research communications
of bis(mesityl)(pyrrol-1-yl)borane
aSchool of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG1 8NS, United Kingdom
*Correspondence e-mail: john.wallis@ntu.ac.uk
In the 22H26BN, the B atom acts to reduce the delocalization of the nitrogen lone-pair electron density into the pyrrole ring, so that the two N—C bonds increase in length to 1.4005 (14) and 1.3981 (14) Å. The N—B bond length is 1.4425 (15) Å, which is longer than a typical N—B bond because the nitrogen lone pair is not fully available to participate in the bond.
of the title compound, CKeywords: crystal structure; pyrroloborane; N-B bonding; π delocalization.
CCDC reference: 2166138
1. Chemical context
The structure of the title compound 1 is of interest because of the effect of the bis(mesityl)boron group on the electronic structure of the pyrrole, since the nitrogen lone pair, which is essential to the heterocycle's aromatic 6π system, now has the possibility of being donated to the boron atom. This molecule has been investigated previously for its fluorescence, and shows a large which involves twisted intramolecular charge transfer (TICT) of the by rotation about the N—B bond (Brittelli & Eaton, 1989; Cornelissen & Rettig, 1994; Cornelissen-Gude & Rettig,1999). It has been used recently in the preparation of conductive polymers (Wildgoose et al. 2019).
2. Structural commentary
The 1 was determined at 120 K and the molecular structure is shown in Fig. 1. The bonding geometries at both the boron and nitrogen atoms are almost planar, with an angle of 16.13 (8)° between these two bonding planes. The N and B atoms lie 0.0351 (11) and 0.0285 (13) Å, respectively, out of the planes defined by their three attached atoms. The planes of the two mesityl groups lie at 58.53 (3) and 61.46 (4)° to the boron atom's bonding plane, and so there is limited donation of their π-electron densities to boron. These dispositions are controlled by the need to maintain separations between their two adjacent pairs of ortho methyl groups [H3C⋯CH3 = 3.610 (3) and 3.736 (3) Å], and is supported by the widening of the C—B—C bond angle [125.18 (9)°], compared to the two N—B—C bond angles [118.30 (10) and 116.42 (9)°]. The mesityl groups' planes lie at 77.14 (4)° to each other, and at 69.18 (3) and 67.06 (4)° to the pyrrole ring's best plane. The hydrogen atoms of three methyl groups (C12, C13 and C21) were modelled in two orientations. The positions and displacement parameters of hydrogen atoms on the pyrrole ring were refined, and for those attached to the Cα atoms, the H—Cα—Cβ angle showed widening to 131–132°, similar to that in pyrrole (Goddard et al., 1997; Lee & Boo, 1996).
of bis(mesityl)(pyrrol-1-yl)boraneThe N—B bond is 1.4425 (15) Å long. This is ca 0.04 Å longer than in similar compounds where the nitrogen atom is attached to two sp3 carbon atoms [ROCRAD (two molecules; Morawitz et al., 2008), TAYYAV (Araki et al., 2012), UWUFID (Smith et al., 2016), YOMKAM (Khasnis et al., 1995); T ≤ 173 K, N—B range 1.388 (2)-1.412 (3) Å, average 1.40 Å] and where the nitrogen lone pair is fully available for donation to boron. Compared to the molecular geometry of pyrrole itself, as determined by X-ray crystallography at 103 K (Goddard et al., 1997) and by calculation at the B3LYP-631G* level (Lee & Boo, 1996), the most notable difference is in the increase of the two N—C bond lengths to 1.4005 (14) and 1.3981 (14) Å from 1.365 (2) Å (experimental) and 1.376 Å (calculated) (Table 1). The Cα—Cβ bond lengths are 1.3536 (16) and 1.3514 (17) Å and the Cβ—Cβ bond length is 1.4290 (17) Å. Thus, in contrast to pyrrole, the N—Cα and Cα—Cβ bonds are no longer similar in length, due to a reduction in the contribution of the nitrogen atom's lone pair to the electronic π system of the pyrrole ring. When the mesityl groups are replaced by pentafluorophenyl groups in derivative 2, the N—B bond is considerably shorter than in 1 [1.4094 (9) cf. 1.4425 (15) Å] due to greater lone-pair donation from nitrogen towards the more electron-deficient boron. Consequently, compared to 1, the pyrrole ring shows slightly longer N—C bonds [1.4033 (6) Å] and a longer Cβ—Cβ bond [1.4418 (9) Å], though similar lengths for the Cα—Cβ bonds [1.3553 (6) Å] (Table 1). For comparison, the effect of boron on the pyrrole ring in 1 is similar to that when the pyrrole nitrogen atom is substituted with a carbonyl group to form an amide (Table 1).
3. Supramolecular features
The molecules are packed in layers in the ab plane (Fig. 2). There are no particularly short intermolecular contacts, consistent with the low density of the crystal (1.132 g cm−3). Within a layer, the molecules are related by centres of symmetry and translations along a and b. Adjacent layers are related by the twofold screw and n-glide planes. The four shortest intermolecular C⋯H distances are in the range 2.81–2.83 Å. Two of these involve the meta-C atom, C18, with a methyl hydrogen atom and a pyrrole ring's hydrogen atom, which are directed to opposite sides of the phenyl ring [C18⋯H12A(1 − x, 1 − y, 1 − z) and C18⋯H3(−x, 2 − y, 1 − z)]. The two others involve both a meta and a para-C atom of the second phenyl ring and the pyrrole hydrogen atom H2 [C8⋯H2( − x, y − , − z) and C9⋯H2( − x, y − , − z)].
4. Database survey
The structure of the analogue of 1 bearing two 2′-thienyl groups in the pyrrole's 2- and 5-positions (XEQVUM; Taniguchi et al., 2013) shows a larger angle (35.1°) between the bonding planes at nitrogen and boron due to avoidance of steric interactions between the thiophene and mesityl groups, and has a longer N—B bond [1.472 (7) Å] though the structure has lower precision. Room-temperature measurements on a series of five indole analogues of bis(mesityl)pyrroloborane, 3–7, show angles of 22.4–32.4° between the two bonding planes and slightly longer N—B bonds [1.442 (3)–1.457 (3) Å] with a correlation between the increasing angle between bonding planes and longer N—B bonds (Cui et al., 2007). Two carbazole analogues, 8 and 9, show interplanar angles between the two bonding planes of 23.1 and 27.9° and N—B bond lengths of 1.442 (3) and 1.440 (3) Å, similar to those in 1 (Taniguchi et al., 2013; Weber et al., 2011). All structures are reported in the Cambridge Structural Database, release 2021.3 (Groom et al., 2016).
5. Synthesis and crystallization
A solution of pyrrole (0.25 g, 3.7 mmol) in THF (10 mL) under nitrogen was treated with sodium hydride (60% dispersion in oil, 0.16 g, 4.0 mmol) and the mixture stirred at 293 K for 2 h. Dimesitylboron fluoride (CARE: gives HF with moisture) (1.09 g, 4.07 mmol) in dry THF (10 mL) was added at room temperature. The mixture was left to stir overnight. The bright orange–yellow mixture was quenched with water (20 mL), extracted with ether (2 × 30 mL) and the combined organic phase was dried over MgSO4. The crude material was purified by (SiO2) using hexane:dichloromethane (8:1) as to give 1 (0.76 g, 65%) as a slightly oily white solid, from which crystals were grown using ethyl acetate, m.p. 411 K. 1H NMR (400 MHz, CDCl3) [ppm]: δ = 6.84 (4H, s, 2 × 3′-,5′-H), 6.81 (2H, t, J = 2.2 Hz, 2-,5-H), 6.37 (2H, t, J = 2.2 Hz, 3-,4-H), 2.32 (6H, s, 2 × 4′-CH3), 2.11 (12H, s, 2 × 2′-, 6′-CH3); 13C NMR (100 MHz, CDCl3) [ppm]: δ = 141.7 (2 × 2′-, 6′-C), 139.0 (2 × 4′-C), 136.5 br (2 × 1′-C), 128.3 (2 × 3′-, 5′-C), 126.5 (2-, 5-C), 114.6 (3-, 4-C), 22.8 (2 × 2′-, 6′-CH3), 21.5 (2 × 4′-CH3); IR (ATR): 2920, 2853, 1606, 1472, 1451, 1421, 1399, 1378, 1329, 1310, 1287, 1252, 1156, 1122, 1080, 1074, 1043, 1030, 850, 817, 763, 733, 717, 677, 656, 619, 560, 516 cm−1.
6. Refinement
Crystal data and details of data collection and structure . Pyrrole H-atom positions and displacement parameters were refined. All other H atoms were refined using a riding model with C—H bonds fixed at 0.95 Å for hydrogens attached to phenyl carbon atoms and at 0.98 Å for methyl hydrogen atoms. Three methyl groups were refined in two orientations (C12, C13 and C21). The isotropic atomic displacement parameters of the H atoms were set at 1.2Ueq of the parent atom for aromatic groups and at 1.5Ueq for methyl groups.
are summarized in Table 2
|
Supporting information
CCDC reference: 2166138
https://doi.org/10.1107/S2056989022011768/zv2023sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022011768/zv2023Isup2.hkl
This is NMR data requested by the referee. DOI: https://doi.org/10.1107/S2056989022011768/zv2023sup3.docx
Supporting information file. DOI: https://doi.org/10.1107/S2056989022011768/zv2023Isup4.cml
Data collection: CrysAlis PRO (Rigaku OD, 2022); cell
CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).C22H26BN | Dx = 1.132 Mg m−3 |
Mr = 315.25 | Melting point: 411 K |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 11.9157 (2) Å | Cell parameters from 8967 reflections |
b = 8.0223 (1) Å | θ = 4.0–79.1° |
c = 19.6440 (3) Å | µ = 0.48 mm−1 |
β = 99.890 (1)° | T = 120 K |
V = 1849.89 (5) Å3 | Plate, colourless |
Z = 4 | 0.24 × 0.22 × 0.07 mm |
F(000) = 680 |
XtaLAB Synergy R, DW system, HyPix-Arc 100 diffractometer | 3650 independent reflections |
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source | 3305 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.021 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 80.4°, θmin = 4.1° |
ω scans | h = −15→14 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2022) | k = −3→10 |
Tmin = 0.589, Tmax = 1.000 | l = −23→24 |
12428 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0503P)2 + 0.5405P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.102 | (Δ/σ)max = 0.001 |
S = 1.06 | Δρmax = 0.28 e Å−3 |
3650 reflections | Δρmin = −0.19 e Å−3 |
240 parameters | Extinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0035 (4) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.18097 (7) | 0.77715 (11) | 0.59306 (5) | 0.0222 (2) | |
C1 | 0.18799 (10) | 0.78480 (14) | 0.66489 (6) | 0.0252 (3) | |
H1 | 0.2424 (11) | 0.7174 (17) | 0.6936 (7) | 0.027 (3)* | |
C2 | 0.10761 (10) | 0.89098 (15) | 0.68019 (6) | 0.0276 (3) | |
H2 | 0.0938 (12) | 0.9190 (18) | 0.7256 (8) | 0.034 (4)* | |
C3 | 0.04576 (10) | 0.95241 (15) | 0.61633 (6) | 0.0263 (3) | |
H3 | −0.0173 (12) | 1.0297 (19) | 0.6110 (7) | 0.034 (4)* | |
C4 | 0.09209 (9) | 0.88346 (14) | 0.56483 (6) | 0.0243 (2) | |
H4 | 0.0713 (11) | 0.8919 (17) | 0.5145 (7) | 0.028 (3)* | |
C5 | 0.31151 (9) | 0.51849 (13) | 0.59337 (5) | 0.0203 (2) | |
C6 | 0.43044 (9) | 0.49950 (13) | 0.59754 (5) | 0.0204 (2) | |
C7 | 0.48525 (9) | 0.35880 (14) | 0.62875 (5) | 0.0220 (2) | |
H7 | 0.565353 | 0.348470 | 0.631666 | 0.026* | |
C8 | 0.42558 (9) | 0.23297 (14) | 0.65577 (5) | 0.0225 (2) | |
C9 | 0.30873 (9) | 0.25156 (14) | 0.65143 (5) | 0.0224 (2) | |
H9 | 0.266773 | 0.165907 | 0.669121 | 0.027* | |
C10 | 0.25120 (9) | 0.39203 (14) | 0.62194 (6) | 0.0222 (2) | |
C11 | 0.50069 (9) | 0.63324 (14) | 0.57070 (6) | 0.0250 (3) | |
H11A | 0.465994 | 0.662557 | 0.523314 | 0.038* | |
H11B | 0.578176 | 0.591750 | 0.571152 | 0.038* | |
H11C | 0.503495 | 0.732173 | 0.600204 | 0.038* | |
C12 | 0.48501 (11) | 0.08266 (16) | 0.69069 (7) | 0.0324 (3) | |
H12A | 0.566645 | 0.089460 | 0.689114 | 0.039* | 0.459 (14) |
H12B | 0.473774 | 0.079013 | 0.738926 | 0.039* | 0.459 (14) |
H12C | 0.453368 | −0.018501 | 0.666784 | 0.039* | 0.459 (14) |
H12D | 0.429213 | 0.010521 | 0.707435 | 0.039* | 0.541 (14) |
H12E | 0.522084 | 0.020969 | 0.657624 | 0.039* | 0.541 (14) |
H12F | 0.542491 | 0.118483 | 0.729766 | 0.039* | 0.541 (14) |
C13 | 0.12378 (10) | 0.39744 (16) | 0.62051 (7) | 0.0318 (3) | |
H13A | 0.092836 | 0.501380 | 0.598706 | 0.038* | 0.663 (14) |
H13B | 0.087803 | 0.302290 | 0.594031 | 0.038* | 0.663 (14) |
H13C | 0.108254 | 0.392161 | 0.667858 | 0.038* | 0.663 (14) |
H13D | 0.099760 | 0.295840 | 0.641691 | 0.038* | 0.337 (14) |
H13E | 0.104792 | 0.494931 | 0.646366 | 0.038* | 0.337 (14) |
H13F | 0.084341 | 0.405060 | 0.572538 | 0.038* | 0.337 (14) |
C14 | 0.23755 (8) | 0.71202 (13) | 0.47517 (5) | 0.0203 (2) | |
C15 | 0.19186 (9) | 0.59532 (14) | 0.42397 (6) | 0.0227 (2) | |
C16 | 0.17238 (9) | 0.64178 (15) | 0.35462 (6) | 0.0267 (3) | |
H16 | 0.139938 | 0.562717 | 0.320900 | 0.032* | |
C17 | 0.19871 (9) | 0.79950 (16) | 0.33310 (6) | 0.0271 (3) | |
C18 | 0.24852 (9) | 0.91129 (15) | 0.38323 (6) | 0.0245 (2) | |
H18 | 0.269808 | 1.018547 | 0.369374 | 0.029* | |
C19 | 0.26830 (9) | 0.87098 (14) | 0.45335 (6) | 0.0217 (2) | |
C20 | 0.16008 (10) | 0.42065 (15) | 0.44205 (7) | 0.0310 (3) | |
H20A | 0.226974 | 0.364914 | 0.468333 | 0.046* | |
H20B | 0.133123 | 0.358118 | 0.399531 | 0.046* | |
H20C | 0.099533 | 0.425544 | 0.470029 | 0.046* | |
C21 | 0.17317 (13) | 0.8475 (2) | 0.25774 (7) | 0.0422 (3) | |
H21A | 0.197459 | 0.962807 | 0.252349 | 0.051* | 0.603 (17) |
H21B | 0.214358 | 0.773065 | 0.231077 | 0.051* | 0.603 (17) |
H21C | 0.091124 | 0.837973 | 0.240847 | 0.051* | 0.603 (17) |
H21D | 0.137835 | 0.753090 | 0.230500 | 0.051* | 0.397 (17) |
H21E | 0.120936 | 0.942831 | 0.251772 | 0.051* | 0.397 (17) |
H21F | 0.244170 | 0.877924 | 0.242002 | 0.051* | 0.397 (17) |
C22 | 0.32315 (11) | 1.00106 (15) | 0.50381 (6) | 0.0291 (3) | |
H22A | 0.263881 | 1.069083 | 0.519144 | 0.044* | |
H22B | 0.372504 | 1.072516 | 0.481251 | 0.044* | |
H22C | 0.368705 | 0.946066 | 0.543823 | 0.044* | |
B1 | 0.24540 (10) | 0.67087 (15) | 0.55475 (6) | 0.0209 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0223 (4) | 0.0212 (5) | 0.0232 (5) | 0.0039 (4) | 0.0045 (4) | 0.0042 (4) |
C1 | 0.0285 (6) | 0.0243 (6) | 0.0233 (5) | 0.0026 (5) | 0.0056 (4) | 0.0045 (5) |
C2 | 0.0328 (6) | 0.0251 (6) | 0.0275 (6) | 0.0012 (5) | 0.0124 (5) | 0.0024 (5) |
C3 | 0.0235 (5) | 0.0232 (6) | 0.0339 (6) | 0.0043 (5) | 0.0099 (5) | 0.0035 (5) |
C4 | 0.0225 (5) | 0.0227 (6) | 0.0276 (6) | 0.0044 (4) | 0.0042 (4) | 0.0047 (4) |
C5 | 0.0206 (5) | 0.0198 (5) | 0.0202 (5) | 0.0023 (4) | 0.0028 (4) | 0.0000 (4) |
C6 | 0.0207 (5) | 0.0217 (5) | 0.0186 (5) | 0.0015 (4) | 0.0031 (4) | −0.0026 (4) |
C7 | 0.0194 (5) | 0.0251 (6) | 0.0209 (5) | 0.0043 (4) | 0.0022 (4) | −0.0022 (4) |
C8 | 0.0267 (5) | 0.0211 (5) | 0.0190 (5) | 0.0054 (4) | 0.0018 (4) | −0.0010 (4) |
C9 | 0.0263 (5) | 0.0194 (5) | 0.0216 (5) | −0.0002 (4) | 0.0047 (4) | 0.0007 (4) |
C10 | 0.0214 (5) | 0.0222 (5) | 0.0230 (5) | 0.0018 (4) | 0.0039 (4) | −0.0003 (4) |
C11 | 0.0207 (5) | 0.0253 (6) | 0.0292 (6) | 0.0003 (4) | 0.0046 (4) | 0.0016 (5) |
C12 | 0.0328 (6) | 0.0283 (6) | 0.0355 (7) | 0.0095 (5) | 0.0040 (5) | 0.0069 (5) |
C13 | 0.0224 (5) | 0.0272 (6) | 0.0467 (7) | 0.0020 (5) | 0.0087 (5) | 0.0082 (5) |
C14 | 0.0166 (5) | 0.0205 (5) | 0.0235 (5) | 0.0045 (4) | 0.0028 (4) | 0.0007 (4) |
C15 | 0.0164 (5) | 0.0242 (6) | 0.0270 (6) | 0.0034 (4) | 0.0020 (4) | −0.0024 (4) |
C16 | 0.0204 (5) | 0.0332 (6) | 0.0255 (6) | 0.0020 (5) | 0.0014 (4) | −0.0063 (5) |
C17 | 0.0206 (5) | 0.0383 (7) | 0.0226 (5) | 0.0058 (5) | 0.0043 (4) | 0.0017 (5) |
C18 | 0.0223 (5) | 0.0259 (6) | 0.0265 (6) | 0.0047 (4) | 0.0073 (4) | 0.0049 (5) |
C19 | 0.0197 (5) | 0.0215 (5) | 0.0245 (5) | 0.0044 (4) | 0.0051 (4) | 0.0008 (4) |
C20 | 0.0297 (6) | 0.0246 (6) | 0.0361 (7) | −0.0027 (5) | −0.0015 (5) | −0.0027 (5) |
C21 | 0.0445 (7) | 0.0562 (9) | 0.0246 (6) | 0.0007 (7) | 0.0026 (5) | 0.0051 (6) |
C22 | 0.0364 (6) | 0.0214 (6) | 0.0295 (6) | −0.0021 (5) | 0.0057 (5) | 0.0009 (5) |
B1 | 0.0177 (5) | 0.0188 (6) | 0.0256 (6) | −0.0012 (4) | 0.0023 (4) | 0.0007 (5) |
N1—C1 | 1.4005 (14) | C13—H13A | 0.9800 |
N1—C4 | 1.3981 (14) | C13—H13B | 0.9800 |
N1—B1 | 1.4425 (15) | C13—H13C | 0.9800 |
C1—H1 | 0.951 (14) | C13—H13D | 0.9800 |
C1—C2 | 1.3536 (16) | C13—H13E | 0.9800 |
C2—H2 | 0.962 (15) | C13—H13F | 0.9800 |
C2—C3 | 1.4290 (17) | C14—C15 | 1.4129 (15) |
C3—H3 | 0.966 (15) | C14—C19 | 1.4135 (15) |
C3—C4 | 1.3514 (17) | C14—B1 | 1.5848 (16) |
C4—H4 | 0.979 (14) | C15—C16 | 1.3928 (16) |
C5—C6 | 1.4135 (14) | C15—C20 | 1.5097 (16) |
C5—C10 | 1.4139 (15) | C16—H16 | 0.9500 |
C5—B1 | 1.5765 (15) | C16—C17 | 1.3870 (18) |
C6—C7 | 1.3924 (15) | C17—C18 | 1.3877 (17) |
C6—C11 | 1.5106 (15) | C17—C21 | 1.5093 (16) |
C7—H7 | 0.9500 | C18—H18 | 0.9500 |
C7—C8 | 1.3913 (16) | C18—C19 | 1.3950 (15) |
C8—C9 | 1.3883 (15) | C19—C22 | 1.5087 (16) |
C8—C12 | 1.5030 (15) | C20—H20A | 0.9800 |
C9—H9 | 0.9500 | C20—H20B | 0.9800 |
C9—C10 | 1.3925 (15) | C20—H20C | 0.9800 |
C10—C13 | 1.5144 (15) | C21—H21A | 0.9800 |
C11—H11A | 0.9800 | C21—H21B | 0.9800 |
C11—H11B | 0.9800 | C21—H21C | 0.9800 |
C11—H11C | 0.9800 | C21—H21D | 0.9800 |
C12—H12A | 0.9800 | C21—H21E | 0.9800 |
C12—H12B | 0.9800 | C21—H21F | 0.9800 |
C12—H12C | 0.9800 | C22—H22A | 0.9800 |
C12—H12D | 0.9800 | C22—H22B | 0.9800 |
C12—H12E | 0.9800 | C22—H22C | 0.9800 |
C12—H12F | 0.9800 | ||
C1—N1—B1 | 127.34 (9) | C10—C13—H13C | 109.5 |
C4—N1—C1 | 106.43 (9) | H13A—C13—H13B | 109.5 |
C4—N1—B1 | 126.05 (9) | H13A—C13—H13C | 109.5 |
N1—C1—H1 | 119.3 (8) | H13B—C13—H13C | 109.5 |
C2—C1—N1 | 109.23 (10) | H13D—C13—H13E | 109.5 |
C2—C1—H1 | 131.5 (8) | H13D—C13—H13F | 109.5 |
C1—C2—H2 | 126.4 (9) | H13E—C13—H13F | 109.5 |
C1—C2—C3 | 107.45 (10) | C15—C14—C19 | 118.05 (10) |
C3—C2—H2 | 126.1 (9) | C15—C14—B1 | 120.96 (10) |
C2—C3—H3 | 126.2 (8) | C19—C14—B1 | 120.83 (10) |
C4—C3—C2 | 107.50 (10) | C14—C15—C20 | 121.94 (10) |
C4—C3—H3 | 126.3 (8) | C16—C15—C14 | 119.87 (11) |
N1—C4—H4 | 119.1 (8) | C16—C15—C20 | 118.17 (10) |
C3—C4—N1 | 109.38 (10) | C15—C16—H16 | 118.9 |
C3—C4—H4 | 131.4 (8) | C17—C16—C15 | 122.27 (11) |
C6—C5—C10 | 118.19 (9) | C17—C16—H16 | 118.9 |
C6—C5—B1 | 121.64 (9) | C16—C17—C18 | 117.70 (10) |
C10—C5—B1 | 120.09 (9) | C16—C17—C21 | 120.93 (12) |
C5—C6—C11 | 120.89 (9) | C18—C17—C21 | 121.38 (12) |
C7—C6—C5 | 120.17 (10) | C17—C18—H18 | 119.0 |
C7—C6—C11 | 118.90 (9) | C17—C18—C19 | 122.01 (11) |
C6—C7—H7 | 119.2 | C19—C18—H18 | 119.0 |
C8—C7—C6 | 121.62 (10) | C14—C19—C22 | 122.03 (10) |
C8—C7—H7 | 119.2 | C18—C19—C14 | 119.99 (10) |
C7—C8—C12 | 121.64 (10) | C18—C19—C22 | 117.98 (10) |
C9—C8—C7 | 118.13 (10) | C15—C20—H20A | 109.5 |
C9—C8—C12 | 120.21 (10) | C15—C20—H20B | 109.5 |
C8—C9—H9 | 119.0 | C15—C20—H20C | 109.5 |
C8—C9—C10 | 121.96 (10) | H20A—C20—H20B | 109.5 |
C10—C9—H9 | 119.0 | H20A—C20—H20C | 109.5 |
C5—C10—C13 | 123.26 (10) | H20B—C20—H20C | 109.5 |
C9—C10—C5 | 119.89 (10) | C17—C21—H21A | 109.5 |
C9—C10—C13 | 116.82 (10) | C17—C21—H21B | 109.5 |
C6—C11—H11A | 109.5 | C17—C21—H21C | 109.5 |
C6—C11—H11B | 109.5 | H21A—C21—H21B | 109.5 |
C6—C11—H11C | 109.5 | H21A—C21—H21C | 109.5 |
H11A—C11—H11B | 109.5 | H21B—C21—H21C | 109.5 |
H11A—C11—H11C | 109.5 | H21D—C21—H21E | 109.5 |
H11B—C11—H11C | 109.5 | H21D—C21—H21F | 109.5 |
C8—C12—H12A | 109.5 | H21E—C21—H21F | 109.5 |
C8—C12—H12B | 109.5 | C19—C22—H22A | 109.5 |
C8—C12—H12C | 109.5 | C19—C22—H22B | 109.5 |
H12A—C12—H12B | 109.5 | C19—C22—H22C | 109.5 |
H12A—C12—H12C | 109.5 | H22A—C22—H22B | 109.5 |
H12B—C12—H12C | 109.5 | H22A—C22—H22C | 109.5 |
H12D—C12—H12E | 109.5 | H22B—C22—H22C | 109.5 |
H12D—C12—H12F | 109.5 | N1—B1—C5 | 118.30 (10) |
H12E—C12—H12F | 109.5 | N1—B1—C14 | 116.42 (9) |
C10—C13—H13A | 109.5 | C5—B1—C14 | 125.18 (9) |
C10—C13—H13B | 109.5 | ||
N1—C1—C2—C3 | 0.71 (13) | C15—C14—C19—C18 | 2.85 (15) |
C1—N1—C4—C3 | −0.47 (13) | C15—C14—C19—C22 | −176.89 (10) |
C1—N1—B1—C5 | 14.84 (16) | C15—C14—B1—N1 | −117.91 (11) |
C1—N1—B1—C14 | −168.66 (10) | C15—C14—B1—C5 | 58.32 (14) |
C1—C2—C3—C4 | −1.00 (14) | C15—C16—C17—C18 | 1.52 (16) |
C2—C3—C4—N1 | 0.90 (13) | C15—C16—C17—C21 | −178.10 (11) |
C4—N1—C1—C2 | −0.17 (13) | C16—C17—C18—C19 | −2.32 (16) |
C4—N1—B1—C5 | −159.49 (10) | C17—C18—C19—C14 | 0.13 (16) |
C4—N1—B1—C14 | 17.01 (16) | C17—C18—C19—C22 | 179.88 (10) |
C5—C6—C7—C8 | 0.76 (16) | C19—C14—C15—C16 | −3.63 (15) |
C6—C5—C10—C9 | −1.72 (15) | C19—C14—C15—C20 | 177.97 (10) |
C6—C5—C10—C13 | −179.75 (10) | C19—C14—B1—N1 | 57.41 (13) |
C6—C5—B1—N1 | −122.50 (11) | C19—C14—B1—C5 | −126.35 (11) |
C6—C5—B1—C14 | 61.33 (15) | C20—C15—C16—C17 | 179.94 (10) |
C6—C7—C8—C9 | −0.56 (16) | C21—C17—C18—C19 | 177.29 (11) |
C6—C7—C8—C12 | −178.79 (10) | B1—N1—C1—C2 | −175.40 (11) |
C7—C8—C9—C10 | −0.83 (16) | B1—N1—C4—C3 | 174.83 (10) |
C8—C9—C10—C5 | 1.98 (16) | B1—C5—C6—C7 | −176.49 (10) |
C8—C9—C10—C13 | −179.85 (10) | B1—C5—C6—C11 | 5.66 (15) |
C10—C5—C6—C7 | 0.38 (15) | B1—C5—C10—C9 | 175.21 (10) |
C10—C5—C6—C11 | −177.47 (10) | B1—C5—C10—C13 | −2.83 (16) |
C10—C5—B1—N1 | 60.69 (14) | B1—C14—C15—C16 | 171.82 (9) |
C10—C5—B1—C14 | −115.48 (12) | B1—C14—C15—C20 | −6.58 (15) |
C11—C6—C7—C8 | 178.65 (10) | B1—C14—C19—C18 | −172.60 (9) |
C12—C8—C9—C10 | 177.43 (10) | B1—C14—C19—C22 | 7.66 (15) |
C14—C15—C16—C17 | 1.48 (16) |
1, T = 120 K | Pyrrole,a T = 103 K | Pyrrole, calculatedb | 2,c T = 100 K | Pyrrole, N—C═Od | |
N—B | 1.4425 (15) | – | – | 1.4094 (9) | – |
N—Cα | 1.4005 (14) 1.3981 (14) | 1.365 (2) | 1.376 | 1.4033 (6) | 1.395 |
Cα—Cβ | 1.3536 (16) 1.3514 (17) | 1.357 (2) | 1.378 | 1.3553 (6) | 1.355 |
Cβ—Cβ | 1.4290 (17) | 1.423 (3) | 1.425 | 1.4418 (9) | 1.430 |
Notes: (a) RUVQII (Goddard et al., 1997); (b) Lee & Boo (1996); (c) CUDZUW01 (Flierler et al., 2009); (d) Averaged data for structures containing C-unsubstituted-N-carbonyl pyrrole fragments measured at T < 150 K [BEFFUQ (Hatano et al., 2016), BOKSUR (Ariyarathna & Tunge, 2014), CIFNIR (O'Brien et al., 2018) and LAQFER (Uraguchi et al., 2017. |
Footnotes
‡Current address: Istinye University, Faculty of Pharmacy, Basic Pharmacy Sciences, 34010, İstanbul, Turkey; email: onur.sahin@istinye.edu.tr.
Acknowledgements
Nottingham Trent University, UK, is thanked for support for diffraction facilities.
Funding information
OS thanks Tübitak, Turkey, for an International Postdoctoral Research Fellowship.
References
Araki, T., Wakamiya, A., Mori, K. & Yamaguchi, S. (2012). Chem. Asian J. 7, 1594–1603. CrossRef CAS PubMed Google Scholar
Ariyarathna, Y. & Tunge, J. A. (2014). Chem. Commun. 50, 14049–14052. CrossRef CAS Google Scholar
Brittelli, D. R. & Eaton, D. F. (1989). J. Phys. Org. Chem. 2, 89–92. CrossRef CAS Google Scholar
Cornelissen, C. & Rettig, W. (1994). J. Fluoresc. 4, 71–74. CAS PubMed Google Scholar
Cornelissen-Gude, C. & Rettig, W. (1999). J. Phys. Chem. A, 103, 4371–4377. CAS Google Scholar
Cui, Y., Li, F., Lu, Z.-H. & Wang, S. (2007). Dalton Trans. pp. 2634–2643. CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flierler, U., Leusser, D., Ott, H., Kehr, G., Erker, G., Grimme, S. & Stalke, D. (2009). Chem. Eur. J. 15, 4595–4601. CrossRef PubMed CAS Google Scholar
Goddard, R., Heinemann, O. & Krüger, C. (1997). Acta Cryst. C53, 1846–1850. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hatano, M., Yamakawa, K., Kawai, T., Horibe, T. & Ishihara, K. (2016). Angew. Chem. Int. Ed. 55, 4021–4025. CrossRef CAS Google Scholar
Khasnis, D. V., Isom, H. S., Shang, S., Lattman, M., Olmstead, M. M. & Power, P. P. (1995). Inorg. Chem. 34, 1638–1641. CrossRef CAS Google Scholar
Lee, S. Y. & Boo, B. H. (1996). J. Phys. Chem. 100, 15073–15078. CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Morawitz, T., Bolte, M., Lerner, H.-W. & Wagner, M. (2008). Z. Anorg. Allg. Chem. 634, 1570–1574. CrossRef CAS Google Scholar
O'Brien, H. M., Manzotti, M., Abrams, R. D., Elorriaga, D., Sparkes, H. A., Davis, S. A. & Bedford, R. B. (2018). Nat. Catal. 1, 429–437. CAS Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, M. F., Cassidy, S. J., Adams, I. A., Vasiliu, M., Gerlach, D. L., Dixon, D. A. & Rupar, P. A. (2016). Organometallics, 35, 3182–3191. CrossRef CAS Google Scholar
Taniguchi, T., Wang, J., Irle, S. & Yamaguchi, S. (2013). Dalton Trans. 42, 620–624. CrossRef CAS PubMed Google Scholar
Uraguchi, D., Yoshioka, K. & Ooi, T. (2017). Nat. Commun. 8, 14793. CrossRef PubMed Google Scholar
Weber, L., Halama, J., Böhling, L., Chrostowska, A., Dargelos, A., Stamler, H.-G. & Neumann, B. (2011). Eur. J. Inorg. Chem. pp. 3091–3101. CrossRef Google Scholar
Wildgoose, G. G., Ashley, A. E., Courtney, J. M. & Lawrence, E. J. (2019). World Intellectual Property Organisation, WO2019012271 A1 2019-01-17. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.