research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structure of 4-[(pyridin-3-yl)diazen­yl]morpholine and 1-[(pyridin-3-yl)diazen­yl]-1,2,3,4-tetra­hydro­quinoline

crossmark logo

aLaboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, de Pharmacie et Odontologie, Université Cheikh Anta, Diop de Dakar, BP 5005, Dakar-Fann, Senegal, bLaboratoire de Chimie de Coordination Organique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, cUMR 7182 - ICMPE - Institut de Chimie et des Matériaux Paris Est, Thiais, France, dUniversité Amadou Mahtar MBOW, BP 45927, Dakar Nafa VDN, Dakar-Fann, Senegal, eEquipe de Recherche Chimie Organique et Thérapeutique (ECOT), Université Alioune, Diop de Bambey, Senegal, and fUK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
*Correspondence e-mail: mlgayeastou@yahoo.fr

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 28 November 2022; accepted 4 January 2023; online 10 January 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

Two new heterocyclic 1,2,3-triazenes were synthesized by diazo­tation of 3-amino­pyridine following respectively by coupling with morpholine or 1,2,3,4-tetra­hydro­quinoline. 4-[(Pyridin-3-yl)diazen­yl]morpholine (I), C9H12N4O, has monoclinic P21/c symmetry at 100 K, while 1-[(pyridin-3-yl)diazen­yl]-1,2,3,4-tetra­hydro­quinoline (II), C14H14N4, has monoclinic P21/n symmetry at 100 K. These 1,2,3-triazene derivatives were synthesized by the organic medium method by coupling reactions of 3-amino­pyridine with morpholine and 1,2,3,4-tetra­hydro­quinoline, respectively, and characterized by 1H NMR, 13C NMR, IR, mass spectrometry, and single-crystal X-ray diffraction. The mol­ecule of compound I consists of pyridine and morpholine rings connected by an azo moiety (–N=N–). In the mol­ecule of II, the pyridine ring and the 1,2,3,4-tetra­hydro­quinoline unit are also connected by an azo moiety. The double- and single-bond distances in the triazene chain are comparable for the two compounds. In both crystal structures, the mol­ecules are connected by C—H⋯N inter­actions, forming infinite chains for I and layers parallel to the bc plane for II.

1. Chemical context

1,2,3-Triazenes are versatile compounds in preparative chemistry because of their stable and highly modular nature (Patil & Bugarin, 2016[Patil, S. & Bugarin, A. (2016). Eur. J. Org. Chem. 2016, 860-870.]). 1,2,3-Triazene derivatives have been studied for their potential anti­cancer properties (Rouzer et al., 1996[Rouzer, C. A., Sabourin, M., Skinner, T. L., Thompson, E. J., Wood, T. O., Chmurny, G. N., Klose, J. R., Roman, J. M., Smith, R. H. & Michejda, C. J. (1996). Chem. Res. Toxicol. 9, 172-178.]; Connors et al., 1976[Connors, T. A., Goddard, P. M., Merai, K., Ross, W. C. J. & Wilman, D. E. V. (1976). Biochem. Pharmacol. 25, 241-246.]), used as a protecting group in natural product synthesis (Nicolaou et al., 1999[Nicolaou, K. C., Mitchell, H. J., Jain, N. F., Winssinger, N., Hughes, R. & Bando, T. (1999). Angew. Chem. Int. Ed. 38, 240-244.]) and combinatorial chemistry (Bräse et al., 2000[Bräse, S., Dahmen, S. & Pfefferkorn, M. (2000). J. Comb. Chem. 2, 710-715.]), incorporated into polymers (Jones et al., 1997[Jones, L., Schumm, J. S. & Tour, J. M. (1997). J. Org. Chem. 62, 1388-1410.]) and oligomer synthesis (Moore, 1997[Moore, J. S. (1997). Acc. Chem. Res. 30, 402-413.]), and used to prepare heterocycles (Wirschun et al., 1998[Wirschun, W., Winkler, M., Lutz, K. & Jochims, C. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1755-1762.]). 1,2,3-Triazenes are some of the most important compounds proposed for electrochromic materials that change color in the presence of the missing light in response to electrochemical switching (Monk et al., 2007[Monk, P., Mortimer, R. & Rosseinsky, D. (2007). Electrochromism and Electrochromic Devices. Cambridge University Press.]). This phenomenon has potential utility in protective eyewear and data storage devices applications (Mortimer, 1997[Mortimer, R. J. (1997). Chem. Soc. Rev. 26, 147-156.], 1999[Mortimer, R. J. (1999). Electrochim. Acta, 44, 2971-2981.]; Argun et al. 2004[Argun, A. A., Aubert, P.-H., Thompson, B. C., Schwendeman, I., Gaupp, C. L., Hwang, J., Pinto, N. J., Tanner, D. B., MacDiarmid, A. G. & Reynolds, J. R. (2004). Chem. Mater. 16, 4401-4412.]; Lampert, 1984[Lampert, C. M. (1984). Sol. Energy Mater. 11, 1-27.]). These mol­ecules constitute a unique class of compounds containing three adjacent nitro­gen atoms in an acyclic arrangement (Kimball & Haley, 2002[Kimball, D. B. & Haley, M. M. (2002). Angew. Chem. Int. Ed. 41, 3338-3351.]; Nwajiobi et al., 2022[Nwajiobi, O., Verma, A. K. & Raj, M. (2022). J. Am. Chem. Soc. 144, 4633-4641.]; Bormann et al., 2022[Bormann, C. T., Mathew, C., António, M. M., Trotti, A., Fadaei-Tirani, F. & Severin, K. (2022). J. Org. Chem. 87, 16882-16886.]). 1,2,3-Triazenes can be prepared by diazo coupling between a diazo­nium salt and primary, or secondary amines (Sadtchikova & Mokrushin, 2002[Sadtchikova, E. V. & Mokrushin, V. S. (2002). Mendeleev Commun. 12, 70-71.]) or Grignard reagents coupled with azides (Kirk, 1978[Kirk, K. L. (1978). J. Org. Chem. 43, 4381-4383.]). The synthesis of this type of compound in water as solvent is one of the most important challenges in green chemistry as the reaction conditions minimize environmental haza­rds and chemical waste (Zhang et al., 2018[Zhang, Y., Liu, Y., Ma, X., Ma, X., Wang, B., Li, H., Huang, Y. & Liu, C. (2018). Dyes Pigments, 158, 438-444.]). 1,2,3-Triazenes can exist as a mixture of tautomers. The nature of the mixture and equilibrium position can be defined by crystallographic studies. It is in this context that we synthesized two triazene derivatives and determined their structures by XRD.

[Scheme 1]

2. Structural commentary

Compound I was synthesized via reaction of the diazo­nium salt of 3-amino­pyridine and morpholine. The resulting compound was recrystallized from ethanol to yield orange single crystals. Compound I crystallizes in the centrosymmetric monoclinic space group P21/c, with the asymmetric unit consisting of one 1-morpholino-2-(pyridin-3-yl)diazene mol­ecule (Fig. 1[link]). The mol­ecule consists of six-membered pyridine and morpholine rings connected by an –N=N– moiety through the nitro­gen atom of the morpholine ring and a carbon atom of the pyridine ring. Thus a 1,2,3-triazene moiety (–N=N—N–) is formed in which the double-bond character of the azo moiety is indicated by the bond distance of 1.2640 (12) Å for N2—N3. The bond distance of 1.3350 (11) Å is indicative of single-bond character for N1—N2 moiety. The N2—N3 bond adopts an (E)-configuration. The pyridyl group is trans with respect to the morpholino group across the N2—N3 bond. The morpholine ring has a chair conformation with N1 and O1 situated, respectively, 0.192 (1) Å to one side of the mean plane through all ring atoms and 0.273 (1) Å to the other. Thus, O1 and N1 atoms are in a syn conformation with respect to the C1—C2 link [N1—C1—C2—O1 = 55.81 (11)°] and C3—C4 link [N1—C4—C3—O1 = −54.11 (11)°]. The pyridine ring forms dihedral angles of 8.80 (10) and 12.46 (5)° with the triazene moiety and the mean plane of the morpholine ring, respectively. The C—C bond lengths in the pyridine ring are in the normal range [1.33–1.39 Å]. In fact, the C5—C6 and C8—N4 bond lengths [1.3928 (14) and 1.3351 (15) Å, respectively] are characteristic of a delocalized pyridine ring (Wahedy et al., 2017[Wahedy, K., Abu Thaher, B., Schollmeyer, D., Almasri, I., Morjan, R., Qeshta, B. & Deigner, H.-P. (2017). Acta Cryst. E73, 1341-1343.]). The C—C—C bond angles in the ring measure almost 120°, with a maximum deviation of less than 2°, indicating that the atoms involved are sp2-hybridized. All the bond angles involving the morpholine heterocyclic ring atoms, which fall in the range 108.17 (8)–116.08 (8)°, are close of the ideal value of 109° for a perfect tetra­hedral carbon atom, and are indicative of sp3-hybridized carbon atoms in the heterocyclic ring. The values of the bond distances in the chain, N3— N2 = 1.2640 (12) Å and N2— N1 = 1.3350 (11) Å, indicate their respective double- and single-bond characters. The N3—N2—N1 angle of 114.09 (8)° confirms the formation of the triazene compound (Fig. 2[link]).

[Figure 1]
Figure 1
A view of the title compound I, showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 30% probability level.
[Figure 2]
Figure 2
A view of the title compound II, showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 30% probability level.

Compound II crystallizes in the centrosymmetric monoclinic space group P21/n, with the asymmetric unit consisting of one 1-[3,4-di­hydro­quinolin-1(2H)-yl]-2-(pyridin-3-yl)diazene mol­ecule. The mol­ecule consists of a pyridine ring and a tetra­hydro­quinoline moiety connected by an azo unit (–N=N–) through the nitro­gen atom of the 1,2,3,4-tetra­hydro­quinoline ring and a carbon atom of the pyridine ring. Thus a 1,2,3-triazene moiety (–N=N—N–) is formed in which the double-bond character of the azo moiety is indicated by the bond distance of 1.2737 (13) Å for N2—N3 while the bond distance of 1.3341 (12) Å shows the single-bond character of N3—N4. The N2—N3 bond adopts an (E)-configuration. The pyridyl group is trans with respect to the tetra­quinolyl group across the N2—N3 bond. The mean planes of the fused benzene and piperidine rings are not coplanar and form a dihedral angle of 10.79 (5)°. The pyridine ring forms dihedral angles of 12.12 (10), 22.07 (5) and 25.72 (5)° with the triazene moiety, the benzene ring and the piperidine ring, respectively. In the fused piperidine ring, two types of hybridized atoms exist as shown by the different angle values. The angles whose vertices are C9, C10 and N4 are in the range 118.39 (10)–120.41 (10)°, close to the ideal angle of 120° for sp2-hybridized atoms. The angles whose vertices are C6, C7 and C8 are in the range 109.95 (9)–110.68 (13)°, close to the ideal angle of 109° for sp3-hybridized atoms.

3. Supra­molecular features

The the crystal of I, non-classical C—H⋯N interactions link the molecules into chains: C3—H3A⋯N2iii bonds form chains parallel to the a axis, C2—H2B⋯N4ii and C7—H7⋯N3iv bonds form chains parallel to the b axis and C2—H2A⋯N4i bonds form chains parallel to the c axis (Table 1[link], Fig. 3[link]). In the crystal of II, C12—H12⋯N3i inter­actions link the mol­ecules, forming layers in the bc plane (Table 2[link], Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯N4i 0.99 2.67 3.5465 (14) 148
C2—H2B⋯N4ii 0.99 2.68 3.5607 (14) 149
C3—H3A⋯N2iii 0.99 2.57 3.4149 (13) 143
C7—H7⋯N3iv 0.95 2.70 3.5168 (14) 145
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x+1, y, z; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N3i 0.95 2.58 3.3890 (14) 143
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Infinite chains of compound I parallel to the a axis.
[Figure 4]
Figure 4
Layers of compound II parallel to the bc plane.

4. Database survey

A search of the CSD database (Version 5.43, November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 48 hits for compounds including morpholino 1,2,3-triazene derivatives similar to compound I. Three hits of compounds including the tetra­hydro­quinoline triazene moiety as in compound II were found: TADLOB (Huang et al. 2010[Huang, X., Li, P., Li, X.-S., Xu, D.-C. & Xie, J.-W. (2010). Org. Biomol. Chem. 8, 4527-4529.]), VAQMAC and VAQMEG (Katritzky et al., 2003[Katritzky, A. R., Bobrov, S., Kirichenko, K., Ji, Y. & Steel, P. J. (2003). J. Org. Chem. 68, 5713-5719.]). Aryl­morpholino 1,2,3-triazenes have structural characteristics like those of compound I and contain a 1,2,3-triazine unit consisting of three consecutive conjugated nitro­gen atoms, as seen in I. Examination of the structure of EMUDEX (Lee et al., 2016[Lee, D., Perez, P., Jackson, W., Chin, T., Galbreath, M., Fronczek, F. R., Isovitsch, R. & Iimoto, D. S. (2016). Bioorg. Med. Chem. Lett. 26, 3243-3247.]) suggests that a degree of π-delocalization across the linear triazene moiety of I was observed. The N2—N3 double-bond distance of 1.2679 (13) Å and the N1—N2 single-bond distance of 1.3501 (12) Å in EMUDEX are in accordance with those reported for OFUBUO (Mukai et al., 2013[Mukai, C., Zamora, E., Blatti, J. L., Fronczek, F. R. & Isovitsch, R. (2013). J. Chem. Crystallogr. 43, 412-420.]), EZEXEN (Gholivand et al., 2010[Gholivand, K., Hosseini, Z., Farshadian, S. & Naderi-Manesh, H. (2010). Eur. J. Med. Chem. 45, 5130-5139.]), FUZLUI (Pye et al., 2010[Pye, C., Fronczek, F. R. & Isovitsch, R. (2010). Helv. Chim. Acta, 93, 1162-1171.]). The structures of HAHQOZ (Johnson et al. 2016[Johnson, M., Galbreath, M., Fronczek, F. R. & Isovitsch, R. (2016). J. Heterocycl. Chem. 53, 2091-2095.]), HUHGEZ (Isovitsch & Fronczek, 2020[Isovitsch, R. A. & Fronczek, F. R. (2020). CSD Communication (refcode HUHGEZ). CCDC, Cambridge, England.]), IJEVUR (Gangwar et al., 2021[Gangwar, M. K., Dey, S., Prakasham, A. P. & Ghosh, P. (2021). Polyhedron, 197, 115011.]), OPAVUX (Chin et al., 2011[Chin, T., Phipps, A., Fronczek, F. R. & Isovitsch, R. (2011). J. Heterocycl. Chem. 48, 215-217.]) and RUJQIX (Chin et al., 2009[Chin, T., Fronczek, F. R. & Isovitsch, R. (2009). Acta Cryst. E65, o3206.]) feature similar inter­molecular hydrogen-bonding inter­actions to those in I, resulting in supra­molecular networks.

5. Synthesis and crystallization

Several methods are known for the synthesis of 1,2,3-triazenes, but the most known is the diazo-coupling method where the diazo­nium salt is formed by the action of NaNO2 in an acid medium on a primary amine and coupling of this salt with a primary or secondary amine. In this part of the work, a certain number of difficulties were encountered, in particular concerning the solubility of the synthesized 1,2,3-triazenes in the solvents used for analysis (CDCl3 and acetone-d6). Known by the strong presence of a dipole moment, the analysis of these compounds requires the use of very polar solvents such as DMSO-d6 or MeOD. The compounds were prepared according to the reaction sequence presented in Fig. 5[link]. We tried several methods for the synthesis of diazo­nium salts of amino­pyridine derivatives. Finally, we succeeded in obtaining the diazo­nium salt of 3-amino­pyridine using isoamyl nitrite instead of sodium nitrite and ethanol as solvent with good yield. We witnessed an explosion of this salt because of its instability. In a 100 mL flask, 3-amino­pyridine (5 mmol), ethanol (3 mL), HBF4 acid (50%, 1.5 mL) and isoamyl nitrite (5 mmol) were added. The mixture was kept under stirring for 15 min at 268 K. To this solution containing the diazo­nium salt, morpholine or 1,2,3,4-tetra­hydro­quinoline (5 mmol) in water (5 mL) was added and the mixture was stirred for 1 h at 273 K. A solution of potassium carbonate in water (5 mL) was added to the flask and the reaction kept under stirring for 3 h at room temperature. The resulting product was extracted with ethyl acetate, dried with Na2SO4, filtered and evaporated. Compounds I and II were obtained in a crystalline form with this synthetic method.

[Figure 5]
Figure 5
Reaction scheme.

Compound I. Yield: 72%. Orange crystal, m.p. 356–358 K, HPLC purity: 99.67%. 1H MNR (400 MHz, δ (ppm), DMSO-d6): 8.59 (d, J = 2.5 Hz, 1 H), 8.40 (dd, J = 4.7, 1.7 Hz, 1 H), 7.74 (d, J = 8.3 Hz, 1 H), 7.39 (dd, J = 8.4, 4.7 Hz, 1 H), 3.78 (s, 8 H). 13C MNR (100 MHz, δ (ppm), DMSO-d6): 147.41, 146.07, 143.68, 126.44, 124.3. MS (ESI) (m/z, %): 194.25 (12), 193.2 ([M+1], 100).

Compound II Yield: 28%. Orange crystal, m.p. 343–350 K, HPLC purity: 99.82%. 1H MNR (400 MHz, δ (ppm), CDCl3: 8.86 (s, 1 H), 8.45 (d, J = 4.8 Hz,1 H), 7.90 (dd, J = 8.4, 2; 7 Hz, 1 H), 7.83 (d, J = 8.3 Hz, 1 H), 7.34 (dd, J = 8.2, 4.8 Hz, 1 H), 7.30–7.23 (m, 1 H), 7.17 (d, J = 7.5 Hz, 1 H), 7.05 (d, J = 8.2, 1 H), 4.13 (t, J = 5.9 Hz, 2 H), 2.85 (t, J = 6.1 Hz, 2 H), 2.21–2.10 (m, 2H). 1C MNR (100 MHz, δ (ppm), CDCl3): 147.41, 146.42, 144.76, 139.96, 128.93, 127.52, 126.77, 126.14, 123.75, 123.16, 115.47. MS (ESI) (m/z, %): 240.29 (21), 477.29 (7), 239.17 ([M+1], 100).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were optimized geometrically (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

  I II
Crystal data
Chemical formula C9H12N4O C14H14N4
Mr 192.23 238.29
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 100 100
a, b, c (Å) 5.6889 (3), 8.3058 (4), 20.3063 (8) 15.4187 (2), 4.8130 (1), 15.9993 (3)
β (°) 97.370 (4) 96.115 (2)
V3) 951.56 (8) 1180.56 (4)
Z 4 4
Radiation type Mo Kα Cu Kα
μ (mm−1) 0.09 0.66
Crystal size (mm) 0.26 × 0.16 × 0.14 0.24 × 0.13 × 0.05
 
Data collection
Diffractometer Rigaku FRE+ equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HyPix 6000 detector Rigaku FRE+ equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HyPix 6000 detector
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Analytical (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.187, 1.000 0.187, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 47217, 2464, 2280 12295, 2142, 2010
Rint 0.032 0.023
(sin θ/λ)max−1) 0.676 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.05 0.034, 0.094, 1.07
No. of reflections 2464 2142
No. of parameters 127 163
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.20 0.22, −0.19
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), CrysAlis PRO (Rigaku OD, 2020), OLEX2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

4-[(Pyridin-3-yl)diazenyl]morpholine (I) top
Crystal data top
C9H12N4OF(000) = 408
Mr = 192.23Dx = 1.342 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 5.6889 (3) ÅCell parameters from 10944 reflections
b = 8.3058 (4) Åθ = 2.0–36.0°
c = 20.3063 (8) ŵ = 0.09 mm1
β = 97.370 (4)°T = 100 K
V = 951.56 (8) Å3(cut) irregular block, colourless
Z = 40.26 × 0.16 × 0.14 mm
Data collection top
Rigaku FRE+ equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HyPix 6000 detector
diffractometer
2280 reflections with I > 2σ(I)
Detector resolution: 10 pixels mm-1Rint = 0.032
profile data from ω–scansθmax = 28.7°, θmin = 2.0°
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2020)
h = 77
Tmin = 0.187, Tmax = 1.000k = 1111
47217 measured reflectionsl = 2727
2464 independent reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.3578P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2464 reflectionsΔρmax = 0.39 e Å3
127 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.62623 (19)0.79887 (13)0.51038 (5)0.0239 (2)
H2A0.5690560.8406310.4655130.029*
H2B0.7314800.8810590.5339530.029*
C10.41701 (18)0.76924 (14)0.54796 (5)0.0245 (2)
H1A0.3345230.8720260.5541750.029*
H1B0.3032680.6951700.5224230.029*
C40.65470 (18)0.55810 (12)0.61131 (5)0.0220 (2)
H4A0.5614590.4647630.5922110.026*
H4B0.7247360.5302810.6570600.026*
C30.84953 (18)0.59792 (14)0.56928 (5)0.0240 (2)
H3A0.9538970.6818150.5919640.029*
H3B0.9468310.5006020.5649250.029*
C50.25737 (17)0.66881 (12)0.75890 (5)0.0195 (2)
C60.05135 (18)0.76118 (13)0.75068 (5)0.0224 (2)
H60.0008750.8140300.7098200.027*
C70.07817 (18)0.77375 (13)0.80398 (5)0.0248 (2)
H70.2207320.8345490.8000570.030*
C80.00371 (19)0.69618 (14)0.86306 (5)0.0258 (2)
H80.0863300.7060440.8991520.031*
N10.50202 (15)0.69888 (11)0.61229 (4)0.02041 (19)
N20.36372 (14)0.72537 (10)0.65955 (4)0.01964 (18)
N30.40585 (14)0.63392 (10)0.70942 (4)0.01969 (18)
O10.75628 (13)0.65370 (9)0.50469 (3)0.02197 (17)
N40.20195 (17)0.60850 (12)0.87196 (4)0.0274 (2)
C90.32349 (18)0.59528 (13)0.82007 (5)0.0239 (2)
H90.4635600.5318020.8252570.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0285 (5)0.0252 (5)0.0193 (4)0.0003 (4)0.0080 (4)0.0021 (4)
C10.0244 (5)0.0300 (5)0.0202 (4)0.0050 (4)0.0068 (4)0.0045 (4)
C40.0239 (5)0.0249 (5)0.0182 (4)0.0031 (4)0.0070 (3)0.0021 (4)
C30.0213 (4)0.0339 (5)0.0175 (4)0.0037 (4)0.0051 (3)0.0012 (4)
C50.0211 (4)0.0214 (4)0.0169 (4)0.0034 (3)0.0054 (3)0.0031 (3)
C60.0250 (5)0.0250 (5)0.0174 (4)0.0003 (4)0.0038 (4)0.0003 (4)
C70.0237 (5)0.0264 (5)0.0254 (5)0.0014 (4)0.0075 (4)0.0040 (4)
C80.0306 (5)0.0286 (5)0.0206 (5)0.0037 (4)0.0126 (4)0.0036 (4)
N10.0214 (4)0.0245 (4)0.0167 (4)0.0018 (3)0.0074 (3)0.0006 (3)
N20.0195 (4)0.0225 (4)0.0176 (4)0.0012 (3)0.0048 (3)0.0005 (3)
N30.0200 (4)0.0220 (4)0.0175 (4)0.0002 (3)0.0037 (3)0.0005 (3)
O10.0243 (4)0.0279 (4)0.0147 (3)0.0010 (3)0.0064 (3)0.0008 (3)
N40.0344 (5)0.0304 (5)0.0185 (4)0.0003 (4)0.0073 (3)0.0015 (3)
C90.0253 (5)0.0265 (5)0.0203 (5)0.0017 (4)0.0048 (4)0.0000 (4)
Geometric parameters (Å, º) top
C2—H2A0.9900C5—C61.3928 (14)
C2—H2B0.9900C5—N31.4230 (12)
C2—C11.5142 (14)C5—C91.3918 (14)
C2—O11.4271 (12)C6—H60.9500
C1—H1A0.9900C6—C71.3891 (13)
C1—H1B0.9900C7—H70.9500
C1—N11.4559 (12)C7—C81.3886 (15)
C4—H4A0.9900C8—H80.9500
C4—H4B0.9900C8—N41.3351 (15)
C4—C31.5195 (13)N1—N21.3350 (11)
C4—N11.4583 (13)N2—N31.2640 (12)
C3—H3A0.9900N4—C91.3370 (13)
C3—H3B0.9900C9—H90.9500
C3—O11.4275 (12)
H2A—C2—H2B108.1O1—C3—H3B109.2
C1—C2—H2A109.5C6—C5—N3126.45 (9)
C1—C2—H2B109.5C9—C5—C6118.40 (9)
O1—C2—H2A109.5C9—C5—N3115.07 (9)
O1—C2—H2B109.5C5—C6—H6121.0
O1—C2—C1110.65 (8)C7—C6—C5118.06 (9)
C2—C1—H1A109.9C7—C6—H6121.0
C2—C1—H1B109.9C6—C7—H7120.5
H1A—C1—H1B108.3C8—C7—C6119.05 (10)
N1—C1—C2108.99 (8)C8—C7—H7120.5
N1—C1—H1A109.9C7—C8—H8118.2
N1—C1—H1B109.9N4—C8—C7123.64 (9)
H4A—C4—H4B108.4N4—C8—H8118.2
C3—C4—H4A110.1C1—N1—C4116.08 (8)
C3—C4—H4B110.1N2—N1—C1114.85 (8)
N1—C4—H4A110.1N2—N1—C4123.29 (8)
N1—C4—H4B110.1N3—N2—N1114.09 (8)
N1—C4—C3108.17 (8)N2—N3—C5112.00 (8)
C4—C3—H3A109.2C2—O1—C3109.59 (7)
C4—C3—H3B109.2C8—N4—C9116.83 (9)
H3A—C3—H3B107.9C5—C9—H9118.0
O1—C3—C4112.02 (8)N4—C9—C5124.01 (10)
O1—C3—H3A109.2N4—C9—H9118.0
C2—C1—N1—C451.60 (12)C6—C7—C8—N40.19 (17)
C2—C1—N1—N2154.23 (9)C7—C8—N4—C90.74 (17)
C1—C2—O1—C362.24 (10)C8—N4—C9—C51.07 (16)
C1—N1—N2—N3163.81 (9)N1—C4—C3—O154.11 (11)
C4—C3—O1—C261.98 (11)N1—N2—N3—C5178.85 (8)
C4—N1—N2—N311.73 (13)N3—C5—C6—C7176.15 (9)
C3—C4—N1—C150.22 (11)N3—C5—C9—N4177.49 (10)
C3—C4—N1—N2158.00 (9)O1—C2—C1—N155.81 (11)
C5—C6—C7—C80.81 (16)C9—C5—C6—C70.52 (15)
C6—C5—N3—N215.17 (14)C9—C5—N3—N2168.06 (9)
C6—C5—C9—N40.45 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N4i0.992.673.5465 (14)148
C2—H2B···N4ii0.992.683.5607 (14)149
C3—H3A···N2iii0.992.573.4149 (13)143
C7—H7···N3iv0.952.703.5168 (14)145
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y, z; (iv) x, y+1/2, z+3/2.
1-[(Pyridin-3-yl)diazenyl]-1,2,3,4-tetrahydroquinoline (II) top
Crystal data top
C14H14N4F(000) = 504
Mr = 238.29Dx = 1.341 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 15.4187 (2) ÅCell parameters from 7895 reflections
b = 4.8130 (1) Åθ = 2.0–36.0°
c = 15.9993 (3) ŵ = 0.66 mm1
β = 96.115 (2)°T = 100 K
V = 1180.56 (4) Å3(cut) irregular block, colourless
Z = 40.24 × 0.13 × 0.05 mm
Data collection top
Rigaku FRE+ equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HyPix 6000 detector
diffractometer
2010 reflections with I > 2σ(I)
Detector resolution: 10 pixels mm-1Rint = 0.023
profile data from ω–scansθmax = 68.2°, θmin = 5.8°
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2020)
h = 1817
Tmin = 0.187, Tmax = 1.000k = 55
12295 measured reflectionsl = 1919
2142 independent reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.4022P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2142 reflectionsΔρmax = 0.22 e Å3
163 parametersΔρmin = 0.19 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33530 (7)0.4875 (2)0.29703 (7)0.0231 (3)
H10.2796990.5154840.2665030.028*
C20.40405 (7)0.6536 (2)0.27811 (7)0.0233 (3)
H20.3949060.7936350.2362530.028*
C30.48588 (7)0.6140 (2)0.32051 (7)0.0220 (3)
H30.5337660.7265600.3088600.026*
C40.49636 (7)0.4040 (2)0.38099 (7)0.0190 (3)
C50.42285 (7)0.2529 (2)0.39706 (7)0.0222 (3)
H50.4296690.1150200.4397420.027*
C60.72221 (7)0.1768 (2)0.51239 (7)0.0207 (3)
H6A0.7092330.0141740.4917120.025*
H6B0.6777310.2291660.5498300.025*
C70.81190 (7)0.1837 (2)0.56141 (7)0.0226 (3)
H7A0.8154460.0404490.6060520.027*
H7B0.8217150.3674320.5885960.027*
C80.88195 (7)0.1301 (2)0.50322 (7)0.0206 (3)
H8A0.9403390.1444300.5352960.025*
H8B0.8753280.0601160.4798460.025*
C90.87424 (7)0.3391 (2)0.43253 (7)0.0183 (3)
C100.79318 (7)0.4562 (2)0.40429 (7)0.0181 (2)
C110.78684 (7)0.6578 (2)0.34059 (7)0.0203 (3)
H110.7320380.7400360.3224630.024*
C120.86059 (7)0.7368 (2)0.30415 (7)0.0219 (3)
H120.8560370.8719000.2606280.026*
C130.94119 (7)0.6197 (2)0.33081 (7)0.0223 (3)
H130.9916360.6730850.3054690.027*
C140.94718 (7)0.4242 (2)0.39480 (7)0.0210 (3)
H141.0024780.3461400.4134040.025*
N10.34340 (6)0.2893 (2)0.35634 (6)0.0251 (2)
N20.57576 (6)0.32558 (19)0.42816 (6)0.0196 (2)
N30.64124 (6)0.43689 (19)0.39911 (6)0.0189 (2)
N40.71783 (6)0.36903 (19)0.44088 (6)0.0187 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0221 (5)0.0212 (6)0.0257 (6)0.0030 (5)0.0019 (4)0.0037 (5)
C20.0265 (6)0.0207 (6)0.0233 (6)0.0034 (5)0.0050 (5)0.0010 (5)
C30.0227 (5)0.0193 (6)0.0248 (6)0.0010 (4)0.0066 (4)0.0001 (5)
C40.0207 (5)0.0174 (5)0.0194 (5)0.0011 (4)0.0048 (4)0.0039 (4)
C50.0232 (6)0.0188 (6)0.0252 (6)0.0005 (5)0.0048 (4)0.0007 (5)
C60.0235 (6)0.0191 (6)0.0200 (5)0.0015 (4)0.0052 (4)0.0030 (4)
C70.0257 (6)0.0220 (6)0.0198 (5)0.0017 (5)0.0016 (4)0.0039 (5)
C80.0224 (5)0.0157 (6)0.0235 (6)0.0009 (4)0.0012 (4)0.0017 (4)
C90.0228 (5)0.0129 (5)0.0193 (5)0.0013 (4)0.0023 (4)0.0028 (4)
C100.0209 (5)0.0155 (5)0.0180 (5)0.0033 (4)0.0035 (4)0.0029 (4)
C110.0222 (5)0.0178 (6)0.0206 (5)0.0004 (4)0.0008 (4)0.0001 (4)
C120.0282 (6)0.0190 (6)0.0188 (6)0.0034 (5)0.0033 (4)0.0018 (4)
C130.0235 (6)0.0210 (6)0.0234 (6)0.0033 (5)0.0076 (4)0.0013 (5)
C140.0210 (5)0.0175 (6)0.0250 (6)0.0010 (4)0.0041 (4)0.0021 (4)
N10.0225 (5)0.0215 (5)0.0314 (6)0.0004 (4)0.0031 (4)0.0000 (4)
N20.0204 (5)0.0177 (5)0.0213 (5)0.0014 (4)0.0052 (4)0.0014 (4)
N30.0199 (5)0.0171 (5)0.0199 (5)0.0007 (4)0.0033 (4)0.0020 (4)
N40.0192 (5)0.0181 (5)0.0188 (5)0.0011 (4)0.0022 (4)0.0021 (4)
Geometric parameters (Å, º) top
C1—H10.9500C7—C81.5212 (15)
C1—C21.3865 (16)C8—H8A0.9900
C1—N11.3422 (16)C8—H8B0.9900
C2—H20.9500C8—C91.5090 (15)
C2—C31.3807 (16)C9—C101.4013 (15)
C3—H30.9500C9—C141.3934 (15)
C3—C41.3967 (16)C10—C111.4030 (15)
C4—C51.3935 (16)C10—N41.4189 (13)
C4—N21.4192 (14)C11—H110.9500
C5—H50.9500C11—C121.3851 (16)
C5—N11.3363 (15)C12—H120.9500
C6—H6A0.9900C12—C131.3895 (16)
C6—H6B0.9900C13—H130.9500
C6—C71.5159 (15)C13—C141.3864 (16)
C6—N41.4674 (14)C14—H140.9500
C7—H7A0.9900N2—N31.2737 (13)
C7—H7B0.9900N3—N41.3341 (12)
C2—C1—H1118.4H8A—C8—H8B108.2
N1—C1—H1118.4C9—C8—C7109.95 (9)
N1—C1—C2123.27 (10)C9—C8—H8A109.7
C1—C2—H2120.2C9—C8—H8B109.7
C3—C2—C1119.54 (11)C10—C9—C8120.41 (10)
C3—C2—H2120.2C14—C9—C8121.19 (10)
C2—C3—H3120.9C14—C9—C10118.39 (10)
C2—C3—C4118.19 (10)C9—C10—C11120.21 (10)
C4—C3—H3120.9C9—C10—N4119.30 (10)
C3—C4—N2126.19 (10)C11—C10—N4120.49 (10)
C5—C4—C3117.99 (10)C10—C11—H11120.0
C5—C4—N2115.82 (10)C12—C11—C10119.91 (10)
C4—C5—H5117.9C12—C11—H11120.0
N1—C5—C4124.27 (11)C11—C12—H12119.8
N1—C5—H5117.9C11—C12—C13120.47 (10)
H6A—C6—H6B108.1C13—C12—H12119.8
C7—C6—H6A109.5C12—C13—H13120.4
C7—C6—H6B109.5C14—C13—C12119.27 (10)
N4—C6—H6A109.5C14—C13—H13120.4
N4—C6—H6B109.5C9—C14—H14119.1
N4—C6—C7110.68 (9)C13—C14—C9121.74 (10)
C6—C7—H7A109.6C13—C14—H14119.1
C6—C7—H7B109.6C5—N1—C1116.69 (10)
C6—C7—C8110.35 (9)N3—N2—C4111.49 (9)
H7A—C7—H7B108.1N2—N3—N4114.08 (9)
C8—C7—H7A109.6C10—N4—C6122.45 (9)
C8—C7—H7B109.6N3—N4—C6120.64 (9)
C7—C8—H8A109.7N3—N4—C10116.17 (9)
C7—C8—H8B109.7
C1—C2—C3—C40.55 (17)C9—C10—C11—C121.46 (16)
C2—C1—N1—C51.03 (17)C9—C10—N4—C65.22 (15)
C2—C3—C4—C52.17 (16)C9—C10—N4—N3164.91 (9)
C2—C3—C4—N2177.24 (10)C10—C9—C14—C130.03 (16)
C3—C4—C5—N12.38 (17)C10—C11—C12—C130.64 (17)
C3—C4—N2—N311.45 (15)C11—C10—N4—C6174.70 (10)
C4—C5—N1—C10.77 (17)C11—C10—N4—N315.17 (15)
C4—N2—N3—N4179.67 (8)C11—C12—C13—C140.47 (17)
C5—C4—N2—N3167.97 (10)C12—C13—C14—C90.78 (17)
C6—C7—C8—C956.49 (12)C14—C9—C10—C111.15 (16)
C7—C6—N4—C1023.41 (14)C14—C9—C10—N4178.93 (9)
C7—C6—N4—N3166.89 (9)N1—C1—C2—C31.13 (18)
C7—C8—C9—C1028.76 (14)N2—C4—C5—N1177.08 (10)
C7—C8—C9—C14150.10 (10)N2—N3—N4—C61.30 (14)
C8—C9—C10—C11177.73 (10)N2—N3—N4—C10171.63 (9)
C8—C9—C10—N42.19 (15)N4—C6—C7—C853.93 (12)
C8—C9—C14—C13178.84 (10)N4—C10—C11—C12178.62 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N3i0.952.583.3890 (14)143
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

References

First citationArgun, A. A., Aubert, P.-H., Thompson, B. C., Schwendeman, I., Gaupp, C. L., Hwang, J., Pinto, N. J., Tanner, D. B., MacDiarmid, A. G. & Reynolds, J. R. (2004). Chem. Mater. 16, 4401–4412.  Web of Science CrossRef CAS Google Scholar
First citationBormann, C. T., Mathew, C., António, M. M., Trotti, A., Fadaei-Tirani, F. & Severin, K. (2022). J. Org. Chem. 87, 16882–16886.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBräse, S., Dahmen, S. & Pfefferkorn, M. (2000). J. Comb. Chem. 2, 710–715.  Web of Science PubMed Google Scholar
First citationChin, T., Fronczek, F. R. & Isovitsch, R. (2009). Acta Cryst. E65, o3206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChin, T., Phipps, A., Fronczek, F. R. & Isovitsch, R. (2011). J. Heterocycl. Chem. 48, 215–217.  Web of Science CSD CrossRef CAS Google Scholar
First citationConnors, T. A., Goddard, P. M., Merai, K., Ross, W. C. J. & Wilman, D. E. V. (1976). Biochem. Pharmacol. 25, 241–246.  CrossRef PubMed CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGangwar, M. K., Dey, S., Prakasham, A. P. & Ghosh, P. (2021). Polyhedron, 197, 115011.  Google Scholar
First citationGholivand, K., Hosseini, Z., Farshadian, S. & Naderi-Manesh, H. (2010). Eur. J. Med. Chem. 45, 5130–5139.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuang, X., Li, P., Li, X.-S., Xu, D.-C. & Xie, J.-W. (2010). Org. Biomol. Chem. 8, 4527–4529.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationIsovitsch, R. A. & Fronczek, F. R. (2020). CSD Communication (refcode HUHGEZ). CCDC, Cambridge, England.  Google Scholar
First citationJohnson, M., Galbreath, M., Fronczek, F. R. & Isovitsch, R. (2016). J. Heterocycl. Chem. 53, 2091–2095.  Web of Science CSD CrossRef CAS Google Scholar
First citationJones, L., Schumm, J. S. & Tour, J. M. (1997). J. Org. Chem. 62, 1388–1410.  CrossRef CAS Web of Science Google Scholar
First citationKatritzky, A. R., Bobrov, S., Kirichenko, K., Ji, Y. & Steel, P. J. (2003). J. Org. Chem. 68, 5713–5719.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKimball, D. B. & Haley, M. M. (2002). Angew. Chem. Int. Ed. 41, 3338–3351.  Web of Science CrossRef CAS Google Scholar
First citationKirk, K. L. (1978). J. Org. Chem. 43, 4381–4383.  CrossRef CAS Web of Science Google Scholar
First citationLampert, C. M. (1984). Sol. Energy Mater. 11, 1–27.  CrossRef CAS Web of Science Google Scholar
First citationLee, D., Perez, P., Jackson, W., Chin, T., Galbreath, M., Fronczek, F. R., Isovitsch, R. & Iimoto, D. S. (2016). Bioorg. Med. Chem. Lett. 26, 3243–3247.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMonk, P., Mortimer, R. & Rosseinsky, D. (2007). Electrochromism and Electrochromic Devices. Cambridge University Press.  Google Scholar
First citationMoore, J. S. (1997). Acc. Chem. Res. 30, 402–413.  CrossRef CAS Web of Science Google Scholar
First citationMortimer, R. J. (1997). Chem. Soc. Rev. 26, 147–156.  CrossRef CAS Web of Science Google Scholar
First citationMortimer, R. J. (1999). Electrochim. Acta, 44, 2971–2981.  Web of Science CrossRef CAS Google Scholar
First citationMukai, C., Zamora, E., Blatti, J. L., Fronczek, F. R. & Isovitsch, R. (2013). J. Chem. Crystallogr. 43, 412–420.  Web of Science CSD CrossRef CAS Google Scholar
First citationNicolaou, K. C., Mitchell, H. J., Jain, N. F., Winssinger, N., Hughes, R. & Bando, T. (1999). Angew. Chem. Int. Ed. 38, 240–244.  Web of Science CrossRef CAS Google Scholar
First citationNwajiobi, O., Verma, A. K. & Raj, M. (2022). J. Am. Chem. Soc. 144, 4633–4641.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPatil, S. & Bugarin, A. (2016). Eur. J. Org. Chem. 2016, 860–870.  Web of Science CrossRef CAS Google Scholar
First citationPye, C., Fronczek, F. R. & Isovitsch, R. (2010). Helv. Chim. Acta, 93, 1162–1171.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRouzer, C. A., Sabourin, M., Skinner, T. L., Thompson, E. J., Wood, T. O., Chmurny, G. N., Klose, J. R., Roman, J. M., Smith, R. H. & Michejda, C. J. (1996). Chem. Res. Toxicol. 9, 172–178.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSadtchikova, E. V. & Mokrushin, V. S. (2002). Mendeleev Commun. 12, 70–71.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWahedy, K., Abu Thaher, B., Schollmeyer, D., Almasri, I., Morjan, R., Qeshta, B. & Deigner, H.-P. (2017). Acta Cryst. E73, 1341–1343.  CSD CrossRef IUCr Journals Google Scholar
First citationWirschun, W., Winkler, M., Lutz, K. & Jochims, C. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1755–1762.  Web of Science CSD CrossRef Google Scholar
First citationZhang, Y., Liu, Y., Ma, X., Ma, X., Wang, B., Li, H., Huang, Y. & Liu, C. (2018). Dyes Pigments, 158, 438–444.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds