research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of two di­naph­tho[2,1-d:1′,2′-f][1,3]dithiepine atropisomers

crossmark logo

aBDG Synthesis, PO Box 38627, Wellington Mail Centre 5045, Wellington, New Zealand, bFerrier Research Institute, Victoria University of Wellington, PO Box 33436, Lower Hutt 5046, New Zealand, and cDepartment of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
*Correspondence e-mail: john.mcadam@otago.ac.nz

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 10 January 2023; accepted 17 January 2023; online 24 January 2023)

The closely related title compounds, 1-(di­naphtho­[2,1-d:1′,2′-f][1,3]dithiepin-4-yl)-2,2-di­methyl­propan-1-ol, C26H24OS2, 1 and 2-(di­naphtho­[2,1-d:1′,2′-f][1,3]dithiepin-4-yl)-3,3-di­methyl­butan-2-ol, C27H26OS2, 2, both comprise an atrop­isomeric binaphthyl di­thio­acetal unit substituted at the methyl­ene carbon atom with a chiral neopentyl alcohol grouping. The overall stereochemistry of the racemate in each case is defined as aS,R and aR,S. In 1, the hydroxyl group generates inversion dimers via pairwise inter­molecular O—H⋯S hydrogen bonds whereas in 2, the O—H⋯S link is intra­molecular. Weak C—H⋯π inter­actions link the mol­ecules into extended arrays in both structures.

1. Chemical context

Stereoselective synthetic methodology continues to be a major research focus underpinning many areas of chemical and biological sciences. One design strategy is the utilization of atropisomerism. This exploits the stereoisomerism that results from restricted rotation about single bonds, a particular feature of biaryl compounds (Cen et al., 2022[Cen, S., Huang, N., Lian, D., Shen, A., Zhao, M.-X. & Zhang, Z. (2022). Nat. Commun. 13, 4735.]; Wencel-Delord et al., 2015[Wencel-Delord, J., Panossian, A., Leroux, F. R. & Colobert, F. (2015). Chem. Soc. Rev. 44, 3418-3430.]; Cheng et al., 2021[Cheng, J. K., Xiang, S.-H., Li, S., Ye, L. & Tan, B. (2021). Chem. Rev. 121, 4805-4902.]). Di­naphtho­[2,1-d:1′,2′-f][1,3]dithiepine (3) provides access to an organosulfur-stabilized carbanion. This undergoes nucleophilic addition to prochiral electrophiles producing separable diastereomeric products with varying degrees of diastereoselectivity (Delogu et al., 1991[Delogu, G., De Lucchi, O., Maglioli, P. & Valle, G. (1991). J. Org. Chem. 56, 4467-4473.]). Delogu and co-workers, however, report significantly improved diastereoselectivity from nucleophilic attack upon substrates in which the chiral auxiliary (di­naphtho­thiepine) is pre-attached to a (benzaldehyde) stereogenic centre. This work reports the synthesis of the prochiral ketone 5 from a pivaldehyde sourced diastereoisomer mix, and its reduction and methyl­ation reactions that occur with high diastereomeric excess. Single-crystal X-ray structures of 1-(di­naphtho­[2,1-d:1′,2′-f][1,3]dithiepin-4-yl)-2,2-di­methyl­propan-1-ol, 1, and 2-(di­naphtho­[2,1-d:1′,2′-f][1,3]dithiepin-4-yl)-3,3-di­methyl­but­an-2-ol, 2, confirm the relative stereochemistry of the major isomers.

2. Structural commentary

The structural core of compounds 1 and 2 is a 1,1′-linked bi­naphthalene system. This is functionalized at the 2,2′ positions with a disulfaneyl­methane unit, generating a seven-membered ring with pseudo-C2 symmetry locking the bi­naphthalene into R and S atropisomers. The individual naphthalene ring systems in 1 are predictably flat, with r.m.s. deviations from the ten-atom mean plane of 0.019 and 0.022 Å for C101–C110 and C201–C210 respectively. The C102—C101—C201—C202 torsion angle is −62.5 (3)° and the dihedral angle between naphthalene ring mean planes is 65.91 (4)°. Capping the stereogenic auxiliary is a chiral (at atom C2) neopentyl alcohol group (Fig. 1[link]), giving aS,R and aR,S pairs.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of 1 with displacement ellipsoids drawn at the 50% probability level.

The synthesis of compound 2 (Fig. 2[link]) places a methyl group on the chiral C2 atom in place of the hydrogen atom of 1. This juxtaposition generates a racemate pair with similar conformation and metrics to 1 (Fig. 3[link]): r.m.s. deviations from the naphthalene mean planes are 0.05 and 0.04 Å and the C102—C101—C201—C202 torsion angle is −63.95 (19)°, however the dihedral angle between naphthalene rings is larger at 72.35 (3)°. The alcohol group is positioned such to form an intra­molecular hydrogen bond to one of the bridge sulfur atoms (O2—H2O⋯S1 = 2.52 Å).

[Figure 2]
Figure 2
The mol­ecular structure of 2 with displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structures of 1 (left) and 2 (right) aligned with the C101—C201 bond on the z-axis. The intra­molecular C—H⋯S bond of 2 is shown as a red dotted line.

3. Supra­molecular features

In the crystal of 1, inversion dimers form through pairwise classical O2—H2⋯S2 hydrogen bonds (Table 1[link]), which generate R22(10) ring motifs (Fig. 4[link]). C—H⋯π inter­actions between adjacent naphthalene rings link mol­ecules in the a-axis direction (C106—H106⋯Cg3 = 2.87 Å, where Cg3 is the C201–C204/C210/C209 ring centroid). This is supported by a short contact C105—H105⋯S1 of 2.90 Å (Fig. 5[link]). For 2, in which the alcohol hydrogen atom is engaged in an intra­molecular hydrogen bond with sulfur (Table 2[link]), the most important inter­molecular inter­actions are a pair of C—H⋯π inter­actions that propagate in the b-axis direction: C203—H203⋯Cg2 (2.60 Å) forms a screw diad (Fig. 6[link]), and C103—H103⋯Cg4 (2.93 Å)(Cg2 and Cg4 are the centroids of the C105–C110 and C205–C210 rings, respectively) forms zigzag chains via a glide reflection in the bc plane (Fig. 7[link]).

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

Cg3 is the centroid of the C201–C204/C210/C209 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯S2i 0.84 2.69 3.341 (2) 136
C105—H105⋯S1ii 0.95 2.90 3.580 (2) 130
C106—H106⋯Cg3ii 0.95 2.87 3.719 (3) 150
Symmetry codes: (i) [-x+1, -y+1, -z+2]; (ii) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

Cg2 and Cg4 are the centroids of the C105–C110 and C205–C210 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯S1 0.84 2.52 2.9942 (14) 117
C203—H203⋯Cg2i 0.95 2.60 3.4606 (19) 151
C103—H103⋯Cg4ii 0.95 2.93 3.443 (2) 115
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].
[Figure 4]
Figure 4
Inversion dimers of 1 formed by pairwise O—H⋯S hydrogen bonds (red dotted lines).
[Figure 5]
Figure 5
Chains of 1 in the a-axis direction formed by C—H⋯π inter­actions (blue dotted lines) and supported with C—H⋯S close contacts (red dotted lines); Cg3 is the C201–C204/C210/C209 ring centroid.
[Figure 6]
Figure 6
Twofold screw of 2 in the b-axis direction formed by C—H⋯π inter­actions (blue dotted lines); Cg2 is the C105–C110 ring centroid.
[Figure 7]
Figure 7
Glide reflection of 2 in the bc plane formed by C—H⋯π inter­actions (blue dotted lines); Cg4 is the C205–C210 ring centroid.

4. Database survey

A search of the Cambridge Structural Database (version 5.41, November 2019 with updates to March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) suggests the di­naphtho­dithiepine structure is unprecedented, although a di­naphtho­dithiepine S-oxide has been reported (refcode JITTEL; Delogu et al., 1991[Delogu, G., De Lucchi, O., Maglioli, P. & Valle, G. (1991). J. Org. Chem. 56, 4467-4473.]). The analogous di­naphtho­dioxepine fragment, however, is more common, with more than ten examples reported including the close relative of 1, 4-(1-meth­oxy-1-phenyl­eth­yl)di­naphtho­[2,1-d:1′,2′-f][1,3]dioxepine (KUBYEL; Maglioli et al., 1992[Maglioli, P., De Lucchi, O., Delogu, G. & Valle, G. (1992). Tetrahedron Asymmetry, 3, 365-366.]), and the simple, but chirally resolved (R)-di­naphtho­dioxepine CAJCEY (Zhang et al., 2015[Zhang, H., Li, H., Wang, J., Sun, J., Qin, A. & Tang, B. Z. (2015). Private Communication (refcode CAJCEY, CCDC 1031984). CCDC, Cambridge, England.]).

5. Synthesis and crystallization

Compounds 1 and 2 were synthesized in three steps (Fig. 8[link]) from dithiepin 3 prepared from a Lewis-acid-catalysed condensation of bi­naphtho­thiol with di­meth­oxy­methane (Delogu et al., 1991[Delogu, G., De Lucchi, O., Maglioli, P. & Valle, G. (1991). J. Org. Chem. 56, 4467-4473.]). Diastereoisomer mix (4): di­thio­acetal 3 in THF was cooled to 173 K under Ar. n-BuLi (1.6 M in hexa­nes, 1.2 equiv.) was added dropwise and the suspension stirred for 5 min. Pivaldehyde (1.2 equiv.) was similarly added and the reaction stirred for a further 10 min. The mixture was quenched with saturated NH4Cl and extracted with Et2O. The ethereal extract was washed, dried (MgSO4) and concentrated in vacuo then chromatographed (SiO2/CH2Cl2), giving a white solid, a 5:2 mixture of the two possible diastereoisomers of 4 (81%, 44% d.e.). Further chromatography with a CH2Cl2/hexane solvent allowed separation into major (1) and minor (4m) diastereoisomers. [4m, m.p. 424 K, 1H NMR (200 MHz, CDCl3) δ (ppm): 1.02 (9H, s, t-Bu), 1.90 (1H, d, J = 6.0 Hz, OH), 4.01 (1H, dd, J = 6.0, 3.0 Hz, CHOH), 5.18 (1H, d, J = 3.0 Hz, S—CH—S), 7.07–7.28 (4H, m, Ar), 7.42–7.53 (2H, m, Ar), 7.80–8.00 (6H, m, Ar).]

[Figure 8]
Figure 8
Preparation of 1 and 2.

4-Pivaloyldi­naphtho­[2,1-d:1′,2′-f][1,3]dithiepine (5): to a stirred solution of alcohol 4 in CH2Cl2 was added CaCO3 and powdered 4 Å mol­ecular sieves. PCC (3.3 equiv.) was added and the reaction mix stirred (30 min, Ar, RT). The solvent was concentrated in vacuo and filtered through SiO2 to give the ketone as a white solid, m.p. 445–446 K (88% yield). 1H NMR (200 MHz, CDCl3) δ (ppm): 1.30 (9H, s, t-Bu), 5.73 (1H, s, S—CH—S), 7.15 (1H, d, J = 8.4 Hz, Ar), 7.18–7.31 (3H, m, Ar), 7.46–7.56 (2H, m, Ar), 7.64 (1H, d, J = 8.4 Hz, Ar), 7.83 (1H, d, J = 8.4 Hz, Ar), 7.95–8.03 (4H, m, Ar). 13C NMR (50 MHz) δ (ppm): 27.2 (Me), 44.3 (CMe3), 64.6 (S–CH—S), 126.3, 126.6, 126.8 (Ar CH), 126.9 (Ar C), 127.5, 127.6 (Ar CH), 127.7 (Ar C), 128.3, 128.4, 129.1, 129.2 (Ar CH), 130.4 (Ar C), 132.2 (Ar CH), 131.5 (Ar C), 133.1 (Ar CH), 134.1, 134.5, 142.8, 143.0 (Ar C), 206.2 (C=O).

1-(Di­naphtho­[2,1-d:1′,2′-f][1,3]dithiepin-4-yl)-2,2-di­methyl­propan-1-ol (1): a solution of ketone 5 in THF was cooled to 272 K under Ar. LiAlH4 (2 equiv.) was added in one portion and the suspension stirred for 30 min. The reaction mixture was quenched by addition of H2O and extracted with Et2O. The ethereal extract was washed, dried (MgSO4) and concentrated in vacuo, then chromatographed (SiO2/CH2Cl2) to give 1 as a white solid, m.p. 426 K (91%, >95% d.e.). Crystals for X-ray diffraction were obtained from slow evaporation of an EtOH/H2O solvent mix. 1H NMR (300 MHz, CDCl3) δ (ppm): 1.01 (9H, s, t-Bu), 2.70 (1H, d, J = 6.3 Hz, OH), 3.29 (1H, dd, J = 6.3, 3.3 Hz, CHOH), 5.16 (1H, d, J = 3.3 Hz, S—CH—S), 7.10–7.15 (2H, m, Ar), 7.18–7.26 (2H, m, Ar), 7.44–7.51 (2H, m, Ar), 7.80–7.87 (2H, m, Ar), 7.90–7.98 (4H, m, Ar). 13C NMR (75 MHz) δ (ppm): 26.7 (Me), 36.1 (CMe3), 70.1 (COH), 80.2 (S—CH—S), 126.5, 126.7, 127.6, 127.7, 128.3 (Ar CH), 128.8 (Ar C), 129.0, 129.2 (Ar CH), 131.5 (Ar C), 132.2 (Ar CH), 132.3 (Ar C), 133.0 (Ar CH), 133.9, 134.0, 141.7, 142.6 (Ar C).

2-(Di­naphtho­[2,1-d:1′,2′-f][1,3]dithiepin-4-yl)-3,3-di­methyl­butan-2-ol (2): a solution of ketone 5 in THF was cooled to 193 K under Ar. MeLi (1.0 M in Et2O, 5 equiv.) was added and the solution stirred 30 min. The reaction mixture was quenched by addition of EtOD then H2O and extracted with Et2O. The ethereal extract was washed, dried (MgSO4) and concentrated in vacuo, then chromatographed on SiO2 (1:1 CH2Cl2/hexa­ne) to give 2 as a white solid, m.p. 448–449 K (81%, >95% d.e.). Crystals for X-ray diffraction were obtained from slow evaporation of an EtOH/H2O mix. 1H NMR (200 MHz, CDCl3) δ (ppm): 1.10 (9H, s, t-Bu), 1.16 (3H, s, CMeOH), 3.09 (1H, s, OH), 5.18 (1H, s, S—CH—S), 7.08–7.30 (4H, m, Ar), 7.43–7.52 (2H, m, Ar), 7.83 (1H, d, J = 8.4 Hz, Ar), 7.85 (1H, d, J = 8.4 Hz, Ar), 7.92–7.99 (4H, m, Ar). 13C NMR (50 MHz) δ (ppm): 20.0 (Me), 26.8 (CMe3), 38.6 (CMe3), 76.1 (COH), 79.4 (S—CH—S), 126.1, 126.2, 126.4, 127.4, 127.9, 128.0, 128.5 (Ar CH), 129.0 (Ar C), 129.1, 131.8 (Ar CH), 131.9, 132.0, 132.1 (Ar C), 132.8 (Ar CH), 133.5, 133.7, 141.8, 142.6 (Ar C).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq (C) for aromatic H, 1.00 Å, Uiso = 1.2Ueq (C) for CH, 0.98 Å, Uiso = 1.5Ueq (C) for methyl H atoms and d(O—H) = 0.84 Å, Uiso = 1.5Ueq (O) for OH.

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C26H24OS2 C27H26OS2
Mr 416.57 430.60
Crystal system, space group Triclinic, P[\overline{1}] Orthorhombic, Pbca
Temperature (K) 163 163
a, b, c (Å) 9.322 (3), 11.064 (4), 11.207 (4) 17.565 (5), 11.103 (3), 22.977 (7)
α, β, γ (°) 81.607 (4), 84.444 (5), 69.411 (4) 90, 90, 90
V3) 1069.2 (6) 4481 (2)
Z 2 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.26 0.25
Crystal size (mm) 0.55 × 0.45 × 0.12
 
Data collection
Diffractometer Bruker SMART CCD Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.768, 1.000 0.822, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13453, 4290, 3838 48381, 4501, 3668
Rint 0.021 0.038
(sin θ/λ)max−1) 0.626 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.135, 1.07 0.031, 0.087, 1.05
No. of reflections 4290 4501
No. of parameters 266 276
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.16, −0.36 0.28, −0.24
Computer programs: SMART and SAINT (Bruker, 1998[Bruker (1998). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998). Data reduction: SAINT (Bruker, 19980) for (1); SAINT (Bruker, 1998) for (2). For both structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2019/2 (Sheldrick, 2015b) and publCIF (Westrip 2010).

1-(Dinaphtho[2,1-d:1',2'-f][1,3]dithiepin-4-yl)-2,2-dimethylpropan-1-ol (1) top
Crystal data top
C26H24OS2Z = 2
Mr = 416.57F(000) = 440
Triclinic, P1Dx = 1.294 Mg m3
a = 9.322 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.064 (4) ÅCell parameters from 4367 reflections
c = 11.207 (4) Åθ = 2.9–26.4°
α = 81.607 (4)°µ = 0.26 mm1
β = 84.444 (5)°T = 163 K
γ = 69.411 (4)°Block, colourless
V = 1069.2 (6) Å3
Data collection top
Bruker SMART CCD
diffractometer
3838 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.021
ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.768, Tmax = 1.000k = 1313
13453 measured reflectionsl = 1013
4290 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.074P)2 + 0.8428P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4290 reflectionsΔρmax = 1.16 e Å3
266 parametersΔρmin = 0.36 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33969 (6)0.51235 (5)0.66880 (4)0.02624 (15)
S20.42915 (6)0.38952 (5)0.92483 (5)0.03187 (16)
O20.3503 (2)0.70274 (19)0.83735 (18)0.0523 (5)
H2O0.4364830.6569810.8637360.079*
C1010.6401 (2)0.35435 (19)0.69959 (17)0.0224 (4)
C1020.5416 (2)0.47915 (19)0.66592 (17)0.0233 (4)
C1030.5973 (2)0.5826 (2)0.62546 (19)0.0276 (4)
H1030.5278080.6673160.6016320.033*
C1040.7515 (3)0.5601 (2)0.6209 (2)0.0294 (4)
H1040.7883810.6295480.5928740.035*
C1051.0173 (2)0.4115 (2)0.6538 (2)0.0301 (5)
H1051.0546190.4805230.6249930.036*
C1061.1189 (2)0.2914 (2)0.6913 (2)0.0311 (5)
H1061.2257100.2771760.6878070.037*
C1071.0640 (2)0.1884 (2)0.7353 (2)0.0306 (5)
H1071.1343650.1053570.7629550.037*
C1080.9104 (2)0.2071 (2)0.73834 (19)0.0268 (4)
H1080.8758830.1365390.7675960.032*
C1090.8016 (2)0.33038 (19)0.69854 (17)0.0232 (4)
C1100.8571 (2)0.4352 (2)0.65708 (18)0.0256 (4)
C2010.5782 (2)0.24680 (19)0.74177 (18)0.0234 (4)
C2020.4836 (2)0.2524 (2)0.84438 (18)0.0256 (4)
C2030.4292 (2)0.1488 (2)0.8892 (2)0.0317 (5)
H2030.3649200.1543640.9608800.038*
C2040.4684 (3)0.0413 (2)0.8304 (2)0.0329 (5)
H2040.4336580.0284980.8625570.039*
C2050.5972 (3)0.0763 (2)0.6582 (2)0.0389 (6)
H2050.5624320.1463930.6890690.047*
C2060.6824 (3)0.0812 (2)0.5528 (2)0.0444 (6)
H2060.7067350.1546040.5101600.053*
C2070.7352 (3)0.0215 (2)0.5060 (2)0.0396 (5)
H2070.7949040.0165180.4320100.048*
C2080.7019 (3)0.1285 (2)0.5654 (2)0.0301 (4)
H2080.7379030.1972280.5320740.036*
C2090.6144 (2)0.13735 (19)0.67589 (18)0.0249 (4)
C2100.5597 (2)0.0330 (2)0.7226 (2)0.0293 (5)
C10.2830 (3)0.5109 (2)0.8279 (2)0.0352 (5)
H10.1894450.4852400.8394900.042*
C20.2412 (3)0.6405 (2)0.8794 (2)0.0418 (6)
H20.2486950.6196350.9689390.050*
C30.0772 (3)0.7391 (2)0.8560 (2)0.0416 (6)
C40.0518 (3)0.7846 (3)0.7226 (3)0.0542 (7)
H4A0.1417150.8034570.6839740.081*
H4B0.0391110.8633950.7135530.081*
H4C0.0364330.7161570.6843370.081*
C50.0606 (5)0.8572 (3)0.9196 (3)0.0774 (12)
H5A0.0760280.8296631.0060160.116*
H5B0.0422880.9217000.9087270.116*
H5C0.1375250.8957670.8848720.116*
C60.0428 (5)0.6797 (4)0.9093 (5)0.0960 (16)
H6A0.0204650.6424620.9931220.144*
H6B0.0405250.6110500.8620580.144*
H6C0.1446130.7471570.9069370.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0222 (3)0.0305 (3)0.0242 (3)0.0072 (2)0.00247 (18)0.00161 (19)
S20.0381 (3)0.0304 (3)0.0227 (3)0.0063 (2)0.0030 (2)0.0022 (2)
O20.0655 (13)0.0478 (11)0.0519 (11)0.0269 (10)0.0113 (10)0.0072 (9)
C1010.0255 (10)0.0240 (9)0.0205 (9)0.0117 (8)0.0009 (7)0.0034 (7)
C1020.0243 (9)0.0248 (10)0.0219 (9)0.0093 (8)0.0032 (7)0.0025 (7)
C1030.0310 (11)0.0215 (9)0.0286 (10)0.0077 (8)0.0038 (8)0.0002 (8)
C1040.0338 (11)0.0245 (10)0.0332 (11)0.0153 (9)0.0016 (9)0.0003 (8)
C1050.0305 (11)0.0337 (11)0.0322 (11)0.0190 (9)0.0010 (8)0.0030 (9)
C1060.0229 (10)0.0404 (12)0.0330 (11)0.0142 (9)0.0021 (8)0.0054 (9)
C1070.0269 (10)0.0299 (11)0.0325 (11)0.0068 (9)0.0043 (8)0.0019 (9)
C1080.0272 (10)0.0248 (10)0.0286 (10)0.0099 (8)0.0029 (8)0.0009 (8)
C1090.0256 (10)0.0236 (9)0.0226 (9)0.0109 (8)0.0018 (7)0.0026 (7)
C1100.0285 (10)0.0271 (10)0.0248 (10)0.0141 (8)0.0015 (8)0.0028 (8)
C2010.0217 (9)0.0209 (9)0.0277 (10)0.0082 (7)0.0055 (8)0.0014 (7)
C2020.0257 (10)0.0254 (10)0.0249 (10)0.0081 (8)0.0048 (8)0.0004 (8)
C2030.0276 (11)0.0344 (11)0.0310 (11)0.0126 (9)0.0024 (8)0.0079 (9)
C2040.0313 (11)0.0293 (11)0.0401 (12)0.0166 (9)0.0091 (9)0.0100 (9)
C2050.0515 (14)0.0229 (11)0.0468 (14)0.0168 (10)0.0180 (11)0.0024 (9)
C2060.0649 (17)0.0241 (11)0.0440 (14)0.0108 (11)0.0134 (12)0.0080 (10)
C2070.0503 (14)0.0320 (12)0.0343 (12)0.0094 (11)0.0039 (10)0.0071 (9)
C2080.0337 (11)0.0262 (10)0.0305 (11)0.0103 (9)0.0041 (9)0.0021 (8)
C2090.0247 (10)0.0225 (9)0.0286 (10)0.0094 (8)0.0070 (8)0.0005 (8)
C2100.0317 (11)0.0233 (10)0.0343 (11)0.0111 (8)0.0125 (9)0.0042 (8)
C10.0378 (12)0.0341 (12)0.0260 (11)0.0048 (10)0.0001 (9)0.0007 (9)
C20.0597 (16)0.0358 (13)0.0271 (11)0.0129 (11)0.0022 (10)0.0038 (9)
C30.0484 (14)0.0281 (11)0.0383 (13)0.0040 (10)0.0106 (11)0.0036 (9)
C40.0498 (16)0.0470 (15)0.0469 (15)0.0086 (13)0.0090 (12)0.0055 (12)
C50.127 (3)0.0404 (16)0.0465 (17)0.0064 (18)0.0000 (19)0.0079 (13)
C60.065 (2)0.065 (2)0.136 (4)0.0105 (19)0.047 (2)0.006 (2)
Geometric parameters (Å, º) top
S1—C1021.784 (2)C204—C2101.404 (3)
S1—C11.809 (2)C204—H2040.9500
S2—C2021.772 (2)C205—C2061.355 (4)
S2—C11.848 (2)C205—C2101.419 (3)
O2—C21.426 (3)C205—H2050.9500
O2—H2O0.8400C206—C2071.406 (4)
C101—C1021.384 (3)C206—H2060.9500
C101—C1091.433 (3)C207—C2081.368 (3)
C101—C2011.496 (3)C207—H2070.9500
C102—C1031.417 (3)C208—C2091.411 (3)
C103—C1041.367 (3)C208—H2080.9500
C103—H1030.9500C209—C2101.433 (3)
C104—C1101.414 (3)C1—C21.532 (3)
C104—H1040.9500C1—H11.0000
C105—C1061.366 (3)C2—C31.555 (4)
C105—C1101.421 (3)C2—H21.0000
C105—H1050.9500C3—C41.520 (4)
C106—C1071.414 (3)C3—C61.521 (5)
C106—H1060.9500C3—C51.533 (4)
C107—C1081.371 (3)C4—H4A0.9800
C107—H1070.9500C4—H4B0.9800
C108—C1091.423 (3)C4—H4C0.9800
C108—H1080.9500C5—H5A0.9800
C109—C1101.430 (3)C5—H5B0.9800
C201—C2021.375 (3)C5—H5C0.9800
C201—C2091.432 (3)C6—H6A0.9800
C202—C2031.420 (3)C6—H6B0.9800
C203—C2041.364 (3)C6—H6C0.9800
C203—H2030.9500
C102—S1—C1103.57 (10)C207—C206—H206119.7
C202—S2—C1101.51 (10)C208—C207—C206121.0 (2)
C2—O2—H2O109.5C208—C207—H207119.5
C102—C101—C109119.27 (18)C206—C207—H207119.5
C102—C101—C201120.37 (18)C207—C208—C209120.4 (2)
C109—C101—C201120.31 (17)C207—C208—H208119.8
C101—C102—C103121.48 (19)C209—C208—H208119.8
C101—C102—S1120.23 (15)C208—C209—C201122.31 (18)
C103—C102—S1118.26 (15)C208—C209—C210118.36 (19)
C104—C103—C102119.70 (19)C201—C209—C210119.33 (19)
C104—C103—H103120.1C204—C210—C205121.1 (2)
C102—C103—H103120.1C204—C210—C209119.5 (2)
C103—C104—C110121.20 (19)C205—C210—C209119.4 (2)
C103—C104—H104119.4C2—C1—S1116.18 (16)
C110—C104—H104119.4C2—C1—S2106.60 (16)
C106—C105—C110121.38 (19)S1—C1—S2113.04 (12)
C106—C105—H105119.3C2—C1—H1106.8
C110—C105—H105119.3S1—C1—H1106.8
C105—C106—C107119.6 (2)S2—C1—H1106.8
C105—C106—H106120.2O2—C2—C1110.7 (2)
C107—C106—H106120.2O2—C2—C3108.9 (2)
C108—C107—C106120.7 (2)C1—C2—C3116.1 (2)
C108—C107—H107119.7O2—C2—H2106.9
C106—C107—H107119.7C1—C2—H2106.9
C107—C108—C109121.21 (19)C3—C2—H2106.9
C107—C108—H108119.4C4—C3—C6109.3 (3)
C109—C108—H108119.4C4—C3—C5108.4 (2)
C108—C109—C110117.97 (18)C6—C3—C5109.5 (3)
C108—C109—C101123.16 (18)C4—C3—C2112.7 (2)
C110—C109—C101118.87 (18)C6—C3—C2110.3 (2)
C104—C110—C105121.46 (18)C5—C3—C2106.5 (3)
C104—C110—C109119.42 (19)C3—C4—H4A109.5
C105—C110—C109119.13 (19)C3—C4—H4B109.5
C202—C201—C209118.82 (18)H4A—C4—H4B109.5
C202—C201—C101120.21 (18)C3—C4—H4C109.5
C209—C201—C101120.97 (18)H4A—C4—H4C109.5
C201—C202—C203121.20 (19)H4B—C4—H4C109.5
C201—C202—S2120.23 (16)C3—C5—H5A109.5
C203—C202—S2118.56 (16)C3—C5—H5B109.5
C204—C203—C202120.6 (2)H5A—C5—H5B109.5
C204—C203—H203119.7C3—C5—H5C109.5
C202—C203—H203119.7H5A—C5—H5C109.5
C203—C204—C210120.46 (19)H5B—C5—H5C109.5
C203—C204—H204119.8C3—C6—H6A109.5
C210—C204—H204119.8C3—C6—H6B109.5
C206—C205—C210120.3 (2)H6A—C6—H6B109.5
C206—C205—H205119.9C3—C6—H6C109.5
C210—C205—H205119.9H6A—C6—H6C109.5
C205—C206—C207120.6 (2)H6B—C6—H6C109.5
C205—C206—H206119.7
C109—C101—C102—C1032.8 (3)C1—S2—C202—C203104.56 (18)
C201—C101—C102—C103179.89 (18)C201—C202—C203—C2040.7 (3)
C109—C101—C102—S1178.94 (14)S2—C202—C203—C204179.89 (16)
C201—C101—C102—S11.6 (3)C202—C203—C204—C2101.8 (3)
C1—S1—C102—C10175.24 (18)C210—C205—C206—C2070.2 (4)
C1—S1—C102—C103106.41 (17)C205—C206—C207—C2080.0 (4)
C101—C102—C103—C1040.9 (3)C206—C207—C208—C2090.5 (4)
S1—C102—C103—C104179.27 (16)C207—C208—C209—C201179.4 (2)
C102—C103—C104—C1100.7 (3)C207—C208—C209—C2101.1 (3)
C110—C105—C106—C1070.5 (3)C202—C201—C209—C208175.57 (19)
C105—C106—C107—C1081.4 (3)C101—C201—C209—C2083.7 (3)
C106—C107—C108—C1090.5 (3)C202—C201—C209—C2104.0 (3)
C107—C108—C109—C1101.1 (3)C101—C201—C209—C210176.66 (17)
C107—C108—C109—C101179.71 (19)C203—C204—C210—C205177.9 (2)
C102—C101—C109—C108176.21 (18)C203—C204—C210—C2091.3 (3)
C201—C101—C109—C1081.1 (3)C206—C205—C210—C204178.4 (2)
C102—C101—C109—C1103.0 (3)C206—C205—C210—C2090.8 (3)
C201—C101—C109—C110179.67 (17)C208—C209—C210—C204178.01 (19)
C103—C104—C110—C105179.3 (2)C201—C209—C210—C2041.6 (3)
C103—C104—C110—C1090.4 (3)C208—C209—C210—C2051.2 (3)
C106—C105—C110—C104178.6 (2)C201—C209—C210—C205179.20 (18)
C106—C105—C110—C1091.1 (3)C102—S1—C1—C288.26 (19)
C108—C109—C110—C104177.79 (19)C102—S1—C1—S235.46 (16)
C101—C109—C110—C1041.4 (3)C202—S2—C1—C2172.79 (16)
C108—C109—C110—C1051.9 (3)C202—S2—C1—S143.95 (16)
C101—C109—C110—C105178.90 (18)S1—C1—C2—O244.5 (3)
C102—C101—C201—C20262.5 (3)S2—C1—C2—O282.5 (2)
C109—C101—C201—C202114.9 (2)S1—C1—C2—C380.3 (2)
C102—C101—C201—C209116.8 (2)S2—C1—C2—C3152.75 (18)
C109—C101—C201—C20965.8 (2)O2—C2—C3—C462.2 (3)
C209—C201—C202—C2033.6 (3)C1—C2—C3—C463.5 (3)
C101—C201—C202—C203177.04 (18)O2—C2—C3—C6175.2 (3)
C209—C201—C202—S2177.24 (14)C1—C2—C3—C659.0 (3)
C101—C201—C202—S22.1 (3)O2—C2—C3—C556.4 (3)
C1—S2—C202—C20176.29 (18)C1—C2—C3—C5177.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C201–C204/C210/C209 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2O···S2i0.842.693.341 (2)136
C105—H105···S1ii0.952.903.580 (2)130
C106—H106···Cg3ii0.952.873.719 (3)150
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z.
2-(Dinaphtho[2,1-d:1',2'-f][1,3]dithiepin-4-yl)-3,3-dimethylbutan-2-ol (2) top
Crystal data top
C27H26OS2Dx = 1.277 Mg m3
Mr = 430.60Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 6104 reflections
a = 17.565 (5) Åθ = 2.9–26.3°
b = 11.103 (3) ŵ = 0.25 mm1
c = 22.977 (7) ÅT = 163 K
V = 4481 (2) Å3Block, colourless
Z = 80.55 × 0.45 × 0.12 mm
F(000) = 1824
Data collection top
Bruker SMART CCD
diffractometer
3668 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.038
ω scansθmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2121
Tmin = 0.822, Tmax = 1.000k = 137
48381 measured reflectionsl = 2828
4501 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.9358P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4501 reflectionsΔρmax = 0.28 e Å3
276 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.73428 (2)0.32278 (3)0.25341 (2)0.02829 (11)
S20.57569 (2)0.35112 (3)0.30806 (2)0.02663 (10)
O20.77271 (6)0.20287 (13)0.36637 (5)0.0479 (3)
H20.7928700.1979420.3333040.072*
C1010.61144 (8)0.32916 (12)0.17891 (6)0.0239 (3)
C1020.67252 (8)0.26247 (12)0.19914 (6)0.0259 (3)
C1030.68946 (9)0.14850 (13)0.17479 (7)0.0319 (3)
H1030.7325730.1046910.1880110.038*
C1040.64385 (9)0.10128 (13)0.13222 (6)0.0341 (4)
H1040.6572380.0265600.1148730.041*
C1050.52481 (10)0.10881 (15)0.07366 (6)0.0380 (4)
H1050.5357900.0319490.0575460.046*
C1060.45920 (11)0.16638 (16)0.05810 (7)0.0425 (4)
H1060.4248370.1291420.0317280.051*
C1070.44247 (10)0.28053 (16)0.08105 (7)0.0396 (4)
H1070.3967250.3203320.0702490.048*
C1080.49224 (9)0.33496 (13)0.11920 (6)0.0312 (3)
H1080.4806600.4127960.1339110.037*
C1090.56037 (8)0.27724 (12)0.13696 (6)0.0264 (3)
C1100.57705 (9)0.16155 (13)0.11349 (6)0.0302 (3)
C2010.59921 (8)0.45406 (12)0.20081 (6)0.0232 (3)
C2020.58292 (8)0.47451 (12)0.25909 (6)0.0237 (3)
C2030.57257 (8)0.59249 (13)0.28098 (6)0.0259 (3)
H2030.5600580.6044150.3207910.031*
C2040.58057 (8)0.68877 (13)0.24491 (6)0.0266 (3)
H2040.5724160.7676570.2596570.032*
C2050.61547 (9)0.77265 (13)0.14852 (6)0.0302 (3)
H2050.6085530.8520150.1630380.036*
C2060.63931 (9)0.75659 (14)0.09223 (7)0.0350 (4)
H2060.6495140.8245840.0683720.042*
C2070.64870 (9)0.63969 (14)0.06970 (6)0.0351 (4)
H2070.6653190.6289860.0306930.042*
C2080.63402 (9)0.54164 (13)0.10370 (6)0.0295 (3)
H2080.6397120.4632070.0877640.035*
C2090.61029 (8)0.55475 (12)0.16274 (6)0.0236 (3)
C2100.60099 (8)0.67326 (12)0.18533 (6)0.0242 (3)
C10.67673 (8)0.32372 (13)0.32134 (6)0.0260 (3)
H10.6952010.3942590.3444270.031*
C20.69130 (9)0.21063 (13)0.36018 (6)0.0311 (3)
C220.66153 (11)0.09668 (14)0.33065 (7)0.0441 (4)
H22A0.6687520.0276030.3566140.066*
H22B0.6895260.0831490.2943360.066*
H22C0.6072170.1062130.3220420.066*
C30.66090 (9)0.22442 (14)0.42475 (6)0.0341 (4)
C40.70379 (12)0.1358 (2)0.46484 (8)0.0589 (6)
H4A0.6944880.0530340.4517760.088*
H4B0.6855930.1451610.5049090.088*
H4C0.7584890.1528110.4632920.088*
C50.57532 (10)0.19676 (16)0.43056 (8)0.0440 (4)
H5A0.5654000.1142550.4174500.066*
H5B0.5461760.2533390.4065800.066*
H5C0.5599370.2050960.4713650.066*
C60.67636 (12)0.35085 (16)0.44817 (7)0.0494 (5)
H6A0.7302080.3708310.4425790.074*
H6B0.6640610.3536510.4897510.074*
H6C0.6447190.4091850.4272020.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02315 (19)0.0351 (2)0.02660 (19)0.00032 (14)0.00222 (14)0.00127 (15)
S20.02381 (19)0.0310 (2)0.02514 (18)0.00074 (14)0.00317 (14)0.00552 (14)
O20.0308 (6)0.0716 (9)0.0413 (7)0.0141 (6)0.0026 (5)0.0183 (6)
C1010.0277 (7)0.0227 (7)0.0211 (7)0.0025 (6)0.0044 (5)0.0002 (5)
C1020.0263 (7)0.0260 (7)0.0252 (7)0.0010 (6)0.0048 (6)0.0003 (5)
C1030.0336 (8)0.0283 (8)0.0338 (8)0.0048 (6)0.0081 (7)0.0012 (6)
C1040.0469 (9)0.0223 (7)0.0333 (8)0.0022 (7)0.0136 (7)0.0051 (6)
C1050.0553 (11)0.0351 (8)0.0235 (7)0.0155 (8)0.0077 (7)0.0064 (6)
C1060.0531 (11)0.0492 (10)0.0251 (8)0.0211 (9)0.0044 (8)0.0023 (7)
C1070.0408 (9)0.0494 (10)0.0286 (8)0.0089 (8)0.0053 (7)0.0062 (7)
C1080.0356 (8)0.0328 (8)0.0252 (7)0.0039 (6)0.0007 (6)0.0029 (6)
C1090.0335 (8)0.0264 (7)0.0193 (7)0.0053 (6)0.0041 (6)0.0013 (5)
C1100.0408 (9)0.0266 (7)0.0233 (7)0.0086 (6)0.0088 (6)0.0018 (6)
C2010.0220 (7)0.0244 (7)0.0232 (7)0.0004 (5)0.0013 (5)0.0015 (5)
C2020.0215 (7)0.0261 (7)0.0234 (7)0.0010 (5)0.0008 (5)0.0021 (5)
C2030.0254 (7)0.0309 (7)0.0214 (7)0.0035 (6)0.0009 (6)0.0039 (6)
C2040.0262 (7)0.0251 (7)0.0285 (7)0.0035 (6)0.0002 (6)0.0055 (6)
C2050.0343 (8)0.0238 (7)0.0324 (8)0.0012 (6)0.0017 (6)0.0004 (6)
C2060.0454 (9)0.0278 (8)0.0317 (8)0.0019 (7)0.0017 (7)0.0072 (6)
C2070.0454 (9)0.0382 (9)0.0218 (7)0.0026 (7)0.0040 (7)0.0017 (6)
C2080.0362 (8)0.0279 (7)0.0244 (7)0.0011 (6)0.0012 (6)0.0031 (6)
C2090.0236 (7)0.0253 (7)0.0220 (7)0.0003 (5)0.0006 (5)0.0010 (5)
C2100.0218 (7)0.0251 (7)0.0256 (7)0.0014 (5)0.0018 (6)0.0007 (5)
C10.0232 (7)0.0304 (7)0.0243 (7)0.0006 (6)0.0019 (6)0.0009 (6)
C20.0288 (8)0.0339 (8)0.0306 (8)0.0052 (6)0.0022 (6)0.0064 (6)
C220.0646 (12)0.0270 (8)0.0406 (9)0.0041 (8)0.0093 (8)0.0027 (7)
C30.0383 (9)0.0374 (9)0.0266 (8)0.0030 (7)0.0017 (6)0.0085 (6)
C40.0635 (13)0.0740 (14)0.0392 (10)0.0173 (11)0.0035 (9)0.0263 (10)
C50.0441 (10)0.0500 (10)0.0378 (9)0.0037 (8)0.0113 (8)0.0070 (8)
C60.0676 (13)0.0534 (11)0.0272 (8)0.0114 (9)0.0007 (8)0.0017 (7)
Geometric parameters (Å, º) top
S1—C1021.7832 (15)C204—H2040.9500
S1—C11.8596 (15)C205—C2061.371 (2)
S2—C2021.7773 (14)C205—C2101.413 (2)
S2—C11.8265 (15)C205—H2050.9500
O2—C21.4396 (19)C206—C2071.407 (2)
O2—H20.8400C206—H2060.9500
C101—C1021.384 (2)C207—C2081.364 (2)
C101—C1091.437 (2)C207—H2070.9500
C101—C2011.4908 (19)C208—C2091.4265 (19)
C102—C1031.415 (2)C208—H2080.9500
C103—C1041.369 (2)C209—C2101.4239 (19)
C103—H1030.9500C1—C21.5616 (19)
C104—C1101.418 (2)C1—H11.0000
C104—H1040.9500C2—C221.528 (2)
C105—C1061.366 (3)C2—C31.584 (2)
C105—C1101.422 (2)C22—H22A0.9800
C105—H1050.9500C22—H22B0.9800
C106—C1071.404 (2)C22—H22C0.9800
C106—H1060.9500C3—C61.528 (2)
C107—C1081.378 (2)C3—C51.540 (2)
C107—H1070.9500C3—C41.544 (2)
C108—C1091.418 (2)C4—H4A0.9800
C108—H1080.9500C4—H4B0.9800
C109—C1101.424 (2)C4—H4C0.9800
C201—C2021.3881 (19)C5—H5A0.9800
C201—C2091.4327 (19)C5—H5B0.9800
C202—C2031.4149 (19)C5—H5C0.9800
C203—C2041.360 (2)C6—H6A0.9800
C203—H2030.9500C6—H6B0.9800
C204—C2101.426 (2)C6—H6C0.9800
C102—S1—C1104.97 (7)C206—C207—H207119.9
C202—S2—C199.47 (6)C207—C208—C209121.22 (13)
C2—O2—H2109.5C207—C208—H208119.4
C102—C101—C109119.64 (13)C209—C208—H208119.4
C102—C101—C201119.74 (13)C210—C209—C208118.32 (12)
C109—C101—C201120.62 (13)C210—C209—C201118.88 (12)
C101—C102—C103120.57 (14)C208—C209—C201122.72 (12)
C101—C102—S1120.37 (11)C205—C210—C209118.86 (13)
C103—C102—S1118.97 (11)C205—C210—C204121.71 (13)
C104—C103—C102120.13 (15)C209—C210—C204119.38 (12)
C104—C103—H103119.9C2—C1—S2112.86 (10)
C102—C103—H103119.9C2—C1—S1112.71 (10)
C103—C104—C110121.37 (14)S2—C1—S1112.89 (8)
C103—C104—H104119.3C2—C1—H1105.9
C110—C104—H104119.3S2—C1—H1105.9
C106—C105—C110121.35 (15)S1—C1—H1105.9
C106—C105—H105119.3O2—C2—C22109.52 (13)
C110—C105—H105119.3O2—C2—C1105.51 (12)
C105—C106—C107120.06 (15)C22—C2—C1110.85 (13)
C105—C106—H106120.0O2—C2—C3104.36 (12)
C107—C106—H106120.0C22—C2—C3112.37 (13)
C108—C107—C106120.15 (16)C1—C2—C3113.72 (12)
C108—C107—H107119.9C2—C22—H22A109.5
C106—C107—H107119.9C2—C22—H22B109.5
C107—C108—C109121.37 (15)H22A—C22—H22B109.5
C107—C108—H108119.3C2—C22—H22C109.5
C109—C108—H108119.3H22A—C22—H22C109.5
C108—C109—C110118.20 (13)H22B—C22—H22C109.5
C108—C109—C101122.59 (13)C6—C3—C5109.03 (14)
C110—C109—C101119.17 (14)C6—C3—C4106.79 (15)
C104—C110—C105122.35 (14)C5—C3—C4107.29 (14)
C104—C110—C109118.76 (14)C6—C3—C2111.02 (13)
C105—C110—C109118.85 (15)C5—C3—C2113.01 (13)
C202—C201—C209119.30 (12)C4—C3—C2109.43 (13)
C202—C201—C101120.49 (12)C3—C4—H4A109.5
C209—C201—C101120.02 (12)C3—C4—H4B109.5
C201—C202—C203121.39 (12)H4A—C4—H4B109.5
C201—C202—S2119.96 (11)C3—C4—H4C109.5
C203—C202—S2118.64 (10)H4A—C4—H4C109.5
C204—C203—C202119.86 (13)H4B—C4—H4C109.5
C204—C203—H203120.1C3—C5—H5A109.5
C202—C203—H203120.1C3—C5—H5B109.5
C203—C204—C210121.08 (13)H5A—C5—H5B109.5
C203—C204—H204119.5C3—C5—H5C109.5
C210—C204—H204119.5H5A—C5—H5C109.5
C206—C205—C210121.19 (13)H5B—C5—H5C109.5
C206—C205—H205119.4C3—C6—H6A109.5
C210—C205—H205119.4C3—C6—H6B109.5
C205—C206—C207120.19 (14)H6A—C6—H6B109.5
C205—C206—H206119.9C3—C6—H6C109.5
C207—C206—H206119.9H6A—C6—H6C109.5
C208—C207—C206120.20 (14)H6B—C6—H6C109.5
C208—C207—H207119.9
C109—C101—C102—C1036.2 (2)C202—C203—C204—C2101.4 (2)
C201—C101—C102—C103173.77 (12)C210—C205—C206—C2071.0 (2)
C109—C101—C102—S1177.39 (10)C205—C206—C207—C2080.1 (2)
C201—C101—C102—S12.59 (18)C206—C207—C208—C2091.1 (2)
C1—S1—C102—C10170.88 (12)C207—C208—C209—C2101.0 (2)
C1—S1—C102—C103112.69 (12)C207—C208—C209—C201175.80 (14)
C101—C102—C103—C1042.2 (2)C202—C201—C209—C2102.7 (2)
S1—C102—C103—C104178.67 (11)C101—C201—C209—C210177.69 (13)
C102—C103—C104—C1103.1 (2)C202—C201—C209—C208174.08 (13)
C110—C105—C106—C1070.6 (2)C101—C201—C209—C2080.9 (2)
C105—C106—C107—C1080.2 (2)C206—C205—C210—C2091.1 (2)
C106—C107—C108—C1091.0 (2)C206—C205—C210—C204176.20 (14)
C107—C108—C109—C1101.1 (2)C208—C209—C210—C2050.1 (2)
C107—C108—C109—C101176.80 (13)C201—C209—C210—C205177.02 (13)
C102—C101—C109—C108172.88 (13)C208—C209—C210—C204177.26 (13)
C201—C101—C109—C1087.1 (2)C201—C209—C210—C2040.3 (2)
C102—C101—C109—C1104.99 (19)C203—C204—C210—C205174.84 (13)
C201—C101—C109—C110175.03 (12)C203—C204—C210—C2092.4 (2)
C103—C104—C110—C105173.53 (14)C202—S2—C1—C2175.38 (10)
C103—C104—C110—C1094.2 (2)C202—S2—C1—S146.11 (9)
C106—C105—C110—C104177.19 (14)C102—S1—C1—C296.29 (11)
C106—C105—C110—C1090.6 (2)C102—S1—C1—S233.06 (9)
C108—C109—C110—C104178.13 (13)S2—C1—C2—O2179.74 (10)
C101—C109—C110—C1040.16 (19)S1—C1—C2—O250.90 (14)
C108—C109—C110—C1050.3 (2)S2—C1—C2—C2261.78 (15)
C101—C109—C110—C105177.67 (13)S1—C1—C2—C2267.57 (15)
C102—C101—C201—C20263.95 (19)S2—C1—C2—C365.97 (15)
C109—C101—C201—C202116.03 (15)S1—C1—C2—C3164.68 (10)
C102—C101—C201—C209110.97 (15)O2—C2—C3—C674.26 (16)
C109—C101—C201—C20969.05 (17)C22—C2—C3—C6167.15 (15)
C209—C201—C202—C2033.8 (2)C1—C2—C3—C640.19 (18)
C101—C201—C202—C203178.76 (13)O2—C2—C3—C5162.86 (13)
C209—C201—C202—S2175.52 (10)C22—C2—C3—C544.27 (18)
C101—C201—C202—S20.57 (18)C1—C2—C3—C582.69 (16)
C1—S2—C202—C20179.99 (12)O2—C2—C3—C443.37 (18)
C1—S2—C202—C20399.36 (12)C22—C2—C3—C475.21 (18)
C201—C202—C203—C2041.8 (2)C1—C2—C3—C4157.83 (14)
S2—C202—C203—C204177.58 (11)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C105–C110 and C205–C210 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2···S10.842.522.9942 (14)117
C203—H203···Cg2i0.952.603.4606 (19)151
C103—H103···Cg4ii0.952.933.443 (2)115
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+3/2, y1/2, z.
 

Acknowledgements

This paper is dedicated to Emeritus Professors Jim Simpson and Rob A. J. Smith, University of Otago, who (wishing to enjoy their retirement) have abdicated co-authorial responsibilities. We also thank Emeritus Professor Ward T. Robinson, University of Canterbury, for the X-ray data collection. These true gentlemen between them mentored dozens of young scientists, and without them this work would never have occurred.

References

First citationBruker (1998). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCen, S., Huang, N., Lian, D., Shen, A., Zhao, M.-X. & Zhang, Z. (2022). Nat. Commun. 13, 4735.  CSD CrossRef PubMed Google Scholar
First citationCheng, J. K., Xiang, S.-H., Li, S., Ye, L. & Tan, B. (2021). Chem. Rev. 121, 4805–4902.  CrossRef CAS PubMed Google Scholar
First citationDelogu, G., De Lucchi, O., Maglioli, P. & Valle, G. (1991). J. Org. Chem. 56, 4467–4473.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaglioli, P., De Lucchi, O., Delogu, G. & Valle, G. (1992). Tetrahedron Asymmetry, 3, 365–366.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWencel-Delord, J., Panossian, A., Leroux, F. R. & Colobert, F. (2015). Chem. Soc. Rev. 44, 3418–3430.  CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H., Li, H., Wang, J., Sun, J., Qin, A. & Tang, B. Z. (2015). Private Communication (refcode CAJCEY, CCDC 1031984). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds