research communications
Iclaprim mesylate displaying a hydrogen-bonded molecular tape
aUniversity of Innsbruck, Department of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria, bUniversity of Innsbruck, Institute of Pharmacy, Innrain 52, 6020 Innsbruck, Austria, cAglycon Dr. Spreitz KG, Europapark 1, A-8412 Allerheiligen b. Wildon, Austria, and dSandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria
*Correspondence e-mail: thomas.gelbrich@uibk.ac.at
The title compound, 2,6-diamino-5-[(2-cyclopropyl-7,8-dimethoxy-2H-1-benzopyran-5-yl)methyl]pyrimidin-1-ium methanesulfonate, C19H23N4O3+·CH3O3S−, is a salt made up from a protonated iclaprim molecule and a mesylate anion. The pyrimidine and chromene units of the iclaprim molecule form an orthogonal arrangement [interplanar angle of 89.67 (6)°], and the 3-nitrogen position of the pyrimidine ring is protonated. Four distinct N—H⋯O interactions and an additional N—H⋯N hydrogen bond connect iclaprim and mesylate molecules to one another, resulting in an infinite hydrogen-bonded molecular tape structure. The central section of the tape is formed by a sequence of fused hydrogen-bonded rings involving four distinct ring types.
Keywords: crystal structure; hydrogen bonding; pharmaceuticals.
CCDC reference: 2224639
1. Chemical context
Iclaprim is a dihydrofolate reductase (DHFR) inhibiting antibiotic containing a 2H-chromene structure that targets Gram-positive bacteria (Masciadri, 1997). The current study is part of an investigation aimed at improving the synthetic route to iclaprim and accessing its salts (Nerdinger et al., 2020).
Iclaprim was synthesized according to the original route described by Jaeger et al. (2005), using 3-hydroxy-4,5-dimethoxybenzaldehyde (Cervi et al., 2013), which was further purified by recrystallization from ethanol/n-hexane. We achieved a much better purity by trituration in hot ethanol and subsequent recrystallization from boiling acetonitrile. The title compound, (I), is the corresponding mesylate salt, and it was produced in a subsequent step.
2. Structural commentary
The consists of one formula unit, composed of an CH3SO3− anion and an iclaprim cation in which the 3-nitrogen atom of the pyrimidine ring is protonated, i.e. N1 (Fig. 1). The molecular conformation of the iclaprim molecule is largely defined by the relative arrangement of the essentially planar pyrimidine and chromene units. The CH2 carbon atom C5 links the pyrimidine ring (C1, N1, C2, N2, C3, C4) with the fused benzene ring of the chromene unit (C6, C7, C8, C9, C10, C11). With regard to the two bridging bonds, the torsion angles C3—C4—C5—C6 [–160.8 (2)°] and C4—C5—C6—C7 [–96.5 (3)°] indicate that the C5—C6 bond is twisted slightly out of the pyrimidine plane, whilst the C4—C5 bond is oriented approximately perpendicular to the benzene ring. Accordingly, the two six-membered rings linked via C5 form an orthogonal arrangement with an interplanar angle of 89.67 (6)°. In the chromene moiety, the 7-methoxy substituent is significantly twisted out of the ring plane [C10—C9—O3—C19 = −70.3 (3)°], whilst the 8-methoxy substituent is almost coplanar with the plane of the fused benzene ring [C9—C8—O2—C18 = 167.6 (2)°]. The 2H-pyran ring displays the expected bond lengths [C12—C13 = 1.323 (4) Å]. The program PLATON (Spek, 2020) was used to calculate puckering parameters (Cremer & Pople, 1975) for the 2H-pyran ring. The obtained values, θ = 65.5 (7)°, φ = 328.4 (7)° and q = 0.253 (3) Å, are consistent with the presence of a skew-boat conformation (Boeyens, 1978).
of (I)3. Supramolecular features
The iclaprim molecule displays two NH2 groups attached to the pyrimidine ring (N3, N4) and the protonated N1 atom of the pyrimidine ring as potential hydrogen-bond donor groups. These hydrogen-bond donor functions are engaged in five distinct intermolecular N—H⋯A interactions (Table 1). N1 and N3 are linked to two O sites, each belonging to the same mesylate anion, i.e. N1—H1N⋯O4i and N3—H3A⋯O5i. In Fig. 2, the resulting ring motif is denoted as a, and it has the graph-set symbol R22(8) (Etter et al., 1990; Bernstein et al., 1995). N3 is additionally linked, via an N3—H3B⋯O5ii interaction, to a second mesylate unit. The resulting centrosymmetric ring b (Fig. 2) comprises two iclaprim and two mesylate units (with O5 accepting two hydrogen bonds) and is described by the symbol R42(8). The second NH2 group forms an N4—H4B⋯O6 interaction with a mesylate anion, and it is also hydrogen-bonded to the unprotonated pyrimidine N atom of a second iclaprim molecule via N4—H4A⋯N2ii. The latter two interactions generate two additional ring motifs, namely the R33(10) ring c linking two pyrimidine molecules with one anion and the centrosymmetric R22(8) ring d. The diagram in Fig. 2 illustrates that certain hydrogen-bonded rings are fused together because of shared N—H⋯A interactions, i.e. a + b, b + c and c + d. Altogether, the five distinct interactions listed in Table 1 result in a one-dimensional extended molecular tape structure of hydrogen-bonded iclaprim and mesylate units propagating parallel to [10]. The iclaprim molecule is bonded to two different mesylate anions, one is a two-point and the other a one-point connection. It is also two-point connected to a neighbouring iclaprim molecule. In turn, the mesylate anion accepts four hydrogen-bonds from three iclaprim molecules, and all of its O atoms participate in hydrogen bonding.
4. Database survey
The Cambridge Structural Database (version 5.43, September 2022; Groom et al., 2016) contains two other examples of molecules displaying the 7,8-dimethoxy-2H-chromene fragment, namely methylripariochromene A (Guerin et al., 1989; CSD refcode JAZLIF) and 6,7,8-trimethoxycoumarin (Saidi et al., 2007; CSD refcode KIKDOY). In each case, the 7- and 8-methoxy substituents are significantly twisted out of the ring plane as shown by the corresponding torsion angles, i.e. molecule A of JAZLIF: 63.4°,–66.2°; molecule B of JAZLIF: −140.2°, 89.4°; KIKDOY: 88.0, −110.9°.
5. Synthesis and crystallization
Iclaprim mesylate was prepared according to a modified procedure based on the original synthesis by Jaeger et al. (2005) shown in Fig. 3. The iclaprim free base (500 mg, 1.41 mmol) was suspended in 75 ml of acetonitrile and heated to reflux. The resulting clear solution was slowly cooled to room temperature overnight and then kept at 253 K to complete the crystallization process. The resulting white solid was isolated by filtration and dried under high vacuum at room temperature. The obtained iclaprim free base (1.00 g, 2.82 mmol) was recrystallized in acetonitrile and was suspended in 35 ml of ethanol and heated to reflux. Heating was interrupted and a solution of 183 ml methylsulfonic acid (2.82 mmol) in 5 ml of ethanol was added in a dropwise manner. Refluxing was resumed and a further 10 ml of ethanol were added to obtain a clear solution. The solution was concentrated and allowed to cool slowly to room temperature, at which point aggregates of colourless columnar crystals started to form. The crystals were isolated via filtration and dried under high vacuum overnight; yield: 900 mg (71%).
6. Refinement
Crystal data, data collection and structure . The structure was refined as a two-component twin with the components being related by a 179.9° rotation about the a axis. The refined value of the minor twin component fraction was 0.260 (1). All H atoms were identified in difference-Fourier maps and those of NH and NH2 groups were refined with a restrained N—H distance of 0.88 (2) Å and their Uiso parameters refined freely. The H atoms at the cyclopropyl ring (C15, C16, C17) were refined with a restrained C—H distance of 0.96 (2) Å and with Uiso(H) = 1.2Ueq(C). Other H atoms bonded to secondary CH2 (C—H = 0.98 Å) or aromatic CH (C—H = 0.94 Å) carbon atoms were positioned geometrically. Their Uiso parameters were set to 1.2Ueq(C). Methyl H atoms were idealized and included as rigid groups allowed to rotate but not tip (C—H = 0.97 Å) and their Uiso parameters were set to 1.5 Ueq(C) of the parent carbon atom.
details are summarized in Table 2Supporting information
CCDC reference: 2224639
https://doi.org/10.1107/S2056989022011689/wm5666sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022011689/wm5666Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989022011689/wm5666Isup3.cml
Data collection: APEX3 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2020); software used to prepare material for publication: PLATON (Spek, 2020) and publCIF (Westrip, 2010).C19H23N4O3+·CH3O3S− | Z = 2 |
Mr = 450.51 | F(000) = 476 |
Triclinic, P1 | Dx = 1.433 Mg m−3 |
a = 5.4726 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.8450 (4) Å | Cell parameters from 9886 reflections |
c = 22.1395 (11) Å | θ = 2.3–25.3° |
α = 98.094 (2)° | µ = 0.20 mm−1 |
β = 93.754 (2)° | T = 223 K |
γ = 98.919 (2)° | Prism, colourless |
V = 1043.98 (9) Å3 | 0.21 × 0.18 × 0.03 mm |
Bruker D8 QUEST PHOTON 100 diffractometer | 3851 measured reflections |
Radiation source: Incoatec Microfocus | 3851 independent reflections |
Multi layered optics monochromator | 3507 reflections with I > 2σ(I) |
Detector resolution: 10.4 pixels mm-1 | θmax = 25.4°, θmin = 2.4° |
φ and ω scans | h = −6→6 |
Absorption correction: multi-scan (TWINABS; Bruker, 2013) | k = −10→10 |
Tmin = 0.910, Tmax = 0.971 | l = −26→10 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.043 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.104 | w = 1/[σ2(Fo2) + (0.0406P)2 + 0.7995P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
3851 reflections | Δρmax = 0.57 e Å−3 |
320 parameters | Δρmin = −0.30 e Å−3 |
10 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.026 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3058 (4) | 0.7951 (2) | 0.38547 (8) | 0.0428 (5) | |
O2 | 0.9479 (4) | 1.1480 (2) | 0.33158 (8) | 0.0413 (5) | |
O3 | 0.6716 (4) | 1.0418 (2) | 0.41560 (7) | 0.0418 (5) | |
N1 | 0.0557 (4) | 0.9523 (2) | 0.10508 (8) | 0.0239 (4) | |
H1N | 0.015 (5) | 1.042 (3) | 0.1116 (12) | 0.035 (7)* | |
N2 | 0.0189 (3) | 0.7157 (2) | 0.03914 (8) | 0.0240 (4) | |
N3 | −0.2450 (4) | 0.8895 (2) | 0.02407 (10) | 0.0314 (5) | |
H3A | −0.292 (5) | 0.976 (2) | 0.0359 (11) | 0.030 (7)* | |
H3B | −0.318 (5) | 0.831 (3) | −0.0091 (10) | 0.041 (8)* | |
N4 | 0.2945 (4) | 0.5524 (2) | 0.05307 (9) | 0.0296 (4) | |
H4A | 0.215 (5) | 0.491 (3) | 0.0214 (10) | 0.042 (8)* | |
H4B | 0.416 (4) | 0.528 (3) | 0.0742 (11) | 0.034 (7)* | |
C1 | 0.2336 (4) | 0.9125 (2) | 0.14129 (10) | 0.0230 (5) | |
H1 | 0.3024 | 0.9821 | 0.1765 | 0.028* | |
C2 | −0.0565 (4) | 0.8502 (2) | 0.05556 (9) | 0.0219 (4) | |
C3 | 0.2094 (4) | 0.6806 (2) | 0.07298 (9) | 0.0216 (4) | |
C4 | 0.3182 (4) | 0.7772 (2) | 0.12931 (9) | 0.0210 (4) | |
C5 | 0.5138 (5) | 0.7290 (3) | 0.17050 (10) | 0.0287 (5) | |
H5A | 0.4704 | 0.6177 | 0.1715 | 0.034* | |
H5B | 0.6731 | 0.7464 | 0.1527 | 0.034* | |
C6 | 0.5457 (4) | 0.8135 (3) | 0.23546 (10) | 0.0263 (5) | |
C7 | 0.7329 (4) | 0.9416 (3) | 0.25216 (10) | 0.0280 (5) | |
H7 | 0.8359 | 0.9748 | 0.2226 | 0.034* | |
C8 | 0.7705 (4) | 1.0212 (3) | 0.31165 (10) | 0.0291 (5) | |
C9 | 0.6184 (5) | 0.9716 (3) | 0.35590 (10) | 0.0292 (5) | |
C10 | 0.4339 (5) | 0.8453 (3) | 0.33923 (10) | 0.0289 (5) | |
C11 | 0.3909 (5) | 0.7643 (3) | 0.27896 (10) | 0.0297 (5) | |
C12 | 0.1991 (6) | 0.6280 (3) | 0.26835 (13) | 0.0480 (7) | |
H12 | 0.1796 | 0.5622 | 0.2305 | 0.058* | |
C13 | 0.0514 (6) | 0.5956 (3) | 0.31140 (14) | 0.0506 (8) | |
H13 | −0.0684 | 0.5052 | 0.3038 | 0.061* | |
C14 | 0.0691 (5) | 0.6975 (4) | 0.37117 (13) | 0.0477 (7) | |
H14 | −0.0506 | 0.7688 | 0.3658 | 0.057* | |
C15 | 0.0006 (7) | 0.6284 (4) | 0.42415 (16) | 0.0603 (9) | |
H15 | 0.088 (6) | 0.537 (3) | 0.4274 (16) | 0.072* | |
C16 | −0.0784 (9) | 0.7122 (6) | 0.47930 (19) | 0.0775 (11) | |
H16A | −0.051 (8) | 0.687 (5) | 0.5200 (11) | 0.093* | |
H16B | −0.082 (9) | 0.821 (3) | 0.4736 (19) | 0.093* | |
C17 | −0.2553 (8) | 0.5873 (6) | 0.4384 (2) | 0.0800 (12) | |
H17A | −0.310 (8) | 0.490 (3) | 0.4518 (19) | 0.096* | |
H17B | −0.369 (7) | 0.614 (5) | 0.4075 (15) | 0.096* | |
C18 | 1.1370 (5) | 1.1840 (3) | 0.29246 (12) | 0.0407 (6) | |
H18A | 1.2567 | 1.2718 | 0.3128 | 0.061* | |
H18B | 1.0637 | 1.2093 | 0.2549 | 0.061* | |
H18C | 1.2199 | 1.0953 | 0.2830 | 0.061* | |
C19 | 0.4888 (7) | 1.1252 (4) | 0.44003 (14) | 0.0568 (8) | |
H19A | 0.5389 | 1.1668 | 0.4827 | 0.085* | |
H19B | 0.3308 | 1.0562 | 0.4368 | 0.085* | |
H19C | 0.4719 | 1.2095 | 0.4172 | 0.085* | |
S1 | 0.73446 (11) | 0.29318 (6) | 0.12358 (2) | 0.02483 (16) | |
O4 | 0.9826 (3) | 0.26069 (18) | 0.14030 (8) | 0.0348 (4) | |
O5 | 0.5834 (3) | 0.16098 (19) | 0.08426 (8) | 0.0381 (4) | |
O6 | 0.7365 (3) | 0.43739 (19) | 0.09992 (8) | 0.0362 (4) | |
C20 | 0.5874 (5) | 0.3152 (3) | 0.19206 (11) | 0.0339 (6) | |
H20A | 0.5974 | 0.2263 | 0.2127 | 0.051* | |
H20B | 0.4145 | 0.3227 | 0.1827 | 0.051* | |
H20C | 0.6694 | 0.4086 | 0.2185 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0498 (11) | 0.0446 (10) | 0.0295 (9) | −0.0066 (9) | 0.0072 (8) | 0.0039 (8) |
O2 | 0.0414 (11) | 0.0421 (10) | 0.0327 (9) | −0.0078 (8) | 0.0035 (8) | −0.0043 (8) |
O3 | 0.0470 (12) | 0.0497 (11) | 0.0230 (8) | 0.0026 (9) | 0.0004 (8) | −0.0070 (7) |
N1 | 0.0272 (10) | 0.0169 (9) | 0.0275 (10) | 0.0082 (8) | −0.0012 (8) | 0.0003 (7) |
N2 | 0.0252 (10) | 0.0222 (9) | 0.0236 (9) | 0.0068 (8) | −0.0005 (8) | −0.0014 (7) |
N3 | 0.0311 (11) | 0.0299 (11) | 0.0323 (11) | 0.0133 (9) | −0.0084 (9) | −0.0021 (9) |
N4 | 0.0301 (11) | 0.0273 (10) | 0.0288 (10) | 0.0134 (9) | −0.0077 (9) | −0.0094 (8) |
C1 | 0.0248 (11) | 0.0207 (10) | 0.0221 (10) | 0.0037 (9) | −0.0009 (9) | −0.0002 (8) |
C2 | 0.0227 (11) | 0.0224 (10) | 0.0214 (10) | 0.0048 (9) | 0.0037 (9) | 0.0041 (8) |
C3 | 0.0221 (11) | 0.0206 (10) | 0.0217 (10) | 0.0036 (9) | 0.0026 (9) | 0.0018 (8) |
C4 | 0.0222 (11) | 0.0204 (10) | 0.0201 (10) | 0.0041 (9) | 0.0025 (9) | 0.0013 (8) |
C5 | 0.0334 (13) | 0.0278 (11) | 0.0256 (11) | 0.0133 (10) | −0.0025 (10) | −0.0002 (9) |
C6 | 0.0306 (12) | 0.0270 (11) | 0.0226 (11) | 0.0145 (10) | −0.0033 (9) | 0.0003 (9) |
C7 | 0.0283 (12) | 0.0320 (12) | 0.0247 (11) | 0.0085 (10) | 0.0025 (9) | 0.0040 (9) |
C8 | 0.0291 (13) | 0.0280 (11) | 0.0288 (12) | 0.0052 (10) | −0.0027 (10) | 0.0017 (9) |
C9 | 0.0342 (13) | 0.0318 (12) | 0.0205 (11) | 0.0071 (10) | −0.0019 (9) | 0.0005 (9) |
C10 | 0.0348 (13) | 0.0284 (11) | 0.0251 (11) | 0.0090 (10) | 0.0017 (10) | 0.0059 (9) |
C11 | 0.0321 (13) | 0.0267 (11) | 0.0291 (11) | 0.0064 (10) | −0.0038 (11) | 0.0020 (9) |
C12 | 0.0526 (18) | 0.0426 (15) | 0.0401 (15) | −0.0066 (14) | 0.0002 (14) | −0.0057 (12) |
C13 | 0.0493 (18) | 0.0459 (16) | 0.0488 (17) | −0.0112 (14) | 0.0013 (14) | 0.0034 (13) |
C14 | 0.0366 (15) | 0.0582 (18) | 0.0450 (16) | −0.0016 (13) | 0.0020 (13) | 0.0079 (13) |
C15 | 0.061 (2) | 0.0572 (19) | 0.062 (2) | −0.0019 (17) | 0.0203 (17) | 0.0109 (16) |
C16 | 0.072 (3) | 0.097 (3) | 0.064 (2) | 0.002 (3) | 0.026 (2) | 0.019 (2) |
C17 | 0.046 (2) | 0.112 (3) | 0.089 (3) | 0.002 (2) | 0.014 (2) | 0.048 (3) |
C18 | 0.0365 (15) | 0.0428 (14) | 0.0404 (14) | −0.0013 (12) | 0.0012 (12) | 0.0081 (12) |
C19 | 0.069 (2) | 0.0547 (18) | 0.0415 (16) | 0.0133 (17) | 0.0076 (15) | −0.0144 (13) |
S1 | 0.0219 (3) | 0.0225 (3) | 0.0302 (3) | 0.0083 (2) | −0.0031 (2) | 0.0019 (2) |
O4 | 0.0245 (9) | 0.0312 (8) | 0.0486 (10) | 0.0121 (7) | −0.0063 (8) | 0.0022 (7) |
O5 | 0.0330 (9) | 0.0345 (9) | 0.0417 (10) | 0.0086 (8) | −0.0085 (8) | −0.0093 (7) |
O6 | 0.0366 (10) | 0.0325 (9) | 0.0468 (10) | 0.0173 (8) | 0.0103 (8) | 0.0150 (7) |
C20 | 0.0357 (14) | 0.0319 (12) | 0.0333 (13) | 0.0051 (11) | 0.0015 (11) | 0.0034 (10) |
O1—C10 | 1.365 (3) | C10—C11 | 1.410 (3) |
O1—C14 | 1.431 (3) | C11—C12 | 1.451 (4) |
O2—C8 | 1.364 (3) | C12—C13 | 1.323 (4) |
O2—C18 | 1.420 (3) | C12—H12 | 0.9400 |
O3—C9 | 1.371 (3) | C13—C14 | 1.481 (4) |
O3—C19 | 1.423 (4) | C13—H13 | 0.9400 |
N1—C1 | 1.341 (3) | C14—C15 | 1.441 (4) |
N1—C2 | 1.362 (3) | C14—H14 | 0.9900 |
N1—H1N | 0.85 (3) | C15—C17 | 1.458 (5) |
N2—C2 | 1.330 (3) | C15—C16 | 1.463 (5) |
N2—C3 | 1.345 (3) | C15—H15 | 1.007 (18) |
N3—C2 | 1.325 (3) | C16—C17 | 1.500 (6) |
N3—H3A | 0.857 (17) | C16—H16A | 0.965 (19) |
N3—H3B | 0.869 (17) | C16—H16B | 0.988 (19) |
N4—C3 | 1.322 (3) | C17—H17A | 0.958 (19) |
N4—H4A | 0.871 (17) | C17—H17B | 0.971 (19) |
N4—H4B | 0.863 (17) | C18—H18A | 0.9700 |
C1—C4 | 1.347 (3) | C18—H18B | 0.9700 |
C1—H1 | 0.9400 | C18—H18C | 0.9700 |
C3—C4 | 1.444 (3) | C19—H19A | 0.9700 |
C4—C5 | 1.510 (3) | C19—H19B | 0.9700 |
C5—C6 | 1.510 (3) | C19—H19C | 0.9700 |
C5—H5A | 0.9800 | S1—O6 | 1.4442 (16) |
C5—H5B | 0.9800 | S1—O5 | 1.4588 (17) |
C6—C7 | 1.394 (3) | S1—O4 | 1.4658 (17) |
C6—C11 | 1.395 (3) | S1—C20 | 1.763 (2) |
C7—C8 | 1.390 (3) | C20—H20A | 0.9700 |
C7—H7 | 0.9400 | C20—H20B | 0.9700 |
C8—C9 | 1.400 (3) | C20—H20C | 0.9700 |
C9—C10 | 1.375 (3) | ||
C10—O1—C14 | 119.5 (2) | C12—C13—C14 | 122.0 (3) |
C8—O2—C18 | 117.48 (19) | C12—C13—H13 | 119.0 |
C9—O3—C19 | 115.4 (2) | C14—C13—H13 | 119.0 |
C1—N1—C2 | 119.79 (18) | O1—C14—C15 | 109.1 (2) |
C1—N1—H1N | 121.2 (18) | O1—C14—C13 | 112.5 (2) |
C2—N1—H1N | 118.9 (18) | C15—C14—C13 | 118.4 (3) |
C2—N2—C3 | 118.52 (18) | O1—C14—H14 | 105.2 |
C2—N3—H3A | 119.3 (18) | C15—C14—H14 | 105.2 |
C2—N3—H3B | 121.4 (19) | C13—C14—H14 | 105.2 |
H3A—N3—H3B | 119 (3) | C14—C15—C17 | 123.6 (4) |
C3—N4—H4A | 118.4 (19) | C14—C15—C16 | 124.3 (3) |
C3—N4—H4B | 119.0 (18) | C17—C15—C16 | 61.8 (3) |
H4A—N4—H4B | 122 (3) | C14—C15—H15 | 110 (2) |
N1—C1—C4 | 122.8 (2) | C17—C15—H15 | 108 (2) |
N1—C1—H1 | 118.6 | C16—C15—H15 | 120 (2) |
C4—C1—H1 | 118.6 | C15—C16—C17 | 58.9 (3) |
N3—C2—N2 | 120.8 (2) | C15—C16—H16A | 124 (3) |
N3—C2—N1 | 117.59 (19) | C17—C16—H16A | 112 (3) |
N2—C2—N1 | 121.6 (2) | C15—C16—H16B | 109 (3) |
N4—C3—N2 | 117.50 (19) | C17—C16—H16B | 118 (3) |
N4—C3—C4 | 120.4 (2) | H16A—C16—H16B | 120 (4) |
N2—C3—C4 | 122.07 (19) | C15—C17—C16 | 59.3 (3) |
C1—C4—C3 | 114.73 (19) | C15—C17—H17A | 120 (3) |
C1—C4—C5 | 123.42 (19) | C16—C17—H17A | 120 (3) |
C3—C4—C5 | 121.84 (18) | C15—C17—H17B | 110 (3) |
C6—C5—C4 | 114.54 (18) | C16—C17—H17B | 120 (3) |
C6—C5—H5A | 108.6 | H17A—C17—H17B | 114 (4) |
C4—C5—H5A | 108.6 | O2—C18—H18A | 109.5 |
C6—C5—H5B | 108.6 | O2—C18—H18B | 109.5 |
C4—C5—H5B | 108.6 | H18A—C18—H18B | 109.5 |
H5A—C5—H5B | 107.6 | O2—C18—H18C | 109.5 |
C7—C6—C11 | 119.7 (2) | H18A—C18—H18C | 109.5 |
C7—C6—C5 | 119.6 (2) | H18B—C18—H18C | 109.5 |
C11—C6—C5 | 120.8 (2) | O3—C19—H19A | 109.5 |
C8—C7—C6 | 121.3 (2) | O3—C19—H19B | 109.5 |
C8—C7—H7 | 119.3 | H19A—C19—H19B | 109.5 |
C6—C7—H7 | 119.3 | O3—C19—H19C | 109.5 |
O2—C8—C7 | 125.0 (2) | H19A—C19—H19C | 109.5 |
O2—C8—C9 | 115.5 (2) | H19B—C19—H19C | 109.5 |
C7—C8—C9 | 119.5 (2) | O6—S1—O5 | 113.41 (11) |
O3—C9—C10 | 121.8 (2) | O6—S1—O4 | 113.82 (11) |
O3—C9—C8 | 119.0 (2) | O5—S1—O4 | 111.29 (10) |
C10—C9—C8 | 119.0 (2) | O6—S1—C20 | 105.55 (11) |
O1—C10—C9 | 116.1 (2) | O5—S1—C20 | 105.63 (12) |
O1—C10—C11 | 121.4 (2) | O4—S1—C20 | 106.36 (11) |
C9—C10—C11 | 122.4 (2) | S1—C20—H20A | 109.5 |
C6—C11—C10 | 118.2 (2) | S1—C20—H20B | 109.5 |
C6—C11—C12 | 125.0 (2) | H20A—C20—H20B | 109.5 |
C10—C11—C12 | 116.7 (2) | S1—C20—H20C | 109.5 |
C13—C12—C11 | 120.6 (3) | H20A—C20—H20C | 109.5 |
C13—C12—H12 | 119.7 | H20B—C20—H20C | 109.5 |
C11—C12—H12 | 119.7 | ||
C2—N1—C1—C4 | 3.6 (3) | C7—C8—C9—C10 | −0.3 (3) |
C3—N2—C2—N3 | −179.3 (2) | C14—O1—C10—C9 | 161.4 (2) |
C3—N2—C2—N1 | 0.5 (3) | C14—O1—C10—C11 | −23.3 (4) |
C1—N1—C2—N3 | 174.6 (2) | O3—C9—C10—O1 | 0.6 (3) |
C1—N1—C2—N2 | −5.3 (3) | C8—C9—C10—O1 | 174.7 (2) |
C2—N2—C3—N4 | −174.6 (2) | O3—C9—C10—C11 | −174.6 (2) |
C2—N2—C3—C4 | 5.9 (3) | C8—C9—C10—C11 | −0.5 (4) |
N1—C1—C4—C3 | 2.4 (3) | C7—C6—C11—C10 | −1.3 (3) |
N1—C1—C4—C5 | −178.4 (2) | C5—C6—C11—C10 | 178.4 (2) |
N4—C3—C4—C1 | 173.2 (2) | C7—C6—C11—C12 | −176.3 (2) |
N2—C3—C4—C1 | −7.3 (3) | C5—C6—C11—C12 | 3.4 (4) |
N4—C3—C4—C5 | −6.0 (3) | O1—C10—C11—C6 | −173.7 (2) |
N2—C3—C4—C5 | 173.5 (2) | C9—C10—C11—C6 | 1.3 (4) |
C1—C4—C5—C6 | 20.0 (3) | O1—C10—C11—C12 | 1.8 (4) |
C3—C4—C5—C6 | −160.8 (2) | C9—C10—C11—C12 | 176.7 (2) |
C4—C5—C6—C7 | −96.5 (3) | C6—C11—C12—C13 | −176.0 (3) |
C4—C5—C6—C11 | 83.8 (3) | C10—C11—C12—C13 | 8.9 (4) |
C11—C6—C7—C8 | 0.5 (3) | C11—C12—C13—C14 | 1.7 (5) |
C5—C6—C7—C8 | −179.1 (2) | C10—O1—C14—C15 | 165.4 (3) |
C18—O2—C8—C7 | −12.6 (3) | C10—O1—C14—C13 | 31.8 (4) |
C18—O2—C8—C9 | 167.6 (2) | C12—C13—C14—O1 | −21.4 (4) |
C6—C7—C8—O2 | −179.5 (2) | C12—C13—C14—C15 | −150.4 (3) |
C6—C7—C8—C9 | 0.3 (3) | O1—C14—C15—C17 | 149.3 (4) |
C19—O3—C9—C10 | −70.3 (3) | C13—C14—C15—C17 | −80.3 (5) |
C19—O3—C9—C8 | 115.5 (3) | O1—C14—C15—C16 | 72.7 (5) |
O2—C8—C9—O3 | −6.2 (3) | C13—C14—C15—C16 | −156.8 (4) |
C7—C8—C9—O3 | 174.0 (2) | C14—C15—C16—C17 | 113.3 (4) |
O2—C8—C9—C10 | 179.5 (2) | C14—C15—C17—C16 | −114.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O4i | 0.85 (3) | 1.99 (3) | 2.827 (2) | 168 (3) |
N3—H3A···O5i | 0.86 (2) | 2.06 (2) | 2.896 (3) | 166 (2) |
N3—H3B···O5ii | 0.87 (2) | 2.15 (2) | 2.871 (3) | 140 (2) |
N4—H4A···N2ii | 0.87 (2) | 2.27 (2) | 3.107 (3) | 163 (2) |
N4—H4B···O6 | 0.86 (2) | 2.11 (2) | 2.948 (3) | 163 (2) |
Symmetry codes: (i) x−1, y+1, z; (ii) −x, −y+1, −z. |
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320. CrossRef Web of Science Google Scholar
Bruker (2013). APEX3, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cervi, A., Aillard, P., Hazeri, N., Petit, L., Chai, Ch. L. L., Willis, A. C. & Banwell, M. G. (2013). J. Org. Chem. 78, 9876–9882. CSD CrossRef PubMed Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guerin, J.-C., Reveillere, H.-P., Ducrey, P. & Toupet, L. (1989). J. Nat. Prod. 52, 171–173. CSD CrossRef Google Scholar
Jaeger, J., Burri, K., Greiveldinger-Poenaru, S. & Hoffner, J. (2005). Int. Patent Appl. WO 2005014586 (A1). Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Masciadri, R. (1997). Int. Patent Appl. WO 9720839 (A1). Google Scholar
Nerdinger, S., Stefinovic, M., Neuner, S. & Spreitz, J. (2020). Int. Patent Appl. WO 2020161284 (A1). Google Scholar
Saidi, N., Mukhtar, M. R., Awang, K., Hadi, A. H. A. & Ng, S. W. (2007). Acta Cryst. E63, o3692–o3693. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.