research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Organic–inorganic hybrid hexa­chlorido­stannate(IV) with 2-methyl­imidazo[1,5-a]pyridin-2-ium cation

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine, and bSchool of Molecular Sciences, M310, the University of Western Australia, 35 Stirling Highway, Perth, 6009, W.A., Australia
*Correspondence e-mail: vassilyeva@univ.kiev.ua

Edited by S. Parkin, University of Kentucky, USA (Received 12 December 2022; accepted 11 January 2023; online 19 January 2023)

The hybrid salt bis­(2-methyl­imidazo[1,5-a]pyridin-2-ium) hexa­chlorido­stannate(IV), (C8H9N2)2[SnCl6], crystallizes in the monoclinic space group P21/n with the asymmetric unit containing an Sn0.5Cl3 fragment (Sn site symmetry [\overline{1}]) and one organic cation. The five- and six-membered rings in the cation are nearly coplanar; bond lengths in the pyridinium ring of the fused core are as expected; the C—N/C bond distances in the imidazolium entity fall in the range 1.337 (5)–1.401 (5) Å. The octa­hedral SnCl62– dianion is almost undistorted with the Sn–Cl distances varying from 2.4255 (9) to 2.4881 (8) Å and the cis Cl—Sn—Cl angles approaching 90°. In the crystal, π-stacked chains of cations and loosely packed SnCl62– dianions form separate sheets alternating parallel to (101). Most of the numerous C—H⋯Cl—Sn contacts between the organic and inorganic counterparts with the H⋯Cl distances above the van der Waals contact limit of 2.85 Å are considered a result of crystal packing.

1. Chemical context

Organic–inorganic hybrid perovskites that combine discrete organic cations and rigid metal halide architectures have been considered promising materials for diverse optoelectronic applications: solar cells, light-emitting diodes, photodetectors, spintronics (Gan et al., 2021[Gan, Z., Cheng, Y., Chen, W., Loh, K. P., Jia, B. & Wen, X. (2021). Adv. Sci. 8, 2001843.]; Li et al., 2021[Li, D., Zhang, D., Lim, K. S., Hu, Y., Rong, Y., Mei, A., Park, N. G. & Han, H. (2021). Adv. Funct. Mater. 31, 2008621.]). Most of the materials reported to date are based on PbII, SbIII, BiIII and CdII halides (Saparov & Mitzi, 2016[Saparov, B. & Mitzi, D. B. (2016). Chem. Rev. 116, 4558-4596.]), whose widespread application is restrained by the potential toxicity. Being in the same main group of metal atoms that Pb belongs to, Sn forms hybrid halide perovskites with similar electronic properties, which are more friendly to the environment. At the same time, the aforementioned hybrid systems suffer from high water permeability and low thermal stability, the issues being largely related to the volatility of small organic cations (Leijtens et al., 2015[Leijtens, T., Eperon, G. E., Noel, N. K., Habisreutinger, S. N., Petrozza, A. & Snaith, H. J. (2015). Adv. Energy Mater. 5, 1500963.]). The stability of hybrid perovskites can be improved by introducing larger organic cations and lowering the dimensionality of the octa­hedral halometallate frameworks (Zhang et al., 2016[Zhang, Y., Liu, J., Wang, Z., Xue, Y., Ou, Q., Polavarapu, L., Zheng, J., Qi, X. & Bao, Q. (2016). Chem. Commun. 52, 13637-13655.]; Leblanc et al., 2019[Leblanc, A., Mercier, N., Allain, M., Dittmer, J., Pauporté, T., Fernandez, V., Boucher, F., Kepenekian, M. & Katan, C. (2019). Appl. Mater. Interfaces, 11, 20743-20751.]). Moreover, functional organic cations are a valuable tool for introducing useful properties into the hybrid structure. For example, the use of the photoactive zwitterion viologen N,N′-4,4′-bipyridiniodipropionate (CV) afforded the formation of the covalently bonded pillared layered bromo­plumbate, [Pb3Br6(CV)]n, showing high thermal stability in air and a remarkable increase of capacitance after photoinduced electron transfer (Sun et al., 2019[Sun, C., Wang, M. S. & Guo, G. C. (2019). Appl. Mater. Interfaces, 11, 30713-30718.]). Mono-periodic hybrid lead halides incorporating optically active protonated 1,3-bis­(4-pyrid­yl)-propane cations exhibit dual-light emissions combined of higher energy blue and lower energy yellow light spectra, which were attributed to the individual contributions of the organic and inorganic components (Sun et al., 2021[Sun, X. Y., Yue, M., Jiang, Y. X., Zhao, C. H., Liao, Y. Y., Lei, X. W. & Yue, C. Y. (2021). Inorg. Chem. 60, 1491-1498.]).

[Scheme 1]

Multiple advantages of the organic–inorganic hybrid materials inspire the huge appeal in exploring other kinds of low-dimensional metal halide compounds templated by functional aromatic cations. Fine-tuning of the electronic structure and optoelectronic properties of the metal halide hybrids, which depend, among other things, on the anionic speciation and halogen ratio, can be achieved by mixing halide ligands in self-assembled organic–inorganic systems (Rogers et al., 2019[Rogers, R. D., Gurau, G., Kelley, S. P., Kore, R. & Shamshina, J. L. (2019). University of Alabama (UA), US Patent 10, 357, 762.]; Askar et al., 2018[Askar, A. M., Karmakar, A., Bernard, G. M., Ha, M., Terskikh, V. V., Wiltshire, B. D., Patel, S., Fleet, J., Shankar, K. & Michaelis, V. K. (2018). J. Phys. Chem. Lett. 9, 2671-2677.]).

Pursuing our research on hybrid halometalates incorporating substituted imidazo[1,5-a]pyridinium cations (Buvaylo et al., 2015[Buvaylo, E. A., Kokozay, V. N., Linnik, R. P., Vassilyeva, O. Y. & Skelton, B. W. (2015). Dalton Trans. 44, 13735-13744.]; Vassilyeva et al., 2019[Vassilyeva, O. Y., Buvaylo, E. A., Kokozay, V. N., Skelton, B. W., Rajnák, C., Titiš, J. & Boča, R. (2019). Dalton Trans. 48, 11278-11284.]; 2020[Vassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096-5105.]; 2021[Vassilyeva, O. Y., Buvaylo, E. A., Lobko, Y. V., Linnik, R. P., Kokozay, V. N. & Skelton, B. W. (2021). RSC Adv. 11, 7713-7722.]), we attempted the synthesis of a hybrid tin mixed halide with 2-methyl­imidazo[1,5-a]pyridinium, L+, a product of the oxidative cyclo­condensation between 2-pyridine­carbaldehyde (2-PCA), formaldehyde and CH3NH2. One necessary component of the reaction is acid, which is introduced as a hydro­halide adduct of the amine (Vassilyeva et al., 2020[Vassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096-5105.]). Following the method of preparation used to obtain mixed-halide ZnII and CdII tetra­halometalates (Cl/I, Br/Cl) with L+ (Vassilyeva et al., 2022[Vassilyeva, O. Y., Buvaylo, E. A., Kokozay, V. N. & Skelton, B. W. (2022). Acta Cryst. E78, 359-364.]), SnCl2·2H2O was reacted with the solution of L+ formed in situ using 2-PCA, formaldehyde and CH3NH2·HBr. The isolated product was crystallographically characterized as [L]2[SnCl6], (I)[link]; the detrimental oxidation of SnII to SnIV appeared unavoidable leading to the formation of ubiquitous hexa­chlorido­stannate(IV) dianion. Herein, the synthesis, structural analysis and spectroscopic characterization of (I)[link] are reported.

2. Structural commentary

The title hybrid salt, with formula (C8H9N2)2[SnCl6], crystallizes in the monoclinic space group P21/n. The asymmetric unit consists of an Sn0.5Cl3 fragment (Sn site symmetry [\overline{1}]) and 2-methyl­imidazo[1,5-a]pyridinium cation, as shown in Fig. 1[link]. The structural configuration of the cation is similar to those of other 2-methyl­imidazo[1,5-a]pyridinium hybrid salts (C8H9N2)2[ZnCl4] (GOTHAB; Vassilyeva et al., 2020[Vassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096-5105.]) and (C8H9N2)2[CdCl4] (GOTJAD; Vassilyeva et al., 2021[Vassilyeva, O. Y., Buvaylo, E. A., Lobko, Y. V., Linnik, R. P., Kokozay, V. N. & Skelton, B. W. (2021). RSC Adv. 11, 7713-7722.]). Bond lengths in the pyridinium ring of the fused core are as expected; the C—N/C bond distances in the imidazolium entity fall in the range 1.337 (5)–1.401 (5) Å; N2 and N3A atoms are planar with the sums of three angles being equal to 360°. The almost coplanar five- and six-membered rings in the cation show the dihedral angle between them of 1.6 (2)°. The octa­hedral SnCl62– dianion in (I)[link] is almost undistorted with the Sn—Cl distances varying from 2.4255 (9) to 2.4881 (8) Å and the cis Cl—Sn—Cl angles approaching 90° (Table 1[link]). The geometric parameters of the dianion are normal and comparable to those of similar structure types.

Table 1
Selected geometric parameters (Å, °)

Sn1—Cl1 2.4255 (9) Sn1—Cl2 2.4881 (8)
Sn1—Cl3 2.4777 (8)    
       
Cl1i—Sn1—Cl3 89.72 (3) Cl3—Sn1—Cl2i 90.59 (3)
Cl1—Sn1—Cl3 90.28 (3) Cl1—Sn1—Cl2 89.80 (3)
Cl1—Sn1—Cl2i 90.20 (3) Cl3—Sn1—Cl2 89.41 (3)
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
Mol­ecular structure of (I)[link] with atom labelling showing 50% displacement ellipsoids. [Symmetry code: (i) −x + 1, −y + 1, −z + 1.]

3. Supra­molecular features

In the crystal, cationic and anionic sheets alternate lying parallel to (101) (Fig. 2[link]). In the sheets, pairs of centrosymmetically related trans-oriented L+ cations demonstrate offset 10πe–10πe stacking with a centroid–centroid distance of 3.530 (2) Å (Fig. 3[link]). The pairs further form π-bonded chains with a distance of 3.713 (2) Å between neighbouring pyridin­ium ring centroids. In the anion sheet, loose packing of SnCl62– dianions that are identically stacked one above the other with the shortest Sn–Cl⋯Cl–Sn distance being 4.4433 (12) Å, results in a closest separation of 7.7926 (1) Å between the metal atoms. The hybrid salt lacks classical hydrogen-bonding inter­actions but shows a variety of C—H⋯Cl—Sn contacts between the organic and inorganic counterparts (Table 2[link]), a feature common to hybrid chloro­metalates with nitro­gen-containing aromatic cations (Coleman et al., 2013[Coleman, F., Feng, G., Murphy, R. W., Nockemann, P., Seddon, K. R. & Swadźba-Kwaśny, M. (2013). Dalton Trans. 42, 5025-5035.]). Most of these contacts are longer than the van der Waals contact limit of 2.85 Å (Cl) (Mantina et al., 2009[Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. (2009). J. Phys. Chem. A, 113, 5806-5812.]) and can be considered a result of crystal packing.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cl3ii 0.95 2.97 3.614 (5) 126
C3—H3⋯Cl2iii 0.95 2.65 3.549 (4) 158
C3—H3⋯Cl1iii 0.95 2.91 3.483 (4) 120
C4—H4⋯Cl3iii 0.95 2.96 3.473 (4) 115
C7—H7⋯Cl3iv 0.95 2.96 3.746 (5) 141
C7—H7⋯Cl1iv 0.95 2.91 3.605 (4) 131
C2—H2A⋯Cl1iii 0.98 2.86 3.668 (5) 140
C2—H2B⋯Cl2v 0.98 2.91 3.658 (5) 134
C2—H2C⋯Cl2i 0.98 2.87 3.804 (4) 161
C2—H2C⋯Cl1 0.98 2.96 3.615 (4) 125
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) x, y+1, z; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [x-1, y, z].
[Figure 2]
Figure 2
Projection of the crystal packing of (I)[link] on the bc plane showing organic and inorganic sheets alternating parallel to the (101) plane.
[Figure 3]
Figure 3
Fragment of the π-stacked chain built of pairs of L+ cations of (I)[link].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures including substituted imidazo[1,5-a]pyridinium cations gave 53 salts with about a half (23) reported by our research group. The latter comprise organic–inorganic hybrids with the L+ cation or its derivatives [2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium and 2,2′-(ethane-1,2-diyl)bis(imidazo[1,5-a]pyridin-2-ium)] counterbalanced by transition and main-group (Mn, Cu, Zn, Cd, Pb) halometalates. The other comp­ounds in the CSD with cations similar to L+ are mostly organic salts with the imidazo[1,5-a]pyridinium core having various substituents in the rings. Perchlorate NAKNET (Mishra, et al., 2005[Mishra, D., Naskar, S., Adhikary, B., Butcher, R. J. & Chattopadhyay, S. K. (2005). Polyhedron, 24, 201-208.]) and hexa­fluoro­phosphate DIWYEP (Kriechbaum, et al., 2014[Kriechbaum, M., Otte, D., List, M. & Monkowius, U. (2014). Dalton Trans. 43, 8781-8791.]), which bear methyl­phenyl and di­methyl­phenyl substituents, respectively, in place of the methyl group in L+ are the most closely related. Structures of main group halometalates with substituted imidazo[1,5-a]pyridinium cations are limited to a few examples such as bis­[2-(6-methyl­pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] di­chloro­gold tetra­chloro­gold (SUWVIR; Nandy et al., 2016[Nandy, A., Samanta, T., Mallick, S., Mitra, P., Seth, S. K., Saha, K. D., Al-Deyab, S. S. & Dinda, J. (2016). New J. Chem. 40, 6289-6298.]) and 2-(2-ammonio­cyclo­hex­yl)-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium hexa­bromo­tell­urium aceto­nitrile solvate (TEVVIB; Vasudevan et al., 2012[Vasudevan, K. V., Scott, B. L. & Gordon, J. C. (2012). Main Group Chem. 11, 45-52.]).

Within the variety of 279 crystal structures in the CSD comprising [SnCl6]2– dianions, the latter are mostly highly symmetrical being associated with special positions. The structures including organic counterparts can be seen as an arrangement of alternating organic and inorganic layers supported by hydrogen bonds of the N–H⋯Cl type in the case of protonated N-containing cations. An organic–inorganic hybrid compound with the structure most similar to that of the title compound is, for example, monoclinic bis­[1-(prop-2-en-1-yl)-1H-imidazol-3-ium] hexa­chlorido­stannate(IV), in space group P21/n, with layers formed by isolated [SnCl6]2– octa­hedra and (C6H9N2)+ organic cations, which propagate along the a-axis direction at y = 0 and y = 1/2 (Ferjani, 2020[Ferjani, H. (2020). Acta Cryst. E76, 1624-1628.]).

5. Synthesis and crystallization

Synthesis of [L]2[SnCl6] (I)[link]. Solid CH3NH2·HBr (0.45 g, 4 mmol) was added to the warm formaldehyde solution prepared by dissolving paraform (0.13 g, 4.5 mmol) in boiling deionized water (10 ml) in a 50 ml conical flask. The solution was stirred vigorously for 1 h at room temperature and filtered. On the following day, 2-PCA (0.38 ml, 4 mmol) was introduced into the flask under stirring, followed by the addition of SnCl2·2H2O (0.22 g, 1 mmol) dissolved in ethanol (10 ml) in 30 min. The solution was kept magnetically stirred at room temperature for another hour, then filtered to remove Sn(OH)2 and allowed to evaporate. It was diluted with methanol (5 ml) since it was thickening. Pale-yellow needles of (I)[link] suitable for X-ray crystallography formed over three months after successive addition of iPrOH (5 ml). The crystals were filtered off, washed with diethyl ether and dried in air. Yield: 12% (based on Sn). FT–IR (ν, cm−1): 3422br, 3122vs, 3092vs, 3050vs, 3014, 2956, 2914, 1654, 1566, 1544, 1454, 1374, 1352, 1328, 1258, 1222, 1148vs, 1130, 1038, 986, 920, 789vs, 764, 742, 666, 624vs, 498, 468, 434. 1H NMR (400 MHz, DMSO-d6): δ (ppm) 9.83 (s, 1H, HC3), 8.69 (d, 1H, J = 6.8 Hz, HC4), 8.24 (s, 1H, HC1), 7.82 (d, 1H, J = 9.2 Hz, HC7), 7.22 (t, 1H, J = 8.2 Hz, HC5), 7.13 (t, 1H, J = 6.7 Hz, HC6), 4.27 (s, 3H, CH3). Analysis calculated for C16H18N4SnCl6 (597.73): C 32.15; H 3.04; N 9.37%. Found: C 32.40; H 2.88; N 9.19%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms were included in calculated positions and refined using a riding model with isotropic displacement parameters based on those of the parent atom (C—H = 0.95 Å, Uiso(H) = 1.2UeqC for CH, C—H = 0.98 Å, Uiso(H) = 1.5UeqC for CH3). Anisotropic displacement parameters were employed for the non-hydrogen atoms.

Table 3
Experimental details

Crystal data
Chemical formula (C8H9N2)2[SnCl6]
Mr 597.73
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 7.7926 (1), 12.1425 (1), 11.7114 (1)
β (°) 101.082 (1)
V3) 1087.49 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.92
Crystal size (mm) 0.38 × 0.20 × 0.13
 
Data collection
Diffractometer Oxford Diffraction Gemini-R Ultra
Absorption correction Analytical [CrysAlis PRO (Rigaku OD, 2016[Rigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]); analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.618, 0.802
No. of measured, independent and observed [I > 2σ(I)] reflections 18730, 2215, 2108
Rint 0.035
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.098, 1.00
No. of reflections 2215
No. of parameters 125
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.54, −1.15
Computer programs: CrysAlis PRO (Rigaku OD, 2016[Rigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT2015/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2016); cell refinement: CrysAlis PRO (Rigaku OD, 2016); data reduction: CrysAlis PRO (Rigaku OD, 2016); program(s) used to solve structure: SHELXT2015/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).

Bis(2-methylimidazo[1,5-a]pyridin-2-ium) hexachloridostannate(IV) top
Crystal data top
(C8H9N2)2[SnCl6]F(000) = 588
Mr = 597.73Dx = 1.825 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.7926 (1) ÅCell parameters from 17399 reflections
b = 12.1425 (1) Åθ = 2.4–37.5°
c = 11.7114 (1) ŵ = 1.92 mm1
β = 101.082 (1)°T = 100 K
V = 1087.49 (2) Å3Needle, pale yellow
Z = 20.38 × 0.20 × 0.13 mm
Data collection top
Oxford Diffraction Gemini-R Ultra
diffractometer
2215 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2108 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 26.4°, θmin = 2.4°
Absorption correction: analytical
[CrysAlisPro (Rigaku OD, 2016); analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
h = 99
Tmin = 0.618, Tmax = 0.802k = 1515
18730 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.050P)2 + 6.970P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2215 reflectionsΔρmax = 1.54 e Å3
125 parametersΔρmin = 1.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.5000000.5000000.5000000.01497 (14)
Cl10.35555 (12)0.63407 (8)0.60266 (8)0.0195 (2)
Cl20.78853 (11)0.57935 (7)0.59047 (7)0.01241 (19)
Cl30.52226 (11)0.37088 (7)0.66602 (7)0.0141 (2)
C10.0945 (5)0.8366 (3)0.5329 (4)0.0206 (8)
H10.0487480.7986250.5913560.025*
N20.0816 (4)0.8046 (3)0.4195 (3)0.0199 (7)
C20.0015 (6)0.7034 (4)0.3679 (4)0.0250 (9)
H2A0.0235050.7094720.2828910.038*
H2B0.1124560.6923240.3939190.038*
H2C0.0759900.6406360.3923530.038*
N3A0.2249 (4)0.9583 (3)0.4373 (3)0.0190 (7)
C30.1607 (5)0.8781 (3)0.3620 (4)0.0206 (8)
H30.1699200.8742450.2824210.025*
C40.3127 (5)1.0545 (3)0.4176 (4)0.0222 (8)
H40.3345191.0709780.3423280.027*
C50.3661 (5)1.1237 (4)0.5076 (4)0.0232 (9)
H50.4258961.1896130.4957170.028*
C60.3333 (6)1.0986 (4)0.6211 (4)0.0251 (9)
H60.3736381.1476210.6837210.030*
C7A0.1860 (5)0.9340 (3)0.5465 (3)0.0185 (8)
C70.2459 (6)1.0064 (3)0.6405 (4)0.0214 (9)
H70.2250170.9904310.7160160.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0167 (2)0.0148 (2)0.0133 (2)0.00138 (12)0.00244 (14)0.00014 (12)
Cl10.0212 (5)0.0206 (5)0.0163 (4)0.0061 (3)0.0027 (3)0.0021 (3)
Cl20.0146 (4)0.0125 (4)0.0100 (4)0.0003 (3)0.0023 (3)0.0006 (3)
Cl30.0182 (4)0.0135 (4)0.0104 (4)0.0010 (3)0.0023 (3)0.0003 (3)
C10.0206 (19)0.021 (2)0.0205 (19)0.0058 (15)0.0052 (15)0.0039 (15)
N20.0186 (16)0.0202 (17)0.0210 (17)0.0036 (13)0.0041 (13)0.0026 (13)
C20.024 (2)0.023 (2)0.027 (2)0.0007 (16)0.0010 (17)0.0001 (17)
N3A0.0171 (16)0.0225 (18)0.0173 (16)0.0037 (13)0.0027 (13)0.0041 (13)
C30.0182 (18)0.023 (2)0.0201 (19)0.0039 (15)0.0032 (15)0.0035 (16)
C40.0195 (19)0.022 (2)0.026 (2)0.0030 (16)0.0054 (16)0.0068 (16)
C50.0193 (19)0.021 (2)0.029 (2)0.0039 (15)0.0043 (16)0.0036 (17)
C60.023 (2)0.025 (2)0.027 (2)0.0074 (17)0.0017 (17)0.0025 (17)
C7A0.0157 (18)0.0229 (19)0.0178 (19)0.0077 (15)0.0057 (14)0.0051 (15)
C70.022 (2)0.023 (2)0.020 (2)0.0074 (15)0.0052 (16)0.0010 (15)
Geometric parameters (Å, º) top
Sn1—Cl1i2.4255 (9)C2—H2C0.9800
Sn1—Cl12.4255 (9)N3A—C31.345 (6)
Sn1—Cl32.4777 (8)N3A—C41.395 (5)
Sn1—Cl3i2.4778 (8)N3A—C7A1.401 (5)
Sn1—Cl2i2.4881 (8)C3—H30.9500
Sn1—Cl22.4881 (8)C4—C51.350 (6)
C1—N21.369 (5)C4—H40.9500
C1—C7A1.373 (6)C5—C61.433 (6)
C1—H10.9500C5—H50.9500
N2—C31.337 (5)C6—C71.352 (6)
N2—C21.465 (5)C6—H60.9500
C2—H2A0.9800C7A—C71.416 (6)
C2—H2B0.9800C7—H70.9500
Cl1i—Sn1—Cl1180.0N2—C2—H2C109.5
Cl1i—Sn1—Cl389.72 (3)H2A—C2—H2C109.5
Cl1—Sn1—Cl390.28 (3)H2B—C2—H2C109.5
Cl1i—Sn1—Cl3i90.28 (3)C3—N3A—C4129.1 (4)
Cl1—Sn1—Cl3i89.72 (3)C3—N3A—C7A109.1 (3)
Cl3—Sn1—Cl3i180.00 (2)C4—N3A—C7A121.8 (4)
Cl1i—Sn1—Cl2i89.80 (3)N2—C3—N3A107.6 (4)
Cl1—Sn1—Cl2i90.20 (3)N2—C3—H3126.2
Cl3—Sn1—Cl2i90.59 (3)N3A—C3—H3126.2
Cl3i—Sn1—Cl2i89.41 (3)C5—C4—N3A118.6 (4)
Cl1i—Sn1—Cl290.20 (3)C5—C4—H4120.7
Cl1—Sn1—Cl289.80 (3)N3A—C4—H4120.7
Cl3—Sn1—Cl289.41 (3)C4—C5—C6120.6 (4)
Cl3i—Sn1—Cl290.59 (3)C4—C5—H5119.7
Cl2i—Sn1—Cl2180.0C6—C5—H5119.7
N2—C1—C7A107.2 (4)C7—C6—C5121.1 (4)
N2—C1—H1126.4C7—C6—H6119.4
C7A—C1—H1126.4C5—C6—H6119.4
C3—N2—C1110.1 (4)C1—C7A—N3A105.9 (4)
C3—N2—C2124.2 (4)C1—C7A—C7135.3 (4)
C1—N2—C2125.7 (4)N3A—C7A—C7118.8 (4)
N2—C2—H2A109.5C6—C7—C7A119.0 (4)
N2—C2—H2B109.5C6—C7—H7120.5
H2A—C2—H2B109.5C7A—C7—H7120.5
C7A—C1—N2—C30.2 (4)N2—C1—C7A—N3A0.5 (4)
C7A—C1—N2—C2178.1 (4)N2—C1—C7A—C7178.1 (4)
C1—N2—C3—N3A0.2 (4)C3—N3A—C7A—C10.6 (4)
C2—N2—C3—N3A178.5 (3)C4—N3A—C7A—C1177.7 (3)
C4—N3A—C3—N2177.7 (4)C3—N3A—C7A—C7178.2 (3)
C7A—N3A—C3—N20.5 (4)C4—N3A—C7A—C73.4 (6)
C3—N3A—C4—C5179.8 (4)C5—C6—C7—C7A0.1 (6)
C7A—N3A—C4—C52.2 (6)C1—C7A—C7—C6179.2 (4)
N3A—C4—C5—C60.1 (6)N3A—C7A—C7—C62.3 (6)
C4—C5—C6—C71.1 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cl3ii0.952.973.614 (5)126
C3—H3···Cl2iii0.952.653.549 (4)158
C3—H3···Cl1iii0.952.913.483 (4)120
C4—H4···Cl3iii0.952.963.473 (4)115
C7—H7···Cl3iv0.952.963.746 (5)141
C7—H7···Cl1iv0.952.913.605 (4)131
C2—H2A···Cl1iii0.982.863.668 (5)140
C2—H2B···Cl2v0.982.913.658 (5)134
C2—H2C···Cl2i0.982.873.804 (4)161
C2—H2C···Cl10.982.963.615 (4)125
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x1/2, y+3/2, z1/2; (iv) x+1/2, y+1/2, z+3/2; (v) x1, y, z.
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (project No. 22BP037-13; grant for the perspective development of the scientific direction `Mathematical sciences and natural sciences' at the Taras Shevchenko National University of Kyiv).

References

First citationAskar, A. M., Karmakar, A., Bernard, G. M., Ha, M., Terskikh, V. V., Wiltshire, B. D., Patel, S., Fleet, J., Shankar, K. & Michaelis, V. K. (2018). J. Phys. Chem. Lett. 9, 2671–2677.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBuvaylo, E. A., Kokozay, V. N., Linnik, R. P., Vassilyeva, O. Y. & Skelton, B. W. (2015). Dalton Trans. 44, 13735–13744.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationColeman, F., Feng, G., Murphy, R. W., Nockemann, P., Seddon, K. R. & Swadźba-Kwaśny, M. (2013). Dalton Trans. 42, 5025–5035.  CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerjani, H. (2020). Acta Cryst. E76, 1624–1628.  CSD CrossRef IUCr Journals Google Scholar
First citationGan, Z., Cheng, Y., Chen, W., Loh, K. P., Jia, B. & Wen, X. (2021). Adv. Sci. 8, 2001843.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKriechbaum, M., Otte, D., List, M. & Monkowius, U. (2014). Dalton Trans. 43, 8781–8791.  CSD CrossRef CAS PubMed Google Scholar
First citationLeblanc, A., Mercier, N., Allain, M., Dittmer, J., Pauporté, T., Fernandez, V., Boucher, F., Kepenekian, M. & Katan, C. (2019). Appl. Mater. Interfaces, 11, 20743–20751.  Web of Science CSD CrossRef Google Scholar
First citationLeijtens, T., Eperon, G. E., Noel, N. K., Habisreutinger, S. N., Petrozza, A. & Snaith, H. J. (2015). Adv. Energy Mater. 5, 1500963.  Web of Science CrossRef Google Scholar
First citationLi, D., Zhang, D., Lim, K. S., Hu, Y., Rong, Y., Mei, A., Park, N. G. & Han, H. (2021). Adv. Funct. Mater. 31, 2008621.  CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. (2009). J. Phys. Chem. A, 113, 5806–5812.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMishra, D., Naskar, S., Adhikary, B., Butcher, R. J. & Chattopadhyay, S. K. (2005). Polyhedron, 24, 201–208.  CSD CrossRef CAS Google Scholar
First citationNandy, A., Samanta, T., Mallick, S., Mitra, P., Seth, S. K., Saha, K. D., Al-Deyab, S. S. & Dinda, J. (2016). New J. Chem. 40, 6289–6298.  CSD CrossRef CAS Google Scholar
First citationRigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRogers, R. D., Gurau, G., Kelley, S. P., Kore, R. & Shamshina, J. L. (2019). University of Alabama (UA), US Patent 10, 357, 762.  Google Scholar
First citationSaparov, B. & Mitzi, D. B. (2016). Chem. Rev. 116, 4558–4596.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, C., Wang, M. S. & Guo, G. C. (2019). Appl. Mater. Interfaces, 11, 30713–30718.  CSD CrossRef CAS Google Scholar
First citationSun, X. Y., Yue, M., Jiang, Y. X., Zhao, C. H., Liao, Y. Y., Lei, X. W. & Yue, C. Y. (2021). Inorg. Chem. 60, 1491–1498.  CSD CrossRef CAS PubMed Google Scholar
First citationVassilyeva, O. Y., Buvaylo, E. A., Kokozay, V. N. & Skelton, B. W. (2022). Acta Cryst. E78, 359–364.  CSD CrossRef IUCr Journals Google Scholar
First citationVassilyeva, O. Y., Buvaylo, E. A., Kokozay, V. N., Skelton, B. W., Rajnák, C., Titiš, J. & Boča, R. (2019). Dalton Trans. 48, 11278–11284.  CSD CrossRef CAS PubMed Google Scholar
First citationVassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096–5105.  Web of Science CSD CrossRef CAS Google Scholar
First citationVassilyeva, O. Y., Buvaylo, E. A., Lobko, Y. V., Linnik, R. P., Kokozay, V. N. & Skelton, B. W. (2021). RSC Adv. 11, 7713–7722.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationVasudevan, K. V., Scott, B. L. & Gordon, J. C. (2012). Main Group Chem. 11, 45–52.  CSD CrossRef CAS Google Scholar
First citationZhang, Y., Liu, J., Wang, Z., Xue, Y., Ou, Q., Polavarapu, L., Zheng, J., Qi, X. & Bao, Q. (2016). Chem. Commun. 52, 13637–13655.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds