research communications
N-benzoylamidophosphate monohydrate
of caesium dimethyl-aDepartment of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska, str. 64, 01601 Kyiv, Ukraine, and bSSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky ave. 60, 61001 Kharkiv, Ukraine
*Correspondence e-mail: natalia_kariaka@i.ua
The caesium salt of dimethyl-N-benzoylamidophosphate, namely, aqua[dimethyl (N-benzoylamido-κO)phosphonato-κO]caesium, [Cs(C9H11NO4P)(H2O)] or CsL·H2O, is reported. The compound crystallizes in the monoclinic in the P21/c and forms a mono-periodic polymeric structure due to the bridging function of the dimethyl-N-benzoylamidophosphate anions towards the caesium cations.
Keywords: crystal structure; carbacylamidophosphate; caesium.
CCDC reference: 2232690
1. Chemical context
The carbacylamidophosphates {CAPh, compounds of general formula [RC(O)N(H)P(O)R′2]}, first introduced by Alexandr Kirsanov in the 1960s, have now become an intensively investigated class of ligands (Amirkhanov et al., 2014). The structures of the alkali metal salts of CAPh anions, important starting reagents for the synthesis of their transition-metal complexes, have been poorly studied to date. The sodium and potassium salts with 2,2,2-trichloro-N-(dimorpholinophosphoryl)acetamide (HCAPh1) contain ligated water molecules and have general formulae Na2CAPh12·2H2O and KCAPh1·H2O, respectively (Litsis et al., 2010, 2016). The sodium salt of dimethyl-N-benzoylamidophosphate NaCAPh2 (Kariaka et al., 2019) and the alkali salts of dimethyl-N-trichloracetylamidophosphate NaCAPh3, RbCAPh3 (Trush et al., 2005) crystallize in a solvent-free form. In all of these compounds the CAPh ligands are coordinated to the metal ions in a bidentate manner (via the oxygen atoms of the phosphoryl and carbonyl groups) with the formation of six-membered chelate metallocycles. In addition, the phosphoryl or the carbonyl oxygen atom or both usually bridge the cations. Caesium salts of CAPhs have not been reported to date and are of interest as possible dopants in oxide film materials for the improvement of their electric and electron functional characteristics (Vikulova et al., 2013). Because of this, an actual task is the search for caesium compounds satisfying metal–organic chemical vapor deposition requirements. The combination of caesium ions with bulky organic ligands may result in compounds with molecular crystal structures that possess sufficient volatility. Thus, crystal-structure investigations of caesium salts of CAPh anions are of high interest. Herein, we present the of the caesium salt of dimethyl-N-benzoylamidophosphate.
2. Structural commentary
Similar to the sodium salt of dimethyl-N-benzoylamidophosphate (Kariaka et al., 2019) the title compound crystallizes in the monoclinic in the P21/c and forms a 1D-polymeric structure (Fig. 1).
The + and CAPh− ions and a water molecule (Fig. 2a). The oxygen atoms of the carbonyl and phosphoryl groups of the dimethyl-N-benzoylamidophosphate anions act as μ2-bridges between Cs+ cations (Fig. 1). Additionally, both of the methoxy groups are bound to the Cs+ and one of them also acts as a μ2-bridge. Thus, one CAPh− anion is bound to four Cs+ cations (Fig. 2b), and each Cs+ cation links four ligand anions. Additionally, a water molecule acts as a μ2-bridge between two Cs+ cations.
contains the CsThe Cs+ ion contacts nine oxygen atoms. It is involved in the six-membered Cs1–O1–C1–N1–P1–O2 ring with one ligand by bonding with the oxygen atoms of the carbonyl and phosphoryl groups, in the four-membered Cs1–O2–P1–O4 ring with another CAPh ligand by bonding with the oxygen atoms of the phosphoryl and methoxy groups and in the six-membered Cs1–O1–C1–N1–P1–O3 ring with the third ligand by bonding with the μ2-oxygen atoms of the carbonyl and methoxy groups. In addition, the Cs+ ion contacts with the μ2-O3 atom of the fourth neighboring CAPh as well as with two molecules of water (Fig. 1). The six-membered chelate Cs1–O1–C1–N1–P1–O2 ring is not planar with the P1, N1 and C1 atoms deviating from the plane created through Cs1, O1 and O2 atoms by 0.471 (3), 1.403 (4) and 1.039 (4) Å, respectively. The O1—C1—N1—P1 and C1—N1—P1—O2 torsion angles are −2.4 (5) and 56.0 (3)° respectively. The six-membered Cs1–O1–C1–N1–P1–O3 ring is also not planar with the P1, N1 and C1 atoms deviating from the plane created through Cs1, O1 and O3 atoms by 0.942 (4), 0.139 (5) and 0.240 (3) Å, respectively. The C1—N1—P1—O3 torsion angle is −69.3 (3)°. The shortest Cs—O distance in the title compound (Table 1) is 3.072 (2) Å, which is comparable with the sum of the O2− and Cs+ ionic radii (3.07 Å), so the majority of the Cs—O contacts might be considered as a mainly ionic type of bond. The Cs1—O1 distance is the longest (Table 1) and longer than the typical Cs—O bonds in crystalline solids (Leclaire et al., 2008).
The average values of the C=O and P=O bond lengths in the title compound are increased as compared with HL [d(C—O)HL = 1.219 (6) Å, d(P—O)HL = 1.461 (4) Å] and the C—N and P—N bond lengths are decreased [d(C—N)HL = 1.393 (7) Å, d(P—N)HL = 1.667 (5) Å; Mizrahi & Modro, 1982]. Such changes are consistent with the deprotonation of HL.
3. Supramolecular features
Few intermolecular contacts are observed in the N-benzoylamidophosphate anion (Table 2). In addition, the water molecule participates in a C8—H8C⋯O5 contact with the hydrogen atom of the methoxy group of the CAPh ligand. The H8C⋯O5 distance is 2.56 Å. There are no intermolecular contacts between the CAPh ligands in the of the title compound.
of the title compound. There are O—H⋯O hydrogen bonds between the water molecule and the carbonyl and phosphoryl oxygen atoms of the dimethyl-4. Hirshfeld surface analysis and finger print plots
For visualization of the intermolecular interactions in the ) and its corresponding two-dimensional fingerprint plots (Spackman & Jayatilaka, 2009) were calculated using CrystalExplorer17 (Turner et al., 2017).
for the of the title compound, the Hirshfeld surface (Fig. 3The dark-red spots on the surface, which correspond to the strongest contacts in the + cation and the methoxy groups correspond to Cs⋯O/O⋯Cs bonds, which are involved in Cs⋯O contacts and H⋯O contacts with the water molecule. There are no red spots on the Hirshfeld surface near the phenyl ring.
of the title compound, are observed for the H⋯O/O⋯H hydrogen bonds between hydrogen atoms of the water molecule and the oxygen atoms of the carbonyl and phosphoryl groups of the CAPh. The lighter red spots observed near the CsThe derived fingerprint plots show that H⋯H contacts make the largest contribution to the Hirshfeld surface (42.2%) and the shortest of them are at di = de = 1.2 Å. The second largest contribution (19.3%) comes from the H⋯O/O⋯H contacts, which are the shortest in the title compound (di + de = 1.75 Å). The C⋯H/H⋯C and Cs⋯O/O⋯Cs interactions make similar contributions to the surface at 14.3% and 12.9%, respectively. The shortest C⋯H/H⋯C contacts are at di + de = 2.8 Å. The shortest Cs⋯O/O⋯Cs contacts are at di + de = 3.07 Å. Among the interactions making the smallest contribution to the Hirshfeld surface of the title compound are the O⋯O, C⋯C, Cs⋯H and N⋯H interactions.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of November 2020; Groom et al., 2016) for alkali metal salts of carbacylamidophosphates yielded ten hits. Six of them are sodium salts, three are potassium salts and one is a rubidium salt. No CAPh-based caesium salts have been reported to date. In all these reported salts, the carbacylamidophosphates are coordinated to the alkali metals in a bidentate chelating manner via the oxygen atoms of the phosphoryl and carbonyl groups. Additionally, in the majority of these salts, the phosphoryl or the carbonyl oxygen atom or both function as μ2-bridges. In the alkali metal salts of CAPhs that contain methoxy groups, one of the latter is involved in contacts with the metal. In alkali metal salts of CAPhs that contain the CCl3 group, the latter can be also involved in the metal binding. Some CAPh-based salts also contain such additional ligands as water molecules, coordinated to the metal in a μ2-bridging manner, or crown ethers.
6. Synthesis and crystallization
CsL·H2O was obtained by a neutralization reaction between HL (0.458 g, 2 mmol) and caesium carbonate (0.326 g, 1 mmol) solutions in aqueous 2-propanol (1:3). Yield: 0.664 g, 88%, m.p. 353 K. IR (KBr): νmax = 3408 [ν(OH)], 1591 [ν(CC)], 1535 [ν(CO)], 1378 [ν(CN)], 1205 [ν(PO)], 1076, 1038, 928 [ν(PN)], 838, 800, 734, 710, 540, 502,466, 452 cm−1. The low-frequency shift of ν(P=O) and ν(C=O) bands in the IR spectrum of CsL·H2O with respect to HL (ΔνHL(P=O) ∼37cm−1, ΔνHL(C=O) ∼147cm−1] is typical for bidentate coordination of dimethyl-N-benzoylamidophosphate. 1H NMR (DMSO-d6): δ = 3.24 (s, H2O), 3.54 [d, 6H, (OCH3)2], 7.27 (t, 3H, Ph), 8.04 (d, 2H, Ph). 31P NMR (acetone): δ = 15.2 (s).
7. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically and refined as riding [C—H = 0.93–0.96 Å, Uiso(H) = 1.2–1.5Ueq(C). O-bound H atoms were refined with the restraints O5—H5A = O5—H5B = 0.84±0.01 Å and H5A⋯H5B = 1.62±0.02 Å with Uiso(H) = 1.5Ueq(O).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2232690
https://doi.org/10.1107/S2056989022012166/mw2194sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989022012166/mw2194Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).[Cs(C9H11NO4P)(H2O)] | F(000) = 736 |
Mr = 379.08 | Dx = 1.874 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.3676 (4) Å | Cell parameters from 3272 reflections |
b = 6.8089 (2) Å | θ = 3.6–28.2° |
c = 13.7336 (3) Å | µ = 2.88 mm−1 |
β = 90.549 (2)° | T = 294 K |
V = 1343.46 (6) Å3 | Block, colourless |
Z = 4 | 0.5 × 0.3 × 0.2 mm |
Xcalibur, Sapphire3 diffractometer | 3169 reflections with I > 2σ(I) |
Detector resolution: 16.1827 pixels mm-1 | Rint = 0.032 |
ω scans | θmax = 30.0°, θmin = 3.3° |
Absorption correction: multi-scan (CrysAlisPro; Agilent, 2014) | h = −19→20 |
Tmin = 0.505, Tmax = 1.000 | k = −9→9 |
13393 measured reflections | l = −18→19 |
3918 independent reflections |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.076 | w = 1/[σ2(Fo2) + (0.0307P)2 + 0.4727P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
3918 reflections | Δρmax = 0.52 e Å−3 |
162 parameters | Δρmin = −0.79 e Å−3 |
3 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cs1 | 0.48526 (2) | 0.71528 (3) | 0.62552 (2) | 0.04947 (8) | |
O5 | 0.4180 (2) | 0.7620 (5) | 0.8390 (2) | 0.0816 (9) | |
H5A | 0.371 (2) | 0.806 (8) | 0.869 (3) | 0.122* | |
H5B | 0.4702 (17) | 0.723 (7) | 0.863 (3) | 0.122* | |
P1 | 0.66854 (5) | 0.81111 (12) | 0.39433 (6) | 0.04547 (18) | |
O1 | 0.67121 (16) | 0.4475 (4) | 0.50718 (17) | 0.0667 (7) | |
O2 | 0.57605 (15) | 0.8484 (4) | 0.43493 (16) | 0.0618 (6) | |
O3 | 0.65141 (15) | 0.6826 (4) | 0.29932 (16) | 0.0597 (6) | |
O4 | 0.70550 (16) | 1.0147 (4) | 0.3582 (2) | 0.0768 (8) | |
N1 | 0.75168 (18) | 0.7207 (4) | 0.45799 (19) | 0.0499 (6) | |
C1 | 0.74267 (19) | 0.5511 (5) | 0.50430 (18) | 0.0438 (6) | |
C2 | 0.82889 (19) | 0.4816 (4) | 0.55712 (17) | 0.0415 (6) | |
C3 | 0.8379 (3) | 0.2855 (5) | 0.5831 (2) | 0.0534 (7) | |
H3 | 0.789853 | 0.198137 | 0.569188 | 0.064* | |
C4 | 0.9172 (3) | 0.2191 (6) | 0.6290 (3) | 0.0668 (10) | |
H4 | 0.922916 | 0.087133 | 0.645488 | 0.080* | |
C5 | 0.9879 (2) | 0.3473 (7) | 0.6507 (3) | 0.0682 (10) | |
H5 | 1.041536 | 0.302436 | 0.682000 | 0.082* | |
C6 | 0.9797 (2) | 0.5411 (7) | 0.6262 (2) | 0.0607 (9) | |
H6 | 1.027423 | 0.628199 | 0.641683 | 0.073* | |
C7 | 0.90089 (19) | 0.6085 (5) | 0.5786 (2) | 0.0477 (7) | |
H7 | 0.896380 | 0.740050 | 0.561044 | 0.057* | |
C8 | 0.7258 (3) | 0.6063 (7) | 0.2424 (3) | 0.0770 (11) | |
H8A | 0.772305 | 0.550223 | 0.284658 | 0.116* | |
H8B | 0.752921 | 0.710446 | 0.205037 | 0.116* | |
H8C | 0.702224 | 0.506856 | 0.199145 | 0.116* | |
C9 | 0.7984 (2) | 1.0682 (6) | 0.3429 (3) | 0.0672 (9) | |
H9A | 0.815023 | 1.038514 | 0.276950 | 0.101* | |
H9B | 0.838067 | 0.996211 | 0.386767 | 0.101* | |
H9C | 0.805753 | 1.206393 | 0.354371 | 0.101* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cs1 | 0.05209 (12) | 0.05443 (14) | 0.04190 (11) | 0.00312 (8) | 0.00059 (8) | 0.00041 (8) |
O5 | 0.0608 (16) | 0.129 (3) | 0.0550 (15) | 0.0128 (17) | 0.0018 (13) | −0.0145 (15) |
P1 | 0.0379 (4) | 0.0511 (5) | 0.0475 (4) | 0.0007 (3) | 0.0042 (3) | 0.0067 (3) |
O1 | 0.0604 (13) | 0.0699 (17) | 0.0694 (14) | −0.0275 (12) | −0.0167 (11) | 0.0249 (12) |
O2 | 0.0450 (11) | 0.0797 (17) | 0.0608 (13) | 0.0057 (11) | 0.0116 (10) | −0.0051 (12) |
O3 | 0.0486 (12) | 0.0814 (18) | 0.0492 (12) | 0.0121 (11) | 0.0043 (10) | −0.0048 (11) |
O4 | 0.0550 (13) | 0.0640 (17) | 0.111 (2) | −0.0022 (12) | −0.0041 (13) | 0.0376 (15) |
N1 | 0.0432 (13) | 0.0525 (16) | 0.0539 (14) | −0.0066 (11) | −0.0026 (11) | 0.0116 (11) |
C1 | 0.0461 (14) | 0.0500 (17) | 0.0353 (13) | −0.0080 (13) | 0.0028 (11) | 0.0029 (12) |
C2 | 0.0455 (14) | 0.0512 (17) | 0.0279 (11) | −0.0044 (12) | 0.0034 (10) | 0.0001 (11) |
C3 | 0.065 (2) | 0.0528 (19) | 0.0425 (15) | −0.0022 (15) | 0.0017 (14) | 0.0034 (13) |
C4 | 0.079 (3) | 0.063 (2) | 0.058 (2) | 0.0165 (19) | 0.0020 (18) | 0.0101 (17) |
C5 | 0.057 (2) | 0.096 (3) | 0.0516 (18) | 0.018 (2) | −0.0009 (15) | 0.0060 (19) |
C6 | 0.0455 (17) | 0.087 (3) | 0.0495 (17) | −0.0040 (16) | −0.0013 (13) | −0.0041 (16) |
C7 | 0.0470 (15) | 0.0526 (19) | 0.0434 (14) | −0.0034 (14) | 0.0025 (12) | −0.0033 (12) |
C8 | 0.067 (2) | 0.089 (3) | 0.076 (2) | −0.001 (2) | 0.0257 (19) | −0.020 (2) |
C9 | 0.072 (2) | 0.059 (2) | 0.072 (2) | −0.0156 (18) | 0.0157 (17) | 0.0108 (17) |
Cs1—O1i | 3.086 (2) | C1—C2 | 1.506 (4) |
Cs1—O1 | 3.631 (3) | C2—C3 | 1.388 (4) |
Cs1—O2ii | 3.206 (3) | C2—C7 | 1.377 (4) |
Cs1—O2 | 3.072 (2) | C3—H3 | 0.9300 |
Cs1—O3iii | 3.431 (2) | C3—C4 | 1.374 (5) |
Cs1—O3i | 3.507 (3) | C4—H4 | 0.9300 |
Cs1—O4ii | 3.310 (2) | C4—C5 | 1.369 (6) |
Cs1—O5 | 3.112 (3) | C5—H5 | 0.9300 |
Cs1—O5iv | 3.418 (4) | C5—C6 | 1.367 (6) |
O5—H5A | 0.853 (10) | C6—H6 | 0.9300 |
O5—H5B | 0.856 (10) | C6—C7 | 1.379 (4) |
P1—O2 | 1.468 (2) | C7—H7 | 0.9300 |
P1—O3 | 1.588 (2) | C8—H8A | 0.9600 |
P1—O4 | 1.567 (3) | C8—H8B | 0.9600 |
P1—N1 | 1.597 (3) | C8—H8C | 0.9600 |
O1—C1 | 1.247 (3) | C9—H9A | 0.9600 |
O3—C8 | 1.428 (4) | C9—H9B | 0.9600 |
O4—C9 | 1.402 (4) | C9—H9C | 0.9600 |
N1—C1 | 1.325 (4) | ||
O1i—Cs1—O5iv | 93.03 (7) | C1—O1—Cs1i | 141.26 (18) |
O1i—Cs1—O5 | 111.22 (7) | C1—O1—Cs1 | 109.9 (2) |
O1i—Cs1—O1 | 95.18 (5) | Cs1—O2—Cs1ii | 112.10 (7) |
O1i—Cs1—O2ii | 89.03 (6) | P1—O2—Cs1 | 131.74 (14) |
O1i—Cs1—O3iii | 169.01 (6) | P1—O2—Cs1ii | 108.03 (13) |
O1i—Cs1—O3i | 59.31 (5) | Cs1vi—O3—Cs1i | 88.49 (5) |
O1i—Cs1—O4ii | 68.92 (7) | P1—O3—Cs1i | 105.47 (10) |
O2ii—Cs1—O5iv | 169.77 (6) | P1—O3—Cs1vi | 124.13 (11) |
O2—Cs1—O5 | 155.59 (8) | C8—O3—Cs1i | 107.7 (2) |
O2—Cs1—O5iv | 102.27 (6) | C8—O3—Cs1vi | 102.3 (2) |
O2ii—Cs1—O1 | 123.43 (5) | C8—O3—P1 | 122.6 (2) |
O2—Cs1—O1 | 56.40 (6) | P1—O4—Cs1ii | 100.77 (10) |
O2—Cs1—O1i | 85.16 (6) | C9—O4—Cs1ii | 131.0 (2) |
O2—Cs1—O2ii | 67.90 (7) | C9—O4—P1 | 127.1 (2) |
O2—Cs1—O3iii | 103.57 (6) | C1—N1—P1 | 121.5 (2) |
O2ii—Cs1—O3iii | 100.36 (6) | O1—C1—N1 | 126.3 (3) |
O2—Cs1—O3i | 136.23 (6) | O1—C1—C2 | 118.8 (3) |
O2ii—Cs1—O3i | 129.70 (5) | N1—C1—C2 | 114.9 (2) |
O2—Cs1—O4ii | 104.60 (6) | C3—C2—C1 | 120.0 (3) |
O2ii—Cs1—O4ii | 43.69 (6) | C7—C2—C1 | 121.3 (3) |
O3i—Cs1—O1 | 99.23 (5) | C7—C2—C3 | 118.7 (3) |
O3iii—Cs1—O1 | 84.44 (5) | C2—C3—H3 | 119.7 |
O3iii—Cs1—O3i | 109.86 (5) | C4—C3—C2 | 120.6 (3) |
O4ii—Cs1—O5iv | 145.89 (7) | C4—C3—H3 | 119.7 |
O4ii—Cs1—O1 | 157.27 (6) | C3—C4—H4 | 120.0 |
O4ii—Cs1—O3iii | 114.31 (7) | C5—C4—C3 | 120.0 (4) |
O4ii—Cs1—O3i | 86.73 (6) | C5—C4—H4 | 120.0 |
O5—Cs1—O5iv | 95.01 (7) | C4—C5—H5 | 120.0 |
O5iv—Cs1—O1 | 46.41 (6) | C6—C5—C4 | 119.9 (3) |
O5—Cs1—O1 | 135.19 (7) | C6—C5—H5 | 120.0 |
O5—Cs1—O2ii | 93.57 (7) | C5—C6—H6 | 119.8 |
O5iv—Cs1—O3iii | 78.73 (7) | C5—C6—C7 | 120.4 (3) |
O5—Cs1—O3i | 67.78 (8) | C7—C6—H6 | 119.8 |
O5—Cs1—O3iii | 62.88 (7) | C2—C7—C6 | 120.3 (3) |
O5iv—Cs1—O3i | 59.24 (6) | C2—C7—H7 | 119.9 |
O5—Cs1—O4ii | 67.35 (7) | C6—C7—H7 | 119.9 |
Cs1—O5—Cs1v | 95.57 (9) | O3—C8—H8A | 109.5 |
Cs1—O5—H5A | 138 (3) | O3—C8—H8B | 109.5 |
Cs1v—O5—H5A | 86 (4) | O3—C8—H8C | 109.5 |
Cs1v—O5—H5B | 82 (4) | H8A—C8—H8B | 109.5 |
Cs1—O5—H5B | 93 (3) | H8A—C8—H8C | 109.5 |
H5A—O5—H5B | 129 (3) | H8B—C8—H8C | 109.5 |
O2—P1—O3 | 105.88 (13) | O4—C9—H9A | 109.5 |
O2—P1—O4 | 106.13 (15) | O4—C9—H9B | 109.5 |
O2—P1—N1 | 122.26 (14) | O4—C9—H9C | 109.5 |
O3—P1—N1 | 110.27 (14) | H9A—C9—H9B | 109.5 |
O4—P1—O3 | 106.15 (15) | H9A—C9—H9C | 109.5 |
O4—P1—N1 | 105.09 (13) | H9B—C9—H9C | 109.5 |
Cs1i—O1—Cs1 | 84.82 (5) | ||
Cs1—O1—C1—N1 | −62.6 (3) | O4—P1—O3—Cs1i | −165.17 (10) |
Cs1i—O1—C1—N1 | 44.7 (5) | O4—P1—O3—Cs1vi | −66.28 (16) |
Cs1—O1—C1—C2 | 117.8 (2) | O4—P1—O3—C8 | 71.3 (3) |
Cs1i—O1—C1—C2 | −135.0 (3) | O4—P1—N1—C1 | 176.7 (2) |
P1—N1—C1—O1 | −2.4 (5) | N1—P1—O2—Cs1 | −13.3 (3) |
P1—N1—C1—C2 | 177.2 (2) | N1—P1—O2—Cs1ii | 131.82 (14) |
O1—C1—C2—C3 | 18.9 (4) | N1—P1—O3—Cs1vi | −179.60 (12) |
O1—C1—C2—C7 | −162.7 (3) | N1—P1—O3—Cs1i | 81.52 (12) |
O2—P1—O3—Cs1i | −52.64 (14) | N1—P1—O3—C8 | −42.0 (3) |
O2—P1—O3—Cs1vi | 46.24 (18) | N1—P1—O4—Cs1ii | −141.69 (12) |
O2—P1—O3—C8 | −176.2 (3) | N1—P1—O4—C9 | 27.5 (4) |
O2—P1—O4—Cs1ii | −10.89 (15) | N1—C1—C2—C3 | −160.8 (3) |
O2—P1—O4—C9 | 158.3 (3) | N1—C1—C2—C7 | 17.7 (4) |
O2—P1—N1—C1 | 56.0 (3) | C1—C2—C3—C4 | 178.3 (3) |
O3—P1—O2—Cs1 | 113.94 (18) | C1—C2—C7—C6 | −179.3 (2) |
O3—P1—O2—Cs1ii | −100.92 (13) | C2—C3—C4—C5 | 0.7 (5) |
O3—P1—O4—Cs1ii | 101.47 (12) | C3—C2—C7—C6 | −0.8 (4) |
O3—P1—O4—C9 | −89.4 (3) | C3—C4—C5—C6 | −0.2 (5) |
O3—P1—N1—C1 | −69.3 (3) | C4—C5—C6—C7 | −0.8 (5) |
O4—P1—O2—Cs1ii | 11.62 (16) | C5—C6—C7—C2 | 1.3 (5) |
O4—P1—O2—Cs1 | −133.52 (18) | C7—C2—C3—C4 | −0.2 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) x, −y+3/2, z+1/2; (iv) −x+1, y−1/2, −z+3/2; (v) −x+1, y+1/2, −z+3/2; (vi) x, −y+3/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O1v | 0.85 (1) | 2.05 (3) | 2.785 (3) | 143 (4) |
O5—H5B···O2iii | 0.86 (1) | 1.87 (1) | 2.721 (4) | 170 (4) |
Symmetry codes: (iii) x, −y+3/2, z+1/2; (v) −x+1, y+1/2, −z+3/2. |
Funding information
Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 19BF037-05).
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Abingdon, England. Google Scholar
Amirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). Ligands. Synthesis, Characterization and Role in Biotechnology, edited by P. Gawryszewska & P. Smolenski, ch. 7, pp. 199–248. New York: Nova Science Publishers. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kariaka, N. S., Kolotilov, S. V., Gawryszewska, P., Kasprzycka, E., Weselski, M., Dyakonenko, V. V., Shishkina, S. V., Trush, V. A. & Amirkhanov, V. M. (2019). Inorg. Chem. 58, 14682–14692. Web of Science CSD CrossRef CAS PubMed Google Scholar
Leclaire, A. (2008). J. Solid State Chem. 181, 2338–2345. Web of Science CrossRef CAS Google Scholar
Litsis, O. O., Ovchynnikov, V. A., Sliva, T. Y., Konovalova, I. S. & Amirkhanov, V. M. (2010). Acta Cryst. E66, m426–m427. Web of Science CSD CrossRef IUCr Journals Google Scholar
Litsis, O. O., Shatrava, I. O., Amirkhanov, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V., Dyakonenko, V. V., Shishkin, O. V. & Amirkhanov, V. M. (2016). Struct. Chem. 27, 341–355. Web of Science CSD CrossRef CAS Google Scholar
Mizrahi, V. & Modro, T. A. (1982). Cryst. Struct. Commun. 11, 627–631. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007–1014. Web of Science CSD CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. Google Scholar
Vikulova, E. S., Zherikova, K. V., Kuratieva, N. V., Morozova, N. B. & Igumenov, I. K. (2013). J. Coord. Chem. 66, 2235–2249. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.