research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iclaprim mesylate displaying a hydrogen-bonded mol­ecular tape

crossmark logo

aUniversity of Innsbruck, Department of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria, bUniversity of Innsbruck, Institute of Pharmacy, Innrain 52, 6020 Innsbruck, Austria, cAglycon Dr. Spreitz KG, Europapark 1, A-8412 Allerheiligen b. Wildon, Austria, and dSandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria
*Correspondence e-mail: thomas.gelbrich@uibk.ac.at

Edited by M. Weil, Vienna University of Technology, Austria (Received 16 November 2022; accepted 6 December 2022; online 1 January 2023)

The title compound, 2,6-di­amino-5-[(2-cyclo­propyl-7,8-dimeth­oxy-2H-1-benzo­pyran-5-yl)meth­yl]pyrimidin-1-ium methane­sulfonate, C19H23N4O3+·CH3O3S, is a salt made up from a protonated iclaprim mol­ecule and a mesylate anion. The pyrimidine and chromene units of the iclaprim mol­ecule form an orthogonal arrangement [inter­planar angle of 89.67 (6)°], and the 3-nitro­gen position of the pyrimidine ring is protonated. Four distinct N—H⋯O inter­actions and an additional N—H⋯N hydrogen bond connect iclaprim and mesylate mol­ecules to one another, resulting in an infinite hydrogen-bonded mol­ecular tape structure. The central section of the tape is formed by a sequence of fused hydrogen-bonded rings involving four distinct ring types.

1. Chemical context

Iclaprim is a di­hydro­folate reductase (DHFR) inhibiting anti­biotic containing a 2H-chromene structure that targets Gram-positive bacteria (Masciadri, 1997[Masciadri, R. (1997). Int. Patent Appl. WO 9720839 (A1).]). The current study is part of an investigation aimed at improving the synthetic route to iclaprim and accessing its salts (Nerdinger et al., 2020[Nerdinger, S., Stefinovic, M., Neuner, S. & Spreitz, J. (2020). Int. Patent Appl. WO 2020161284 (A1).]).

[Scheme 1]

Iclaprim was synthesized according to the original route described by Jaeger et al. (2005[Jaeger, J., Burri, K., Greiveldinger-Poenaru, S. & Hoffner, J. (2005). Int. Patent Appl. WO 2005014586 (A1).]), using 3-hy­droxy-4,5-di­meth­oxy­benzaldehyde (Cervi et al., 2013[Cervi, A., Aillard, P., Hazeri, N., Petit, L., Chai, Ch. L. L., Willis, A. C. & Banwell, M. G. (2013). J. Org. Chem. 78, 9876-9882.]), which was further purified by recrystallization from ethanol/n-hexane. We achieved a much better purity by trituration in hot ethanol and subsequent recrystallization from boiling aceto­nitrile. The title compound, (I)[link], is the corresponding mesylate salt, and it was produced in a subsequent step.

2. Structural commentary

The asymmetric unit of (I)[link] consists of one formula unit, composed of an CH3SO3 anion and an iclaprim cation in which the 3-nitro­gen atom of the pyrimidine ring is protonated, i.e. N1 (Fig. 1[link]). The mol­ecular conformation of the iclaprim mol­ecule is largely defined by the relative arrangement of the essentially planar pyrimidine and chromene units. The CH2 carbon atom C5 links the pyrimidine ring (C1, N1, C2, N2, C3, C4) with the fused benzene ring of the chromene unit (C6, C7, C8, C9, C10, C11). With regard to the two bridging bonds, the torsion angles C3—C4—C5—C6 [–160.8 (2)°] and C4—C5—C6—C7 [–96.5 (3)°] indicate that the C5—C6 bond is twisted slightly out of the pyrimidine plane, whilst the C4—C5 bond is oriented approximately perpendicular to the benzene ring. Accordingly, the two six-membered rings linked via C5 form an orthogonal arrangement with an inter­planar angle of 89.67 (6)°. In the chromene moiety, the 7-meth­oxy substituent is significantly twisted out of the ring plane [C10—C9—O3—C19 = −70.3 (3)°], whilst the 8-meth­oxy substituent is almost coplanar with the plane of the fused benzene ring [C9—C8—O2—C18 = 167.6 (2)°]. The 2H-pyran ring displays the expected bond lengths [C12—C13 = 1.323 (4) Å]. The program PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) was used to calculate puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) for the 2H-pyran ring. The obtained values, θ = 65.5 (7)°, φ = 328.4 (7)° and q = 0.253 (3) Å, are consistent with the presence of a skew-boat conformation (Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]).

[Figure 1]
Figure 1
The structures of the mol­ecular entities with displacement ellipsoids drawn at the 50% probability level and hydrogen atoms drawn as spheres of arbitrary size.

3. Supra­molecular features

The iclaprim mol­ecule displays two NH2 groups attached to the pyrimidine ring (N3, N4) and the protonated N1 atom of the pyrimidine ring as potential hydrogen-bond donor groups. These hydrogen-bond donor functions are engaged in five distinct inter­molecular N—H⋯A inter­actions (Table 1[link]). N1 and N3 are linked to two O sites, each belonging to the same mesylate anion, i.e. N1—H1N⋯O4i and N3—H3A⋯O5i. In Fig. 2[link], the resulting ring motif is denoted as a, and it has the graph-set symbol R22(8) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). N3 is additionally linked, via an N3—H3B⋯O5ii inter­action, to a second mesylate unit. The resulting centrosymmetric ring b (Fig. 2[link]) comprises two iclaprim and two mesylate units (with O5 accepting two hydrogen bonds) and is described by the symbol R42(8). The second NH2 group forms an N4—H4B⋯O6 inter­action with a mesylate anion, and it is also hydrogen-bonded to the unprotonated pyrimidine N atom of a second iclaprim mol­ecule via N4—H4A⋯N2ii. The latter two inter­actions generate two additional ring motifs, namely the R33(10) ring c linking two pyrimidine mol­ecules with one anion and the centrosymmetric R22(8) ring d. The diagram in Fig. 2[link] illustrates that certain hydrogen-bonded rings are fused together because of shared N—H⋯A inter­actions, i.e. a + b, b + c and c + d. Altogether, the five distinct inter­actions listed in Table 1[link] result in a one-dimensional extended mol­ecular tape structure of hydrogen-bonded iclaprim and mesylate units propagating parallel to [[\overline{1}]10]. The iclaprim mol­ecule is bonded to two different mesylate anions, one is a two-point and the other a one-point connection. It is also two-point connected to a neighbouring iclaprim mol­ecule. In turn, the mesylate anion accepts four hydrogen-bonds from three iclaprim mol­ecules, and all of its O atoms participate in hydrogen bonding.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4i 0.85 (3) 1.99 (3) 2.827 (2) 168 (3)
N3—H3A⋯O5i 0.86 (2) 2.06 (2) 2.896 (3) 166 (2)
N3—H3B⋯O5ii 0.87 (2) 2.15 (2) 2.871 (3) 140 (2)
N4—H4A⋯N2ii 0.87 (2) 2.27 (2) 3.107 (3) 163 (2)
N4—H4B⋯O6 0.86 (2) 2.11 (2) 2.948 (3) 163 (2)
Symmetry codes: (i) [x-1, y+1, z]; (ii) [-x, -y+1, -z].
[Figure 2]
Figure 2
Tape structure composed of N—H⋯O and N—H⋯N-bonded iclaprim and mesylate mol­ecules, based on four essential ring motifs (ad). [Symmetry codes: (i) x − 1, y + 1, z; (ii) −x, −y + 1, −z; (iii) −x − 1, y + 2, z.]

4. Database survey

The Cambridge Structural Database (version 5.43, September 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains two other examples of mol­ecules displaying the 7,8-dimeth­oxy-2H-chromene fragment, namely methyl­ripariochromene A (Guerin et al., 1989[Guerin, J.-C., Reveillere, H.-P., Ducrey, P. & Toupet, L. (1989). J. Nat. Prod. 52, 171-173.]; CSD refcode JAZLIF) and 6,7,8-tri­meth­oxy­coumarin (Saidi et al., 2007[Saidi, N., Mukhtar, M. R., Awang, K., Hadi, A. H. A. & Ng, S. W. (2007). Acta Cryst. E63, o3692-o3693.]; CSD refcode KIKDOY). In each case, the 7- and 8-meth­oxy substituents are significantly twisted out of the ring plane as shown by the corresponding torsion angles, i.e. mol­ecule A of JAZLIF: 63.4°,–66.2°; mol­ecule B of JAZLIF: −140.2°, 89.4°; KIKDOY: 88.0, −110.9°.

5. Synthesis and crystallization

Iclaprim mesylate was prepared according to a modified procedure based on the original synthesis by Jaeger et al. (2005[Jaeger, J., Burri, K., Greiveldinger-Poenaru, S. & Hoffner, J. (2005). Int. Patent Appl. WO 2005014586 (A1).]) shown in Fig. 3[link]. The iclaprim free base (500 mg, 1.41 mmol) was suspended in 75 ml of aceto­nitrile and heated to reflux. The resulting clear solution was slowly cooled to room temperature overnight and then kept at 253 K to complete the crystallization process. The resulting white solid was isolated by filtration and dried under high vacuum at room temperature. The obtained iclaprim free base (1.00 g, 2.82 mmol) was recrystallized in aceto­nitrile and was suspended in 35 ml of ethanol and heated to reflux. Heating was inter­rupted and a solution of 183 ml methyl­sulfonic acid (2.82 mmol) in 5 ml of ethanol was added in a dropwise manner. Refluxing was resumed and a further 10 ml of ethanol were added to obtain a clear solution. The solution was concentrated and allowed to cool slowly to room temperature, at which point aggregates of colourless columnar crystals started to form. The crystals were isolated via filtration and dried under high vacuum overnight; yield: 900 mg (71%).

[Figure 3]
Figure 3
Synthesis scheme to prepare iclaprim.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The structure was refined as a two-component twin with the components being related by a 179.9° rotation about the a axis. The refined value of the minor twin component fraction was 0.260 (1). All H atoms were identified in difference-Fourier maps and those of NH and NH2 groups were refined with a restrained N—H distance of 0.88 (2) Å and their Uiso parameters refined freely. The H atoms at the cyclo­propyl ring (C15, C16, C17) were refined with a restrained C—H distance of 0.96 (2) Å and with Uiso(H) = 1.2Ueq(C). Other H atoms bonded to secondary CH2 (C—H = 0.98 Å) or aromatic CH (C—H = 0.94 Å) carbon atoms were positioned geometrically. Their Uiso parameters were set to 1.2Ueq(C). Methyl H atoms were idealized and included as rigid groups allowed to rotate but not tip (C—H = 0.97 Å) and their Uiso parameters were set to 1.5 Ueq(C) of the parent carbon atom.

Table 2
Experimental details

Crystal data
Chemical formula C19H23N4O3+·CH3O3S
Mr 450.51
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 223
a, b, c (Å) 5.4726 (3), 8.8450 (4), 22.1395 (11)
α, β, γ (°) 98.094 (2), 93.754 (2), 98.919 (2)
V3) 1043.98 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.21 × 0.18 × 0.03
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 100
Absorption correction Multi-scan (TWINABS; Bruker, 2013[Bruker (2013). APEX3, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.910, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 3851, 3851, 3507
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.104, 1.08
No. of reflections 3851
No. of parameters 320
No. of restraints 10
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.57, −0.31
Computer programs: APEX3 and SAINT (Bruker, 2013[Bruker (2013). APEX3, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2020); software used to prepare material for publication: PLATON (Spek, 2020) and publCIF (Westrip, 2010).

2,6-Diamino-5-[(2-cyclopropyl-7,8-dimethoxy-2H-1-benzopyran-5-yl)methyl]pyrimidin-1-ium methanesulfonate top
Crystal data top
C19H23N4O3+·CH3O3SZ = 2
Mr = 450.51F(000) = 476
Triclinic, P1Dx = 1.433 Mg m3
a = 5.4726 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8450 (4) ÅCell parameters from 9886 reflections
c = 22.1395 (11) Åθ = 2.3–25.3°
α = 98.094 (2)°µ = 0.20 mm1
β = 93.754 (2)°T = 223 K
γ = 98.919 (2)°Prism, colourless
V = 1043.98 (9) Å30.21 × 0.18 × 0.03 mm
Data collection top
Bruker D8 QUEST PHOTON 100
diffractometer
3851 measured reflections
Radiation source: Incoatec Microfocus3851 independent reflections
Multi layered optics monochromator3507 reflections with I > 2σ(I)
Detector resolution: 10.4 pixels mm-1θmax = 25.4°, θmin = 2.4°
φ and ω scansh = 66
Absorption correction: multi-scan
(TWINABS; Bruker, 2013)
k = 1010
Tmin = 0.910, Tmax = 0.971l = 2610
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.7995P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3851 reflectionsΔρmax = 0.57 e Å3
320 parametersΔρmin = 0.30 e Å3
10 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3058 (4)0.7951 (2)0.38547 (8)0.0428 (5)
O20.9479 (4)1.1480 (2)0.33158 (8)0.0413 (5)
O30.6716 (4)1.0418 (2)0.41560 (7)0.0418 (5)
N10.0557 (4)0.9523 (2)0.10508 (8)0.0239 (4)
H1N0.015 (5)1.042 (3)0.1116 (12)0.035 (7)*
N20.0189 (3)0.7157 (2)0.03914 (8)0.0240 (4)
N30.2450 (4)0.8895 (2)0.02407 (10)0.0314 (5)
H3A0.292 (5)0.976 (2)0.0359 (11)0.030 (7)*
H3B0.318 (5)0.831 (3)0.0091 (10)0.041 (8)*
N40.2945 (4)0.5524 (2)0.05307 (9)0.0296 (4)
H4A0.215 (5)0.491 (3)0.0214 (10)0.042 (8)*
H4B0.416 (4)0.528 (3)0.0742 (11)0.034 (7)*
C10.2336 (4)0.9125 (2)0.14129 (10)0.0230 (5)
H10.30240.98210.17650.028*
C20.0565 (4)0.8502 (2)0.05556 (9)0.0219 (4)
C30.2094 (4)0.6806 (2)0.07298 (9)0.0216 (4)
C40.3182 (4)0.7772 (2)0.12931 (9)0.0210 (4)
C50.5138 (5)0.7290 (3)0.17050 (10)0.0287 (5)
H5A0.47040.61770.17150.034*
H5B0.67310.74640.15270.034*
C60.5457 (4)0.8135 (3)0.23546 (10)0.0263 (5)
C70.7329 (4)0.9416 (3)0.25216 (10)0.0280 (5)
H70.83590.97480.22260.034*
C80.7705 (4)1.0212 (3)0.31165 (10)0.0291 (5)
C90.6184 (5)0.9716 (3)0.35590 (10)0.0292 (5)
C100.4339 (5)0.8453 (3)0.33923 (10)0.0289 (5)
C110.3909 (5)0.7643 (3)0.27896 (10)0.0297 (5)
C120.1991 (6)0.6280 (3)0.26835 (13)0.0480 (7)
H120.17960.56220.23050.058*
C130.0514 (6)0.5956 (3)0.31140 (14)0.0506 (8)
H130.06840.50520.30380.061*
C140.0691 (5)0.6975 (4)0.37117 (13)0.0477 (7)
H140.05060.76880.36580.057*
C150.0006 (7)0.6284 (4)0.42415 (16)0.0603 (9)
H150.088 (6)0.537 (3)0.4274 (16)0.072*
C160.0784 (9)0.7122 (6)0.47930 (19)0.0775 (11)
H16A0.051 (8)0.687 (5)0.5200 (11)0.093*
H16B0.082 (9)0.821 (3)0.4736 (19)0.093*
C170.2553 (8)0.5873 (6)0.4384 (2)0.0800 (12)
H17A0.310 (8)0.490 (3)0.4518 (19)0.096*
H17B0.369 (7)0.614 (5)0.4075 (15)0.096*
C181.1370 (5)1.1840 (3)0.29246 (12)0.0407 (6)
H18A1.25671.27180.31280.061*
H18B1.06371.20930.25490.061*
H18C1.21991.09530.28300.061*
C190.4888 (7)1.1252 (4)0.44003 (14)0.0568 (8)
H19A0.53891.16680.48270.085*
H19B0.33081.05620.43680.085*
H19C0.47191.20950.41720.085*
S10.73446 (11)0.29318 (6)0.12358 (2)0.02483 (16)
O40.9826 (3)0.26069 (18)0.14030 (8)0.0348 (4)
O50.5834 (3)0.16098 (19)0.08426 (8)0.0381 (4)
O60.7365 (3)0.43739 (19)0.09992 (8)0.0362 (4)
C200.5874 (5)0.3152 (3)0.19206 (11)0.0339 (6)
H20A0.59740.22630.21270.051*
H20B0.41450.32270.18270.051*
H20C0.66940.40860.21850.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0498 (11)0.0446 (10)0.0295 (9)0.0066 (9)0.0072 (8)0.0039 (8)
O20.0414 (11)0.0421 (10)0.0327 (9)0.0078 (8)0.0035 (8)0.0043 (8)
O30.0470 (12)0.0497 (11)0.0230 (8)0.0026 (9)0.0004 (8)0.0070 (7)
N10.0272 (10)0.0169 (9)0.0275 (10)0.0082 (8)0.0012 (8)0.0003 (7)
N20.0252 (10)0.0222 (9)0.0236 (9)0.0068 (8)0.0005 (8)0.0014 (7)
N30.0311 (11)0.0299 (11)0.0323 (11)0.0133 (9)0.0084 (9)0.0021 (9)
N40.0301 (11)0.0273 (10)0.0288 (10)0.0134 (9)0.0077 (9)0.0094 (8)
C10.0248 (11)0.0207 (10)0.0221 (10)0.0037 (9)0.0009 (9)0.0002 (8)
C20.0227 (11)0.0224 (10)0.0214 (10)0.0048 (9)0.0037 (9)0.0041 (8)
C30.0221 (11)0.0206 (10)0.0217 (10)0.0036 (9)0.0026 (9)0.0018 (8)
C40.0222 (11)0.0204 (10)0.0201 (10)0.0041 (9)0.0025 (9)0.0013 (8)
C50.0334 (13)0.0278 (11)0.0256 (11)0.0133 (10)0.0025 (10)0.0002 (9)
C60.0306 (12)0.0270 (11)0.0226 (11)0.0145 (10)0.0033 (9)0.0003 (9)
C70.0283 (12)0.0320 (12)0.0247 (11)0.0085 (10)0.0025 (9)0.0040 (9)
C80.0291 (13)0.0280 (11)0.0288 (12)0.0052 (10)0.0027 (10)0.0017 (9)
C90.0342 (13)0.0318 (12)0.0205 (11)0.0071 (10)0.0019 (9)0.0005 (9)
C100.0348 (13)0.0284 (11)0.0251 (11)0.0090 (10)0.0017 (10)0.0059 (9)
C110.0321 (13)0.0267 (11)0.0291 (11)0.0064 (10)0.0038 (11)0.0020 (9)
C120.0526 (18)0.0426 (15)0.0401 (15)0.0066 (14)0.0002 (14)0.0057 (12)
C130.0493 (18)0.0459 (16)0.0488 (17)0.0112 (14)0.0013 (14)0.0034 (13)
C140.0366 (15)0.0582 (18)0.0450 (16)0.0016 (13)0.0020 (13)0.0079 (13)
C150.061 (2)0.0572 (19)0.062 (2)0.0019 (17)0.0203 (17)0.0109 (16)
C160.072 (3)0.097 (3)0.064 (2)0.002 (3)0.026 (2)0.019 (2)
C170.046 (2)0.112 (3)0.089 (3)0.002 (2)0.014 (2)0.048 (3)
C180.0365 (15)0.0428 (14)0.0404 (14)0.0013 (12)0.0012 (12)0.0081 (12)
C190.069 (2)0.0547 (18)0.0415 (16)0.0133 (17)0.0076 (15)0.0144 (13)
S10.0219 (3)0.0225 (3)0.0302 (3)0.0083 (2)0.0031 (2)0.0019 (2)
O40.0245 (9)0.0312 (8)0.0486 (10)0.0121 (7)0.0063 (8)0.0022 (7)
O50.0330 (9)0.0345 (9)0.0417 (10)0.0086 (8)0.0085 (8)0.0093 (7)
O60.0366 (10)0.0325 (9)0.0468 (10)0.0173 (8)0.0103 (8)0.0150 (7)
C200.0357 (14)0.0319 (12)0.0333 (13)0.0051 (11)0.0015 (11)0.0034 (10)
Geometric parameters (Å, º) top
O1—C101.365 (3)C10—C111.410 (3)
O1—C141.431 (3)C11—C121.451 (4)
O2—C81.364 (3)C12—C131.323 (4)
O2—C181.420 (3)C12—H120.9400
O3—C91.371 (3)C13—C141.481 (4)
O3—C191.423 (4)C13—H130.9400
N1—C11.341 (3)C14—C151.441 (4)
N1—C21.362 (3)C14—H140.9900
N1—H1N0.85 (3)C15—C171.458 (5)
N2—C21.330 (3)C15—C161.463 (5)
N2—C31.345 (3)C15—H151.007 (18)
N3—C21.325 (3)C16—C171.500 (6)
N3—H3A0.857 (17)C16—H16A0.965 (19)
N3—H3B0.869 (17)C16—H16B0.988 (19)
N4—C31.322 (3)C17—H17A0.958 (19)
N4—H4A0.871 (17)C17—H17B0.971 (19)
N4—H4B0.863 (17)C18—H18A0.9700
C1—C41.347 (3)C18—H18B0.9700
C1—H10.9400C18—H18C0.9700
C3—C41.444 (3)C19—H19A0.9700
C4—C51.510 (3)C19—H19B0.9700
C5—C61.510 (3)C19—H19C0.9700
C5—H5A0.9800S1—O61.4442 (16)
C5—H5B0.9800S1—O51.4588 (17)
C6—C71.394 (3)S1—O41.4658 (17)
C6—C111.395 (3)S1—C201.763 (2)
C7—C81.390 (3)C20—H20A0.9700
C7—H70.9400C20—H20B0.9700
C8—C91.400 (3)C20—H20C0.9700
C9—C101.375 (3)
C10—O1—C14119.5 (2)C12—C13—C14122.0 (3)
C8—O2—C18117.48 (19)C12—C13—H13119.0
C9—O3—C19115.4 (2)C14—C13—H13119.0
C1—N1—C2119.79 (18)O1—C14—C15109.1 (2)
C1—N1—H1N121.2 (18)O1—C14—C13112.5 (2)
C2—N1—H1N118.9 (18)C15—C14—C13118.4 (3)
C2—N2—C3118.52 (18)O1—C14—H14105.2
C2—N3—H3A119.3 (18)C15—C14—H14105.2
C2—N3—H3B121.4 (19)C13—C14—H14105.2
H3A—N3—H3B119 (3)C14—C15—C17123.6 (4)
C3—N4—H4A118.4 (19)C14—C15—C16124.3 (3)
C3—N4—H4B119.0 (18)C17—C15—C1661.8 (3)
H4A—N4—H4B122 (3)C14—C15—H15110 (2)
N1—C1—C4122.8 (2)C17—C15—H15108 (2)
N1—C1—H1118.6C16—C15—H15120 (2)
C4—C1—H1118.6C15—C16—C1758.9 (3)
N3—C2—N2120.8 (2)C15—C16—H16A124 (3)
N3—C2—N1117.59 (19)C17—C16—H16A112 (3)
N2—C2—N1121.6 (2)C15—C16—H16B109 (3)
N4—C3—N2117.50 (19)C17—C16—H16B118 (3)
N4—C3—C4120.4 (2)H16A—C16—H16B120 (4)
N2—C3—C4122.07 (19)C15—C17—C1659.3 (3)
C1—C4—C3114.73 (19)C15—C17—H17A120 (3)
C1—C4—C5123.42 (19)C16—C17—H17A120 (3)
C3—C4—C5121.84 (18)C15—C17—H17B110 (3)
C6—C5—C4114.54 (18)C16—C17—H17B120 (3)
C6—C5—H5A108.6H17A—C17—H17B114 (4)
C4—C5—H5A108.6O2—C18—H18A109.5
C6—C5—H5B108.6O2—C18—H18B109.5
C4—C5—H5B108.6H18A—C18—H18B109.5
H5A—C5—H5B107.6O2—C18—H18C109.5
C7—C6—C11119.7 (2)H18A—C18—H18C109.5
C7—C6—C5119.6 (2)H18B—C18—H18C109.5
C11—C6—C5120.8 (2)O3—C19—H19A109.5
C8—C7—C6121.3 (2)O3—C19—H19B109.5
C8—C7—H7119.3H19A—C19—H19B109.5
C6—C7—H7119.3O3—C19—H19C109.5
O2—C8—C7125.0 (2)H19A—C19—H19C109.5
O2—C8—C9115.5 (2)H19B—C19—H19C109.5
C7—C8—C9119.5 (2)O6—S1—O5113.41 (11)
O3—C9—C10121.8 (2)O6—S1—O4113.82 (11)
O3—C9—C8119.0 (2)O5—S1—O4111.29 (10)
C10—C9—C8119.0 (2)O6—S1—C20105.55 (11)
O1—C10—C9116.1 (2)O5—S1—C20105.63 (12)
O1—C10—C11121.4 (2)O4—S1—C20106.36 (11)
C9—C10—C11122.4 (2)S1—C20—H20A109.5
C6—C11—C10118.2 (2)S1—C20—H20B109.5
C6—C11—C12125.0 (2)H20A—C20—H20B109.5
C10—C11—C12116.7 (2)S1—C20—H20C109.5
C13—C12—C11120.6 (3)H20A—C20—H20C109.5
C13—C12—H12119.7H20B—C20—H20C109.5
C11—C12—H12119.7
C2—N1—C1—C43.6 (3)C7—C8—C9—C100.3 (3)
C3—N2—C2—N3179.3 (2)C14—O1—C10—C9161.4 (2)
C3—N2—C2—N10.5 (3)C14—O1—C10—C1123.3 (4)
C1—N1—C2—N3174.6 (2)O3—C9—C10—O10.6 (3)
C1—N1—C2—N25.3 (3)C8—C9—C10—O1174.7 (2)
C2—N2—C3—N4174.6 (2)O3—C9—C10—C11174.6 (2)
C2—N2—C3—C45.9 (3)C8—C9—C10—C110.5 (4)
N1—C1—C4—C32.4 (3)C7—C6—C11—C101.3 (3)
N1—C1—C4—C5178.4 (2)C5—C6—C11—C10178.4 (2)
N4—C3—C4—C1173.2 (2)C7—C6—C11—C12176.3 (2)
N2—C3—C4—C17.3 (3)C5—C6—C11—C123.4 (4)
N4—C3—C4—C56.0 (3)O1—C10—C11—C6173.7 (2)
N2—C3—C4—C5173.5 (2)C9—C10—C11—C61.3 (4)
C1—C4—C5—C620.0 (3)O1—C10—C11—C121.8 (4)
C3—C4—C5—C6160.8 (2)C9—C10—C11—C12176.7 (2)
C4—C5—C6—C796.5 (3)C6—C11—C12—C13176.0 (3)
C4—C5—C6—C1183.8 (3)C10—C11—C12—C138.9 (4)
C11—C6—C7—C80.5 (3)C11—C12—C13—C141.7 (5)
C5—C6—C7—C8179.1 (2)C10—O1—C14—C15165.4 (3)
C18—O2—C8—C712.6 (3)C10—O1—C14—C1331.8 (4)
C18—O2—C8—C9167.6 (2)C12—C13—C14—O121.4 (4)
C6—C7—C8—O2179.5 (2)C12—C13—C14—C15150.4 (3)
C6—C7—C8—C90.3 (3)O1—C14—C15—C17149.3 (4)
C19—O3—C9—C1070.3 (3)C13—C14—C15—C1780.3 (5)
C19—O3—C9—C8115.5 (3)O1—C14—C15—C1672.7 (5)
O2—C8—C9—O36.2 (3)C13—C14—C15—C16156.8 (4)
C7—C8—C9—O3174.0 (2)C14—C15—C16—C17113.3 (4)
O2—C8—C9—C10179.5 (2)C14—C15—C17—C16114.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.85 (3)1.99 (3)2.827 (2)168 (3)
N3—H3A···O5i0.86 (2)2.06 (2)2.896 (3)166 (2)
N3—H3B···O5ii0.87 (2)2.15 (2)2.871 (3)140 (2)
N4—H4A···N2ii0.87 (2)2.27 (2)3.107 (3)163 (2)
N4—H4B···O60.86 (2)2.11 (2)2.948 (3)163 (2)
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z.
 

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBruker (2013). APEX3, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCervi, A., Aillard, P., Hazeri, N., Petit, L., Chai, Ch. L. L., Willis, A. C. & Banwell, M. G. (2013). J. Org. Chem. 78, 9876–9882.  CSD CrossRef PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuerin, J.-C., Reveillere, H.-P., Ducrey, P. & Toupet, L. (1989). J. Nat. Prod. 52, 171–173.  CSD CrossRef Google Scholar
First citationJaeger, J., Burri, K., Greiveldinger-Poenaru, S. & Hoffner, J. (2005). Int. Patent Appl. WO 2005014586 (A1).  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMasciadri, R. (1997). Int. Patent Appl. WO 9720839 (A1).  Google Scholar
First citationNerdinger, S., Stefinovic, M., Neuner, S. & Spreitz, J. (2020). Int. Patent Appl. WO 2020161284 (A1).  Google Scholar
First citationSaidi, N., Mukhtar, M. R., Awang, K., Hadi, A. H. A. & Ng, S. W. (2007). Acta Cryst. E63, o3692–o3693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds