research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-(morpholino)ethyl­ammonium picrate monohydrate

crossmark logo

aPG and Research Department of Physics, Government Arts College for Men, (Autonomous), Chennai 600 035, Tamil Nadu, India
*Correspondence e-mail: drsskphy@gmail.com

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 5 September 2022; accepted 26 November 2022; online 1 January 2023)

The title compound, C6H15N2O+·C6H2N3O7·H2O, was synthesized via slow evaporation of an aqueous solution of picric acid with the substituted morpholine base and crystallized with one cation (C6H15N2O)+, one anion (C6H2N3O7) and a water mol­ecule in the asymmetric unit. The morpholine ring in the cation adopts a chair conformation. The structure is stabilized by C—H⋯O, O—H⋯O, O—H⋯N and N—H⋯O hydrogen-bonding inter­actions and ππ stacking. The inter­molecular inter­actions of the synthesized compound were qu­anti­fied by Hirshfeld surface analysis.

1. Chemical context

Morpholine complex materials are widely used in biomedical applications as this moiety serves as an important lysosome-targeting group. Its applications include use in the synthesis of lysosome-targetable fluorescent probes for hydrogen sulfide imaging in living cells. Morpholine can be used as a ligand in metal complexes. It is also a component of protective coatings on fresh fruits and is used as an emulsifier in the preparation of pharmaceuticals and cosmetic products (Kuchowicz & Rydzyński, 1998[Kuchowicz, E. & Rydzyński, K. (1998). Appl. Occup. Environ. Hyg. 13, 113-121.]). Picric acid forms stable picrates with various organic mol­ecules through bonding or ionic bonding. It is also a well-established material for non-linear optical (NLO) substances, which crystallize in the non-centrosymmetric space group Pca21 (Yamaguchi et al., 1988[Yamaguchi, S., Goto, M., Takayanagi, H. & Ogura, H. (1988). Bull. Chem. Soc. Jpn, 61, 1026-1028.]). Compounds of the morpholine family such as 4-(2-chloro­eth­yl)morpholinium picrate (Kant et al., 2009[Kant, R., Kohli, S., Sarmal, L., Narayana, B. & Samshuddin, S. (2009). Acta Cryst. E65, o2435.]), 4-(4-nitro­phen­yl)morpholine (Wang et al., 2012[Wang, L.-J., Li, W.-W., Yang, S.-Y. & Yang, L. (2012). Acta Cryst. E68, o1235.]), morpholinium picrate (Vembu & Fronczek, 2009[Vembu, N. & Fronczek, F. R. (2009). Acta Cryst. E65, o156-o157.]) can be used in drug design. The phenolic group of the picrate anion might favour the formation of hydrogen-bonding inter­actions to increase the mol­ecular hyperpolarizability and NLO effects (Takayanagi et al., 1996[Takayanagi, H., Kai, T., Yamaguchi, S., Takeda, K. & Goto, M. (1996). Chem. Pharm. Bull. 44, 2199-2204.]). Organic mol­ecules have attracted great attention because of their ability to combine low cost and ease of processing in the assembly of optical devices. In this context, the present investigation reports the synthesis, crystal structure, Hirshfeld surface, IR and NMR analyses of 2-(morph­olin­yl)ethyl­ammonium picrate monohydrate.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the triclinic P[\overline{1}] space group (Fig. 1[link]) with two ion pairs and two solvating water mol­ecules in the unit cell (Fig. 1[link]). The asymmetric unit is shown in Fig. 2[link]. In agreement with the pKa constants for the parent 4-(2-ammonio­eth­yl)morpholine (4.84, 9.45), the terminal NH2 group of the base is protonated, forming the 2-(morpholino)­ethyl­ammonium anion. All three protons of the NH3+ group are involved in hydrogen bonding. The cation forms a strong charge-assisted hydrogen bond N5—H5A⋯O1 [1 − x, −y, 1 − z; DA = 2.777 (2) Å] with the picrate anion, while H5C inter­acts with O9 from the solvating water mol­ecule [DA = 2.741 (2) Å] and H5B is involved in a bifurcated hydrogen bond with O5 from a neighbouring picrate anion [−1 + x, −1 + y, −1 + z; DA = 3.054 (2) Å] and O9 from other water mol­ecule (−x, −y, −z + 1), respectively. Additionally, the two protons of the water mol­ecule inter­act with a picrate anion or the nitro­gen atom of the morpholinyl moiety [O9—H9C⋯O1, DA = 2.7196 (19) Å; O9—H9D⋯N4, −x, −y, −z + 1, DA = 2.7722 (19) Å]. Further geometric details of these hydrogen bonds can be found in Table 1[link]. In this scenario, the water mol­ecule forms a bridge between the ammonium group and another picrate anion that cannot inter­act directly for steric reasons. Formation of these hydrogen bonds also lowers the energy of the crystal and thus increases the stability of the packing.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O7i 0.97 2.55 3.465 (2) 158
C10—H10B⋯O6ii 0.97 2.63 3.503 (3) 150
C12—H12A⋯O2iii 0.97 2.55 3.349 (3) 139
N5—H5C⋯O9 0.89 (2) 1.86 (2) 2.741 (2) 172 (2)
N5—H5A⋯O1iii 0.89 (2) 1.89 (2) 2.777 (2) 172 (2)
N5—H5B⋯O5iv 0.85 (2) 2.35 (2) 3.054 (2) 142 (2)
N5—H5B⋯O9v 0.85 (2) 2.48 (2) 3.048 (2) 126 (2)
O9—H9D⋯N4v 0.84 (2) 1.98 (2) 2.7722 (19) 158 (2)
O9—H9C⋯O1 0.82 (2) 1.94 (2) 2.7196 (19) 160 (2)
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, -y, -z+1]; (iv) [x-1, y-1, z-1]; (v) [-x, -y, -z+1].
[Figure 1]
Figure 1
Mol­ecular diagram of the title compound viewed down along a* axis in the unit cell.
[Figure 2]
Figure 2
ORTEP diagram of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The refined geometry (Fig. 2[link]) shows that the torsion angles N4—C7—C8—O8 and O8—C9—C10—N4 of the morpholine ring are −58.1 (2) and 59.4 (2)°, respectively, confirming the chair conformation. There are three nitro groups in the picrate anion. While the para-bound nitro group is nearly coplanar with the plane of the benzene ring [dihedral angle of −1.0 (2)°] and two ortho-oriented nitro groups are, probably as a result of repulsion with the phenolic oxygen atom, twisted from the ring plane by −51.9 (2) and 43.8 (2)°. It has been mentioned previously that the nitro groups of the picrate anion play an important role in stabilizing the crystal packing via weak coulombic inter­actions (George et al., 2019[George, J., George, M., Alex, J., Sajan, D., Shihab, N. K., Vinitha, G. & Chitra, R. (2019). Opt. Laser Technol. 119, 105647, 1-9.]; Anitha et al., 2004[Anitha, K., Sridhar, B. & Rajaram, R. K. (2004). Acta Cryst. E60, o1530-o1532.]).

3. Supra­molecular features

Fig. 3[link] shows the three-dimensional mol­ecular packing of the title compound viewed down the a-axis. Along with the six main hydrogen bonds described in the previous section, the cation inter­acts with neighboring picrate anions via C7—H7B⋯O7(x − 1, y, z), C10—H10B⋯O6(−x + 1, −y + 1, −z + 1) and C12—H12A⋯O2(−x + 1, −y, −z + 1) non-classical hydrogen bonds (Table 1[link]). Several prominent supra­molecular motifs are formed by these hydrogen bonds. Firstly, the inter­action of the ammonium group with the water mol­ecules creates a centrosymmetric motif described by an R42(8) graph set (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Motherwell et al., 2000[Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 857-871.]) (Fig. 4[link]). Next, another centrosymmetric motif described by an R44(20) graph set is formed between two ammonium groups and two picrate anions and involves the phenolic oxygen anion and the para nitro group (Fig. 5[link]). Furthermore, the picrate anions are coplanar, and are involved in two different ππ stacking inter­actions with perpendicular distances between the C1–C6 rings of 3.3532 (6) and 3.5533 (6) Å, slippage of 1.393 and 1.902 Å, and CgCg distances of 3.6311 (18) and 4.0303 (19) Å, respectively, for the rings related by symmetry operations 1 − x, 1 − y, 2 − z and 2 − x, 1 − y, 2 − z. Finally, a centrosymmetric twelve-membered ring [(picrate)O⋯H—N—H⋯O—H]2 with a third order graph set R64(12) involves two of each of the three different species present in the crystal (Fig. 6[link]).

[Figure 3]
Figure 3
Three-dimensional supra­molecular architecture of the title compound viewed down the a axis.
[Figure 4]
Figure 4
R42(8) ring motif formed between ammonium group and water mol­ecules.
[Figure 5]
Figure 5
R44(20) ring motif formed between two ammonium group and two picrate anions and ππ stacking inter­actions.
[Figure 6]
Figure 6
R64(12) ring motif formed through twelve-membered ring [(picrate)O⋯H—N—H⋯O—H]2 inter­actions.

Analysis of the Hirshfeld surface and the associated two-dimensional fingerprint plot for 2-(morpholin­yl)ethyl­ammonium picrate monohydrate was performed with CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The normalized contact distance (dnorm) Hirshfeld surface of the title compound mapped over the limits −0.6471 to 1.3714 a.u. with close contacts to neighboring mol­ecules is shown in Fig. 7[link]. The contacts with distances equal to the sum of the van der Waals radii are indicated in white and the contacts with distances shorter than and longer than van der Waals radii are represented as red and blue, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). This analysis confirms that the most prominent inter­molecular inter­actions present in the crystal are C—H⋯O, N—H⋯O, O—H⋯O and N—O⋯H contacts.

[Figure 7]
Figure 7
The Hirshfeld surface of the title compound mapped over dnorm, showing the closest mol­ecules.

Two-dimensional fingerprint plots of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode are shown in Fig. 8[link]. In the figure, de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside and inside the surface, respectively (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]; Seth, 2014[Seth, S. K. (2014). J. Mol. Struct. 1064, 70-75.]; Nchioua et al., 2022[Nchioua, I., Alsubari, A., Mague, J. T. & Ramli, Y. (2022). Acta Cryst. E78, 922-925.]). The most significant contribution to the Hirshfeld surface is from the O⋯H/H⋯O (52.9%) inter­actions. In addition, the H⋯H (27.3%) and O⋯O (5.5%) inter­actions make significant contributions to the total Hirshfeld surface. Other inter­actions contributing less than 5.0% are C⋯C (3.9%), O⋯C/C⋯O (2.5%), N⋯H/H⋯N (2.2%), N⋯C/C⋯N (2.2%), H⋯C/C⋯H (1.8%) and O⋯N/N⋯O (1.8%).

[Figure 8]
Figure 8
Two-dimensional fingerprint plots for the title compound showing (a) all inter­actions, (b) O⋯H/H⋯O inter­actions, (c) H⋯·H inter­actions and (d) O⋯O inter­actions.

4. Database survey

A search in the Cambridge Structural Database (CSD, version 5.40; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found eleven structures containing 4-(2-ammonio­eth­yl)morpholinium including 4-(2-ammonio­eth­yl)morpholinium tetra­chloro­copper(II) (BOPWUY and BOPWUY01; Battaglia et al., 1982[Battaglia, L. P., Bonamartini Corradi, A., Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1982). Inorg. Chem. 21, 3919-3922.]), 4-(2-ammonium­eth­yl)morpholinium tetra­chloro­mercury(II) (CUMGIA; Vezzosi et al., 1984[Vezzosi, I. M., Benedetti, A., Albinati, A., Ganazzoli, F., Cariati, F. & Pellicciari, L. (1984). Inorg. Chim. Acta, 90, 1-7.]), 4-(2-ammonio­eth­yl)morpholinium dichloride mono­hydrate (JAXBOC; Ghorab et al., 2017[Ghorab, M., Alsaid, M. S. & Ghabbour, H. A. (2017). Z. Kristallogr. 232, 501-502.]), 4-(2-ammo­nio­eth­yl)morpholinium tetra­chloro­palladium(II) (KETHOJ; Efimenko et al., 2017[Efimenko, I. A., Churakov, A. V., Ivanova, N. A., Erofeeva, O. S. & Demina, L. I. (2017). Russ. J. Inorg. Chem. 62, 1476-1485.]), 4-(2-ammonio­eth­yl)morpholinium sulfate methanol solvate (KUTZUV; Bi, 2010[Bi, Y. (2010). Acta Cryst. E66, o951.]), catena-[4-(2-ammonio­eth­yl)morpholinium] tetra­kis­[(μ3-phosphito)tri­zinc(II)] hemihydrate (SEZPOE; Lin & Dehnen, 2009[Lin, Z. & Dehnen, S. (2009). J. Solid State Chem. 182, 3143-3148.]), 4-(2-ammonio­eth­yl)morpholinium di­chloro­diiodo­cadmium(II) chloro­tri­iodo­cadmium(II) (UVWEZ; Mahbouli Rhouma et al., 2016[Mahbouli Rhouma, N., Rayes, A., Mezzadri, F., Calestani, G. & Loukil, M. (2016). Acta Cryst. E72, 1404-1407.]), 4-(2-ammonio­eth­yl)morpholinium tetra­chloro­zinc(II) (WUTGOI; Glaoui et al., 2008[Glaoui, M. El., Smirani, W., Lefebvre, F., Rzaigui, M. & Nasr, C. B. (2008). Can. J. Anal. Sci. Spectrosc. 53, 102-112.] and WUTGOI01; Lamshöft et al., 2011[Lamshöft, M., Storp, V., Ivanova, B. & Spiteller, M. (2011). Polyhedron, 30, 2564-2573.]), catena-[bis­[4-(2-ammonio­eth­yl)morph­o­linium] tetra­kis­(μ-iodo)­tetra­kis­(iodo)­dilead(II)] and (NIXNEQ; Xiuli & Zhenhong, 2019[Xiuli, Y. & Zhenhong, W. (2019). Chin. J. Struct. Chem. 38, 284-292.]). Unlike the title compound, all of these examples have both nitro­gen atoms protonated. Another search in the CSD for the compound morpholinium picrate gave four hits, viz. 4-hy­droxy-4-methyl­morpholinium picrate (HIGYOM; Zukerman-Schpector et al., 2007[Zukerman-Schpector, J., Vega-Teijido, M., Carvalho, C. C., Isolani, P. C. & Caracelli, I. (2007). Z. Kristallogr. 222, 427-431.]), morpholinium picrate (KOMTUC; Vembu & Fronczek, 2009[Vembu, N. & Fronczek, F. R. (2009). Acta Cryst. E65, o156-o157.]), 4-(2-chloro­eth­yl)morpholinium picrate (PUFFIG; Kant et al., 2009[Kant, R., Kohli, S., Sarmal, L., Narayana, B. & Samshuddin, S. (2009). Acta Cryst. E65, o2435.]) and 4,4-bis­(2′-hy­droxy­eth­yl)morpholinium picrate (SEGGAM; Solov'ev et al., 1988[Solov'ev, V. N., Chekhlov, A. N., Gafurov, R. G., Chistyakov, V. G. & Martynov, I. V. (1988). J. Struct. Chem. 29, 174-175.]). It is noted that all of these structures are stabilized by hydrogen bonds and that in each one the morpholine ring has a chair conformation.

5. Synthesis and crystallization

2-(Morpholin­yl)ethyl­ammonium picrate monohydrate was synthesized by mixing one mole of 4-(2-ammonio­eth­yl)morpholine and one mole of picric acid in double-distilled water at about 303 K. The solution was then allowed to evaporate at room temperature, which yielded yellow plate-like crystals of 2-(morpholin­yl)ethyl­ammonium picrate monohydrate. The reaction scheme is shown in Fig. 9[link]. Melting point: 457–459 K; IR (KBr, cm−1): 3384 (O—H), 2905 (NH3), 3110 (C—H), 1382 (CH2), 993 (C—O); 1H NMR (500 MHz, D2O, δ, ppm): 8.831 (s, 2H, picrate moiety), 3.63 (t, 4H, –CH2–O–CH2), 3.03 (t, 4H, –CH2–N–CH2), 2.58 (t, 2H, N–CH2), 2.46 (t, 2H, –CH2–NH3+). A suitable single crystal of 2-(morpholin­yl)ethyl­ammonium picrate monohydrate was selected for X-ray diffraction studies.

[Figure 9]
Figure 9
Reaction scheme for the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were positioned geometrically (C—H = 0.93 for anion and 0.97 Å for cation) and refined using an isotropic approximation, with Uiso(H) = 1.2 Ueq(C). The acidic protons were localized from the residual electron-density map and refined with distance restraints (0.82 Å for O—H and 0.86 Å for N—H) and Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula C6H15N2O+·C6H2N3O7·H2O
Mr 377.32
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 297
a, b, c (Å) 6.938 (3), 11.583 (5), 12.077 (5)
α, β, γ (°) 114.362 (13), 94.261 (14), 103.841 (15)
V3) 841.8 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.40 × 0.38 × 0.19
 
Data collection
Diffractometer Bruker D8 Venture Diffractometer
Absorption correction Multi-scan (SADABS; Bruker 2016[Bruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.504, 0.562
No. of measured, independent and observed [I > 2σ(I)] reflections 19297, 3378, 2781
Rint 0.039
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.117, 1.04
No. of reflections 3378
No. of parameters 250
No. of restraints 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.21
Computer programs: APEX3, SAINT and XPREP (Bruker, 2016[Bruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3/SAINT (Bruker, 2016); data reduction: SAINT/XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/2 (Sheldrick, 2015b).

2-(Morpholin-4-yl)ethan-1-aminium 2,4,6-trinitrobenzen-1-olate monohydrate top
Crystal data top
C6H15N2O+·C6H2N3O7·H2OZ = 2
Mr = 377.32F(000) = 396
Triclinic, P1Dx = 1.489 Mg m3
a = 6.938 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.583 (5) ÅCell parameters from 7824 reflections
c = 12.077 (5) Åθ = 3.2–26.2°
α = 114.362 (13)°µ = 0.13 mm1
β = 94.261 (14)°T = 297 K
γ = 103.841 (15)°Block, yellow
V = 841.8 (6) Å30.40 × 0.38 × 0.19 mm
Data collection top
Bruker D8 Venture Diffractometer2781 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.039
φ and ω scansθmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker 2016)
h = 88
Tmin = 0.504, Tmax = 0.562k = 1414
19297 measured reflectionsl = 1515
3378 independent reflections
Refinement top
Refinement on F25 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.2721P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3378 reflectionsΔρmax = 0.25 e Å3
250 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6187 (2)0.30558 (14)0.82290 (13)0.0335 (3)
C20.6867 (2)0.43310 (15)0.82356 (13)0.0349 (3)
C30.7623 (2)0.55224 (14)0.92800 (13)0.0355 (3)
H30.8024000.6317350.9220880.043*
C40.7771 (2)0.55051 (14)1.04247 (13)0.0336 (3)
C50.7107 (2)0.43331 (15)1.05278 (13)0.0360 (3)
H50.7165620.4340041.1302460.043*
C60.6359 (2)0.31567 (14)0.94612 (14)0.0359 (3)
C70.0106 (3)0.30407 (19)0.38759 (18)0.0542 (5)
H7A0.1216320.3826440.4063880.065*
H7B0.0379720.3146060.4634290.065*
C80.1579 (4)0.2906 (3)0.2924 (2)0.0739 (6)
H8A0.2721850.2154470.2779620.089*
H8B0.2018360.3697170.3242100.089*
C90.0362 (3)0.1539 (2)0.13116 (18)0.0581 (5)
H9A0.0031340.1390930.0521360.070*
H9B0.1504140.0789210.1173850.070*
C100.1378 (3)0.16274 (16)0.21970 (14)0.0432 (4)
H10A0.1744670.0809470.1853780.052*
H10B0.2542710.2348380.2301530.052*
C110.2592 (3)0.20986 (16)0.43386 (14)0.0425 (4)
H11A0.2145630.2217180.5110300.051*
H11B0.3589120.2921120.4491590.051*
C120.3601 (2)0.10098 (17)0.39727 (15)0.0438 (4)
H12A0.4082460.0907380.3213680.053*
H12B0.4770740.1280430.4613450.053*
N10.5579 (2)0.19374 (14)0.95933 (14)0.0490 (4)
N20.8605 (2)0.67574 (14)1.15356 (12)0.0428 (3)
N30.6630 (2)0.43738 (14)0.70341 (12)0.0476 (4)
N40.08400 (19)0.18564 (12)0.34122 (11)0.0370 (3)
N50.2271 (2)0.02941 (14)0.37799 (13)0.0420 (3)
H5C0.206 (3)0.0270 (19)0.4503 (15)0.050*
H5A0.291 (3)0.0899 (17)0.3458 (17)0.050*
H5B0.117 (2)0.0515 (19)0.3291 (16)0.050*
O10.54301 (17)0.19894 (10)0.72393 (10)0.0447 (3)
O20.5959 (3)0.09346 (14)0.88953 (15)0.0832 (5)
O30.4599 (2)0.19858 (15)1.03953 (15)0.0684 (4)
O40.8730 (3)0.67488 (14)1.25430 (11)0.0688 (4)
O50.9152 (2)0.77882 (12)1.14134 (12)0.0644 (4)
O60.5699 (3)0.50981 (15)0.69044 (13)0.0705 (4)
O70.7341 (3)0.36689 (18)0.62204 (13)0.0786 (5)
O80.0951 (2)0.27241 (15)0.17867 (14)0.0665 (4)
O90.19445 (19)0.00465 (13)0.61101 (11)0.0519 (3)
H9D0.137 (3)0.055 (2)0.640 (2)0.078*
H9C0.293 (3)0.055 (2)0.661 (2)0.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0244 (7)0.0322 (7)0.0346 (7)0.0087 (5)0.0061 (5)0.0060 (6)
C20.0309 (7)0.0369 (8)0.0294 (7)0.0056 (6)0.0067 (5)0.0100 (6)
C30.0317 (7)0.0308 (7)0.0358 (7)0.0044 (6)0.0063 (6)0.0098 (6)
C40.0277 (7)0.0330 (7)0.0290 (7)0.0096 (6)0.0031 (5)0.0036 (6)
C50.0344 (7)0.0420 (8)0.0321 (7)0.0170 (6)0.0075 (6)0.0136 (6)
C60.0332 (7)0.0331 (7)0.0411 (8)0.0128 (6)0.0086 (6)0.0144 (6)
C70.0680 (12)0.0527 (10)0.0598 (11)0.0313 (9)0.0337 (9)0.0311 (9)
C80.0679 (13)0.0920 (17)0.1018 (18)0.0464 (13)0.0368 (13)0.0651 (15)
C90.0679 (12)0.0549 (11)0.0506 (10)0.0109 (9)0.0020 (9)0.0282 (9)
C100.0536 (10)0.0408 (8)0.0351 (8)0.0137 (7)0.0126 (7)0.0163 (7)
C110.0480 (9)0.0355 (8)0.0338 (7)0.0058 (7)0.0037 (6)0.0102 (6)
C120.0360 (8)0.0482 (9)0.0415 (8)0.0089 (7)0.0031 (6)0.0174 (7)
N10.0560 (9)0.0392 (8)0.0507 (8)0.0138 (6)0.0090 (7)0.0195 (6)
N20.0392 (7)0.0411 (8)0.0327 (7)0.0122 (6)0.0005 (5)0.0028 (6)
N30.0478 (8)0.0444 (8)0.0316 (7)0.0044 (6)0.0051 (6)0.0092 (6)
N40.0404 (7)0.0353 (7)0.0366 (6)0.0106 (5)0.0110 (5)0.0170 (5)
N50.0398 (7)0.0380 (7)0.0397 (7)0.0140 (6)0.0005 (6)0.0091 (6)
O10.0401 (6)0.0337 (6)0.0401 (6)0.0054 (5)0.0035 (5)0.0012 (5)
O20.1348 (15)0.0412 (8)0.0806 (11)0.0375 (9)0.0376 (10)0.0248 (7)
O30.0757 (10)0.0671 (9)0.0775 (10)0.0192 (7)0.0320 (8)0.0447 (8)
O40.0949 (11)0.0606 (9)0.0300 (6)0.0171 (8)0.0013 (6)0.0059 (6)
O50.0817 (10)0.0347 (7)0.0472 (7)0.0018 (6)0.0032 (6)0.0034 (5)
O60.0939 (11)0.0636 (9)0.0541 (8)0.0165 (8)0.0004 (7)0.0324 (7)
O70.0844 (11)0.0975 (12)0.0404 (7)0.0240 (9)0.0276 (7)0.0171 (7)
O80.0720 (9)0.0768 (10)0.0768 (9)0.0316 (8)0.0178 (7)0.0532 (8)
O90.0455 (7)0.0502 (7)0.0456 (7)0.0059 (5)0.0019 (5)0.0199 (6)
Geometric parameters (Å, º) top
C1—O11.2683 (18)C9—H9B0.9700
C1—C21.435 (2)C10—N41.4736 (19)
C1—C61.437 (2)C10—H10A0.9700
C2—C31.375 (2)C10—H10B0.9700
C2—N31.471 (2)C11—N41.477 (2)
C3—C41.387 (2)C11—C121.511 (2)
C3—H30.9300C11—H11A0.9700
C4—C51.385 (2)C11—H11B0.9700
C4—N21.4547 (19)C12—N51.482 (2)
C5—C61.378 (2)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
C6—N11.465 (2)N1—O31.214 (2)
C7—N41.482 (2)N1—O21.225 (2)
C7—C81.509 (3)N2—O41.2175 (19)
C7—H7A0.9700N2—O51.236 (2)
C7—H7B0.9700N3—O71.216 (2)
C8—O81.420 (3)N3—O61.224 (2)
C8—H8A0.9700N5—H5C0.887 (15)
C8—H8B0.9700N5—H5A0.889 (15)
C9—O81.426 (3)N5—H5B0.845 (15)
C9—C101.507 (3)O9—H9D0.836 (16)
C9—H9A0.9700O9—H9C0.821 (17)
O1—C1—C2122.65 (14)N4—C10—H10A109.4
O1—C1—C6125.22 (14)C9—C10—H10A109.4
C2—C1—C6112.03 (12)N4—C10—H10B109.4
C3—C2—C1125.19 (14)C9—C10—H10B109.4
C3—C2—N3117.32 (14)H10A—C10—H10B108.0
C1—C2—N3117.40 (13)N4—C11—C12114.81 (13)
C2—C3—C4118.10 (14)N4—C11—H11A108.6
C2—C3—H3120.9C12—C11—H11A108.6
C4—C3—H3120.9N4—C11—H11B108.6
C5—C4—C3121.52 (13)C12—C11—H11B108.6
C5—C4—N2119.86 (14)H11A—C11—H11B107.5
C3—C4—N2118.61 (14)N5—C12—C11114.31 (14)
C6—C5—C4118.77 (14)N5—C12—H12A108.7
C6—C5—H5120.6C11—C12—H12A108.7
C4—C5—H5120.6N5—C12—H12B108.7
C5—C6—C1124.34 (14)C11—C12—H12B108.7
C5—C6—N1117.80 (14)H12A—C12—H12B107.6
C1—C6—N1117.76 (13)O3—N1—O2123.96 (16)
N4—C7—C8110.78 (17)O3—N1—C6117.76 (14)
N4—C7—H7A109.5O2—N1—C6118.28 (15)
C8—C7—H7A109.5O4—N2—O5122.81 (14)
N4—C7—H7B109.5O4—N2—C4118.89 (15)
C8—C7—H7B109.5O5—N2—C4118.30 (14)
H7A—C7—H7B108.1O7—N3—O6123.84 (16)
O8—C8—C7111.62 (16)O7—N3—C2117.99 (17)
O8—C8—H8A109.3O6—N3—C2118.16 (14)
C7—C8—H8A109.3C10—N4—C11112.03 (13)
O8—C8—H8B109.3C10—N4—C7108.96 (12)
C7—C8—H8B109.3C11—N4—C7108.03 (13)
H8A—C8—H8B108.0C12—N5—H5C109.9 (13)
O8—C9—C10111.11 (16)C12—N5—H5A108.4 (13)
O8—C9—H9A109.4H5C—N5—H5A106.8 (17)
C10—C9—H9A109.4C12—N5—H5B111.1 (13)
O8—C9—H9B109.4H5C—N5—H5B111.2 (18)
C10—C9—H9B109.4H5A—N5—H5B109.2 (18)
H9A—C9—H9B108.0C8—O8—C9108.77 (14)
N4—C10—C9111.04 (14)H9D—O9—H9C112 (2)
O1—C1—C2—C3177.25 (14)C1—C6—N1—O3136.51 (16)
C6—C1—C2—C30.8 (2)C5—C6—N1—O2139.62 (17)
O1—C1—C2—N30.9 (2)C1—C6—N1—O243.8 (2)
C6—C1—C2—N3175.60 (12)C5—C4—N2—O41.0 (2)
C1—C2—C3—C40.8 (2)C3—C4—N2—O4179.69 (15)
N3—C2—C3—C4177.14 (13)C5—C4—N2—O5178.77 (14)
C2—C3—C4—C52.5 (2)C3—C4—N2—O50.1 (2)
C2—C3—C4—N2178.84 (12)C3—C2—N3—O7129.37 (17)
C3—C4—C5—C62.6 (2)C1—C2—N3—O754.0 (2)
N2—C4—C5—C6178.78 (13)C3—C2—N3—O651.9 (2)
C4—C5—C6—C10.9 (2)C1—C2—N3—O6124.75 (16)
C4—C5—C6—N1177.21 (13)C9—C10—N4—C11173.52 (13)
O1—C1—C6—C5177.07 (14)C9—C10—N4—C754.04 (18)
C2—C1—C6—C50.7 (2)C12—C11—N4—C1056.71 (17)
O1—C1—C6—N10.8 (2)C12—C11—N4—C7176.74 (13)
C2—C1—C6—N1175.61 (13)C8—C7—N4—C1053.41 (19)
N4—C7—C8—O858.1 (2)C8—C7—N4—C11175.35 (14)
O8—C9—C10—N458.90 (19)C7—C8—O8—C960.6 (2)
N4—C11—C12—N561.64 (18)C10—C9—O8—C860.8 (2)
C5—C6—N1—O340.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O7i0.972.553.465 (2)158
C10—H10B···O6ii0.972.633.503 (3)150
C12—H12A···O2iii0.972.553.349 (3)139
N5—H5C···O90.89 (2)1.86 (2)2.741 (2)172 (2)
N5—H5A···O1iii0.89 (2)1.89 (2)2.777 (2)172 (2)
N5—H5B···O5iv0.85 (2)2.35 (2)3.054 (2)142 (2)
N5—H5B···O9v0.85 (2)2.48 (2)3.048 (2)126 (2)
O9—H9D···N4v0.84 (2)1.98 (2)2.7722 (19)158 (2)
O9—H9C···O10.82 (2)1.94 (2)2.7196 (19)160 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x1, y1, z1; (v) x, y, z+1.
 

Acknowledgements

The authors gratefully acknowledge Dr Shobhana Krishnaswamy, SAIF, IITM, Chennai, for the single-crystal X-ray diffraction data collection and structure solution and Professor M. Palanichamy, Emeritus Professor, Department of Physical Chemistry, University of Madras, Guindy Campus, Chennai, for scientific discussions.

References

First citationAnitha, K., Sridhar, B. & Rajaram, R. K. (2004). Acta Cryst. E60, o1530–o1532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBattaglia, L. P., Bonamartini Corradi, A., Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1982). Inorg. Chem. 21, 3919–3922.  CSD CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBi, Y. (2010). Acta Cryst. E66, o951.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEfimenko, I. A., Churakov, A. V., Ivanova, N. A., Erofeeva, O. S. & Demina, L. I. (2017). Russ. J. Inorg. Chem. 62, 1476–1485.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeorge, J., George, M., Alex, J., Sajan, D., Shihab, N. K., Vinitha, G. & Chitra, R. (2019). Opt. Laser Technol. 119, 105647, 1–9.  Google Scholar
First citationGhorab, M., Alsaid, M. S. & Ghabbour, H. A. (2017). Z. Kristallogr. 232, 501–502.  CAS Google Scholar
First citationGlaoui, M. El., Smirani, W., Lefebvre, F., Rzaigui, M. & Nasr, C. B. (2008). Can. J. Anal. Sci. Spectrosc. 53, 102–112.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKant, R., Kohli, S., Sarmal, L., Narayana, B. & Samshuddin, S. (2009). Acta Cryst. E65, o2435.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKuchowicz, E. & Rydzyński, K. (1998). Appl. Occup. Environ. Hyg. 13, 113–121.  CrossRef Google Scholar
First citationLamshöft, M., Storp, V., Ivanova, B. & Spiteller, M. (2011). Polyhedron, 30, 2564–2573.  Google Scholar
First citationLin, Z. & Dehnen, S. (2009). J. Solid State Chem. 182, 3143–3148.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMahbouli Rhouma, N., Rayes, A., Mezzadri, F., Calestani, G. & Loukil, M. (2016). Acta Cryst. E72, 1404–1407.  CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationMotherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 857–871.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNchioua, I., Alsubari, A., Mague, J. T. & Ramli, Y. (2022). Acta Cryst. E78, 922–925.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeth, S. K. (2014). J. Mol. Struct. 1064, 70–75.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSolov'ev, V. N., Chekhlov, A. N., Gafurov, R. G., Chistyakov, V. G. & Martynov, I. V. (1988). J. Struct. Chem. 29, 174–175.  CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakayanagi, H., Kai, T., Yamaguchi, S., Takeda, K. & Goto, M. (1996). Chem. Pharm. Bull. 44, 2199–2204.  CSD CrossRef Google Scholar
First citationVembu, N. & Fronczek, F. R. (2009). Acta Cryst. E65, o156–o157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationVezzosi, I. M., Benedetti, A., Albinati, A., Ganazzoli, F., Cariati, F. & Pellicciari, L. (1984). Inorg. Chim. Acta, 90, 1–7.  CSD CrossRef CAS Web of Science Google Scholar
First citationWang, L.-J., Li, W.-W., Yang, S.-Y. & Yang, L. (2012). Acta Cryst. E68, o1235.  CSD CrossRef IUCr Journals Google Scholar
First citationXiuli, Y. & Zhenhong, W. (2019). Chin. J. Struct. Chem. 38, 284–292.  Google Scholar
First citationYamaguchi, S., Goto, M., Takayanagi, H. & Ogura, H. (1988). Bull. Chem. Soc. Jpn, 61, 1026–1028.  CSD CrossRef CAS Web of Science Google Scholar
First citationZukerman-Schpector, J., Vega-Teijido, M., Carvalho, C. C., Isolani, P. C. & Caracelli, I. (2007). Z. Kristallogr. 222, 427–431.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds