research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of caesium di­methyl-N-benzoyl­amido­phosphate monohydrate

crossmark logo

aDepartment of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska, str. 64, 01601 Kyiv, Ukraine, and bSSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky ave. 60, 61001 Kharkiv, Ukraine
*Correspondence e-mail: natalia_kariaka@i.ua

Edited by J. T. Mague, Tulane University, USA (Received 22 November 2022; accepted 24 December 2022; online 6 January 2023)

The caesium salt of dimethyl-N-benzoyl­amido­phosphate, namely, aqua­[di­meth­yl (N-benzoyl­amido-κO)phospho­nato-κO]caesium, [Cs(C9H11NO4P)(H2O)] or CsL·H2O, is reported. The compound crystallizes in the monoclinic crystal system in the P21/c space group and forms a mono-periodic polymeric structure due to the bridging function of the dimethyl-N-benzoyl­amido­phosphate anions towards the caesium cations.

1. Chemical context

The carbacyl­amido­phosphates {CAPh, compounds of general formula [RC(O)N(H)P(O)R2]}, first introduced by Alexandr Kirsanov in the 1960s, have now become an intensively investigated class of ligands (Amirkhanov et al., 2014[Amirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). Ligands. Synthesis, Characterization and Role in Biotechnology, edited by P. Gawryszewska & P. Smolenski, ch. 7, pp. 199-248. New York: Nova Science Publishers.]). The structures of the alkali metal salts of CAPh anions, important starting reagents for the synthesis of their transition-metal complexes, have been poorly studied to date. The sodium and potassium salts with 2,2,2-tri­chloro-N-(di­morpholino­phosphor­yl)acetamide (HCAPh1) contain ligated water mol­ecules and have general formulae Na2CAPh12·2H2O and KCAPh1·H2O, respectively (Litsis et al., 2010[Litsis, O. O., Ovchynnikov, V. A., Sliva, T. Y., Konovalova, I. S. & Amirkhanov, V. M. (2010). Acta Cryst. E66, m426-m427.], 2016[Litsis, O. O., Shatrava, I. O., Amirkhanov, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V., Dyakonenko, V. V., Shishkin, O. V. & Amirkhanov, V. M. (2016). Struct. Chem. 27, 341-355.]). The sodium salt of dimethyl-N-benzoyl­amido­phosphate NaCAPh2 (Kariaka et al., 2019[Kariaka, N. S., Kolotilov, S. V., Gawryszewska, P., Kasprzycka, E., Weselski, M., Dyakonenko, V. V., Shishkina, S. V., Trush, V. A. & Amirkhanov, V. M. (2019). Inorg. Chem. 58, 14682-14692.]) and the alkali salts of dimethyl-N-trichloracetyl­amido­phosphate NaCAPh3, RbCAPh3 (Trush et al., 2005[Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007-1014.]) crystallize in a solvent-free form. In all of these compounds the CAPh ligands are coordinated to the metal ions in a bidentate manner (via the oxygen atoms of the phosphoryl and carbonyl groups) with the formation of six-membered chelate metallocycles. In addition, the phosphoryl or the carbonyl oxygen atom or both usually bridge the cations. Caesium salts of CAPhs have not been reported to date and are of inter­est as possible dopants in oxide film materials for the improvement of their electric and electron functional characteristics (Vikulova et al., 2013[Vikulova, E. S., Zherikova, K. V., Kuratieva, N. V., Morozova, N. B. & Igumenov, I. K. (2013). J. Coord. Chem. 66, 2235-2249.]). Because of this, an actual task is the search for caesium compounds satisfying metal–organic chemical vapor deposition requirements. The combination of caesium ions with bulky organic ligands may result in compounds with mol­ecular crystal structures that possess sufficient volatility. Thus, crystal-structure investigations of caesium salts of CAPh anions are of high inter­est. Herein, we present the crystal structure of the caesium salt of dimethyl-N-benzoyl­amido­phosphate.

[Scheme 1]

2. Structural commentary

Similar to the sodium salt of dimethyl-N-benzoyl­amido­phosphate (Kariaka et al., 2019[Kariaka, N. S., Kolotilov, S. V., Gawryszewska, P., Kasprzycka, E., Weselski, M., Dyakonenko, V. V., Shishkina, S. V., Trush, V. A. & Amirkhanov, V. M. (2019). Inorg. Chem. 58, 14682-14692.]) the title compound crystallizes in the monoclinic crystal system in the P21/c space group and forms a 1D-polymeric structure (Fig. 1[link]).

[Figure 1]
Figure 1
Polymeric chain of the title compound extending along the [001] crystallographic direction.

The asymmetric unit contains the Cs+ and CAPh ions and a water mol­ecule (Fig. 2[link]a). The oxygen atoms of the carbonyl and phosphoryl groups of the dimethyl-N-benzoyl­amido­phosphate anions act as μ2-bridges between Cs+ cations (Fig. 1[link]). Additionally, both of the meth­oxy groups are bound to the Cs+ and one of them also acts as a μ2-bridge. Thus, one CAPh anion is bound to four Cs+ cations (Fig. 2[link]b), and each Cs+ cation links four ligand anions. Additionally, a water mol­ecule acts as a μ2-bridge between two Cs+ cations.

[Figure 2]
Figure 2
Representation of (a) the asymmetric unit of the title compound and (b) the coordination mode of L.

The Cs+ ion contacts nine oxygen atoms. It is involved in the six-membered Cs1–O1–C1–N1–P1–O2 ring with one ligand by bonding with the oxygen atoms of the carbonyl and phosphoryl groups, in the four-membered Cs1–O2–P1–O4 ring with another CAPh ligand by bonding with the oxygen atoms of the phosphoryl and meth­oxy groups and in the six-membered Cs1–O1–C1–N1–P1–O3 ring with the third ligand by bonding with the μ2-oxygen atoms of the carbonyl and meth­oxy groups. In addition, the Cs+ ion contacts with the μ2-O3 atom of the fourth neighboring CAPh as well as with two mol­ecules of water (Fig. 1[link]). The six-membered chelate Cs1–O1–C1–N1–P1–O2 ring is not planar with the P1, N1 and C1 atoms deviating from the plane created through Cs1, O1 and O2 atoms by 0.471 (3), 1.403 (4) and 1.039 (4) Å, respectively. The O1—C1—N1—P1 and C1—N1—P1—O2 torsion angles are −2.4 (5) and 56.0 (3)° respectively. The six-membered Cs1–O1–C1–N1–P1–O3 ring is also not planar with the P1, N1 and C1 atoms deviating from the plane created through Cs1, O1 and O3 atoms by 0.942 (4), 0.139 (5) and 0.240 (3) Å, respectively. The C1—N1—P1—O3 torsion angle is −69.3 (3)°. The shortest Cs—O distance in the title compound (Table 1[link]) is 3.072 (2) Å, which is comparable with the sum of the O2− and Cs+ ionic radii (3.07 Å), so the majority of the Cs—O contacts might be considered as a mainly ionic type of bond. The Cs1—O1 distance is the longest (Table 1[link]) and longer than the typical Cs—O bonds in crystalline solids (Leclaire et al., 2008[Leclaire, A. (2008). J. Solid State Chem. 181, 2338-2345.]).

Table 1
Selected geometric parameters (Å, °)

Cs1—O1i 3.086 (2) Cs1—O5 3.112 (3)
Cs1—O1 3.631 (3) Cs1—O5iv 3.418 (4)
Cs1—O2ii 3.206 (3) P1—O2 1.468 (2)
Cs1—O2 3.072 (2) P1—N1 1.597 (3)
Cs1—O3iii 3.431 (2) O1—C1 1.247 (3)
Cs1—O3i 3.507 (3) N1—C1 1.325 (4)
Cs1—O4ii 3.310 (2)    
       
O2—Cs1—O1 56.40 (6) P1—O2—Cs1 131.74 (14)
O2—P1—N1 122.26 (14) C1—N1—P1 121.5 (2)
C1—O1—Cs1 109.9 (2) O1—C1—N1 126.3 (3)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, -y+2, -z+1]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

The average values of the C=O and P=O bond lengths in the title compound are increased as compared with HL [d(C—O)HL = 1.219 (6) Å, d(P—O)HL = 1.461 (4) Å] and the C—N and P—N bond lengths are decreased [d(C—N)HL = 1.393 (7) Å, d(P—N)HL = 1.667 (5) Å; Mizrahi & Modro, 1982[Mizrahi, V. & Modro, T. A. (1982). Cryst. Struct. Commun. 11, 627-631.]]. Such changes are consistent with the deprotonation of HL.

3. Supra­molecular features

Few inter­molecular contacts are observed in the crystal structure of the title compound. There are O—H⋯O hydrogen bonds between the water mol­ecule and the carbonyl and phosphoryl oxygen atoms of the dimethyl-N-benzoyl­amido­phosphate anion (Table 2[link]). In addition, the water mol­ecule participates in a C8—H8C⋯O5 contact with the hydrogen atom of the meth­oxy group of the CAPh ligand. The H8C⋯O5 distance is 2.56 Å. There are no inter­molecular contacts between the CAPh ligands in the crystal structure of the title compound.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O1v 0.85 (1) 2.05 (3) 2.785 (3) 143 (4)
O5—H5B⋯O2iii 0.86 (1) 1.87 (1) 2.721 (4) 170 (4)
Symmetry codes: (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

4. Hirshfeld surface analysis and finger print plots

For visualization of the inter­molecular inter­actions in the crystal structure for the asymmetric unit of the title compound, the Hirshfeld surface (Fig. 3[link]) and its corresponding two-dimensional fingerprint plots (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) were calculated using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]).

[Figure 3]
Figure 3
The Hirshfeld surface mapped over dnorm and two-dimensional fingerprint plots for the H⋯H (42.2%), H⋯O/O⋯H (19.3%), C⋯H/H⋯C (14.3%) and Cs⋯O/O⋯Cs (12.9%) inter­actions for the asymmetric unit of the title compound

The dark-red spots on the surface, which correspond to the strongest contacts in the crystal structure of the title compound, are observed for the H⋯O/O⋯H hydrogen bonds between hydrogen atoms of the water mol­ecule and the oxygen atoms of the carbonyl and phosphoryl groups of the CAPh. The lighter red spots observed near the Cs+ cation and the meth­oxy groups correspond to Cs⋯O/O⋯Cs bonds, which are involved in Cs⋯O contacts and H⋯O contacts with the water mol­ecule. There are no red spots on the Hirshfeld surface near the phenyl ring.

The derived fingerprint plots show that H⋯H contacts make the largest contribution to the Hirshfeld surface (42.2%) and the shortest of them are at di = de = 1.2 Å. The second largest contribution (19.3%) comes from the H⋯O/O⋯H contacts, which are the shortest in the title compound (di + de = 1.75 Å). The C⋯H/H⋯C and Cs⋯O/O⋯Cs inter­actions make similar contributions to the surface at 14.3% and 12.9%, respectively. The shortest C⋯H/H⋯C contacts are at di + de = 2.8 Å. The shortest Cs⋯O/O⋯Cs contacts are at di + de = 3.07 Å. Among the inter­actions making the smallest contribution to the Hirshfeld surface of the title compound are the O⋯O, C⋯C, Cs⋯H and N⋯H inter­actions.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for alkali metal salts of carbacyl­amido­phosphates yielded ten hits. Six of them are sodium salts, three are potassium salts and one is a rubidium salt. No CAPh-based caesium salts have been reported to date. In all these reported salts, the carbacyl­amido­phosphates are coordinated to the alkali metals in a bidentate chelating manner via the oxygen atoms of the phosphoryl and carbonyl groups. Additionally, in the majority of these salts, the phosphoryl or the carbonyl oxygen atom or both function as μ2-bridges. In the alkali metal salts of CAPhs that contain meth­oxy groups, one of the latter is involved in contacts with the metal. In alkali metal salts of CAPhs that contain the CCl3 group, the latter can be also involved in the metal binding. Some CAPh-based salts also contain such additional ligands as water mol­ecules, coordinated to the metal in a μ2-bridging manner, or crown ethers.

6. Synthesis and crystallization

CsL·H2O was obtained by a neutralization reaction between HL (0.458 g, 2 mmol) and caesium carbonate (0.326 g, 1 mmol) solutions in aqueous 2-propanol (1:3). Yield: 0.664 g, 88%, m.p. 353 K. IR (KBr): νmax = 3408 [ν(OH)], 1591 [ν(CC)], 1535 [ν(CO)], 1378 [ν(CN)], 1205 [ν(PO)], 1076, 1038, 928 [ν(PN)], 838, 800, 734, 710, 540, 502,466, 452 cm−1. The low-frequency shift of ν(P=O) and ν(C=O) bands in the IR spectrum of CsL·H2O with respect to HL (ΔνHL(P=O) ∼37cm−1, ΔνHL(C=O) ∼147cm−1] is typical for bidentate coordination of dimethyl-N-benzoyl­amido­phosphate. 1H NMR (DMSO-d6): δ = 3.24 (s, H2O), 3.54 [d, 6H, (OCH3)2], 7.27 (t, 3H, Ph), 8.04 (d, 2H, Ph). 31P NMR (acetone): δ = 15.2 (s).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically and refined as riding [C—H = 0.93–0.96 Å, Uiso(H) = 1.2–1.5Ueq(C). O-bound H atoms were refined with the restraints O5—H5A = O5—H5B = 0.84±0.01 Å and H5A⋯H5B = 1.62±0.02 Å with Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Cs(C9H11NO4P)(H2O)]
Mr 379.08
Crystal system, space group Monoclinic, P21/c
Temperature (K) 294
a, b, c (Å) 14.3676 (4), 6.8089 (2), 13.7336 (3)
β (°) 90.549 (2)
V3) 1343.46 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.88
Crystal size (mm) 0.5 × 0.3 × 0.2
 
Data collection
Diffractometer Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Abingdon, England.])
Tmin, Tmax 0.505, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13393, 3918, 3169
Rint 0.032
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.076, 1.03
No. of reflections 3918
No. of parameters 162
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.52, −0.79
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Abingdon, England.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Aqua[dimethyl (N-benzoylamido-κO)phosphonato-κO]caesium top
Crystal data top
[Cs(C9H11NO4P)(H2O)]F(000) = 736
Mr = 379.08Dx = 1.874 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.3676 (4) ÅCell parameters from 3272 reflections
b = 6.8089 (2) Åθ = 3.6–28.2°
c = 13.7336 (3) ŵ = 2.88 mm1
β = 90.549 (2)°T = 294 K
V = 1343.46 (6) Å3Block, colourless
Z = 40.5 × 0.3 × 0.2 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
3169 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.032
ω scansθmax = 30.0°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2014)
h = 1920
Tmin = 0.505, Tmax = 1.000k = 99
13393 measured reflectionsl = 1819
3918 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0307P)2 + 0.4727P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3918 reflectionsΔρmax = 0.52 e Å3
162 parametersΔρmin = 0.79 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.48526 (2)0.71528 (3)0.62552 (2)0.04947 (8)
O50.4180 (2)0.7620 (5)0.8390 (2)0.0816 (9)
H5A0.371 (2)0.806 (8)0.869 (3)0.122*
H5B0.4702 (17)0.723 (7)0.863 (3)0.122*
P10.66854 (5)0.81111 (12)0.39433 (6)0.04547 (18)
O10.67121 (16)0.4475 (4)0.50718 (17)0.0667 (7)
O20.57605 (15)0.8484 (4)0.43493 (16)0.0618 (6)
O30.65141 (15)0.6826 (4)0.29932 (16)0.0597 (6)
O40.70550 (16)1.0147 (4)0.3582 (2)0.0768 (8)
N10.75168 (18)0.7207 (4)0.45799 (19)0.0499 (6)
C10.74267 (19)0.5511 (5)0.50430 (18)0.0438 (6)
C20.82889 (19)0.4816 (4)0.55712 (17)0.0415 (6)
C30.8379 (3)0.2855 (5)0.5831 (2)0.0534 (7)
H30.7898530.1981370.5691880.064*
C40.9172 (3)0.2191 (6)0.6290 (3)0.0668 (10)
H40.9229160.0871330.6454880.080*
C50.9879 (2)0.3473 (7)0.6507 (3)0.0682 (10)
H51.0415360.3024360.6820000.082*
C60.9797 (2)0.5411 (7)0.6262 (2)0.0607 (9)
H61.0274230.6281990.6416830.073*
C70.90089 (19)0.6085 (5)0.5786 (2)0.0477 (7)
H70.8963800.7400500.5610440.057*
C80.7258 (3)0.6063 (7)0.2424 (3)0.0770 (11)
H8A0.7723050.5502230.2846580.116*
H8B0.7529210.7104460.2050370.116*
H8C0.7022240.5068560.1991450.116*
C90.7984 (2)1.0682 (6)0.3429 (3)0.0672 (9)
H9A0.8150231.0385140.2769500.101*
H9B0.8380670.9962110.3867670.101*
H9C0.8057531.2063930.3543710.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.05209 (12)0.05443 (14)0.04190 (11)0.00312 (8)0.00059 (8)0.00041 (8)
O50.0608 (16)0.129 (3)0.0550 (15)0.0128 (17)0.0018 (13)0.0145 (15)
P10.0379 (4)0.0511 (5)0.0475 (4)0.0007 (3)0.0042 (3)0.0067 (3)
O10.0604 (13)0.0699 (17)0.0694 (14)0.0275 (12)0.0167 (11)0.0249 (12)
O20.0450 (11)0.0797 (17)0.0608 (13)0.0057 (11)0.0116 (10)0.0051 (12)
O30.0486 (12)0.0814 (18)0.0492 (12)0.0121 (11)0.0043 (10)0.0048 (11)
O40.0550 (13)0.0640 (17)0.111 (2)0.0022 (12)0.0041 (13)0.0376 (15)
N10.0432 (13)0.0525 (16)0.0539 (14)0.0066 (11)0.0026 (11)0.0116 (11)
C10.0461 (14)0.0500 (17)0.0353 (13)0.0080 (13)0.0028 (11)0.0029 (12)
C20.0455 (14)0.0512 (17)0.0279 (11)0.0044 (12)0.0034 (10)0.0001 (11)
C30.065 (2)0.0528 (19)0.0425 (15)0.0022 (15)0.0017 (14)0.0034 (13)
C40.079 (3)0.063 (2)0.058 (2)0.0165 (19)0.0020 (18)0.0101 (17)
C50.057 (2)0.096 (3)0.0516 (18)0.018 (2)0.0009 (15)0.0060 (19)
C60.0455 (17)0.087 (3)0.0495 (17)0.0040 (16)0.0013 (13)0.0041 (16)
C70.0470 (15)0.0526 (19)0.0434 (14)0.0034 (14)0.0025 (12)0.0033 (12)
C80.067 (2)0.089 (3)0.076 (2)0.001 (2)0.0257 (19)0.020 (2)
C90.072 (2)0.059 (2)0.072 (2)0.0156 (18)0.0157 (17)0.0108 (17)
Geometric parameters (Å, º) top
Cs1—O1i3.086 (2)C1—C21.506 (4)
Cs1—O13.631 (3)C2—C31.388 (4)
Cs1—O2ii3.206 (3)C2—C71.377 (4)
Cs1—O23.072 (2)C3—H30.9300
Cs1—O3iii3.431 (2)C3—C41.374 (5)
Cs1—O3i3.507 (3)C4—H40.9300
Cs1—O4ii3.310 (2)C4—C51.369 (6)
Cs1—O53.112 (3)C5—H50.9300
Cs1—O5iv3.418 (4)C5—C61.367 (6)
O5—H5A0.853 (10)C6—H60.9300
O5—H5B0.856 (10)C6—C71.379 (4)
P1—O21.468 (2)C7—H70.9300
P1—O31.588 (2)C8—H8A0.9600
P1—O41.567 (3)C8—H8B0.9600
P1—N11.597 (3)C8—H8C0.9600
O1—C11.247 (3)C9—H9A0.9600
O3—C81.428 (4)C9—H9B0.9600
O4—C91.402 (4)C9—H9C0.9600
N1—C11.325 (4)
O1i—Cs1—O5iv93.03 (7)C1—O1—Cs1i141.26 (18)
O1i—Cs1—O5111.22 (7)C1—O1—Cs1109.9 (2)
O1i—Cs1—O195.18 (5)Cs1—O2—Cs1ii112.10 (7)
O1i—Cs1—O2ii89.03 (6)P1—O2—Cs1131.74 (14)
O1i—Cs1—O3iii169.01 (6)P1—O2—Cs1ii108.03 (13)
O1i—Cs1—O3i59.31 (5)Cs1vi—O3—Cs1i88.49 (5)
O1i—Cs1—O4ii68.92 (7)P1—O3—Cs1i105.47 (10)
O2ii—Cs1—O5iv169.77 (6)P1—O3—Cs1vi124.13 (11)
O2—Cs1—O5155.59 (8)C8—O3—Cs1i107.7 (2)
O2—Cs1—O5iv102.27 (6)C8—O3—Cs1vi102.3 (2)
O2ii—Cs1—O1123.43 (5)C8—O3—P1122.6 (2)
O2—Cs1—O156.40 (6)P1—O4—Cs1ii100.77 (10)
O2—Cs1—O1i85.16 (6)C9—O4—Cs1ii131.0 (2)
O2—Cs1—O2ii67.90 (7)C9—O4—P1127.1 (2)
O2—Cs1—O3iii103.57 (6)C1—N1—P1121.5 (2)
O2ii—Cs1—O3iii100.36 (6)O1—C1—N1126.3 (3)
O2—Cs1—O3i136.23 (6)O1—C1—C2118.8 (3)
O2ii—Cs1—O3i129.70 (5)N1—C1—C2114.9 (2)
O2—Cs1—O4ii104.60 (6)C3—C2—C1120.0 (3)
O2ii—Cs1—O4ii43.69 (6)C7—C2—C1121.3 (3)
O3i—Cs1—O199.23 (5)C7—C2—C3118.7 (3)
O3iii—Cs1—O184.44 (5)C2—C3—H3119.7
O3iii—Cs1—O3i109.86 (5)C4—C3—C2120.6 (3)
O4ii—Cs1—O5iv145.89 (7)C4—C3—H3119.7
O4ii—Cs1—O1157.27 (6)C3—C4—H4120.0
O4ii—Cs1—O3iii114.31 (7)C5—C4—C3120.0 (4)
O4ii—Cs1—O3i86.73 (6)C5—C4—H4120.0
O5—Cs1—O5iv95.01 (7)C4—C5—H5120.0
O5iv—Cs1—O146.41 (6)C6—C5—C4119.9 (3)
O5—Cs1—O1135.19 (7)C6—C5—H5120.0
O5—Cs1—O2ii93.57 (7)C5—C6—H6119.8
O5iv—Cs1—O3iii78.73 (7)C5—C6—C7120.4 (3)
O5—Cs1—O3i67.78 (8)C7—C6—H6119.8
O5—Cs1—O3iii62.88 (7)C2—C7—C6120.3 (3)
O5iv—Cs1—O3i59.24 (6)C2—C7—H7119.9
O5—Cs1—O4ii67.35 (7)C6—C7—H7119.9
Cs1—O5—Cs1v95.57 (9)O3—C8—H8A109.5
Cs1—O5—H5A138 (3)O3—C8—H8B109.5
Cs1v—O5—H5A86 (4)O3—C8—H8C109.5
Cs1v—O5—H5B82 (4)H8A—C8—H8B109.5
Cs1—O5—H5B93 (3)H8A—C8—H8C109.5
H5A—O5—H5B129 (3)H8B—C8—H8C109.5
O2—P1—O3105.88 (13)O4—C9—H9A109.5
O2—P1—O4106.13 (15)O4—C9—H9B109.5
O2—P1—N1122.26 (14)O4—C9—H9C109.5
O3—P1—N1110.27 (14)H9A—C9—H9B109.5
O4—P1—O3106.15 (15)H9A—C9—H9C109.5
O4—P1—N1105.09 (13)H9B—C9—H9C109.5
Cs1i—O1—Cs184.82 (5)
Cs1—O1—C1—N162.6 (3)O4—P1—O3—Cs1i165.17 (10)
Cs1i—O1—C1—N144.7 (5)O4—P1—O3—Cs1vi66.28 (16)
Cs1—O1—C1—C2117.8 (2)O4—P1—O3—C871.3 (3)
Cs1i—O1—C1—C2135.0 (3)O4—P1—N1—C1176.7 (2)
P1—N1—C1—O12.4 (5)N1—P1—O2—Cs113.3 (3)
P1—N1—C1—C2177.2 (2)N1—P1—O2—Cs1ii131.82 (14)
O1—C1—C2—C318.9 (4)N1—P1—O3—Cs1vi179.60 (12)
O1—C1—C2—C7162.7 (3)N1—P1—O3—Cs1i81.52 (12)
O2—P1—O3—Cs1i52.64 (14)N1—P1—O3—C842.0 (3)
O2—P1—O3—Cs1vi46.24 (18)N1—P1—O4—Cs1ii141.69 (12)
O2—P1—O3—C8176.2 (3)N1—P1—O4—C927.5 (4)
O2—P1—O4—Cs1ii10.89 (15)N1—C1—C2—C3160.8 (3)
O2—P1—O4—C9158.3 (3)N1—C1—C2—C717.7 (4)
O2—P1—N1—C156.0 (3)C1—C2—C3—C4178.3 (3)
O3—P1—O2—Cs1113.94 (18)C1—C2—C7—C6179.3 (2)
O3—P1—O2—Cs1ii100.92 (13)C2—C3—C4—C50.7 (5)
O3—P1—O4—Cs1ii101.47 (12)C3—C2—C7—C60.8 (4)
O3—P1—O4—C989.4 (3)C3—C4—C5—C60.2 (5)
O3—P1—N1—C169.3 (3)C4—C5—C6—C70.8 (5)
O4—P1—O2—Cs1ii11.62 (16)C5—C6—C7—C21.3 (5)
O4—P1—O2—Cs1133.52 (18)C7—C2—C3—C40.2 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+3/2, z+1/2; (iv) x+1, y1/2, z+3/2; (v) x+1, y+1/2, z+3/2; (vi) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1v0.85 (1)2.05 (3)2.785 (3)143 (4)
O5—H5B···O2iii0.86 (1)1.87 (1)2.721 (4)170 (4)
Symmetry codes: (iii) x, y+3/2, z+1/2; (v) x+1, y+1/2, z+3/2.
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 19BF037-05).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Abingdon, England.  Google Scholar
First citationAmirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). Ligands. Synthesis, Characterization and Role in Biotechnology, edited by P. Gawryszewska & P. Smolenski, ch. 7, pp. 199–248. New York: Nova Science Publishers.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKariaka, N. S., Kolotilov, S. V., Gawryszewska, P., Kasprzycka, E., Weselski, M., Dyakonenko, V. V., Shishkina, S. V., Trush, V. A. & Amirkhanov, V. M. (2019). Inorg. Chem. 58, 14682–14692.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLeclaire, A. (2008). J. Solid State Chem. 181, 2338–2345.  Web of Science CrossRef CAS Google Scholar
First citationLitsis, O. O., Ovchynnikov, V. A., Sliva, T. Y., Konovalova, I. S. & Amirkhanov, V. M. (2010). Acta Cryst. E66, m426–m427.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLitsis, O. O., Shatrava, I. O., Amirkhanov, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V., Dyakonenko, V. V., Shishkin, O. V. & Amirkhanov, V. M. (2016). Struct. Chem. 27, 341–355.  Web of Science CSD CrossRef CAS Google Scholar
First citationMizrahi, V. & Modro, T. A. (1982). Cryst. Struct. Commun. 11, 627–631.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTrush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007–1014.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationVikulova, E. S., Zherikova, K. V., Kuratieva, N. V., Morozova, N. B. & Igumenov, I. K. (2013). J. Coord. Chem. 66, 2235–2249.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds