52981 (11)0.9802 (4)0.0403 (5)
H30.3915550.5646461.0591150.048*
C40.38750 (10)0.48571 (10)1.0746 (4)0.0395 (5)
C50.41575 (12)0.48962 (11)1.2707 (4)0.0477 (6)
H50.4289110.5209271.3693310.057*
C60.42297 (13)0.44089 (13)1.3086 (5)0.0548 (7)
H60.4411640.4366831.4351950.066*
C70.40079 (14)0.40149 (13)1.1425 (5)0.0541 (7)
H70.4021220.3671381.1396090.065*
C80.21768 (11)0.44876 (11)0.2140 (5)0.0476 (6)
C90.17650 (12)0.38762 (11)0.1581 (5)0.0513 (6)
H90.1744010.3581610.2494640.062*
C100.14254 (11)0.37414 (12)0.0201 (5)0.0496 (6)
H100.1480270.4050280.1109830.060*0.778 (4)
H10A0.1466680.4036350.1162660.060*0.222 (4)
C110.0978 (3)0.3170 (2)0.0906 (16)0.050 (2)0.778 (4)
C11A0.0989 (6)0.3144 (9)0.070 (5)0.051 (7)0.222 (4)
C120.0688 (7)0.3046 (7)0.282 (2)0.080 (3)0.778 (4)
H120.0729780.3325140.3869720.097*0.778 (4)
C12A0.0791 (12)0.2676 (11)0.049 (5)0.085 (11)0.222 (4)
H12A0.0921170.2673470.1941050.102*0.222 (4)
C130.0297 (3)0.2428 (3)0.3118 (14)0.080 (2)0.778 (4)
H130.0074400.2264220.4404970.095*0.778 (4)
C13A0.0345 (12)0.2148 (11)0.063 (4)0.063 (6)0.222 (4)
H13A0.0160900.1776340.0019090.076*0.222 (4)
C140.0292 (4)0.2116 (4)0.1301 (15)0.073 (2)0.778 (4)
H140.0063620.1713520.1172030.087*0.778 (4)
C14A0.0245 (10)0.2287 (9)0.269 (5)0.075 (8)0.222 (4)
H14A0.0025600.2016700.3684130.090*0.222 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.02863 (5)0.02863 (5)0.02191 (6)0.01432 (3)0.0000.000
S10.0759 (5)0.0441 (3)0.0540 (4)0.0343 (3)0.0218 (3)0.0081 (3)
S20.0656 (9)0.0470 (7)0.0633 (8)0.0208 (6)0.0086 (6)0.0082 (5)
S2A0.067 (4)0.078 (4)0.069 (5)0.029 (3)0.032 (3)0.025 (3)
O10.0486 (10)0.0343 (8)0.0331 (8)0.0229 (7)0.0127 (7)0.0072 (6)
O20.0589 (10)0.0349 (8)0.0390 (8)0.0228 (8)0.0222 (7)0.0056 (6)
O30.0454 (9)0.0355 (9)0.0316 (8)0.0168 (8)0.0122 (7)0.0017 (7)
O40.0987 (18)0.0395 (11)0.0989 (19)0.0282 (12)0.0581 (15)0.0183 (11)
O50.0659 (13)0.0417 (10)0.0584 (12)0.0184 (9)0.0173 (10)0.0091 (9)
C10.0378 (11)0.0333 (10)0.0296 (10)0.0197 (9)0.0047 (8)0.0011 (8)
C20.0485 (13)0.0355 (11)0.0410 (11)0.0236 (10)0.0105 (10)0.0018 (9)
C30.0484 (13)0.0383 (11)0.0400 (12)0.0260 (10)0.0104 (10)0.0042 (9)
C40.0435 (12)0.0381 (11)0.0391 (11)0.0220 (10)0.0072 (9)0.0003 (9)
C50.0566 (15)0.0428 (13)0.0455 (13)0.0264 (12)0.0154 (11)0.0030 (10)
C60.0565 (16)0.0552 (15)0.0552 (15)0.0298 (13)0.0139 (12)0.0118 (12)
C70.0628 (17)0.0456 (14)0.0621 (17)0.0333 (13)0.0067 (14)0.0098 (12)
C80.0432 (13)0.0411 (12)0.0607 (15)0.0229 (11)0.0098 (11)0.0137 (11)
C90.0528 (15)0.0400 (13)0.0625 (17)0.0243 (12)0.0142 (12)0.0133 (11)
C100.0483 (14)0.0447 (13)0.0571 (15)0.0242 (11)0.0070 (11)0.0108 (11)
C110.049 (4)0.046 (2)0.054 (3)0.022 (2)0.009 (3)0.009 (2)
C11A0.025 (9)0.058 (6)0.069 (15)0.019 (6)0.010 (8)0.028 (8)
C120.073 (5)0.065 (4)0.069 (5)0.008 (4)0.025 (4)0.012 (4)
C12A0.090 (17)0.054 (8)0.083 (15)0.014 (8)0.008 (10)0.023 (8)
C130.055 (3)0.074 (5)0.070 (3)0.003 (3)0.021 (2)0.018 (3)
C13A0.063 (11)0.051 (7)0.074 (15)0.027 (7)0.002 (9)0.016 (7)
C140.058 (3)0.055 (3)0.073 (5)0.003 (2)0.002 (3)0.018 (3)
C14A0.061 (12)0.026 (7)0.096 (15)0.011 (6)0.021 (10)0.002 (7)
Geometric parameters (Å, º) top
Eu1—O1i2.4868 (16)C3—C41.451 (3)
Eu1—O1ii2.4868 (16)C4—C51.361 (3)
Eu1—O12.4868 (16)C5—H50.9300
Eu1—O2ii2.5113 (16)C5—C61.417 (4)
Eu1—O22.5112 (16)C6—H60.9300
Eu1—O2i2.5113 (16)C6—C71.340 (4)
Eu1—O3i2.3996 (15)C7—H70.9300
Eu1—O3ii2.3997 (15)C8—C91.471 (3)
Eu1—O32.3997 (15)C9—H90.9300
S1—C41.716 (2)C9—C101.318 (4)
S1—C71.703 (3)C10—H100.9300
S2—C111.715 (9)C10—H10A0.9300
S2—C141.710 (7)C10—C111.443 (6)
S2A—C11A1.72 (3)C10—C11A1.452 (17)
S2A—C14A1.70 (2)C11—C121.322 (14)
O1—C11.266 (3)C11A—C12A1.29 (3)
O2—O4iii11.564 (3)C12—H120.9300
O2—C11.266 (3)C12—C131.446 (15)
O3—H3A0.818 (13)C12A—H12A0.9300
O3—H3B0.826 (13)C12A—C13A1.47 (3)
O4—H40.836 (14)C13—H130.9300
O4—C81.305 (3)C13—C141.358 (9)
O5—C81.203 (3)C13A—H13A0.9300
C1—C21.466 (3)C13A—C14A1.34 (2)
C2—H20.9300C14—H140.9300
C2—C31.315 (3)C14A—H14A0.9300
C3—H30.9300
O1i—Eu1—O1ii76.88 (6)C2—C3—H3116.7
O1i—Eu1—O176.88 (6)C2—C3—C4126.5 (2)
O1ii—Eu1—O176.88 (6)C4—C3—H3116.7
O1—Eu1—O2ii79.32 (6)C3—C4—S1123.01 (17)
O1—Eu1—O2i126.87 (6)C5—C4—S1110.47 (18)
O1ii—Eu1—O2126.87 (6)C5—C4—C3126.4 (2)
O1i—Eu1—O2i51.62 (5)C4—C5—H5123.6
O1ii—Eu1—O2ii51.62 (5)C4—C5—C6112.8 (2)
O1ii—Eu1—O2i79.33 (6)C6—C5—H5123.6
O1—Eu1—O251.62 (5)C5—C6—H6123.6
O1i—Eu1—O279.33 (6)C7—C6—C5112.8 (2)
O1i—Eu1—O2ii126.87 (6)C7—C6—H6123.6
O2ii—Eu1—O2119.037 (14)S1—C7—H7124.1
O2i—Eu1—O2119.040 (14)C6—C7—S1111.7 (2)
O2i—Eu1—O2ii119.038 (14)C6—C7—H7124.1
O3i—Eu1—O1157.80 (6)O4—C8—C9112.8 (2)
O3i—Eu1—O1ii91.68 (6)O5—C8—O4123.0 (2)
O3ii—Eu1—O1ii119.45 (5)O5—C8—C9124.1 (3)
O3ii—Eu1—O1i157.80 (6)C8—C9—H9119.6
O3—Eu1—O1ii157.80 (6)C10—C9—C8120.7 (3)
O3ii—Eu1—O191.68 (6)C10—C9—H9119.7
O3—Eu1—O1119.45 (5)C9—C10—H10116.2
O3—Eu1—O1i91.68 (6)C9—C10—H10A119.2
O3i—Eu1—O1i119.45 (5)C9—C10—C11127.5 (5)
O3—Eu1—O2ii141.12 (6)C9—C10—C11A121.6 (13)
O3—Eu1—O267.86 (5)C11—C10—H10116.2
O3ii—Eu1—O2ii67.86 (5)C11A—C10—H10A119.2
O3ii—Eu1—O2i141.12 (6)C10—C11—S2122.5 (7)
O3i—Eu1—O2141.12 (6)C12—C11—S2111.9 (8)
O3i—Eu1—O2i67.86 (5)C12—C11—C10125.6 (10)
O3ii—Eu1—O278.67 (7)C10—C11A—S2A117 (2)
O3i—Eu1—O2ii78.67 (7)C12A—C11A—S2A111.6 (16)
O3—Eu1—O2i78.67 (7)C12A—C11A—C10131 (3)
O3i—Eu1—O3ii77.30 (7)C11—C12—H12123.7
O3—Eu1—O3ii77.30 (7)C11—C12—C13112.6 (12)
O3i—Eu1—O377.30 (7)C13—C12—H12123.7
C7—S1—C492.19 (13)C11A—C12A—H12A122.7
C14—S2—C1192.3 (5)C11A—C12A—C13A115 (3)
C14A—S2A—C11A91.3 (14)C13A—C12A—H12A122.7
C1—O1—Eu195.50 (12)C12—C13—H13123.9
Eu1—O2—O4iii150.31 (5)C14—C13—C12112.2 (8)
C1—O2—Eu194.35 (13)C14—C13—H13123.9
C1—O2—O4iii109.24 (13)O3ii—C13A—H13A143.0
Eu1—O3—H3A119 (2)C12A—C13A—H13A125.4
Eu1—O3—H3B122 (2)C14A—C13A—C12A109 (2)
H3A—O3—H3B113 (3)C14A—C13A—H13A125.4
C8—O4—H4112 (3)S2—C14—H14124.6
O1—C1—C2122.4 (2)C13—C14—S2110.8 (6)
O2—C1—O1118.50 (19)C13—C14—H14124.6
O2—C1—C2119.0 (2)S2A—C14A—H14A123.3
C1—C2—H2117.9C13A—C14A—S2A113 (2)
C3—C2—C1124.3 (2)C13A—C14A—H14A123.3
C3—C2—H2117.9
Eu1—O1—C1—O21.5 (2)C7—S1—C4—C3175.6 (2)
Eu1—O1—C1—C2176.2 (2)C7—S1—C4—C50.3 (2)
Eu1—O2—C1—O11.5 (2)C8—C9—C10—C11176.2 (4)
Eu1—O2—C1—C2176.33 (19)C8—C9—C10—C11A175.8 (6)
S1—C4—C5—C60.0 (3)C9—C10—C11—S27.3 (6)
S2—C11—C12—C134.1 (14)C9—C10—C11—C12172.7 (10)
S2A—C11A—C12A—C13A0.4 (6)C9—C10—C11A—S2A169.2 (7)
O1—C1—C2—C36.8 (4)C9—C10—C11A—C12A11.0 (8)
O2—C1—C2—C3175.5 (3)C10—C11—C12—C13175.8 (6)
O3ii—C13A—C14A—S2A5.5 (5)C10—C11A—C12A—C13A179.8 (3)
O4iii—O2—C1—O1163.18 (17)C11—S2—C14—C131.1 (6)
O4iii—O2—C1—C214.6 (2)C11—C12—C13—C143.4 (14)
O4—C8—C9—C10177.6 (3)C11A—S2A—C14A—C13A0.2 (5)
O5—C8—C9—C100.6 (5)C11A—C12A—C13A—O3ii18.1 (16)
C1—C2—C3—C4175.5 (2)C11A—C12A—C13A—C14A0.5 (8)
C2—C3—C4—S16.9 (4)C12—C13—C14—S21.0 (9)
C2—C3—C4—C5177.8 (3)C12A—C13A—C14A—S2A0.5 (7)
C3—C4—C5—C6175.7 (3)C14—S2—C11—C10176.9 (4)
C4—S1—C7—C60.6 (3)C14—S2—C11—C123.1 (9)
C4—C5—C6—C70.4 (4)C14A—S2A—C11A—C10179.9 (2)
C5—C6—C7—S10.7 (4)C14A—S2A—C11A—C12A0.1 (4)
Symmetry codes: (i) x+y, x+1, z; (ii) y+1, xy+1, z; (iii) y+2/3, xy+1/3, z2/3.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1/C4–C7 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3A···O50.82 (1)1.94 (2)2.729 (3)162 (3)
O3—H3B···O1iv0.82 (1)1.89 (2)2.693 (2)165 (3)
O4—H4···O20.84 (1)1.78 (2)2.614 (3)177 (4)
C7—H7···Cg1v0.933.103.869 (3)141
Symmetry codes: (iv) x+y, x+1, z1; (v) x+y2/3, x4/3, z1/3.
 

Acknowledgements

This study was partially supported by the Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa).

Funding information

Funding for this research was provided by: Thailand Institute of Nuclear Technology (Public Organization), Thailand, through its program of TINT to University (grant to Kittipong Chainok); The Research Professional Development Project under the Science Achievement Scholarship of Thailand (SAST) (scholarship to Suwadee Jiajaroen).

References

First citationAlberding, B. G., Chisholm, M. H., Lear, B. J., Naseri, V. & Reed, C. R. (2011). Dalton Trans. 40, 10658–10663.  CrossRef CAS PubMed Google Scholar
First citationAlexander, D., Thomas, K., Joy, M., Biju, P. R., Unnikrishnan, N. V. & Joseph, C. (2019). Acta Cryst. C75, 589–597.  CrossRef IUCr Journals Google Scholar
First citationBehrsing, T., Deacon, G. B., Luu, J., Junk, P. C., Skelton, B. W. & White, A. W. (2016). Polyhedron, 120, 69–81.  CrossRef CAS Google Scholar
First citationBruker (2019). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCawthray, J. F., Creagh, A. L., Haynes, C. A. & Orvig, C. (2015). Inorg. Chem. 54, 1440–1445.  CrossRef CAS PubMed Google Scholar
First citationDanish, M., Ali, S., Mazhar, M. & Badshah, A. (1996). Main Group Met. Chem. 19, 121–131.  CrossRef CAS Google Scholar
First citationDanish, M., Ali, S., Mazhar, M., Badshah, A., Masood, T. & Tiekink, E. R. T. (1995). Main Group Met. Chem. 18, 27–34.  CrossRef CAS Google Scholar
First citationDesiraju, G. R. (2013). J. Am. Chem. Soc. 135, 9952–9967.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJiajaroen, S., Dungkaew, W., Kielar, F., Sukwattanasinitt, M., Sahasithiwat, S., Zenno, H., Hayami, S., Azam, M., Al-Resayes, S. I. & Chainok, K. (2022). Dalton Trans. 51, 7420–7435.  CrossRef CAS PubMed Google Scholar
First citationKameshwar, P. M., Wadawale, A. & Ajgaonkar, V. R. (2007a). Acta Cryst. E63, m2584.  CrossRef IUCr Journals Google Scholar
First citationKameshwar, P. M., Wadawale, A. & Ajgaonkar, V. R. (2007b). Acta Cryst. E63, m2598.  CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLlunell, M., Casanova, D., Cirera, A., Alemany, A. & Alvarez, S. (2013). SHAPE. University of Barcelona, Barcelona, Spain.  Google Scholar
First citationMarques, L. F., Cantaruti Júnior, A. A. B., Correa, C. C., Lahoud, M. G., da Silva, R. R., Ribeiro, S. J. L. & Machado, F. C. (2013). J. Photochem. Photobiol. Chem. 252, 69–76.  CrossRef CAS Google Scholar
First citationMirzaei, M., Eshtiagh-Hosseini, H., Karrabi, Z., Molčanov, K., Eydizadeh, E., Mague, J. T., Bauzá, A. & Frontera, A. (2014). CrystEngComm, 16, 5352–5363.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, Z., Zhang, J., Guo, L., Yang, H., Li, J. & Cui, C. (2021). Inorg. Chem. 60, 12696–12702.  CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParvez, M., Ali, S., Masood, T. M., Mazhar, M. & Danish, M. (1997). Acta Cryst. C53, 1211–1213.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRzaczynska, Z. & Belskii, V. K. (1994). Pol. J. Chem. 68, 369–375.  CAS Google Scholar
First citationSairenji, S., Akine, S. & Nabeshima, T. (2016). Dalton Trans. 45, 14902–14906.  CrossRef CAS PubMed Google Scholar
First citationSarwar, S., Iftikhar, T., Rauf, M. K., Badshah, A., Waseem, D., Tahir, M. N., Khan, K. M. & Khan, G. M. (2018). Inorg. Chim. Acta, 476, 12–19.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-Q., Wan, F., Li, X.-X., Lin, J., Wu, T., Zheng, S.-T. & Bu, X. (2016). Chem. Commun. 52, 10125–10128.  CrossRef CAS Google Scholar
First citationTheppitak, C., Jiajaroen, S., Chongboriboon, N., Chanthee, S., Kielar, F., Dungkaew, W., Sukwattanasinitt, M. & Chainok, K. (2021). Molecules, 26, 4428.  CrossRef PubMed Google Scholar
First citationTsaryuk, V., Vologzhanina, A., Zhuravlev, K., Kudryashova, V., Szostak, R. & Zolin, V. (2014). J. Photochem. Photobiol. Chem. 285, 52–61.  CrossRef CAS Google Scholar
First citationUhl, W., Bock, H. R., Hepp, A., Rogel, F. & Voss, M. (2010). Z. Anorg. Allg. Chem. 636, 1255–1262.  CrossRef CAS Google Scholar
First citationVasseur, A., Membrat, R., Palpacelli, D., Giorgi, M., Nuel, D., Giordano, L. & Martinez, A. (2018). Chem. Commun. 54, 10132–10135.  CrossRef CAS Google Scholar
First citationVrdoljak, V., Prugovečki, B., Matković-Čalogović, D., Novak, P. & Cindrić, M. (2010). Inorg. Chim. Acta, 363, 3516–3522.  CrossRef CAS Google Scholar
First citationZeng, H.-D. & Pan, K.-Z. (1992). Chin. J. Struct. Chem. 11, 388.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds