research communications
Syntheses and
of 4-[(pyridin-3-yl)diazenyl]morpholine and 1-[(pyridin-3-yl)diazenyl]-1,2,3,4-tetrahydroquinolineaLaboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, de Pharmacie et Odontologie, Université Cheikh Anta, Diop de Dakar, BP 5005, Dakar-Fann, Senegal, bLaboratoire de Chimie de Coordination Organique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, cUMR 7182 - ICMPE - Institut de Chimie et des Matériaux Paris Est, Thiais, France, dUniversité Amadou Mahtar MBOW, BP 45927, Dakar Nafa VDN, Dakar-Fann, Senegal, eEquipe de Recherche Chimie Organique et Thérapeutique (ECOT), Université Alioune, Diop de Bambey, Senegal, and fUK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
*Correspondence e-mail: mlgayeastou@yahoo.fr
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
Two new heterocyclic 1,2,3-triazenes were synthesized by diazotation of 3-aminopyridine following respectively by coupling with morpholine or 1,2,3,4-tetrahydroquinoline. 4-[(Pyridin-3-yl)diazenyl]morpholine (I), C9H12N4O, has monoclinic P21/c symmetry at 100 K, while 1-[(pyridin-3-yl)diazenyl]-1,2,3,4-tetrahydroquinoline (II), C14H14N4, has monoclinic P21/n symmetry at 100 K. These 1,2,3-triazene derivatives were synthesized by the organic medium method by coupling reactions of 3-aminopyridine with morpholine and 1,2,3,4-tetrahydroquinoline, respectively, and characterized by 1H NMR, 13C NMR, IR, and single-crystal X-ray diffraction. The molecule of compound I consists of pyridine and morpholine rings connected by an azo moiety (–N=N–). In the molecule of II, the pyridine ring and the 1,2,3,4-tetrahydroquinoline unit are also connected by an azo moiety. The double- and single-bond distances in the triazene chain are comparable for the two compounds. In both crystal structures, the molecules are connected by C—H⋯N interactions, forming infinite chains for I and layers parallel to the bc plane for II.
1. Chemical context
1,2,3-Triazenes are versatile compounds in preparative chemistry because of their stable and highly modular nature (Patil & Bugarin, 2016). 1,2,3-Triazene derivatives have been studied for their potential anticancer properties (Rouzer et al., 1996; Connors et al., 1976), used as a protecting group in natural product synthesis (Nicolaou et al., 1999) and combinatorial chemistry (Bräse et al., 2000), incorporated into polymers (Jones et al., 1997) and oligomer synthesis (Moore, 1997), and used to prepare heterocycles (Wirschun et al., 1998). 1,2,3-Triazenes are some of the most important compounds proposed for electrochromic materials that change color in the presence of the missing light in response to electrochemical switching (Monk et al., 2007). This phenomenon has potential utility in protective eyewear and data storage devices applications (Mortimer, 1997, 1999; Argun et al. 2004; Lampert, 1984). These molecules constitute a unique class of compounds containing three adjacent nitrogen atoms in an acyclic arrangement (Kimball & Haley, 2002; Nwajiobi et al., 2022; Bormann et al., 2022). 1,2,3-Triazenes can be prepared by diazo coupling between a diazonium salt and primary, or secondary (Sadtchikova & Mokrushin, 2002) or coupled with (Kirk, 1978). The synthesis of this type of compound in water as solvent is one of the most important challenges in green chemistry as the reaction conditions minimize environmental hazards and chemical waste (Zhang et al., 2018). 1,2,3-Triazenes can exist as a mixture of tautomers. The nature of the mixture and equilibrium position can be defined by crystallographic studies. It is in this context that we synthesized two triazene derivatives and determined their structures by XRD.
2. Structural commentary
Compound I was synthesized via reaction of the diazonium salt of 3-aminopyridine and morpholine. The resulting compound was recrystallized from ethanol to yield orange single crystals. Compound I crystallizes in the centrosymmetric monoclinic P21/c, with the consisting of one 1-morpholino-2-(pyridin-3-yl)diazene molecule (Fig. 1). The molecule consists of six-membered pyridine and morpholine rings connected by an –N=N– moiety through the nitrogen atom of the morpholine ring and a carbon atom of the pyridine ring. Thus a 1,2,3-triazene moiety (–N=N—N–) is formed in which the double-bond character of the azo moiety is indicated by the bond distance of 1.2640 (12) Å for N2—N3. The bond distance of 1.3350 (11) Å is indicative of single-bond character for N1—N2 moiety. The N2—N3 bond adopts an (E)-configuration. The pyridyl group is trans with respect to the morpholino group across the N2—N3 bond. The morpholine ring has a chair conformation with N1 and O1 situated, respectively, 0.192 (1) Å to one side of the mean plane through all ring atoms and 0.273 (1) Å to the other. Thus, O1 and N1 atoms are in a syn conformation with respect to the C1—C2 link [N1—C1—C2—O1 = 55.81 (11)°] and C3—C4 link [N1—C4—C3—O1 = −54.11 (11)°]. The pyridine ring forms dihedral angles of 8.80 (10) and 12.46 (5)° with the triazene moiety and the mean plane of the morpholine ring, respectively. The C—C bond lengths in the pyridine ring are in the normal range [1.33–1.39 Å]. In fact, the C5—C6 and C8—N4 bond lengths [1.3928 (14) and 1.3351 (15) Å, respectively] are characteristic of a delocalized pyridine ring (Wahedy et al., 2017). The C—C—C bond angles in the ring measure almost 120°, with a maximum deviation of less than 2°, indicating that the atoms involved are sp2-hybridized. All the bond angles involving the morpholine heterocyclic ring atoms, which fall in the range 108.17 (8)–116.08 (8)°, are close of the ideal value of 109° for a perfect tetrahedral carbon atom, and are indicative of sp3-hybridized carbon atoms in the heterocyclic ring. The values of the bond distances in the chain, N3— N2 = 1.2640 (12) Å and N2— N1 = 1.3350 (11) Å, indicate their respective double- and single-bond characters. The N3—N2—N1 angle of 114.09 (8)° confirms the formation of the triazene compound (Fig. 2).
Compound II crystallizes in the centrosymmetric monoclinic P21/n, with the consisting of one 1-[3,4-dihydroquinolin-1(2H)-yl]-2-(pyridin-3-yl)diazene molecule. The molecule consists of a pyridine ring and a tetrahydroquinoline moiety connected by an azo unit (–N=N–) through the nitrogen atom of the 1,2,3,4-tetrahydroquinoline ring and a carbon atom of the pyridine ring. Thus a 1,2,3-triazene moiety (–N=N—N–) is formed in which the double-bond character of the azo moiety is indicated by the bond distance of 1.2737 (13) Å for N2—N3 while the bond distance of 1.3341 (12) Å shows the single-bond character of N3—N4. The N2—N3 bond adopts an (E)-configuration. The pyridyl group is trans with respect to the tetraquinolyl group across the N2—N3 bond. The mean planes of the fused benzene and piperidine rings are not coplanar and form a dihedral angle of 10.79 (5)°. The pyridine ring forms dihedral angles of 12.12 (10), 22.07 (5) and 25.72 (5)° with the triazene moiety, the benzene ring and the piperidine ring, respectively. In the fused piperidine ring, two types of hybridized atoms exist as shown by the different angle values. The angles whose vertices are C9, C10 and N4 are in the range 118.39 (10)–120.41 (10)°, close to the ideal angle of 120° for sp2-hybridized atoms. The angles whose vertices are C6, C7 and C8 are in the range 109.95 (9)–110.68 (13)°, close to the ideal angle of 109° for sp3-hybridized atoms.
3. Supramolecular features
The the crystal of I, non-classical C—H⋯N interactions link the molecules into chains: C3—H3A⋯N2iii bonds form chains parallel to the a axis, C2—H2B⋯N4ii and C7—H7⋯N3iv bonds form chains parallel to the b axis and C2—H2A⋯N4i bonds form chains parallel to the c axis (Table 1, Fig. 3). In the crystal of II, C12—H12⋯N3i interactions link the molecules, forming layers in the bc plane (Table 2, Fig. 4).
4. Database survey
A search of the CSD database (Version 5.43, November 2021; Groom et al., 2016) gave 48 hits for compounds including morpholino 1,2,3-triazene derivatives similar to compound I. Three hits of compounds including the tetrahydroquinoline triazene moiety as in compound II were found: TADLOB (Huang et al. 2010), VAQMAC and VAQMEG (Katritzky et al., 2003). Arylmorpholino 1,2,3-triazenes have structural characteristics like those of compound I and contain a 1,2,3-triazine unit consisting of three consecutive conjugated nitrogen atoms, as seen in I. Examination of the structure of EMUDEX (Lee et al., 2016) suggests that a degree of π-delocalization across the linear triazene moiety of I was observed. The N2—N3 double-bond distance of 1.2679 (13) Å and the N1—N2 single-bond distance of 1.3501 (12) Å in EMUDEX are in accordance with those reported for OFUBUO (Mukai et al., 2013), EZEXEN (Gholivand et al., 2010), FUZLUI (Pye et al., 2010). The structures of HAHQOZ (Johnson et al. 2016), HUHGEZ (Isovitsch & Fronczek, 2020), IJEVUR (Gangwar et al., 2021), OPAVUX (Chin et al., 2011) and RUJQIX (Chin et al., 2009) feature similar intermolecular hydrogen-bonding interactions to those in I, resulting in supramolecular networks.
5. Synthesis and crystallization
Several methods are known for the synthesis of 1,2,3-triazenes, but the most known is the diazo-coupling method where the diazonium salt is formed by the action of NaNO2 in an acid medium on a primary amine and coupling of this salt with a primary or secondary amine. In this part of the work, a certain number of difficulties were encountered, in particular concerning the solubility of the synthesized 1,2,3-triazenes in the solvents used for analysis (CDCl3 and acetone-d6). Known by the strong presence of a the analysis of these compounds requires the use of very polar solvents such as DMSO-d6 or MeOD. The compounds were prepared according to the reaction sequence presented in Fig. 5. We tried several methods for the synthesis of diazonium salts of aminopyridine derivatives. Finally, we succeeded in obtaining the diazonium salt of 3-aminopyridine using isoamyl nitrite instead of sodium nitrite and ethanol as solvent with good yield. We witnessed an explosion of this salt because of its instability. In a 100 mL flask, 3-aminopyridine (5 mmol), ethanol (3 mL), HBF4 acid (50%, 1.5 mL) and isoamyl nitrite (5 mmol) were added. The mixture was kept under stirring for 15 min at 268 K. To this solution containing the diazonium salt, morpholine or 1,2,3,4-tetrahydroquinoline (5 mmol) in water (5 mL) was added and the mixture was stirred for 1 h at 273 K. A solution of potassium carbonate in water (5 mL) was added to the flask and the reaction kept under stirring for 3 h at room temperature. The resulting product was extracted with ethyl acetate, dried with Na2SO4, filtered and evaporated. Compounds I and II were obtained in a crystalline form with this synthetic method.
Compound I. Yield: 72%. Orange crystal, m.p. 356–358 K, HPLC purity: 99.67%. 1H MNR (400 MHz, δ (ppm), DMSO-d6): 8.59 (d, J = 2.5 Hz, 1 H), 8.40 (dd, J = 4.7, 1.7 Hz, 1 H), 7.74 (d, J = 8.3 Hz, 1 H), 7.39 (dd, J = 8.4, 4.7 Hz, 1 H), 3.78 (s, 8 H). 13C MNR (100 MHz, δ (ppm), DMSO-d6): 147.41, 146.07, 143.68, 126.44, 124.3. MS (ESI) (m/z, %): 194.25 (12), 193.2 ([M+1], 100).
Compound II Yield: 28%. Orange crystal, m.p. 343–350 K, HPLC purity: 99.82%. 1H MNR (400 MHz, δ (ppm), CDCl3: 8.86 (s, 1 H), 8.45 (d, J = 4.8 Hz,1 H), 7.90 (dd, J = 8.4, 2; 7 Hz, 1 H), 7.83 (d, J = 8.3 Hz, 1 H), 7.34 (dd, J = 8.2, 4.8 Hz, 1 H), 7.30–7.23 (m, 1 H), 7.17 (d, J = 7.5 Hz, 1 H), 7.05 (d, J = 8.2, 1 H), 4.13 (t, J = 5.9 Hz, 2 H), 2.85 (t, J = 6.1 Hz, 2 H), 2.21–2.10 (m, 2H). 1C MNR (100 MHz, δ (ppm), CDCl3): 147.41, 146.42, 144.76, 139.96, 128.93, 127.52, 126.77, 126.14, 123.75, 123.16, 115.47. MS (ESI) (m/z, %): 240.29 (21), 477.29 (7), 239.17 ([M+1], 100).
6. Refinement
Crystal data, data collection and structure . All H atoms were optimized geometrically (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989023000129/ex2064sup1.cif
contains datablocks ss069, II, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023000129/ex2064Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989023000129/ex2064IIsup3.hkl
For both structures, data collection: CrysAlis PRO (Rigaku OD, 2020); cell
CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).C9H12N4O | F(000) = 408 |
Mr = 192.23 | Dx = 1.342 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71075 Å |
a = 5.6889 (3) Å | Cell parameters from 10944 reflections |
b = 8.3058 (4) Å | θ = 2.0–36.0° |
c = 20.3063 (8) Å | µ = 0.09 mm−1 |
β = 97.370 (4)° | T = 100 K |
V = 951.56 (8) Å3 | (cut) irregular block, colourless |
Z = 4 | 0.26 × 0.16 × 0.14 mm |
Rigaku FRE+ equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HyPix 6000 detector diffractometer | 2280 reflections with I > 2σ(I) |
Detector resolution: 10 pixels mm-1 | Rint = 0.032 |
profile data from ω–scans | θmax = 28.7°, θmin = 2.0° |
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2020) | h = −7→7 |
Tmin = 0.187, Tmax = 1.000 | k = −11→11 |
47217 measured reflections | l = −27→27 |
2464 independent reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.104 | w = 1/[σ2(Fo2) + (0.0504P)2 + 0.3578P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
2464 reflections | Δρmax = 0.39 e Å−3 |
127 parameters | Δρmin = −0.20 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.62623 (19) | 0.79887 (13) | 0.51038 (5) | 0.0239 (2) | |
H2A | 0.569056 | 0.840631 | 0.465513 | 0.029* | |
H2B | 0.731480 | 0.881059 | 0.533953 | 0.029* | |
C1 | 0.41701 (18) | 0.76924 (14) | 0.54796 (5) | 0.0245 (2) | |
H1A | 0.334523 | 0.872026 | 0.554175 | 0.029* | |
H1B | 0.303268 | 0.695170 | 0.522423 | 0.029* | |
C4 | 0.65470 (18) | 0.55810 (12) | 0.61131 (5) | 0.0220 (2) | |
H4A | 0.561459 | 0.464763 | 0.592211 | 0.026* | |
H4B | 0.724736 | 0.530281 | 0.657060 | 0.026* | |
C3 | 0.84953 (18) | 0.59792 (14) | 0.56928 (5) | 0.0240 (2) | |
H3A | 0.953897 | 0.681815 | 0.591964 | 0.029* | |
H3B | 0.946831 | 0.500602 | 0.564925 | 0.029* | |
C5 | 0.25737 (17) | 0.66881 (12) | 0.75890 (5) | 0.0195 (2) | |
C6 | 0.05135 (18) | 0.76118 (13) | 0.75068 (5) | 0.0224 (2) | |
H6 | 0.000875 | 0.814030 | 0.709820 | 0.027* | |
C7 | −0.07817 (18) | 0.77375 (13) | 0.80398 (5) | 0.0248 (2) | |
H7 | −0.220732 | 0.834549 | 0.800057 | 0.030* | |
C8 | 0.00371 (19) | 0.69618 (14) | 0.86306 (5) | 0.0258 (2) | |
H8 | −0.086330 | 0.706044 | 0.899152 | 0.031* | |
N1 | 0.50202 (15) | 0.69888 (11) | 0.61229 (4) | 0.02041 (19) | |
N2 | 0.36372 (14) | 0.72537 (10) | 0.65955 (4) | 0.01964 (18) | |
N3 | 0.40585 (14) | 0.63392 (10) | 0.70942 (4) | 0.01969 (18) | |
O1 | 0.75628 (13) | 0.65370 (9) | 0.50469 (3) | 0.02197 (17) | |
N4 | 0.20195 (17) | 0.60850 (12) | 0.87196 (4) | 0.0274 (2) | |
C9 | 0.32349 (18) | 0.59528 (13) | 0.82007 (5) | 0.0239 (2) | |
H9 | 0.463560 | 0.531802 | 0.825257 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0285 (5) | 0.0252 (5) | 0.0193 (4) | 0.0003 (4) | 0.0080 (4) | 0.0021 (4) |
C1 | 0.0244 (5) | 0.0300 (5) | 0.0202 (4) | 0.0050 (4) | 0.0068 (4) | 0.0045 (4) |
C4 | 0.0239 (5) | 0.0249 (5) | 0.0182 (4) | 0.0031 (4) | 0.0070 (3) | 0.0021 (4) |
C3 | 0.0213 (4) | 0.0339 (5) | 0.0175 (4) | 0.0037 (4) | 0.0051 (3) | 0.0012 (4) |
C5 | 0.0211 (4) | 0.0214 (4) | 0.0169 (4) | −0.0034 (3) | 0.0054 (3) | −0.0031 (3) |
C6 | 0.0250 (5) | 0.0250 (5) | 0.0174 (4) | 0.0003 (4) | 0.0038 (4) | −0.0003 (4) |
C7 | 0.0237 (5) | 0.0264 (5) | 0.0254 (5) | 0.0014 (4) | 0.0075 (4) | −0.0040 (4) |
C8 | 0.0306 (5) | 0.0286 (5) | 0.0206 (5) | −0.0037 (4) | 0.0126 (4) | −0.0036 (4) |
N1 | 0.0214 (4) | 0.0245 (4) | 0.0167 (4) | 0.0018 (3) | 0.0074 (3) | 0.0006 (3) |
N2 | 0.0195 (4) | 0.0225 (4) | 0.0176 (4) | −0.0012 (3) | 0.0048 (3) | −0.0005 (3) |
N3 | 0.0200 (4) | 0.0220 (4) | 0.0175 (4) | 0.0002 (3) | 0.0037 (3) | −0.0005 (3) |
O1 | 0.0243 (4) | 0.0279 (4) | 0.0147 (3) | 0.0010 (3) | 0.0064 (3) | −0.0008 (3) |
N4 | 0.0344 (5) | 0.0304 (5) | 0.0185 (4) | 0.0003 (4) | 0.0073 (3) | 0.0015 (3) |
C9 | 0.0253 (5) | 0.0265 (5) | 0.0203 (5) | 0.0017 (4) | 0.0048 (4) | 0.0000 (4) |
C2—H2A | 0.9900 | C5—C6 | 1.3928 (14) |
C2—H2B | 0.9900 | C5—N3 | 1.4230 (12) |
C2—C1 | 1.5142 (14) | C5—C9 | 1.3918 (14) |
C2—O1 | 1.4271 (12) | C6—H6 | 0.9500 |
C1—H1A | 0.9900 | C6—C7 | 1.3891 (13) |
C1—H1B | 0.9900 | C7—H7 | 0.9500 |
C1—N1 | 1.4559 (12) | C7—C8 | 1.3886 (15) |
C4—H4A | 0.9900 | C8—H8 | 0.9500 |
C4—H4B | 0.9900 | C8—N4 | 1.3351 (15) |
C4—C3 | 1.5195 (13) | N1—N2 | 1.3350 (11) |
C4—N1 | 1.4583 (13) | N2—N3 | 1.2640 (12) |
C3—H3A | 0.9900 | N4—C9 | 1.3370 (13) |
C3—H3B | 0.9900 | C9—H9 | 0.9500 |
C3—O1 | 1.4275 (12) | ||
H2A—C2—H2B | 108.1 | O1—C3—H3B | 109.2 |
C1—C2—H2A | 109.5 | C6—C5—N3 | 126.45 (9) |
C1—C2—H2B | 109.5 | C9—C5—C6 | 118.40 (9) |
O1—C2—H2A | 109.5 | C9—C5—N3 | 115.07 (9) |
O1—C2—H2B | 109.5 | C5—C6—H6 | 121.0 |
O1—C2—C1 | 110.65 (8) | C7—C6—C5 | 118.06 (9) |
C2—C1—H1A | 109.9 | C7—C6—H6 | 121.0 |
C2—C1—H1B | 109.9 | C6—C7—H7 | 120.5 |
H1A—C1—H1B | 108.3 | C8—C7—C6 | 119.05 (10) |
N1—C1—C2 | 108.99 (8) | C8—C7—H7 | 120.5 |
N1—C1—H1A | 109.9 | C7—C8—H8 | 118.2 |
N1—C1—H1B | 109.9 | N4—C8—C7 | 123.64 (9) |
H4A—C4—H4B | 108.4 | N4—C8—H8 | 118.2 |
C3—C4—H4A | 110.1 | C1—N1—C4 | 116.08 (8) |
C3—C4—H4B | 110.1 | N2—N1—C1 | 114.85 (8) |
N1—C4—H4A | 110.1 | N2—N1—C4 | 123.29 (8) |
N1—C4—H4B | 110.1 | N3—N2—N1 | 114.09 (8) |
N1—C4—C3 | 108.17 (8) | N2—N3—C5 | 112.00 (8) |
C4—C3—H3A | 109.2 | C2—O1—C3 | 109.59 (7) |
C4—C3—H3B | 109.2 | C8—N4—C9 | 116.83 (9) |
H3A—C3—H3B | 107.9 | C5—C9—H9 | 118.0 |
O1—C3—C4 | 112.02 (8) | N4—C9—C5 | 124.01 (10) |
O1—C3—H3A | 109.2 | N4—C9—H9 | 118.0 |
C2—C1—N1—C4 | −51.60 (12) | C6—C7—C8—N4 | −0.19 (17) |
C2—C1—N1—N2 | 154.23 (9) | C7—C8—N4—C9 | −0.74 (17) |
C1—C2—O1—C3 | −62.24 (10) | C8—N4—C9—C5 | 1.07 (16) |
C1—N1—N2—N3 | 163.81 (9) | N1—C4—C3—O1 | −54.11 (11) |
C4—C3—O1—C2 | 61.98 (11) | N1—N2—N3—C5 | 178.85 (8) |
C4—N1—N2—N3 | 11.73 (13) | N3—C5—C6—C7 | 176.15 (9) |
C3—C4—N1—C1 | 50.22 (11) | N3—C5—C9—N4 | −177.49 (10) |
C3—C4—N1—N2 | −158.00 (9) | O1—C2—C1—N1 | 55.81 (11) |
C5—C6—C7—C8 | 0.81 (16) | C9—C5—C6—C7 | −0.52 (15) |
C6—C5—N3—N2 | 15.17 (14) | C9—C5—N3—N2 | −168.06 (9) |
C6—C5—C9—N4 | −0.45 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···N4i | 0.99 | 2.67 | 3.5465 (14) | 148 |
C2—H2B···N4ii | 0.99 | 2.68 | 3.5607 (14) | 149 |
C3—H3A···N2iii | 0.99 | 2.57 | 3.4149 (13) | 143 |
C7—H7···N3iv | 0.95 | 2.70 | 3.5168 (14) | 145 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, y+1/2, −z+3/2; (iii) x+1, y, z; (iv) −x, y+1/2, −z+3/2. |
C14H14N4 | F(000) = 504 |
Mr = 238.29 | Dx = 1.341 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 15.4187 (2) Å | Cell parameters from 7895 reflections |
b = 4.8130 (1) Å | θ = 2.0–36.0° |
c = 15.9993 (3) Å | µ = 0.66 mm−1 |
β = 96.115 (2)° | T = 100 K |
V = 1180.56 (4) Å3 | (cut) irregular block, colourless |
Z = 4 | 0.24 × 0.13 × 0.05 mm |
Rigaku FRE+ equipped with VHF Varimax confocal mirrors and an AFC12 goniometer and HyPix 6000 detector diffractometer | 2010 reflections with I > 2σ(I) |
Detector resolution: 10 pixels mm-1 | Rint = 0.023 |
profile data from ω–scans | θmax = 68.2°, θmin = 5.8° |
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2020) | h = −18→17 |
Tmin = 0.187, Tmax = 1.000 | k = −5→5 |
12295 measured reflections | l = −19→19 |
2142 independent reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.0501P)2 + 0.4022P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
2142 reflections | Δρmax = 0.22 e Å−3 |
163 parameters | Δρmin = −0.19 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.33530 (7) | 0.4875 (2) | 0.29703 (7) | 0.0231 (3) | |
H1 | 0.279699 | 0.515484 | 0.266503 | 0.028* | |
C2 | 0.40405 (7) | 0.6536 (2) | 0.27811 (7) | 0.0233 (3) | |
H2 | 0.394906 | 0.793635 | 0.236253 | 0.028* | |
C3 | 0.48588 (7) | 0.6140 (2) | 0.32051 (7) | 0.0220 (3) | |
H3 | 0.533766 | 0.726560 | 0.308860 | 0.026* | |
C4 | 0.49636 (7) | 0.4040 (2) | 0.38099 (7) | 0.0190 (3) | |
C5 | 0.42285 (7) | 0.2529 (2) | 0.39706 (7) | 0.0222 (3) | |
H5 | 0.429669 | 0.115020 | 0.439742 | 0.027* | |
C6 | 0.72221 (7) | 0.1768 (2) | 0.51239 (7) | 0.0207 (3) | |
H6A | 0.709233 | −0.014174 | 0.491712 | 0.025* | |
H6B | 0.677731 | 0.229166 | 0.549830 | 0.025* | |
C7 | 0.81190 (7) | 0.1837 (2) | 0.56141 (7) | 0.0226 (3) | |
H7A | 0.815446 | 0.040449 | 0.606052 | 0.027* | |
H7B | 0.821715 | 0.367432 | 0.588596 | 0.027* | |
C8 | 0.88195 (7) | 0.1301 (2) | 0.50322 (7) | 0.0206 (3) | |
H8A | 0.940339 | 0.144430 | 0.535296 | 0.025* | |
H8B | 0.875328 | −0.060116 | 0.479846 | 0.025* | |
C9 | 0.87424 (7) | 0.3391 (2) | 0.43253 (7) | 0.0183 (3) | |
C10 | 0.79318 (7) | 0.4562 (2) | 0.40429 (7) | 0.0181 (2) | |
C11 | 0.78684 (7) | 0.6578 (2) | 0.34059 (7) | 0.0203 (3) | |
H11 | 0.732038 | 0.740036 | 0.322463 | 0.024* | |
C12 | 0.86059 (7) | 0.7368 (2) | 0.30415 (7) | 0.0219 (3) | |
H12 | 0.856037 | 0.871900 | 0.260628 | 0.026* | |
C13 | 0.94119 (7) | 0.6197 (2) | 0.33081 (7) | 0.0223 (3) | |
H13 | 0.991636 | 0.673085 | 0.305469 | 0.027* | |
C14 | 0.94718 (7) | 0.4242 (2) | 0.39480 (7) | 0.0210 (3) | |
H14 | 1.002478 | 0.346140 | 0.413404 | 0.025* | |
N1 | 0.34340 (6) | 0.2893 (2) | 0.35634 (6) | 0.0251 (2) | |
N2 | 0.57576 (6) | 0.32558 (19) | 0.42816 (6) | 0.0196 (2) | |
N3 | 0.64124 (6) | 0.43689 (19) | 0.39911 (6) | 0.0189 (2) | |
N4 | 0.71783 (6) | 0.36903 (19) | 0.44088 (6) | 0.0187 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0221 (5) | 0.0212 (6) | 0.0257 (6) | 0.0030 (5) | 0.0019 (4) | −0.0037 (5) |
C2 | 0.0265 (6) | 0.0207 (6) | 0.0233 (6) | 0.0034 (5) | 0.0050 (5) | 0.0010 (5) |
C3 | 0.0227 (5) | 0.0193 (6) | 0.0248 (6) | −0.0010 (4) | 0.0066 (4) | −0.0001 (5) |
C4 | 0.0207 (5) | 0.0174 (5) | 0.0194 (5) | 0.0011 (4) | 0.0048 (4) | −0.0039 (4) |
C5 | 0.0232 (6) | 0.0188 (6) | 0.0252 (6) | 0.0005 (5) | 0.0048 (4) | 0.0007 (5) |
C6 | 0.0235 (6) | 0.0191 (6) | 0.0200 (5) | −0.0015 (4) | 0.0052 (4) | 0.0030 (4) |
C7 | 0.0257 (6) | 0.0220 (6) | 0.0198 (5) | −0.0017 (5) | 0.0016 (4) | 0.0039 (5) |
C8 | 0.0224 (5) | 0.0157 (6) | 0.0235 (6) | −0.0009 (4) | 0.0012 (4) | 0.0017 (4) |
C9 | 0.0228 (5) | 0.0129 (5) | 0.0193 (5) | −0.0013 (4) | 0.0023 (4) | −0.0028 (4) |
C10 | 0.0209 (5) | 0.0155 (5) | 0.0180 (5) | −0.0033 (4) | 0.0035 (4) | −0.0029 (4) |
C11 | 0.0222 (5) | 0.0178 (6) | 0.0206 (5) | −0.0004 (4) | 0.0008 (4) | 0.0001 (4) |
C12 | 0.0282 (6) | 0.0190 (6) | 0.0188 (6) | −0.0034 (5) | 0.0033 (4) | 0.0018 (4) |
C13 | 0.0235 (6) | 0.0210 (6) | 0.0234 (6) | −0.0033 (5) | 0.0076 (4) | −0.0013 (5) |
C14 | 0.0210 (5) | 0.0175 (6) | 0.0250 (6) | 0.0010 (4) | 0.0041 (4) | −0.0021 (4) |
N1 | 0.0225 (5) | 0.0215 (5) | 0.0314 (6) | −0.0004 (4) | 0.0031 (4) | 0.0000 (4) |
N2 | 0.0204 (5) | 0.0177 (5) | 0.0213 (5) | −0.0014 (4) | 0.0052 (4) | −0.0014 (4) |
N3 | 0.0199 (5) | 0.0171 (5) | 0.0199 (5) | −0.0007 (4) | 0.0033 (4) | −0.0020 (4) |
N4 | 0.0192 (5) | 0.0181 (5) | 0.0188 (5) | −0.0011 (4) | 0.0022 (4) | 0.0021 (4) |
C1—H1 | 0.9500 | C7—C8 | 1.5212 (15) |
C1—C2 | 1.3865 (16) | C8—H8A | 0.9900 |
C1—N1 | 1.3422 (16) | C8—H8B | 0.9900 |
C2—H2 | 0.9500 | C8—C9 | 1.5090 (15) |
C2—C3 | 1.3807 (16) | C9—C10 | 1.4013 (15) |
C3—H3 | 0.9500 | C9—C14 | 1.3934 (15) |
C3—C4 | 1.3967 (16) | C10—C11 | 1.4030 (15) |
C4—C5 | 1.3935 (16) | C10—N4 | 1.4189 (13) |
C4—N2 | 1.4192 (14) | C11—H11 | 0.9500 |
C5—H5 | 0.9500 | C11—C12 | 1.3851 (16) |
C5—N1 | 1.3363 (15) | C12—H12 | 0.9500 |
C6—H6A | 0.9900 | C12—C13 | 1.3895 (16) |
C6—H6B | 0.9900 | C13—H13 | 0.9500 |
C6—C7 | 1.5159 (15) | C13—C14 | 1.3864 (16) |
C6—N4 | 1.4674 (14) | C14—H14 | 0.9500 |
C7—H7A | 0.9900 | N2—N3 | 1.2737 (13) |
C7—H7B | 0.9900 | N3—N4 | 1.3341 (12) |
C2—C1—H1 | 118.4 | H8A—C8—H8B | 108.2 |
N1—C1—H1 | 118.4 | C9—C8—C7 | 109.95 (9) |
N1—C1—C2 | 123.27 (10) | C9—C8—H8A | 109.7 |
C1—C2—H2 | 120.2 | C9—C8—H8B | 109.7 |
C3—C2—C1 | 119.54 (11) | C10—C9—C8 | 120.41 (10) |
C3—C2—H2 | 120.2 | C14—C9—C8 | 121.19 (10) |
C2—C3—H3 | 120.9 | C14—C9—C10 | 118.39 (10) |
C2—C3—C4 | 118.19 (10) | C9—C10—C11 | 120.21 (10) |
C4—C3—H3 | 120.9 | C9—C10—N4 | 119.30 (10) |
C3—C4—N2 | 126.19 (10) | C11—C10—N4 | 120.49 (10) |
C5—C4—C3 | 117.99 (10) | C10—C11—H11 | 120.0 |
C5—C4—N2 | 115.82 (10) | C12—C11—C10 | 119.91 (10) |
C4—C5—H5 | 117.9 | C12—C11—H11 | 120.0 |
N1—C5—C4 | 124.27 (11) | C11—C12—H12 | 119.8 |
N1—C5—H5 | 117.9 | C11—C12—C13 | 120.47 (10) |
H6A—C6—H6B | 108.1 | C13—C12—H12 | 119.8 |
C7—C6—H6A | 109.5 | C12—C13—H13 | 120.4 |
C7—C6—H6B | 109.5 | C14—C13—C12 | 119.27 (10) |
N4—C6—H6A | 109.5 | C14—C13—H13 | 120.4 |
N4—C6—H6B | 109.5 | C9—C14—H14 | 119.1 |
N4—C6—C7 | 110.68 (9) | C13—C14—C9 | 121.74 (10) |
C6—C7—H7A | 109.6 | C13—C14—H14 | 119.1 |
C6—C7—H7B | 109.6 | C5—N1—C1 | 116.69 (10) |
C6—C7—C8 | 110.35 (9) | N3—N2—C4 | 111.49 (9) |
H7A—C7—H7B | 108.1 | N2—N3—N4 | 114.08 (9) |
C8—C7—H7A | 109.6 | C10—N4—C6 | 122.45 (9) |
C8—C7—H7B | 109.6 | N3—N4—C6 | 120.64 (9) |
C7—C8—H8A | 109.7 | N3—N4—C10 | 116.17 (9) |
C7—C8—H8B | 109.7 | ||
C1—C2—C3—C4 | 0.55 (17) | C9—C10—C11—C12 | 1.46 (16) |
C2—C1—N1—C5 | −1.03 (17) | C9—C10—N4—C6 | 5.22 (15) |
C2—C3—C4—C5 | −2.17 (16) | C9—C10—N4—N3 | −164.91 (9) |
C2—C3—C4—N2 | 177.24 (10) | C10—C9—C14—C13 | 0.03 (16) |
C3—C4—C5—N1 | 2.38 (17) | C10—C11—C12—C13 | −0.64 (17) |
C3—C4—N2—N3 | −11.45 (15) | C11—C10—N4—C6 | −174.70 (10) |
C4—C5—N1—C1 | −0.77 (17) | C11—C10—N4—N3 | 15.17 (15) |
C4—N2—N3—N4 | −179.67 (8) | C11—C12—C13—C14 | −0.47 (17) |
C5—C4—N2—N3 | 167.97 (10) | C12—C13—C14—C9 | 0.78 (17) |
C6—C7—C8—C9 | 56.49 (12) | C14—C9—C10—C11 | −1.15 (16) |
C7—C6—N4—C10 | 23.41 (14) | C14—C9—C10—N4 | 178.93 (9) |
C7—C6—N4—N3 | −166.89 (9) | N1—C1—C2—C3 | 1.13 (18) |
C7—C8—C9—C10 | −28.76 (14) | N2—C4—C5—N1 | −177.08 (10) |
C7—C8—C9—C14 | 150.10 (10) | N2—N3—N4—C6 | 1.30 (14) |
C8—C9—C10—C11 | 177.73 (10) | N2—N3—N4—C10 | 171.63 (9) |
C8—C9—C10—N4 | −2.19 (15) | N4—C6—C7—C8 | −53.93 (12) |
C8—C9—C14—C13 | −178.84 (10) | N4—C10—C11—C12 | −178.62 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···N3i | 0.95 | 2.58 | 3.3890 (14) | 143 |
Symmetry code: (i) −x+3/2, y+1/2, −z+1/2. |
References
Argun, A. A., Aubert, P.-H., Thompson, B. C., Schwendeman, I., Gaupp, C. L., Hwang, J., Pinto, N. J., Tanner, D. B., MacDiarmid, A. G. & Reynolds, J. R. (2004). Chem. Mater. 16, 4401–4412. Web of Science CrossRef CAS Google Scholar
Bormann, C. T., Mathew, C., António, M. M., Trotti, A., Fadaei-Tirani, F. & Severin, K. (2022). J. Org. Chem. 87, 16882–16886. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bräse, S., Dahmen, S. & Pfefferkorn, M. (2000). J. Comb. Chem. 2, 710–715. Web of Science PubMed Google Scholar
Chin, T., Fronczek, F. R. & Isovitsch, R. (2009). Acta Cryst. E65, o3206. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chin, T., Phipps, A., Fronczek, F. R. & Isovitsch, R. (2011). J. Heterocycl. Chem. 48, 215–217. Web of Science CSD CrossRef CAS Google Scholar
Connors, T. A., Goddard, P. M., Merai, K., Ross, W. C. J. & Wilman, D. E. V. (1976). Biochem. Pharmacol. 25, 241–246. CrossRef PubMed CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gangwar, M. K., Dey, S., Prakasham, A. P. & Ghosh, P. (2021). Polyhedron, 197, 115011. Google Scholar
Gholivand, K., Hosseini, Z., Farshadian, S. & Naderi-Manesh, H. (2010). Eur. J. Med. Chem. 45, 5130–5139. Web of Science CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Huang, X., Li, P., Li, X.-S., Xu, D.-C. & Xie, J.-W. (2010). Org. Biomol. Chem. 8, 4527–4529. Web of Science CSD CrossRef CAS PubMed Google Scholar
Isovitsch, R. A. & Fronczek, F. R. (2020). CSD Communication (refcode HUHGEZ). CCDC, Cambridge, England. Google Scholar
Johnson, M., Galbreath, M., Fronczek, F. R. & Isovitsch, R. (2016). J. Heterocycl. Chem. 53, 2091–2095. Web of Science CSD CrossRef CAS Google Scholar
Jones, L., Schumm, J. S. & Tour, J. M. (1997). J. Org. Chem. 62, 1388–1410. CrossRef CAS Web of Science Google Scholar
Katritzky, A. R., Bobrov, S., Kirichenko, K., Ji, Y. & Steel, P. J. (2003). J. Org. Chem. 68, 5713–5719. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kimball, D. B. & Haley, M. M. (2002). Angew. Chem. Int. Ed. 41, 3338–3351. Web of Science CrossRef CAS Google Scholar
Kirk, K. L. (1978). J. Org. Chem. 43, 4381–4383. CrossRef CAS Web of Science Google Scholar
Lampert, C. M. (1984). Sol. Energy Mater. 11, 1–27. CrossRef CAS Web of Science Google Scholar
Lee, D., Perez, P., Jackson, W., Chin, T., Galbreath, M., Fronczek, F. R., Isovitsch, R. & Iimoto, D. S. (2016). Bioorg. Med. Chem. Lett. 26, 3243–3247. Web of Science CSD CrossRef CAS PubMed Google Scholar
Monk, P., Mortimer, R. & Rosseinsky, D. (2007). Electrochromism and Electrochromic Devices. Cambridge University Press. Google Scholar
Moore, J. S. (1997). Acc. Chem. Res. 30, 402–413. CrossRef CAS Web of Science Google Scholar
Mortimer, R. J. (1997). Chem. Soc. Rev. 26, 147–156. CrossRef CAS Web of Science Google Scholar
Mortimer, R. J. (1999). Electrochim. Acta, 44, 2971–2981. Web of Science CrossRef CAS Google Scholar
Mukai, C., Zamora, E., Blatti, J. L., Fronczek, F. R. & Isovitsch, R. (2013). J. Chem. Crystallogr. 43, 412–420. Web of Science CSD CrossRef CAS Google Scholar
Nicolaou, K. C., Mitchell, H. J., Jain, N. F., Winssinger, N., Hughes, R. & Bando, T. (1999). Angew. Chem. Int. Ed. 38, 240–244. Web of Science CrossRef CAS Google Scholar
Nwajiobi, O., Verma, A. K. & Raj, M. (2022). J. Am. Chem. Soc. 144, 4633–4641. Web of Science CrossRef CAS PubMed Google Scholar
Patil, S. & Bugarin, A. (2016). Eur. J. Org. Chem. 2016, 860–870. Web of Science CrossRef CAS Google Scholar
Pye, C., Fronczek, F. R. & Isovitsch, R. (2010). Helv. Chim. Acta, 93, 1162–1171. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Rouzer, C. A., Sabourin, M., Skinner, T. L., Thompson, E. J., Wood, T. O., Chmurny, G. N., Klose, J. R., Roman, J. M., Smith, R. H. & Michejda, C. J. (1996). Chem. Res. Toxicol. 9, 172–178. CrossRef CAS PubMed Web of Science Google Scholar
Sadtchikova, E. V. & Mokrushin, V. S. (2002). Mendeleev Commun. 12, 70–71. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wahedy, K., Abu Thaher, B., Schollmeyer, D., Almasri, I., Morjan, R., Qeshta, B. & Deigner, H.-P. (2017). Acta Cryst. E73, 1341–1343. CSD CrossRef IUCr Journals Google Scholar
Wirschun, W., Winkler, M., Lutz, K. & Jochims, C. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1755–1762. Web of Science CSD CrossRef Google Scholar
Zhang, Y., Liu, Y., Ma, X., Ma, X., Wang, B., Li, H., Huang, Y. & Liu, C. (2018). Dyes Pigments, 158, 438–444. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.