research communications
of 2-(morpholino)ethylammonium picrate monohydrate
aPG and Research Department of Physics, Government Arts College for Men, (Autonomous), Chennai 600 035, Tamil Nadu, India
*Correspondence e-mail: drsskphy@gmail.com
The title compound, C6H15N2O+·C6H2N3O7−·H2O, was synthesized via slow evaporation of an aqueous solution of picric acid with the substituted morpholine base and crystallized with one cation (C6H15N2O)+, one anion (C6H2N3O7)− and a water molecule in the The morpholine ring in the cation adopts a chair conformation. The structure is stabilized by C—H⋯O, O—H⋯O, O—H⋯N and N—H⋯O hydrogen-bonding interactions and π–π stacking. The intermolecular interactions of the synthesized compound were quantified by Hirshfeld surface analysis.
Keywords: single-crystal X-ray study; morpholine; hydrogen bond; IR; NMR; Hirshfeld surface.
CCDC reference: 2222322
1. Chemical context
Morpholine complex materials are widely used in biomedical applications as this moiety serves as an important lysosome-targeting group. Its applications include use in the synthesis of lysosome-targetable fluorescent probes for hydrogen sulfide imaging in living cells. Morpholine can be used as a ligand in metal complexes. It is also a component of protective coatings on fresh fruits and is used as an emulsifier in the preparation of pharmaceuticals and cosmetic products (Kuchowicz & Rydzyński, 1998). Picric acid forms stable with various organic molecules through bonding or ionic bonding. It is also a well-established material for non-linear optical (NLO) substances, which crystallize in the non-centrosymmetric Pca21 (Yamaguchi et al., 1988). Compounds of the morpholine family such as 4-(2-chloroethyl)morpholinium picrate (Kant et al., 2009), 4-(4-nitrophenyl)morpholine (Wang et al., 2012), morpholinium picrate (Vembu & Fronczek, 2009) can be used in drug design. The phenolic group of the picrate anion might favour the formation of hydrogen-bonding interactions to increase the molecular hyperpolarizability and NLO effects (Takayanagi et al., 1996). Organic molecules have attracted great attention because of their ability to combine low cost and ease of processing in the assembly of optical devices. In this context, the present investigation reports the synthesis, Hirshfeld surface, IR and NMR analyses of 2-(morpholinyl)ethylammonium picrate monohydrate.
2. Structural commentary
The title compound crystallizes in the triclinic P (Fig. 1) with two ion pairs and two solvating water molecules in the (Fig. 1). The is shown in Fig. 2. In agreement with the pKa constants for the parent 4-(2-ammonioethyl)morpholine (4.84, 9.45), the terminal NH2 group of the base is protonated, forming the 2-(morpholino)ethylammonium anion. All three protons of the NH3+ group are involved in hydrogen bonding. The cation forms a strong charge-assisted hydrogen bond N5—H5A⋯O1 [1 − x, −y, 1 − z; D⋯A = 2.777 (2) Å] with the picrate anion, while H5C interacts with O9 from the solvating water molecule [D⋯A = 2.741 (2) Å] and H5B is involved in a bifurcated hydrogen bond with O5 from a neighbouring picrate anion [−1 + x, −1 + y, −1 + z; D⋯A = 3.054 (2) Å] and O9 from other water molecule (−x, −y, −z + 1), respectively. Additionally, the two protons of the water molecule interact with a picrate anion or the nitrogen atom of the morpholinyl moiety [O9—H9C⋯O1, D⋯A = 2.7196 (19) Å; O9—H9D⋯N4, −x, −y, −z + 1, D⋯A = 2.7722 (19) Å]. Further geometric details of these hydrogen bonds can be found in Table 1. In this scenario, the water molecule forms a bridge between the ammonium group and another picrate anion that cannot interact directly for steric reasons. Formation of these hydrogen bonds also lowers the energy of the crystal and thus increases the stability of the packing.
The refined geometry (Fig. 2) shows that the torsion angles N4—C7—C8—O8 and O8—C9—C10—N4 of the morpholine ring are −58.1 (2) and 59.4 (2)°, respectively, confirming the chair conformation. There are three nitro groups in the picrate anion. While the para-bound nitro group is nearly coplanar with the plane of the benzene ring [dihedral angle of −1.0 (2)°] and two ortho-oriented nitro groups are, probably as a result of repulsion with the phenolic oxygen atom, twisted from the ring plane by −51.9 (2) and 43.8 (2)°. It has been mentioned previously that the nitro groups of the picrate anion play an important role in stabilizing the crystal packing via weak coulombic interactions (George et al., 2019; Anitha et al., 2004).
3. Supramolecular features
Fig. 3 shows the three-dimensional molecular packing of the title compound viewed down the a-axis. Along with the six main hydrogen bonds described in the previous section, the cation interacts with neighboring picrate anions via C7—H7B⋯O7(x − 1, y, z), C10—H10B⋯O6(−x + 1, −y + 1, −z + 1) and C12—H12A⋯O2(−x + 1, −y, −z + 1) non-classical hydrogen bonds (Table 1). Several prominent supramolecular motifs are formed by these hydrogen bonds. Firstly, the interaction of the ammonium group with the water molecules creates a centrosymmetric motif described by an R42(8) graph set (Bernstein et al., 1995; Motherwell et al., 2000) (Fig. 4). Next, another centrosymmetric motif described by an R44(20) graph set is formed between two ammonium groups and two picrate anions and involves the phenolic oxygen anion and the para nitro group (Fig. 5). Furthermore, the picrate anions are coplanar, and are involved in two different π–π stacking interactions with perpendicular distances between the C1–C6 rings of 3.3532 (6) and 3.5533 (6) Å, slippage of 1.393 and 1.902 Å, and Cg⋯Cg distances of 3.6311 (18) and 4.0303 (19) Å, respectively, for the rings related by symmetry operations 1 − x, 1 − y, 2 − z and 2 − x, 1 − y, 2 − z. Finally, a centrosymmetric twelve-membered ring [(picrate)O−⋯H—N—H⋯O—H]2 with a third order graph set R64(12) involves two of each of the three different species present in the crystal (Fig. 6).
Analysis of the Hirshfeld surface and the associated two-dimensional fingerprint plot for 2-(morpholinyl)ethylammonium picrate monohydrate was performed with CrystalExplorer 21.5 (Spackman et al., 2021). The normalized contact distance (dnorm) Hirshfeld surface of the title compound mapped over the limits −0.6471 to 1.3714 a.u. with close contacts to neighboring molecules is shown in Fig. 7. The contacts with distances equal to the sum of the van der Waals radii are indicated in white and the contacts with distances shorter than and longer than van der Waals radii are represented as red and blue, respectively (Venkatesan et al., 2016). This analysis confirms that the most prominent intermolecular interactions present in the crystal are C—H⋯O, N—H⋯O, O—H⋯O and N—O⋯H contacts.
Two-dimensional fingerprint plots of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode are shown in Fig. 8. In the figure, de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside and inside the surface, respectively (McKinnon et al., 2007; Seth, 2014; Nchioua et al., 2022). The most significant contribution to the Hirshfeld surface is from the O⋯H/H⋯O (52.9%) interactions. In addition, the H⋯H (27.3%) and O⋯O (5.5%) interactions make significant contributions to the total Hirshfeld surface. Other interactions contributing less than 5.0% are C⋯C (3.9%), O⋯C/C⋯O (2.5%), N⋯H/H⋯N (2.2%), N⋯C/C⋯N (2.2%), H⋯C/C⋯H (1.8%) and O⋯N/N⋯O (1.8%).
4. Database survey
A search in the Cambridge Structural Database (CSD, version 5.40; Groom et al., 2016) found eleven structures containing 4-(2-ammonioethyl)morpholinium including 4-(2-ammonioethyl)morpholinium tetrachlorocopper(II) (BOPWUY and BOPWUY01; Battaglia et al., 1982), 4-(2-ammoniumethyl)morpholinium tetrachloromercury(II) (CUMGIA; Vezzosi et al., 1984), 4-(2-ammonioethyl)morpholinium dichloride monohydrate (JAXBOC; Ghorab et al., 2017), 4-(2-ammonioethyl)morpholinium tetrachloropalladium(II) (KETHOJ; Efimenko et al., 2017), 4-(2-ammonioethyl)morpholinium sulfate methanol solvate (KUTZUV; Bi, 2010), catena-[4-(2-ammonioethyl)morpholinium] tetrakis[(μ3-phosphito)trizinc(II)] hemihydrate (SEZPOE; Lin & Dehnen, 2009), 4-(2-ammonioethyl)morpholinium dichlorodiiodocadmium(II) chlorotriiodocadmium(II) (UVWEZ; Mahbouli Rhouma et al., 2016), 4-(2-ammonioethyl)morpholinium tetrachlorozinc(II) (WUTGOI; Glaoui et al., 2008 and WUTGOI01; Lamshöft et al., 2011), catena-[bis[4-(2-ammonioethyl)morpholinium] tetrakis(μ-iodo)tetrakis(iodo)dilead(II)] and (NIXNEQ; Xiuli & Zhenhong, 2019). Unlike the title compound, all of these examples have both nitrogen atoms protonated. Another search in the CSD for the compound morpholinium picrate gave four hits, viz. 4-hydroxy-4-methylmorpholinium picrate (HIGYOM; Zukerman-Schpector et al., 2007), morpholinium picrate (KOMTUC; Vembu & Fronczek, 2009), 4-(2-chloroethyl)morpholinium picrate (PUFFIG; Kant et al., 2009) and 4,4-bis(2′-hydroxyethyl)morpholinium picrate (SEGGAM; Solov'ev et al., 1988). It is noted that all of these structures are stabilized by hydrogen bonds and that in each one the morpholine ring has a chair conformation.
5. Synthesis and crystallization
2-(Morpholinyl)ethylammonium picrate monohydrate was synthesized by mixing one mole of 4-(2-ammonioethyl)morpholine and one mole of picric acid in double-distilled water at about 303 K. The solution was then allowed to evaporate at room temperature, which yielded yellow plate-like crystals of 2-(morpholinyl)ethylammonium picrate monohydrate. The reaction scheme is shown in Fig. 9. Melting point: 457–459 K; IR (KBr, cm−1): 3384 (O—H), 2905 (NH3), 3110 (C—H), 1382 (CH2), 993 (C—O); 1H NMR (500 MHz, D2O, δ, ppm): 8.831 (s, 2H, picrate moiety), 3.63 (t, 4H, –CH2–O–CH2), 3.03 (t, 4H, –CH2–N–CH2), 2.58 (t, 2H, N–CH2), 2.46 (t, 2H, –CH2–NH3+). A suitable single crystal of 2-(morpholinyl)ethylammonium picrate monohydrate was selected for X-ray diffraction studies.
6. Refinement
Crystal data, data collection and structure . The C-bound H atoms were positioned geometrically (C—H = 0.93 for anion and 0.97 Å for cation) and refined using an isotropic approximation, with Uiso(H) = 1.2 Ueq(C). The acidic protons were localized from the residual electron-density map and refined with distance restraints (0.82 Å for O—H and 0.86 Å for N—H) and Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O).
details are summarized in Table 2
|
Supporting information
CCDC reference: 2222322
https://doi.org/10.1107/S2056989022011409/jq2022sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022011409/jq2022Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022011409/jq2022Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
APEX3/SAINT (Bruker, 2016); data reduction: SAINT/XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/2 (Sheldrick, 2015b).C6H15N2O+·C6H2N3O7·H2O | Z = 2 |
Mr = 377.32 | F(000) = 396 |
Triclinic, P1 | Dx = 1.489 Mg m−3 |
a = 6.938 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.583 (5) Å | Cell parameters from 7824 reflections |
c = 12.077 (5) Å | θ = 3.2–26.2° |
α = 114.362 (13)° | µ = 0.13 mm−1 |
β = 94.261 (14)° | T = 297 K |
γ = 103.841 (15)° | Block, yellow |
V = 841.8 (6) Å3 | 0.40 × 0.38 × 0.19 mm |
Bruker D8 Venture Diffractometer | 2781 reflections with I > 2σ(I) |
Radiation source: fine focus sealed tube | Rint = 0.039 |
φ and ω scans | θmax = 26.4°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker 2016) | h = −8→8 |
Tmin = 0.504, Tmax = 0.562 | k = −14→14 |
19297 measured reflections | l = −15→15 |
3378 independent reflections |
Refinement on F2 | 5 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.117 | w = 1/[σ2(Fo2) + (0.0542P)2 + 0.2721P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3378 reflections | Δρmax = 0.25 e Å−3 |
250 parameters | Δρmin = −0.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6187 (2) | 0.30558 (14) | 0.82290 (13) | 0.0335 (3) | |
C2 | 0.6867 (2) | 0.43310 (15) | 0.82356 (13) | 0.0349 (3) | |
C3 | 0.7623 (2) | 0.55224 (14) | 0.92800 (13) | 0.0355 (3) | |
H3 | 0.802400 | 0.631735 | 0.922088 | 0.043* | |
C4 | 0.7771 (2) | 0.55051 (14) | 1.04247 (13) | 0.0336 (3) | |
C5 | 0.7107 (2) | 0.43331 (15) | 1.05278 (13) | 0.0360 (3) | |
H5 | 0.716562 | 0.434004 | 1.130246 | 0.043* | |
C6 | 0.6359 (2) | 0.31567 (14) | 0.94612 (14) | 0.0359 (3) | |
C7 | 0.0106 (3) | 0.30407 (19) | 0.38759 (18) | 0.0542 (5) | |
H7A | 0.121632 | 0.382644 | 0.406388 | 0.065* | |
H7B | −0.037972 | 0.314606 | 0.463429 | 0.065* | |
C8 | −0.1579 (4) | 0.2906 (3) | 0.2924 (2) | 0.0739 (6) | |
H8A | −0.272185 | 0.215447 | 0.277962 | 0.089* | |
H8B | −0.201836 | 0.369717 | 0.324210 | 0.089* | |
C9 | −0.0362 (3) | 0.1539 (2) | 0.13116 (18) | 0.0581 (5) | |
H9A | 0.003134 | 0.139093 | 0.052136 | 0.070* | |
H9B | −0.150414 | 0.078921 | 0.117385 | 0.070* | |
C10 | 0.1378 (3) | 0.16274 (16) | 0.21970 (14) | 0.0432 (4) | |
H10A | 0.174467 | 0.080947 | 0.185378 | 0.052* | |
H10B | 0.254271 | 0.234838 | 0.230153 | 0.052* | |
C11 | 0.2592 (3) | 0.20986 (16) | 0.43386 (14) | 0.0425 (4) | |
H11A | 0.214563 | 0.221718 | 0.511030 | 0.051* | |
H11B | 0.358912 | 0.292112 | 0.449159 | 0.051* | |
C12 | 0.3601 (2) | 0.10098 (17) | 0.39727 (15) | 0.0438 (4) | |
H12A | 0.408246 | 0.090738 | 0.321368 | 0.053* | |
H12B | 0.477074 | 0.128043 | 0.461345 | 0.053* | |
N1 | 0.5579 (2) | 0.19374 (14) | 0.95933 (14) | 0.0490 (4) | |
N2 | 0.8605 (2) | 0.67574 (14) | 1.15356 (12) | 0.0428 (3) | |
N3 | 0.6630 (2) | 0.43738 (14) | 0.70341 (12) | 0.0476 (4) | |
N4 | 0.08400 (19) | 0.18564 (12) | 0.34122 (11) | 0.0370 (3) | |
N5 | 0.2271 (2) | −0.02941 (14) | 0.37799 (13) | 0.0420 (3) | |
H5C | 0.206 (3) | −0.0270 (19) | 0.4503 (15) | 0.050* | |
H5A | 0.291 (3) | −0.0899 (17) | 0.3458 (17) | 0.050* | |
H5B | 0.117 (2) | −0.0515 (19) | 0.3291 (16) | 0.050* | |
O1 | 0.54301 (17) | 0.19894 (10) | 0.72393 (10) | 0.0447 (3) | |
O2 | 0.5959 (3) | 0.09346 (14) | 0.88953 (15) | 0.0832 (5) | |
O3 | 0.4599 (2) | 0.19858 (15) | 1.03953 (15) | 0.0684 (4) | |
O4 | 0.8730 (3) | 0.67488 (14) | 1.25430 (11) | 0.0688 (4) | |
O5 | 0.9152 (2) | 0.77882 (12) | 1.14134 (12) | 0.0644 (4) | |
O6 | 0.5699 (3) | 0.50981 (15) | 0.69044 (13) | 0.0705 (4) | |
O7 | 0.7341 (3) | 0.36689 (18) | 0.62204 (13) | 0.0786 (5) | |
O8 | −0.0951 (2) | 0.27241 (15) | 0.17867 (14) | 0.0665 (4) | |
O9 | 0.19445 (19) | −0.00465 (13) | 0.61101 (11) | 0.0519 (3) | |
H9D | 0.137 (3) | −0.055 (2) | 0.640 (2) | 0.078* | |
H9C | 0.293 (3) | 0.055 (2) | 0.661 (2) | 0.078* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0244 (7) | 0.0322 (7) | 0.0346 (7) | 0.0087 (5) | 0.0061 (5) | 0.0060 (6) |
C2 | 0.0309 (7) | 0.0369 (8) | 0.0294 (7) | 0.0056 (6) | 0.0067 (5) | 0.0100 (6) |
C3 | 0.0317 (7) | 0.0308 (7) | 0.0358 (7) | 0.0044 (6) | 0.0063 (6) | 0.0098 (6) |
C4 | 0.0277 (7) | 0.0330 (7) | 0.0290 (7) | 0.0096 (6) | 0.0031 (5) | 0.0036 (6) |
C5 | 0.0344 (7) | 0.0420 (8) | 0.0321 (7) | 0.0170 (6) | 0.0075 (6) | 0.0136 (6) |
C6 | 0.0332 (7) | 0.0331 (7) | 0.0411 (8) | 0.0128 (6) | 0.0086 (6) | 0.0144 (6) |
C7 | 0.0680 (12) | 0.0527 (10) | 0.0598 (11) | 0.0313 (9) | 0.0337 (9) | 0.0311 (9) |
C8 | 0.0679 (13) | 0.0920 (17) | 0.1018 (18) | 0.0464 (13) | 0.0368 (13) | 0.0651 (15) |
C9 | 0.0679 (12) | 0.0549 (11) | 0.0506 (10) | 0.0109 (9) | 0.0020 (9) | 0.0282 (9) |
C10 | 0.0536 (10) | 0.0408 (8) | 0.0351 (8) | 0.0137 (7) | 0.0126 (7) | 0.0163 (7) |
C11 | 0.0480 (9) | 0.0355 (8) | 0.0338 (7) | 0.0058 (7) | 0.0037 (6) | 0.0102 (6) |
C12 | 0.0360 (8) | 0.0482 (9) | 0.0415 (8) | 0.0089 (7) | 0.0031 (6) | 0.0174 (7) |
N1 | 0.0560 (9) | 0.0392 (8) | 0.0507 (8) | 0.0138 (6) | 0.0090 (7) | 0.0195 (6) |
N2 | 0.0392 (7) | 0.0411 (8) | 0.0327 (7) | 0.0122 (6) | 0.0005 (5) | 0.0028 (6) |
N3 | 0.0478 (8) | 0.0444 (8) | 0.0316 (7) | −0.0044 (6) | 0.0051 (6) | 0.0092 (6) |
N4 | 0.0404 (7) | 0.0353 (7) | 0.0366 (6) | 0.0106 (5) | 0.0110 (5) | 0.0170 (5) |
N5 | 0.0398 (7) | 0.0380 (7) | 0.0397 (7) | 0.0140 (6) | 0.0005 (6) | 0.0091 (6) |
O1 | 0.0401 (6) | 0.0337 (6) | 0.0401 (6) | 0.0054 (5) | 0.0035 (5) | 0.0012 (5) |
O2 | 0.1348 (15) | 0.0412 (8) | 0.0806 (11) | 0.0375 (9) | 0.0376 (10) | 0.0248 (7) |
O3 | 0.0757 (10) | 0.0671 (9) | 0.0775 (10) | 0.0192 (7) | 0.0320 (8) | 0.0447 (8) |
O4 | 0.0949 (11) | 0.0606 (9) | 0.0300 (6) | 0.0171 (8) | −0.0013 (6) | 0.0059 (6) |
O5 | 0.0817 (10) | 0.0347 (7) | 0.0472 (7) | −0.0018 (6) | −0.0032 (6) | 0.0034 (5) |
O6 | 0.0939 (11) | 0.0636 (9) | 0.0541 (8) | 0.0165 (8) | −0.0004 (7) | 0.0324 (7) |
O7 | 0.0844 (11) | 0.0975 (12) | 0.0404 (7) | 0.0240 (9) | 0.0276 (7) | 0.0171 (7) |
O8 | 0.0720 (9) | 0.0768 (10) | 0.0768 (9) | 0.0316 (8) | 0.0178 (7) | 0.0532 (8) |
O9 | 0.0455 (7) | 0.0502 (7) | 0.0456 (7) | −0.0059 (5) | 0.0019 (5) | 0.0199 (6) |
C1—O1 | 1.2683 (18) | C9—H9B | 0.9700 |
C1—C2 | 1.435 (2) | C10—N4 | 1.4736 (19) |
C1—C6 | 1.437 (2) | C10—H10A | 0.9700 |
C2—C3 | 1.375 (2) | C10—H10B | 0.9700 |
C2—N3 | 1.471 (2) | C11—N4 | 1.477 (2) |
C3—C4 | 1.387 (2) | C11—C12 | 1.511 (2) |
C3—H3 | 0.9300 | C11—H11A | 0.9700 |
C4—C5 | 1.385 (2) | C11—H11B | 0.9700 |
C4—N2 | 1.4547 (19) | C12—N5 | 1.482 (2) |
C5—C6 | 1.378 (2) | C12—H12A | 0.9700 |
C5—H5 | 0.9300 | C12—H12B | 0.9700 |
C6—N1 | 1.465 (2) | N1—O3 | 1.214 (2) |
C7—N4 | 1.482 (2) | N1—O2 | 1.225 (2) |
C7—C8 | 1.509 (3) | N2—O4 | 1.2175 (19) |
C7—H7A | 0.9700 | N2—O5 | 1.236 (2) |
C7—H7B | 0.9700 | N3—O7 | 1.216 (2) |
C8—O8 | 1.420 (3) | N3—O6 | 1.224 (2) |
C8—H8A | 0.9700 | N5—H5C | 0.887 (15) |
C8—H8B | 0.9700 | N5—H5A | 0.889 (15) |
C9—O8 | 1.426 (3) | N5—H5B | 0.845 (15) |
C9—C10 | 1.507 (3) | O9—H9D | 0.836 (16) |
C9—H9A | 0.9700 | O9—H9C | 0.821 (17) |
O1—C1—C2 | 122.65 (14) | N4—C10—H10A | 109.4 |
O1—C1—C6 | 125.22 (14) | C9—C10—H10A | 109.4 |
C2—C1—C6 | 112.03 (12) | N4—C10—H10B | 109.4 |
C3—C2—C1 | 125.19 (14) | C9—C10—H10B | 109.4 |
C3—C2—N3 | 117.32 (14) | H10A—C10—H10B | 108.0 |
C1—C2—N3 | 117.40 (13) | N4—C11—C12 | 114.81 (13) |
C2—C3—C4 | 118.10 (14) | N4—C11—H11A | 108.6 |
C2—C3—H3 | 120.9 | C12—C11—H11A | 108.6 |
C4—C3—H3 | 120.9 | N4—C11—H11B | 108.6 |
C5—C4—C3 | 121.52 (13) | C12—C11—H11B | 108.6 |
C5—C4—N2 | 119.86 (14) | H11A—C11—H11B | 107.5 |
C3—C4—N2 | 118.61 (14) | N5—C12—C11 | 114.31 (14) |
C6—C5—C4 | 118.77 (14) | N5—C12—H12A | 108.7 |
C6—C5—H5 | 120.6 | C11—C12—H12A | 108.7 |
C4—C5—H5 | 120.6 | N5—C12—H12B | 108.7 |
C5—C6—C1 | 124.34 (14) | C11—C12—H12B | 108.7 |
C5—C6—N1 | 117.80 (14) | H12A—C12—H12B | 107.6 |
C1—C6—N1 | 117.76 (13) | O3—N1—O2 | 123.96 (16) |
N4—C7—C8 | 110.78 (17) | O3—N1—C6 | 117.76 (14) |
N4—C7—H7A | 109.5 | O2—N1—C6 | 118.28 (15) |
C8—C7—H7A | 109.5 | O4—N2—O5 | 122.81 (14) |
N4—C7—H7B | 109.5 | O4—N2—C4 | 118.89 (15) |
C8—C7—H7B | 109.5 | O5—N2—C4 | 118.30 (14) |
H7A—C7—H7B | 108.1 | O7—N3—O6 | 123.84 (16) |
O8—C8—C7 | 111.62 (16) | O7—N3—C2 | 117.99 (17) |
O8—C8—H8A | 109.3 | O6—N3—C2 | 118.16 (14) |
C7—C8—H8A | 109.3 | C10—N4—C11 | 112.03 (13) |
O8—C8—H8B | 109.3 | C10—N4—C7 | 108.96 (12) |
C7—C8—H8B | 109.3 | C11—N4—C7 | 108.03 (13) |
H8A—C8—H8B | 108.0 | C12—N5—H5C | 109.9 (13) |
O8—C9—C10 | 111.11 (16) | C12—N5—H5A | 108.4 (13) |
O8—C9—H9A | 109.4 | H5C—N5—H5A | 106.8 (17) |
C10—C9—H9A | 109.4 | C12—N5—H5B | 111.1 (13) |
O8—C9—H9B | 109.4 | H5C—N5—H5B | 111.2 (18) |
C10—C9—H9B | 109.4 | H5A—N5—H5B | 109.2 (18) |
H9A—C9—H9B | 108.0 | C8—O8—C9 | 108.77 (14) |
N4—C10—C9 | 111.04 (14) | H9D—O9—H9C | 112 (2) |
O1—C1—C2—C3 | 177.25 (14) | C1—C6—N1—O3 | −136.51 (16) |
C6—C1—C2—C3 | 0.8 (2) | C5—C6—N1—O2 | −139.62 (17) |
O1—C1—C2—N3 | 0.9 (2) | C1—C6—N1—O2 | 43.8 (2) |
C6—C1—C2—N3 | −175.60 (12) | C5—C4—N2—O4 | 1.0 (2) |
C1—C2—C3—C4 | 0.8 (2) | C3—C4—N2—O4 | 179.69 (15) |
N3—C2—C3—C4 | 177.14 (13) | C5—C4—N2—O5 | −178.77 (14) |
C2—C3—C4—C5 | −2.5 (2) | C3—C4—N2—O5 | −0.1 (2) |
C2—C3—C4—N2 | 178.84 (12) | C3—C2—N3—O7 | 129.37 (17) |
C3—C4—C5—C6 | 2.6 (2) | C1—C2—N3—O7 | −54.0 (2) |
N2—C4—C5—C6 | −178.78 (13) | C3—C2—N3—O6 | −51.9 (2) |
C4—C5—C6—C1 | −0.9 (2) | C1—C2—N3—O6 | 124.75 (16) |
C4—C5—C6—N1 | −177.21 (13) | C9—C10—N4—C11 | −173.52 (13) |
O1—C1—C6—C5 | −177.07 (14) | C9—C10—N4—C7 | −54.04 (18) |
C2—C1—C6—C5 | −0.7 (2) | C12—C11—N4—C10 | −56.71 (17) |
O1—C1—C6—N1 | −0.8 (2) | C12—C11—N4—C7 | −176.74 (13) |
C2—C1—C6—N1 | 175.61 (13) | C8—C7—N4—C10 | 53.41 (19) |
N4—C7—C8—O8 | −58.1 (2) | C8—C7—N4—C11 | 175.35 (14) |
O8—C9—C10—N4 | 58.90 (19) | C7—C8—O8—C9 | 60.6 (2) |
N4—C11—C12—N5 | −61.64 (18) | C10—C9—O8—C8 | −60.8 (2) |
C5—C6—N1—O3 | 40.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7B···O7i | 0.97 | 2.55 | 3.465 (2) | 158 |
C10—H10B···O6ii | 0.97 | 2.63 | 3.503 (3) | 150 |
C12—H12A···O2iii | 0.97 | 2.55 | 3.349 (3) | 139 |
N5—H5C···O9 | 0.89 (2) | 1.86 (2) | 2.741 (2) | 172 (2) |
N5—H5A···O1iii | 0.89 (2) | 1.89 (2) | 2.777 (2) | 172 (2) |
N5—H5B···O5iv | 0.85 (2) | 2.35 (2) | 3.054 (2) | 142 (2) |
N5—H5B···O9v | 0.85 (2) | 2.48 (2) | 3.048 (2) | 126 (2) |
O9—H9D···N4v | 0.84 (2) | 1.98 (2) | 2.7722 (19) | 158 (2) |
O9—H9C···O1 | 0.82 (2) | 1.94 (2) | 2.7196 (19) | 160 (2) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+1; (iv) x−1, y−1, z−1; (v) −x, −y, −z+1. |
Acknowledgements
The authors gratefully acknowledge Dr Shobhana Krishnaswamy, SAIF, IITM, Chennai, for the single-crystal X-ray diffraction data collection and structure solution and Professor M. Palanichamy, Emeritus Professor, Department of Physical Chemistry, University of Madras, Guindy Campus, Chennai, for scientific discussions.
References
Anitha, K., Sridhar, B. & Rajaram, R. K. (2004). Acta Cryst. E60, o1530–o1532. Web of Science CSD CrossRef IUCr Journals Google Scholar
Battaglia, L. P., Bonamartini Corradi, A., Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1982). Inorg. Chem. 21, 3919–3922. CSD CrossRef CAS Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bi, Y. (2010). Acta Cryst. E66, o951. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Efimenko, I. A., Churakov, A. V., Ivanova, N. A., Erofeeva, O. S. & Demina, L. I. (2017). Russ. J. Inorg. Chem. 62, 1476–1485. Web of Science CSD CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
George, J., George, M., Alex, J., Sajan, D., Shihab, N. K., Vinitha, G. & Chitra, R. (2019). Opt. Laser Technol. 119, 105647, 1–9. Google Scholar
Ghorab, M., Alsaid, M. S. & Ghabbour, H. A. (2017). Z. Kristallogr. 232, 501–502. CAS Google Scholar
Glaoui, M. El., Smirani, W., Lefebvre, F., Rzaigui, M. & Nasr, C. B. (2008). Can. J. Anal. Sci. Spectrosc. 53, 102–112. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kant, R., Kohli, S., Sarmal, L., Narayana, B. & Samshuddin, S. (2009). Acta Cryst. E65, o2435. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kuchowicz, E. & Rydzyński, K. (1998). Appl. Occup. Environ. Hyg. 13, 113–121. CrossRef Google Scholar
Lamshöft, M., Storp, V., Ivanova, B. & Spiteller, M. (2011). Polyhedron, 30, 2564–2573. Google Scholar
Lin, Z. & Dehnen, S. (2009). J. Solid State Chem. 182, 3143–3148. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mahbouli Rhouma, N., Rayes, A., Mezzadri, F., Calestani, G. & Loukil, M. (2016). Acta Cryst. E72, 1404–1407. CSD CrossRef IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Motherwell, W. D. S., Shields, G. P. & Allen, F. H. (2000). Acta Cryst. B56, 857–871. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nchioua, I., Alsubari, A., Mague, J. T. & Ramli, Y. (2022). Acta Cryst. E78, 922–925. Web of Science CSD CrossRef IUCr Journals Google Scholar
Seth, S. K. (2014). J. Mol. Struct. 1064, 70–75. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Solov'ev, V. N., Chekhlov, A. N., Gafurov, R. G., Chistyakov, V. G. & Martynov, I. V. (1988). J. Struct. Chem. 29, 174–175. CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takayanagi, H., Kai, T., Yamaguchi, S., Takeda, K. & Goto, M. (1996). Chem. Pharm. Bull. 44, 2199–2204. CSD CrossRef Google Scholar
Vembu, N. & Fronczek, F. R. (2009). Acta Cryst. E65, o156–o157. Web of Science CSD CrossRef IUCr Journals Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
Vezzosi, I. M., Benedetti, A., Albinati, A., Ganazzoli, F., Cariati, F. & Pellicciari, L. (1984). Inorg. Chim. Acta, 90, 1–7. CSD CrossRef CAS Web of Science Google Scholar
Wang, L.-J., Li, W.-W., Yang, S.-Y. & Yang, L. (2012). Acta Cryst. E68, o1235. CSD CrossRef IUCr Journals Google Scholar
Xiuli, Y. & Zhenhong, W. (2019). Chin. J. Struct. Chem. 38, 284–292. Google Scholar
Yamaguchi, S., Goto, M., Takayanagi, H. & Ogura, H. (1988). Bull. Chem. Soc. Jpn, 61, 1026–1028. CSD CrossRef CAS Web of Science Google Scholar
Zukerman-Schpector, J., Vega-Teijido, M., Carvalho, C. C., Isolani, P. C. & Caracelli, I. (2007). Z. Kristallogr. 222, 427–431. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.