research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of (Z)-(ethene-1,2-di­yl)bis­­(di­phenyl­phosphine sulfide) and its complex with PtII dichloride

crossmark logo

aDepartment of Chemistry, Grand Valley State University, Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
*Correspondence e-mail: biross@gvsu.edu

Edited by S. Parkin, University of Kentucky, USA (Received 7 November 2022; accepted 12 December 2022; online 1 January 2023)

The crystal structures of (Z)-(ethene-1,2-di­yl)bis­(di­phenyl­phosphine sulfide), C26H22P2S2 (I), along with its complex with PtII dichloride, di­chlorido[(Z)-(ethene-1,2-di­yl)bis­(di­phenyl­phosphine sulfide)-κ2S,S′]platinum(II), [PtCl2(C26H22P2S2)] (II), are described here. Compound I features P=S bond lengths of 1.9571 (15) and 1.9529 (15) Å, with a torsion angle of 166.24 (7)° between the two phosphine sulfide groups. The crystal of compound I features both intra­molecular C—H⋯S hydrogen bonds and ππ inter­actions. Mol­ecules of compound I are held together with inter­molecular ππ and C—H⋯π inter­actions to form chains that run parallel to the z-axis. The inter­molecular C—H⋯π inter­action has a H⋯Cg distance of 2.63 Å, a DCg distance of 3.573 (5) Å and a D—H⋯Cg angle of 171° (where Cg refers to the centroid of one of the phenyl rings). These chains are linked by relatively long C—H⋯S hydrogen bonds with DA distances of 3.367 (4) and 3.394 (4) Å with D—H⋯A angles of 113 and 115°. Compound II features Pt—Cl and Pt—S bond lengths of 2.3226 (19) and 2.2712 (19) Å, with a P=S bond length of 2.012 (3) Å. The PtII center adopts a square-planar geometry, with Cl—Pt—Cl and S—Pt—S bond angles of 90.34 (10) and 97.19 (10)°, respectively. Mol­ecules of compound II are linked in the crystal by inter­molecular C—H⋯Cl and C—H⋯S hydrogen bonds.

1. Chemical context

The diphosphine compound cis-bis­(di­phenyl­phos­phino)ethyl­ene (cis-dppe, Fig. 1[link]) has been used by many research groups as a ligand in organometallic chemistry (Hirano & Miura, 2017[Hirano, K. & Miura, M. (2017). Tetrahedron Lett. 58, 4317-4322.]; Price & Walton, 1987[Price, A. C. & Walton, R. A. (1987). Polyhedron, 6, 729-740.]). While the bis­phosphine oxide derivative has found use in the coordination chemistry of both d-block and f-block metals (Jarrett & Sadler, 1991[Jarrett, P. S. & Sadler, P. J. (1991). Inorg. Chem. 30, 2098-2104.]; Banda & Pritchard, 2008[Banda, S. F. & Pritchard, R. G. (2008). Orient. J. Chem. 24, 17-22.]; Morse, et al., 2016[Morse, P. T., Staples, R. J. & Biros, S. M. (2016). Polyhedron, 114, 2-12.]), the bis­phosphine sulfide and bis­phosphineselenide derivatives have been less studied. Our group is inter­ested in developing new organic compounds that can facilitate the separation of actinide (An) metals from lanthanide (Ln) metals in liquid–liquid extraction processes (Gorden et al., 2013[Gorden, A. E. V., DeVore, M. A. & Maynard, B. A. (2013). Inorg. Chem. 52, 3445-3458.]). Since the An metals have a greater preference for soft-donor atoms than the Ln metals (Cotton, 2006[Cotton, S. (2006). Lanthanide and Actinide Chemistry. Chichester: John Wiley & Sons, Ltd.]), there have been some successes with the use of phosphine sulfide compounds as actinide extraction agents (e.g. Cyanex 301; Zhu et al., 1996[Zhu, Y., Chen, J. & Jiao, R. (1996). Solvent Extr. Ion Exch. 14, 61-68.]). To this end, we prepared compound I from cis-dppe using elemental sulfur (Fig. 1[link]; Aguiar & Daigle, 1964[Aguiar, A. M. & Daigle, D. (1964). J. Am. Chem. Soc. 86, 5354-5355.]; Duncan & Gallagher, 1981[Duncan, M. & Gallagher, M. J. (1981). Org. Magn. Reson. 15, 37-42.]). Unfortunately, our efforts in this area were plagued by the ease of isomerization of the cis-alkene to a trans-alkene when the systems were heated for even short lengths of time. In an effort to understand the ability of this ligand to form complexes with metals, we also reacted compound I with Pt(PhCN)2Cl2 to give compound II.

[Scheme 1]
[Figure 1]
Figure 1
Reaction conditions used to prepare the title compounds.

2. Structural commentary

The structure of compound I was solved in the ortho­rhom­bic space group P212121. The mol­ecular structure of this compound is shown in Fig. 2[link] along with the atom numbering scheme. The structure of di­sulfide I has P=S bond lengths of 1.9571 (15) and 1.9529 (15) Å, P—C bond lengths that range from 1.804 (4) to 1.824 (4) Å and a C=C bond length of 1.338 (5) Å. The P=S bonds are oriented in opposite directions with a S1—P1—P2—S2 torsion angle of 166.24 (7)°. The τ4 descriptor for fourfold coordination around both phospho­rus atoms P1 and P2 is 0.94, indicating a near tetra­hedral geometry of the phosphine sulfide groups (where 0.00 = square-planar, 0.85 = trigonal–pyramidal, and 1.00 = tetra­hedral; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). The bond angles around both phospho­rus atoms range from 100.75 (18) to 115.48 (14)°, with the largest angles involving the sulfur atom. One intra­molecular ππ inter­action is present between the C9–C14 and C21–C26 rings with an inter­centroid distance of 3.737 (3) Å, slippage of 3.370 Å and a dihedral angle of 5.6 (2)°. Both C8(H8) and C10(H10) are engaged in intra­molecular C—H⋯S hydrogen bonds with S1 (Ghosh et al., 2020[Ghosh, S., Chopra, P. & Wategaonkar, S. (2020). Phys. Chem. Chem. Phys. 22, 17482-17493.]; Table 1[link]). These inter­actions have DA distances of 3.344 (4) and 3.360 (4) Å with D—H⋯A dihedral angles of 113 and 116°, respectively (Table 1[link], Fig. 3[link]). In a similar fashion, S2 hosts two intra­molecular C—H hydrogen bonds with C20(H20) and C26(H26). These inter­actions have DA distances of 3.367 (4) and 3.394 (4) Å with D—H⋯A dihedral angles of 113 and 115°, respectively. The Flack parameter for this structure is −0.10 (5) (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

Cg is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯S2i 0.95 2.86 3.742 (4) 155
C7—H7⋯S2ii 0.95 2.82 3.561 (5) 135
C8—H8⋯S1 0.95 2.86 3.344 (4) 113
C10—H10⋯S1 0.95 2.84 3.360 (4) 116
C20—H20⋯S2 0.95 2.89 3.367 (4) 113
C26—H26⋯S2 0.95 2.89 3.394 (4) 115
C11—H11⋯Cgiii 0.95 2.63 3.573 (5) 171
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular structure of compound I, with the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level using standard CPK colors.
[Figure 3]
Figure 3
A figure depicting the intra- and inter­molecular inter­actions found in crystals of compound I using a ball-and-stick model with standard CPK colors. Hydrogen bonds are drawn using blue dotted lines while ππ and C—H⋯π inter­actions are drawn with red dashed lines. Only hydrogen atoms involved in an inter­action are shown for clarity. Symmetry codes: (i) −x + [{1\over 2}], −y + 1, z + [{1\over 2}]; (ii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}].

For the PtII complex II, the structure was solved in the ortho­rhom­bic space group Fdd2. Since the entire mol­ecule straddles a twofold symmetry axis, the asymmetric unit is composed of half of the mol­ecule. The complete mol­ecular structure of compound II is shown in Fig. 4[link] along with the atom-numbering scheme. The Pt—Cl and Pt—S bond lengths are 2.3226 (19) and 2.2712 (19) Å, respectively. The Cl1—Pt1—Cl1i and S1—Pt1—S1i bond angles are 90.34 (10) and 97.19 (10)°, respectively [symmetry code: (i) −x + 1, −y + 1, z]. The τ4 descriptor for fourfold coordination around the PtII center is 0.05, indicating a nearly perfect square-planar orientation of the sulfur and chlorine atoms around the metal (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). The P=S bond length is 2.012 (3) Å, which is slightly longer than what was observed for compound I. The complex has P—C bond lengths that range from 1.799 (8) to 1.816 (9) Å, with a C=C bond length of 1.312 (18) Å. The τ4 descriptor for fourfold coordination of the phospho­rus atom P1 is 0.91, indicating a slightly distorted tetra­hedral geometry of the groups bonded to this atom, and that this tetra­hedron is more distorted than what was observed for compound I.

[Figure 4]
Figure 4
The complete mol­ecular structure of compound II, with the atom-labeling scheme. Unlabeled atoms are related to labeled atoms by a crystallographic twofold axis. Displacement ellipsoids are drawn at the 40% probability level using standard CPK colors (Pt = maroon).

3. Supra­molecular features

Mol­ecules of compound I are held together in the crystal by inter­molecular ππ and C—H⋯π inter­actions (Table 1[link] and Fig. 3[link]). Ring C9–C14 is engaged in an inter­molecular ππ inter­action with a screw-related C21–C26 ring (symmetry code: −x + [{1\over 2}], −y + 1, z − [{1\over 2}]). The centroid–centroid distance of this inter­action is 3.896 (3) Å, with a slippage of 3.598 Å and a dihedral angle of 10.80 (14) °. Hydrogen atom C11(H11) is engaged in an inter­molecular C—H⋯π inter­action with ring C15–C20 (symmetry code −x + [{1\over 2}], −y + 1, z + [{1\over 2}]) with an H⋯Cg distance of 2.63 Å, a DCg distance of 3.573 (5) Å and a D—H⋯Cg angle of 171° (Cg is the centroid of the C15–C20 ring). Together, these inter­molecular ππ and C—H⋯π inter­actions link the mol­ecules into chains that propagate parallel to the z-axis (Fig. 5[link]). Two potential inter­molecular C—H⋯S inter­actions exist between C1(H1) and C7(H7) and S2. These inter­actions have relatively long DA distances of 3.742 (4) and 3.561 (5) Å with D—H⋯A angles of 155 and 135°, respectively. These hydrogen-bonding inter­actions occur between the supra­molecular chains of compound I.

[Figure 5]
Figure 5
A packing diagram of compound I viewed down the x-axis using a ball-and-stick model with standard CPK colors. All ππ and C—H⋯π inter­actions are drawn with red dashed lines and inter­molecular C—H⋯S hydrogen bonds are drawn with blue dotted lines. Intra­molecular C—H⋯S hydrogen bonds and any hydrogen atom not involved in an inter­action have been omitted for clarity.

Mol­ecules of compound II are held together by C—H⋯Cl (Aullón et al., 1998[Aullón, G., Bellamy, D., Orpen, A.G., Brammer, L. & Bruton, E. A. (1998). Chem. Commun. pp. 653-654.]) and C—H⋯S hydrogen bonds (Ghosh et al., 2020[Ghosh, S., Chopra, P. & Wategaonkar, S. (2020). Phys. Chem. Chem. Phys. 22, 17482-17493.]; Table 2[link] and Fig. 6[link]). The C—H⋯Cl inter­action is between hydrogen atom C1(H1) and Cl1 and has a D⋯A distance of 3.515 (10) Å with a D—H⋯A angle of 141° (symmetry code: −x + 1, −y + 1, z + 1). Sulfur atom S1 hosts the other inter­molecular hydrogen bond with atom C3(H3) (symmetry code: x + [{1\over 4}], −y + [{5\over 4}], z + [{1\over 4}]). This inter­action has a slightly longer D⋯A distance of 3.538 (9) with a D—H⋯A angle of 133°. The inter­molecular C—H⋯Cl inter­actions form chains of compound II that run parallel to the z-axis. These chains are then linked into a three-dimensional network through the inter­molecular C—H⋯S hydrogen bonds.

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1i 0.95 2.73 3.515 (10) 141
C3—H3⋯S1ii 0.95 2.82 3.538 (9) 133
Symmetry codes: (i) [-x+1, -y+1, z+1]; (ii) [x+{\script{1\over 4}}, -y+{\script{5\over 4}}, z+{\script{1\over 4}}].
[Figure 6]
Figure 6
This figure shows the inter­molecular C—H⋯Cl and C—H⋯S hydrogen bonds present in the crystal of compound II using a ball-and-stick model with standard CPK colors (Pt = maroon). Hydrogen bonds are drawn with blue (C—H⋯Cl) or red (C—H⋯S) dashed lines, and only hydrogen atoms H1 and H3 are shown for clarity. Symmetry codes: (i) −x + 1, −y + 1, z − 1; (ii) x + [{1\over 4}], −y + [{5\over 4}], z + [{1\over 4}].

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.42, Sep. 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures similar to compound I resulted in 17 hits. The majority of these hits were metal–ligand complexes, where the ligand was a triazole ring bearing two di­phenyl­phosphine sulfide groups. Crystal structures of this ligand bonded to copper(II), zinc(II), palladium(II), and cadmium(II) were reported (KOBJOC, KOBKAP, KOBKUJ, KOBKIX; Pastor-Medrano, et al., 2014[Pastor-Medrano, J., Jancik, V., Bernabé-Pablo, E., Martínez-Otero, D., Reyes-Lezama, M. & Morales-Juárez, J. (2014). Inorg. Chim. Acta, 412, 52-59.]), along with complexes containing zirconium(IV) and hafnium(IV) (PUKNAM, PUKNEQ; Bernabe-Pablo et al., 2016[Bernabé-Pablo, E., Campirán-Martínez, A., Jancik, V., Martínez-Otero, D. & Moya-Cabrera, M. (2016). Polyhedron, 110, 305-313.]). A structure closely related to compound I, where the alkene bears a phenyl ring and is bonded to the phosphine sulfide groups with a trans relationship, has also been deposited in the CSD as a private communication (GOLXAI; Rybakov and Afanas'ev, 2010[Rybakov, V. B. & Afanas'ev, V. V. (2010). CSD Communication (refcode GOLXAI). CCDC, Cambridge, England.]).

5. Synthesis and crystallization

Compound I: cis-dppe (500 mg, 1.25 mmol) and elemental sulfur (S8, 80 mg, 0.31 mmol) were combined in a round-bottom flask and dissolved in tetra­hydro­furan (5 mL). The reaction mixture was stirred for three h at room temperature. The solvent was removed under reduced pressure to give a white, gelatinous solid. The crude product was recrystallized from benzene (5 mL) at 333 K and isolated by vacuum filtration with a Hirsch funnel to give a white solid. Analysis of the solid by 31P NMR (CDCl3) showed that the target compound I was present along with trans-dppeS2 and unreacted starting material. Single crystals of compound I grew serendipitously upon slow evaporation of this solution. 31P NMR (CDCl3, 121 MHz): Compound I: 32.3 ppm; trans-dppeS2: 36.6 ppm; cis-dppe: −22 ppm.

Compound II: Equimolar amounts of compound I (10.0 mg, 0.022 mmol) and Pt(PhCN)2Cl2 (10.4 mg, 0.022 mmol) were combined in a small vial and dissolved in 1 mL CDCl3. Crystals of compound II formed serendipitously via slow evaporation of the solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For compounds I and II, all hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined as riding: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C) for vinylic and aromatic hydrogen atoms.

Table 3
Experimental details

  I II
Crystal data
Chemical formula C26H22P2S2 [PtCl2(C26H22P2S2)]
Mr 460.49 726.48
Crystal system, space group Orthorhombic, P212121 Orthorhombic, Fdd2
Temperature (K) 173 173
a, b, c (Å) 12.315 (3), 13.092 (3), 14.211 (4) 18.0724 (12), 30.163 (2), 9.3697 (6)
V3) 2291.2 (10) 5107.5 (6)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.38 6.01
Crystal size (mm) 0.22 × 0.17 × 0.11 0.35 × 0.14 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.655, 0.745 0.543, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 18678, 4213, 3676 20596, 2324, 2227
Rint 0.057 0.039
(sin θ/λ)max−1) 0.603 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.088, 1.04 0.023, 0.061, 1.09
No. of reflections 4213 2324
No. of parameters 271 150
No. of restraints 0 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.20 1.82, −0.48
Absolute structure Flack x determined using 1430 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 1010 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al. 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.10 (5) −0.006 (4)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), OLEX2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), and CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013). Program(s) used to solve structure: olex2.solve (Bourhis et al., 2015) for (I); SHELXS (Sheldrick, 2008) for (II). For both structures, program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009; Bourhis et al., 2015); software used to prepare material for publication: CrystalMaker (Palmer, 2007).

(Z)-(Ethene-1,2-diyl)bis(diphenylphosphine sulfide (I) top
Crystal data top
C26H22P2S2Dx = 1.335 Mg m3
Mr = 460.49Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 7213 reflections
a = 12.315 (3) Åθ = 2.2–25.3°
b = 13.092 (3) ŵ = 0.38 mm1
c = 14.211 (4) ÅT = 173 K
V = 2291.2 (10) Å3Chunk, yellow
Z = 40.22 × 0.17 × 0.11 mm
F(000) = 960
Data collection top
Bruker APEXII CCD
diffractometer
3676 reflections with I > 2σ(I)
φ and ω scansRint = 0.057
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.4°, θmin = 2.1°
Tmin = 0.655, Tmax = 0.745h = 1414
18678 measured reflectionsk = 1515
4213 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.5294P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.37 e Å3
4213 reflectionsΔρmin = 0.20 e Å3
271 parametersAbsolute structure: Flack x determined using 1430 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.10 (5)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.55697 (10)0.38129 (8)0.13055 (8)0.0420 (3)
S20.39195 (10)0.80901 (8)0.04312 (8)0.0398 (3)
P10.53899 (8)0.52703 (8)0.15692 (7)0.0300 (3)
P20.44444 (9)0.67175 (8)0.07181 (7)0.0281 (2)
C10.6036 (3)0.6052 (3)0.0686 (3)0.0306 (9)
H10.6779460.6176310.0821230.037*
C20.5716 (3)0.6497 (3)0.0115 (3)0.0297 (9)
H20.6313320.6768570.0455720.036*
C30.6119 (3)0.5670 (3)0.2624 (3)0.0299 (9)
C40.6408 (4)0.6679 (3)0.2775 (3)0.0415 (11)
H40.6211870.7186770.2328460.050*
C50.6981 (4)0.6949 (4)0.3576 (3)0.0476 (12)
H50.7174750.7642830.3676290.057*
C60.7273 (3)0.6222 (4)0.4226 (3)0.0397 (10)
H60.7678740.6408470.4768630.048*
C70.6973 (3)0.5225 (4)0.4085 (3)0.0445 (12)
H70.7163440.4722670.4538220.053*
C80.6397 (3)0.4940 (3)0.3292 (3)0.0382 (10)
H80.6192230.4247020.3203330.046*
C90.3997 (3)0.5681 (3)0.1732 (3)0.0285 (9)
C100.3184 (3)0.4950 (3)0.1773 (3)0.0358 (10)
H100.3364540.4246700.1716650.043*
C110.2115 (3)0.5236 (4)0.1896 (3)0.0398 (11)
H110.1557850.4735020.1911990.048*
C120.1863 (4)0.6263 (4)0.1997 (3)0.0421 (11)
H120.1129580.6464800.2086320.051*
C130.2669 (4)0.6990 (3)0.1967 (3)0.0406 (11)
H130.2489270.7691400.2037270.049*
C140.3735 (3)0.6705 (3)0.1836 (3)0.0345 (10)
H140.4289980.7209400.1816150.041*
C150.4870 (3)0.6581 (3)0.1938 (3)0.0322 (9)
C160.5569 (4)0.5795 (3)0.2208 (3)0.0391 (10)
H160.5852690.5338630.1749790.047*
C170.5849 (4)0.5681 (4)0.3153 (3)0.0514 (13)
H170.6339850.5157970.3337800.062*
C180.5419 (4)0.6322 (4)0.3812 (3)0.0547 (14)
H180.5594140.6227510.4457210.066*
C190.4738 (4)0.7098 (4)0.3555 (3)0.0481 (12)
H190.4455330.7545900.4020840.058*
C200.4456 (4)0.7235 (3)0.2617 (3)0.0396 (10)
H200.3982610.7775290.2440580.047*
C210.3463 (3)0.5701 (3)0.0566 (3)0.0302 (9)
C220.3761 (4)0.4679 (3)0.0612 (3)0.0359 (10)
H220.4507390.4498380.0637590.043*
C230.2974 (4)0.3922 (3)0.0619 (3)0.0422 (11)
H230.3182140.3224030.0642860.051*
C240.1897 (4)0.4180 (4)0.0592 (3)0.0486 (13)
H240.1358870.3660660.0608700.058*
C250.1589 (4)0.5196 (4)0.0539 (3)0.0493 (13)
H250.0841240.5370130.0514120.059*
C260.2363 (3)0.5953 (3)0.0524 (3)0.0384 (10)
H260.2148480.6648580.0484230.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0477 (7)0.0281 (5)0.0503 (6)0.0058 (5)0.0037 (6)0.0026 (5)
S20.0449 (7)0.0288 (6)0.0457 (6)0.0060 (5)0.0003 (5)0.0047 (5)
P10.0292 (6)0.0273 (5)0.0335 (6)0.0022 (5)0.0029 (5)0.0011 (4)
P20.0285 (5)0.0265 (5)0.0293 (5)0.0007 (5)0.0001 (5)0.0009 (4)
C10.023 (2)0.037 (2)0.032 (2)0.0012 (18)0.0015 (17)0.0013 (18)
C20.026 (2)0.030 (2)0.032 (2)0.0026 (17)0.0026 (17)0.0007 (17)
C30.025 (2)0.033 (2)0.032 (2)0.0029 (18)0.0009 (18)0.0031 (18)
C40.051 (3)0.034 (2)0.039 (2)0.005 (2)0.012 (2)0.007 (2)
C50.055 (3)0.039 (3)0.050 (3)0.001 (2)0.014 (2)0.001 (2)
C60.033 (2)0.054 (3)0.032 (2)0.003 (2)0.0022 (19)0.001 (2)
C70.035 (2)0.054 (3)0.045 (3)0.005 (2)0.003 (2)0.020 (2)
C80.036 (2)0.036 (2)0.043 (3)0.004 (2)0.001 (2)0.008 (2)
C90.027 (2)0.033 (2)0.026 (2)0.0001 (18)0.0009 (17)0.0013 (17)
C100.037 (2)0.032 (2)0.038 (2)0.002 (2)0.0031 (19)0.0012 (19)
C110.033 (2)0.044 (3)0.043 (2)0.010 (2)0.006 (2)0.001 (2)
C120.026 (2)0.058 (3)0.042 (3)0.007 (2)0.0074 (19)0.001 (2)
C130.041 (3)0.035 (3)0.046 (3)0.008 (2)0.004 (2)0.003 (2)
C140.032 (2)0.030 (2)0.041 (2)0.0025 (19)0.0039 (19)0.0013 (19)
C150.030 (2)0.032 (2)0.034 (2)0.0089 (18)0.0019 (17)0.0035 (18)
C160.032 (2)0.047 (3)0.038 (2)0.004 (2)0.001 (2)0.0075 (19)
C170.034 (3)0.074 (4)0.047 (3)0.003 (2)0.008 (2)0.021 (3)
C180.044 (3)0.087 (4)0.033 (2)0.020 (3)0.007 (2)0.010 (3)
C190.048 (3)0.064 (3)0.032 (2)0.017 (3)0.003 (2)0.009 (2)
C200.040 (3)0.041 (3)0.038 (2)0.008 (2)0.001 (2)0.0036 (19)
C210.032 (2)0.034 (2)0.025 (2)0.0023 (18)0.0013 (17)0.0023 (18)
C220.039 (2)0.035 (2)0.033 (2)0.000 (2)0.0060 (19)0.0055 (19)
C230.051 (3)0.037 (3)0.038 (3)0.012 (2)0.008 (2)0.004 (2)
C240.052 (3)0.056 (3)0.038 (3)0.026 (3)0.006 (2)0.006 (2)
C250.032 (2)0.068 (3)0.048 (3)0.011 (2)0.005 (2)0.000 (3)
C260.032 (2)0.046 (3)0.038 (2)0.002 (2)0.0012 (19)0.000 (2)
Geometric parameters (Å, º) top
S1—P11.9571 (15)C12—H120.9500
S2—P21.9529 (15)C12—C131.376 (6)
P1—C11.804 (4)C13—H130.9500
P1—C31.824 (4)C13—C141.378 (6)
P1—C91.812 (4)C14—H140.9500
P2—C21.808 (4)C15—C161.396 (6)
P2—C151.819 (4)C15—C201.387 (6)
P2—C211.810 (4)C16—H160.9500
C1—H10.9500C16—C171.395 (6)
C1—C21.338 (5)C17—H170.9500
C2—H20.9500C17—C181.365 (7)
C3—C41.384 (6)C18—H180.9500
C3—C81.389 (6)C18—C191.367 (7)
C4—H40.9500C19—H190.9500
C4—C51.386 (6)C19—C201.390 (6)
C5—H50.9500C20—H200.9500
C5—C61.375 (6)C21—C221.389 (6)
C6—H60.9500C21—C261.395 (6)
C6—C71.372 (6)C22—H220.9500
C7—H70.9500C22—C231.386 (6)
C7—C81.383 (6)C23—H230.9500
C8—H80.9500C23—C241.369 (7)
C9—C101.387 (6)C24—H240.9500
C9—C141.387 (5)C24—C251.384 (7)
C10—H100.9500C25—H250.9500
C10—C111.380 (6)C25—C261.375 (6)
C11—H110.9500C26—H260.9500
C11—C121.387 (6)
C1—P1—S1111.69 (14)C11—C12—H12119.8
C1—P1—C3101.08 (18)C13—C12—C11120.4 (4)
C1—P1—C9109.73 (18)C13—C12—H12119.8
C3—P1—S1112.42 (14)C12—C13—H13119.8
C9—P1—S1114.89 (14)C12—C13—C14120.3 (4)
C9—P1—C3106.02 (18)C14—C13—H13119.8
C2—P2—S2109.54 (13)C9—C14—H14120.1
C2—P2—C15100.75 (18)C13—C14—C9119.8 (4)
C2—P2—C21113.85 (18)C13—C14—H14120.1
C15—P2—S2112.62 (14)C16—C15—P2120.8 (3)
C21—P2—S2115.48 (14)C20—C15—P2119.7 (3)
C21—P2—C15103.53 (18)C20—C15—C16119.4 (4)
P1—C1—H1112.4C15—C16—H16120.1
C2—C1—P1135.2 (3)C17—C16—C15119.8 (4)
C2—C1—H1112.4C17—C16—H16120.1
P2—C2—H2111.6C16—C17—H17120.0
C1—C2—P2136.7 (3)C18—C17—C16119.9 (5)
C1—C2—H2111.6C18—C17—H17120.0
C4—C3—P1121.8 (3)C17—C18—H18119.6
C4—C3—C8119.2 (4)C17—C18—C19120.8 (4)
C8—C3—P1119.0 (3)C19—C18—H18119.6
C3—C4—H4120.0C18—C19—H19119.8
C3—C4—C5120.1 (4)C18—C19—C20120.4 (4)
C5—C4—H4120.0C20—C19—H19119.8
C4—C5—H5119.7C15—C20—C19119.7 (4)
C6—C5—C4120.6 (5)C15—C20—H20120.1
C6—C5—H5119.7C19—C20—H20120.1
C5—C6—H6120.3C22—C21—P2121.7 (3)
C7—C6—C5119.3 (4)C22—C21—C26119.1 (4)
C7—C6—H6120.3C26—C21—P2118.7 (3)
C6—C7—H7119.5C21—C22—H22119.9
C6—C7—C8121.0 (4)C23—C22—C21120.3 (4)
C8—C7—H7119.5C23—C22—H22119.9
C3—C8—H8120.1C22—C23—H23120.0
C7—C8—C3119.8 (4)C24—C23—C22120.0 (4)
C7—C8—H8120.1C24—C23—H23120.0
C10—C9—P1118.9 (3)C23—C24—H24119.9
C10—C9—C14119.7 (4)C23—C24—C25120.2 (4)
C14—C9—P1121.4 (3)C25—C24—H24119.9
C9—C10—H10119.8C24—C25—H25119.9
C11—C10—C9120.4 (4)C26—C25—C24120.2 (4)
C11—C10—H10119.8C26—C25—H25119.9
C10—C11—H11120.3C21—C26—H26119.9
C10—C11—C12119.4 (4)C25—C26—C21120.1 (4)
C12—C11—H11120.3C25—C26—H26119.9
S1—P1—C1—C292.9 (4)C4—C5—C6—C71.2 (7)
S1—P1—C3—C4158.3 (3)C5—C6—C7—C81.0 (7)
S1—P1—C3—C821.4 (4)C6—C7—C8—C30.2 (7)
S1—P1—C9—C107.6 (4)C8—C3—C4—C51.0 (7)
S1—P1—C9—C14173.9 (3)C9—P1—C1—C235.7 (5)
S2—P2—C2—C196.9 (4)C9—P1—C3—C475.4 (4)
S2—P2—C15—C16159.7 (3)C9—P1—C3—C8104.9 (3)
S2—P2—C15—C2023.4 (4)C9—C10—C11—C121.3 (6)
S2—P2—C21—C22170.6 (3)C10—C9—C14—C130.8 (6)
S2—P2—C21—C2617.8 (4)C10—C11—C12—C130.5 (7)
P1—C1—C2—P29.2 (7)C11—C12—C13—C140.1 (7)
P1—C3—C4—C5178.6 (4)C12—C13—C14—C90.1 (6)
P1—C3—C8—C7178.4 (3)C14—C9—C10—C111.4 (6)
P1—C9—C10—C11180.0 (3)C15—P2—C2—C1144.2 (4)
P1—C9—C14—C13179.4 (3)C15—P2—C21—C2265.9 (4)
P2—C15—C16—C17177.4 (3)C15—P2—C21—C26105.8 (3)
P2—C15—C20—C19176.7 (3)C15—C16—C17—C181.7 (7)
P2—C21—C22—C23171.3 (3)C16—C15—C20—C190.3 (6)
P2—C21—C26—C25171.0 (3)C16—C17—C18—C192.0 (7)
C1—P1—C3—C439.0 (4)C17—C18—C19—C201.2 (7)
C1—P1—C3—C8140.6 (3)C18—C19—C20—C150.0 (7)
C1—P1—C9—C10134.4 (3)C20—C15—C16—C170.5 (6)
C1—P1—C9—C1447.1 (4)C21—P2—C2—C134.1 (5)
C2—P2—C15—C1643.0 (4)C21—P2—C15—C1674.9 (4)
C2—P2—C15—C20140.0 (3)C21—P2—C15—C20102.0 (3)
C2—P2—C21—C2242.5 (4)C21—C22—C23—C240.7 (6)
C2—P2—C21—C26145.8 (3)C22—C21—C26—C250.8 (6)
C3—P1—C1—C2147.3 (4)C22—C23—C24—C251.2 (7)
C3—P1—C9—C10117.2 (3)C23—C24—C25—C260.6 (7)
C3—P1—C9—C1461.3 (4)C24—C25—C26—C210.4 (7)
C3—C4—C5—C60.2 (7)C26—C21—C22—C230.3 (6)
C4—C3—C8—C71.2 (6)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···S2i0.952.863.742 (4)155
C7—H7···S2ii0.952.823.561 (5)135
C8—H8···S10.952.863.344 (4)113
C10—H10···S10.952.843.360 (4)116
C20—H20···S20.952.893.367 (4)113
C26—H26···S20.952.893.394 (4)115
C11—H11···Cgiii0.952.633.573 (5)171
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1, y1/2, z+1/2; (iii) x+1/2, y+1, z+1/2.
Dichlorido[(Z)-(ethene-1,2-diyl)bis(diphenylphosphine sulfide)-κ2S,S']platinum(II) (II) top
Crystal data top
[PtCl2(C26H22P2S2)]Dx = 1.890 Mg m3
Mr = 726.48Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 9927 reflections
a = 18.0724 (12) Åθ = 2.5–25.4°
b = 30.163 (2) ŵ = 6.01 mm1
c = 9.3697 (6) ÅT = 173 K
V = 5107.5 (6) Å3Plate, yellow
Z = 80.35 × 0.14 × 0.10 mm
F(000) = 2816
Data collection top
Bruker APEXII CCD
diffractometer
2324 independent reflections
Radiation source: sealed tube2227 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8 pixels mm-1θmax = 25.4°, θmin = 2.5°
φ and ω scansh = 2121
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 3636
Tmin = 0.543, Tmax = 0.745l = 1111
20596 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0372P)2 + 4.1023P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max < 0.001
S = 1.09Δρmax = 1.82 e Å3
2324 reflectionsΔρmin = 0.47 e Å3
150 parametersAbsolute structure: Flack x determined using 1010 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al. 2013)
1 restraintAbsolute structure parameter: 0.006 (4)
Primary atom site location: heavy-atom method
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.5000000.5000000.21568 (8)0.02096 (13)
S10.44478 (10)0.54577 (6)0.0554 (2)0.0278 (4)
Cl10.55528 (10)0.45658 (6)0.3904 (2)0.0322 (4)
P10.51249 (11)0.55887 (7)0.1097 (2)0.0232 (4)
C10.5064 (5)0.5214 (3)0.2610 (10)0.027 (2)
H10.5133400.5345450.3521680.032*
C60.3769 (4)0.6526 (3)0.2775 (10)0.0340 (16)
H60.3263690.6545980.3047220.041*
C40.4948 (5)0.6864 (3)0.2493 (10)0.037 (3)
H40.5257990.7117070.2589700.045*
C50.4219 (5)0.6890 (3)0.2897 (11)0.0378 (18)
H50.4026170.7159930.3262270.045*
C30.5238 (5)0.6471 (3)0.1941 (10)0.0334 (18)
H30.5739930.6457880.1640310.040*
C20.4790 (4)0.6101 (3)0.1836 (8)0.0272 (16)
C70.4047 (5)0.6130 (3)0.2256 (8)0.0340 (18)
H70.3734230.5877560.2184780.041*
C80.6089 (4)0.5641 (2)0.0639 (8)0.0263 (17)
C130.6637 (4)0.5485 (3)0.1545 (9)0.0332 (18)
H130.6502280.5349490.2422000.040*
C90.6287 (4)0.5837 (3)0.0631 (9)0.0358 (19)
H90.5917690.5942780.1267540.043*
C120.7374 (5)0.5524 (3)0.1194 (12)0.037 (2)
H120.7744840.5418430.1826210.044*
C110.7569 (5)0.5718 (3)0.0084 (11)0.035 (3)
H110.8075450.5740260.0345410.043*
C100.7034 (5)0.5880 (3)0.0977 (11)0.047 (2)
H100.7172970.6022020.1841090.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01883 (18)0.02136 (18)0.02268 (19)0.0004 (3)0.0000.000
S10.0218 (10)0.0335 (11)0.0283 (10)0.0078 (8)0.0036 (8)0.0072 (8)
Cl10.0339 (10)0.0340 (10)0.0287 (11)0.0051 (8)0.0031 (9)0.0066 (8)
P10.0256 (9)0.0202 (9)0.0238 (10)0.0008 (7)0.0003 (8)0.0017 (8)
C10.020 (4)0.045 (4)0.015 (6)0.004 (4)0.004 (3)0.012 (4)
C60.024 (4)0.041 (4)0.036 (4)0.006 (3)0.004 (4)0.002 (4)
C40.037 (5)0.023 (4)0.052 (9)0.002 (4)0.004 (5)0.007 (4)
C50.036 (4)0.032 (4)0.046 (5)0.009 (3)0.000 (4)0.008 (4)
C30.024 (4)0.028 (4)0.047 (5)0.001 (3)0.002 (4)0.007 (4)
C20.030 (4)0.024 (4)0.028 (4)0.001 (3)0.003 (3)0.002 (3)
C70.031 (5)0.036 (4)0.035 (4)0.004 (4)0.006 (3)0.003 (3)
C80.022 (4)0.020 (3)0.037 (5)0.002 (3)0.002 (3)0.008 (3)
C130.027 (4)0.036 (4)0.037 (5)0.002 (3)0.002 (3)0.002 (3)
C90.026 (4)0.039 (5)0.042 (5)0.002 (3)0.004 (4)0.005 (4)
C120.028 (4)0.037 (5)0.045 (6)0.004 (4)0.004 (4)0.005 (5)
C110.023 (5)0.033 (5)0.051 (8)0.005 (4)0.006 (4)0.007 (4)
C100.040 (5)0.053 (6)0.049 (6)0.011 (4)0.009 (4)0.006 (4)
Geometric parameters (Å, º) top
Pt1—S12.2712 (19)C5—H50.9500
Pt1—S1i2.2712 (19)C3—H30.9500
Pt1—Cl12.3226 (19)C3—C21.382 (12)
Pt1—Cl1i2.3226 (19)C2—C71.403 (11)
S1—P12.012 (3)C7—H70.9500
P1—C11.816 (9)C8—C131.387 (11)
P1—C21.799 (8)C8—C91.377 (11)
P1—C81.801 (7)C13—H130.9500
C1—C1i1.312 (18)C13—C121.377 (12)
C1—H10.9500C9—H90.9500
C6—H60.9500C9—C101.394 (12)
C6—C51.370 (11)C12—H120.9500
C6—C71.384 (11)C12—C111.379 (14)
C4—H40.9500C11—H110.9500
C4—C51.373 (13)C11—C101.367 (14)
C4—C31.397 (12)C10—H100.9500
S1—Pt1—S1i97.19 (10)C2—C3—C4119.5 (8)
S1i—Pt1—Cl186.24 (6)C2—C3—H3120.3
S1i—Pt1—Cl1i176.41 (8)C3—C2—P1121.6 (6)
S1—Pt1—Cl1176.41 (8)C3—C2—C7119.5 (7)
S1—Pt1—Cl1i86.24 (6)C7—C2—P1118.9 (6)
Cl1—Pt1—Cl1i90.34 (10)C6—C7—C2119.9 (7)
P1—S1—Pt1111.14 (10)C6—C7—H7120.0
C1—P1—S1116.2 (3)C2—C7—H7120.0
C2—P1—S1105.1 (3)C13—C8—P1121.0 (6)
C2—P1—C1102.4 (4)C9—C8—P1119.7 (6)
C2—P1—C8110.0 (4)C9—C8—C13119.2 (7)
C8—P1—S1115.0 (3)C8—C13—H13119.5
C8—P1—C1107.4 (4)C12—C13—C8121.1 (8)
P1—C1—H1115.7C12—C13—H13119.5
C1i—C1—P1128.6 (3)C8—C9—H9120.2
C1i—C1—H1115.7C8—C9—C10119.5 (8)
C5—C6—H6119.8C10—C9—H9120.2
C5—C6—C7120.3 (7)C13—C12—H12120.3
C7—C6—H6119.8C13—C12—C11119.4 (9)
C5—C4—H4119.7C11—C12—H12120.3
C5—C4—C3120.7 (8)C12—C11—H11119.9
C3—C4—H4119.7C10—C11—C12120.1 (8)
C6—C5—C4120.1 (7)C10—C11—H11119.9
C6—C5—H5119.9C9—C10—H10119.7
C4—C5—H5119.9C11—C10—C9120.6 (9)
C4—C3—H3120.3C11—C10—H10119.7
S1—P1—C1—C1i35.0 (13)C3—C4—C5—C60.6 (15)
S1—P1—C2—C3121.8 (7)C3—C2—C7—C60.2 (12)
S1—P1—C2—C755.4 (7)C2—P1—C1—C1i148.8 (11)
S1—P1—C8—C13143.1 (5)C2—P1—C8—C1398.5 (7)
S1—P1—C8—C936.7 (7)C2—P1—C8—C981.6 (7)
P1—C2—C7—C6177.5 (7)C7—C6—C5—C40.6 (14)
P1—C8—C13—C12179.9 (7)C8—P1—C1—C1i95.3 (12)
P1—C8—C9—C10179.5 (7)C8—P1—C2—C32.4 (8)
C1—P1—C2—C3116.4 (7)C8—P1—C2—C7179.7 (6)
C1—P1—C2—C766.4 (7)C8—C13—C12—C110.5 (13)
C1—P1—C8—C1312.1 (7)C8—C9—C10—C111.7 (14)
C1—P1—C8—C9167.7 (6)C13—C8—C9—C100.6 (12)
C4—C3—C2—P1178.6 (7)C13—C12—C11—C101.5 (13)
C4—C3—C2—C71.4 (13)C9—C8—C13—C120.0 (12)
C5—C6—C7—C20.8 (13)C12—C11—C10—C92.1 (14)
C5—C4—C3—C21.6 (14)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl1ii0.952.733.515 (10)141
C3—H3···S1iii0.952.823.538 (9)133
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1/4, y+5/4, z+1/4.
 

Acknowledgements

We thank GVSU for funding (Chemistry Department Weldon Fund, CSCE, Library Open Access Fund), and Pfizer, Inc. for the donation of a Varian INOVA 400 FT NMR. The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds.

Funding information

Funding for this research was provided by: GVSU CSCE (Research Grant-in-aid to B. Rawls).

References

First citationAguiar, A. M. & Daigle, D. (1964). J. Am. Chem. Soc. 86, 5354–5355.  CrossRef CAS Web of Science Google Scholar
First citationAullón, G., Bellamy, D., Orpen, A.G., Brammer, L. & Bruton, E. A. (1998). Chem. Commun. pp. 653–654.  Google Scholar
First citationBanda, S. F. & Pritchard, R. G. (2008). Orient. J. Chem. 24, 17–22.  CAS Google Scholar
First citationBernabé-Pablo, E., Campirán-Martínez, A., Jancik, V., Martínez-Otero, D. & Moya-Cabrera, M. (2016). Polyhedron, 110, 305–313.  Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, S. (2006). Lanthanide and Actinide Chemistry. Chichester: John Wiley & Sons, Ltd.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuncan, M. & Gallagher, M. J. (1981). Org. Magn. Reson. 15, 37–42.  CrossRef CAS Web of Science Google Scholar
First citationGhosh, S., Chopra, P. & Wategaonkar, S. (2020). Phys. Chem. Chem. Phys. 22, 17482–17493.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGorden, A. E. V., DeVore, M. A. & Maynard, B. A. (2013). Inorg. Chem. 52, 3445–3458.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirano, K. & Miura, M. (2017). Tetrahedron Lett. 58, 4317–4322.  CrossRef CAS Google Scholar
First citationJarrett, P. S. & Sadler, P. J. (1991). Inorg. Chem. 30, 2098–2104.  CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMorse, P. T., Staples, R. J. & Biros, S. M. (2016). Polyhedron, 114, 2–12.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPastor-Medrano, J., Jancik, V., Bernabé-Pablo, E., Martínez-Otero, D., Reyes-Lezama, M. & Morales-Juárez, J. (2014). Inorg. Chim. Acta, 412, 52–59.  CAS Google Scholar
First citationPrice, A. C. & Walton, R. A. (1987). Polyhedron, 6, 729–740.  CrossRef CAS Google Scholar
First citationRybakov, V. B. & Afanas'ev, V. V. (2010). CSD Communication (refcode GOLXAI). CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhu, Y., Chen, J. & Jiao, R. (1996). Solvent Extr. Ion Exch. 14, 61–68.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds