research communications
2Fe(PO4)3
of barium dinickel(II) iron(III) tris[orthophosphate(V)], BaNiaLaboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Science, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco, and bLaboratoire de Chimie des Matériaux Inorganiques, Faculté des Sciences, Département de Chimie, Université des Sciences et Techniques de Masuku, BP 943, Franceville, Gabon
*Correspondence e-mail: saidouaatta87@gmail.com
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
The orthophosphate BaNi2Fe(PO4)3 has been synthesized by a solid-state reaction route and characterized by single-crystal X-ray diffraction and energy-dispersive The comprises (100) sheets made up of [Ni2O10] dimers that are linked to two PO4 tetrahedra via common edges and vertices and of linear infinite [010] chains of corner-sharing [FeO6] octahedra and [PO4] tetrahedra. The linkage of the sheets and chains into a framework is accomplished through common vertices of PO4 tetrahedra and [FeO6] octahedra. The framework is perforated by channels in which positionally disordered Ba2+ cations are located.
Keywords: crystal structure; orthophosphates; solid-state reactions; α-CrPO4-type structure BaNi2Fe(PO4)3.
CCDC reference: 2172184
1. Chemical context
Phosphate-based materials have been studied extensively in the past. Among them are orthophosphates, which have gained great interest in recent years owing to their structural richness (Maeda, 2004) and their promising applications, for example in electrochemical catalysis (Dwibedi et al., 2020; Cheng et al., 2021; Rekha et al., 2021; Anahmadi et al., 2022). Furthermore, orthophosphates doped with rare-earth cations have shown excellent optical properties (Ci et al., 2014; Li et al., 2021; Indumathi et al., 2022), along with a wide range of applications for use in luminescence emission displays (Li et al., 2008; Wan et al., 2010; Yang et al., 2019; Santos et al., 2022).
In this context, our research interest is connected with tris-orthophosphate-based materials with general formula (A2/B)M2M′(PO4)3, where A can be an alkali, B an alkaline earth and M and M′ transition metal cations. The crystal structures of these orthophosphates adopt the α-CrPO4 type of structure, consisting of a three-dimensional framework made up of [MO6] and [M′O6] octahedra sharing corners and/or edges with PO4 tetrahedra. This framework is permeated by channels in which the A or B cations are located.
We report herein on the synthesis and structural characterization of barium dinickel(II) iron(III) tris-orthophosphate, BaNi2Fe(PO4)3.
2. Structural commentary
The title compound is related to the strontium and calcium homologs MNi2Fe(PO4)3 (M = Sr, Ca; Ouaatta et al., 2015, 2017), all adopting the α-CrPO4 structure type (Attfield et al., 1986). The of BaNi2Fe(PO4)3 is comprised of ten sites, eight of which are on special positions, except the O3 and O4 sites on a general position (Wyckoff position 16 j). Ba1 (site occupation 0.9868) exhibits mm2 (4 e), Ba2 (site occupation 0.0132) 2/m (4 a), Fe1 2/m (4 b), Ni1 2 (8 g), P1 mm2 (4 e), P2 2 (8 g), while O1 and O2 occupy sites with m (8 h) and m (8 i) symmetry, respectively. The framework structure of BaNi2Fe(PO4)3 is composed of extended (100) sheets and linear infinite chains extending parallel to [010] (Fig. 1). The (100) sheets are made up from edge-sharing [Ni2O10] dimers linked to two P2O4 tetrahedra via common edges to form an [Ni2P22O14] unit that is linked to four neighboring units (Fig. 2). Between these sheets appear the linear infinite chains resulting from the alternating linkage of P1O4 tetrahedra and [FeO6] octahedra, which are surrounded by a zigzag arrangement of Ba2+ cations (Fig. 3). The sheets and chains are linked through common vertices of PO4 tetrahedra and [FeO6] octahedra into a framework, which delimits two types of channels parallel to [100] and [010] in which the disordered Ba2+ cations are located (Figs. 4, 5).
To confirm the structure model of BaNi2Fe(PO4)3, the bond-valence method (Brown, 1977; 1978; Brown & Altermatt, 1985) and charge distribution (CHARDI) concept (Hoppe et al., 1989) were employed by making use of the programs EXPO2014 (Altomare et al., 2013) and CHARDI2015 (Nespolo & Guillot, 2016), respectively. Table 1 compiles all cationic valences V(i) computed with the bond-valence method and their related charges Q(i) obtained with the CHARDI concept. The resulting Q(i) and V(i) values are all close to the corresponding charges q(i)×sof(i) [q(i) are formal oxidation numbers weighted by the site occupation factors sof(i)]. In summary, the expected oxidation states of Ba2+, Ni2+, Fe3+ and P5+ are predicted through the charge distribution. The internal criterion q(i)/Q(i) is very near to 1 for all ionic species and the mean absolute percentage deviation (MAPD), which gives a measure for the agreement between the q(i) and Q(i) charges, is just 1.3%, thus confirming the validity of the structure model (Eon & Nespolo, 2015). The global instability index (GII; Salinas-Sanchez et al., 1992) of 0.13 is a further confirmation of the structure model.
|
3. Database survey
It is reasonable to compare the α-CrPO4 (Glaum et al., 1986). Both phosphates crystallize in the orthorhombic system in type Imma. Their unit-cell parameters are nearly the same despite the differences between their chemical formulae. In the structure of α-CrPO4, the Cr3+ and P5+ cations occupy four special positions that are part of a framework is comprised of [CrO6] octahedra and [PO4] tetrahedra. The resultant framework is permeated by vacant channels along [100] and [010]. The formula of α-CrPO4 can be written as X1X2Cr1Cr22(PO4)3, where X1, X2 represent the empty channel sites. Accordingly, the substitution of Cr1 or Cr2 by a divalent cation requires charge compensation by cations located in the channels to result in AA'MM'2(PO4)3 compounds such as BaNi2Fe(PO4)3, or MNi2Fe(PO4)3 (M = Sr, Ca; Ouaatta et al., 2015, 2017). The difference between BaNi2Fe(PO4)3 and the closely related MNi2Fe(PO4)3 structures pertains to the M site, which is split into two sites for the title compound and fully occupied for M = Ca, Sr.
of the title compound with that of4. Synthesis and crystallization
BaNi2Fe(PO4)3 was prepared from a mixture of Ba(NO3)2 (Merck, 98.5%), Ni(NO3)2·6H2O (Riedel-de-Haén, 97%), Fe(NO3)3·9H2O (Panreac, 98%) and H3PO4 (85%wt) in the molar ratio of Ba:Ni:Fe:P = 1:2:1:3. The precursors were suspended in 50 ml of distilled water and stirred without warming for 24 h before heating to dryness at 373 K. The obtained dry residue was ground in an agate mortar until homogeneous, subsequently heated in a platinum crucible up to 673 K to remove volatile decomposition products, and then melted at 1433 K. After being kept at this temperature for one h, the melt was cooled down slowly at a rate of 5 K h−1 to 1233 K and then to room temperature. Single crystals with a brown color and different forms were obtained after leaching with distilled water.
Chemical analysis of the title phosphate was performed with an energy-dispersive TM scanning electron microscope. The EDS spectrum is depicted in Fig. 6 and confirms the presence of only barium, nickel, iron, phosphorus and oxygen in approximately the correct ratios, as shown in Table 2.
(EDS) microprobe mounted on a JEOL JSM-IT100 in TouchScope
|
5. Refinement
Crystal data, data collection and structure . After assignment of the atomic sites according to the related MNi2Fe(PO4)3 structures (M = Sr, Ca; Ouaatta et al., 2015, 2017), a difference-Fourier map revealed a maximum electron density of 3.61 Å−3 that was finally modeled as a considerably underoccupied Ba site (Ba2). For the final model, the sum of site-occupation factors for the Ba1 and Ba2 sites were constrained to be 1. The highest remaining maximum and minimum electronic densities are 0.59 Å and 0.47 Å from Ba1 and Ni1, respectively.
details are summarized in Table 3Supporting information
CCDC reference: 2172184
https://doi.org/10.1107/S2056989023000336/wm5667sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023000336/wm5667Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).BaNi2Fe(PO4)3 | Dx = 4.327 Mg m−3 |
Mr = 595.52 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Imma | Cell parameters from 1460 reflections |
a = 10.4711 (2) Å | θ = 3.1–39.4° |
b = 13.2007 (3) Å | µ = 10.46 mm−1 |
c = 6.6132 (1) Å | T = 296 K |
V = 914.12 (3) Å3 | Block, colourless |
Z = 4 | 0.32 × 0.25 × 0.19 mm |
F(000) = 1116 |
Bruker X8 APEX Diffractometer | 1460 independent reflections |
Radiation source: fine-focus sealed tube | 1440 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
φ and ω scans | θmax = 39.4°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −18→13 |
Tmin = 0.624, Tmax = 0.748 | k = −23→23 |
18099 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.015 | w = 1/[σ2(Fo2) + (0.0147P)2 + 1.8221P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.036 | (Δ/σ)max = 0.001 |
S = 1.21 | Δρmax = 1.33 e Å−3 |
1460 reflections | Δρmin = −0.78 e Å−3 |
58 parameters | Extinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00403 (16) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ba1 | 0.500000 | 0.250000 | 0.39902 (2) | 0.00770 (4) | 0.9868 |
Ba2 | 1.000000 | 0.500000 | 1.000000 | 0.020 (2) | 0.0132 |
Ni1 | 0.750000 | 0.36701 (2) | 0.750000 | 0.00501 (4) | |
Fe1 | 1.000000 | 0.500000 | 0.500000 | 0.00337 (5) | |
P1 | 0.500000 | 0.250000 | 0.90454 (8) | 0.00317 (8) | |
P2 | 0.750000 | 0.57020 (3) | 0.750000 | 0.00365 (6) | |
O1 | 0.500000 | 0.34524 (8) | 1.03493 (17) | 0.00581 (16) | |
O2 | 0.61939 (10) | 0.250000 | 0.76536 (17) | 0.00534 (15) | |
O3 | 0.78276 (8) | 0.63385 (6) | 0.93423 (13) | 0.00771 (12) | |
O4 | 0.86254 (7) | 0.49395 (6) | 0.70839 (12) | 0.00574 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.00681 (5) | 0.01253 (6) | 0.00377 (5) | 0.000 | 0.000 | 0.000 |
Ba2 | 0.014 (5) | 0.041 (8) | 0.006 (4) | 0.000 | 0.000 | 0.000 (4) |
Ni1 | 0.00498 (7) | 0.00383 (7) | 0.00621 (8) | 0.000 | 0.00057 (5) | 0.000 |
Fe1 | 0.00303 (10) | 0.00352 (10) | 0.00355 (10) | 0.000 | 0.000 | 0.00008 (8) |
P1 | 0.00348 (18) | 0.00281 (17) | 0.00322 (18) | 0.000 | 0.000 | 0.000 |
P2 | 0.00380 (13) | 0.00392 (13) | 0.00324 (12) | 0.000 | 0.00055 (10) | 0.000 |
O1 | 0.0078 (4) | 0.0033 (3) | 0.0063 (4) | 0.000 | 0.000 | −0.0014 (3) |
O2 | 0.0042 (4) | 0.0063 (4) | 0.0055 (4) | 0.000 | 0.0016 (3) | 0.000 |
O3 | 0.0096 (3) | 0.0080 (3) | 0.0055 (3) | −0.0024 (2) | 0.0007 (2) | −0.0023 (2) |
O4 | 0.0045 (3) | 0.0058 (3) | 0.0070 (3) | 0.0009 (2) | 0.0016 (2) | 0.0006 (2) |
Ba1—O1i | 2.7163 (11) | Ni1—O4 | 2.0670 (8) |
Ba1—O1ii | 2.7163 (11) | Ni1—O4xii | 2.0670 (8) |
Ba1—O2iii | 2.7262 (11) | Ni1—O3x | 2.1163 (8) |
Ba1—O2 | 2.7262 (11) | Ni1—O3iv | 2.1163 (8) |
Ba1—O3iv | 2.7530 (8) | Fe1—O4 | 1.9944 (8) |
Ba1—O3v | 2.7530 (8) | Fe1—O4ix | 1.9944 (8) |
Ba1—O3vi | 2.7530 (8) | Fe1—O4xiii | 1.9944 (8) |
Ba1—O3vii | 2.7530 (8) | Fe1—O4xiv | 1.9944 (8) |
Ba2—O4 | 2.4077 (8) | Fe1—O1iv | 2.0559 (11) |
Ba2—O4viii | 2.4078 (8) | Fe1—O1xv | 2.0559 (11) |
Ba2—O4ix | 2.4078 (8) | P1—O1 | 1.5246 (11) |
Ba2—O4x | 2.4078 (8) | P1—O1iii | 1.5246 (11) |
Ba2—O3ix | 2.9129 (9) | P1—O2 | 1.5524 (11) |
Ba2—O3x | 2.9129 (9) | P1—O2iii | 1.5524 (11) |
Ba2—O3viii | 2.9129 (9) | P2—O3 | 1.5192 (8) |
Ba2—O3 | 2.9129 (9) | P2—O3xii | 1.5193 (8) |
Ni1—O2xi | 2.0655 (7) | P2—O4xii | 1.5739 (8) |
Ni1—O2 | 2.0655 (7) | P2—O4 | 1.5739 (8) |
O1i—Ba1—O1ii | 55.14 (4) | O4viii—Ba2—O3 | 124.49 (2) |
O1i—Ba1—O2iii | 141.97 (2) | O4ix—Ba2—O3 | 111.55 (2) |
O1ii—Ba1—O2iii | 141.97 (2) | O4x—Ba2—O3 | 68.45 (2) |
O1i—Ba1—O2 | 141.97 (2) | O3ix—Ba2—O3 | 102.68 (3) |
O1ii—Ba1—O2 | 141.97 (2) | O3x—Ba2—O3 | 77.32 (3) |
O2iii—Ba1—O2 | 54.59 (5) | O3viii—Ba2—O3 | 180.0 |
O1i—Ba1—O3iv | 109.44 (2) | O2xi—Ni1—O2 | 83.20 (5) |
O1ii—Ba1—O3iv | 79.47 (2) | O2xi—Ni1—O4 | 102.84 (3) |
O2iii—Ba1—O3iv | 107.68 (3) | O2—Ni1—O4 | 172.00 (3) |
O2—Ba1—O3iv | 63.00 (2) | O2xi—Ni1—O4xii | 172.00 (4) |
O1i—Ba1—O3v | 79.47 (2) | O2—Ni1—O4xii | 102.84 (3) |
O1ii—Ba1—O3v | 109.44 (2) | O4—Ni1—O4xii | 71.66 (4) |
O2iii—Ba1—O3v | 63.00 (2) | O2xi—Ni1—O3x | 86.40 (4) |
O2—Ba1—O3v | 107.68 (3) | O2—Ni1—O3x | 93.14 (4) |
O3iv—Ba1—O3v | 170.30 (4) | O4—Ni1—O3x | 92.48 (3) |
O1i—Ba1—O3vi | 79.47 (2) | O4xii—Ni1—O3x | 88.02 (3) |
O1ii—Ba1—O3vi | 109.44 (2) | O2xi—Ni1—O3iv | 93.14 (4) |
O2iii—Ba1—O3vi | 107.68 (3) | O2—Ni1—O3iv | 86.40 (4) |
O2—Ba1—O3vi | 63.00 (2) | O4—Ni1—O3iv | 88.02 (3) |
O3iv—Ba1—O3vi | 67.69 (4) | O4xii—Ni1—O3iv | 92.48 (3) |
O3v—Ba1—O3vi | 111.43 (4) | O3x—Ni1—O3iv | 179.39 (5) |
O1i—Ba1—O3vii | 109.44 (2) | O2xi—Ni1—P2 | 138.40 (2) |
O1ii—Ba1—O3vii | 79.47 (2) | O2—Ni1—P2 | 138.40 (2) |
O2iii—Ba1—O3vii | 63.00 (2) | O4—Fe1—O4ix | 92.40 (5) |
O2—Ba1—O3vii | 107.68 (3) | O4—Fe1—O4xiii | 87.60 (5) |
O3iv—Ba1—O3vii | 111.43 (4) | O4ix—Fe1—O4xiii | 180.0 |
O3v—Ba1—O3vii | 67.69 (4) | O4—Fe1—O4xiv | 180.0 |
O3vi—Ba1—O3vii | 170.30 (4) | O4ix—Fe1—O4xiv | 87.60 (5) |
O4—Ba2—O4viii | 180.0 | O4xiii—Fe1—O4xiv | 92.40 (5) |
O4—Ba2—O4ix | 73.43 (4) | O4—Fe1—O1iv | 87.83 (3) |
O4viii—Ba2—O4ix | 106.57 (4) | O4ix—Fe1—O1iv | 87.83 (3) |
O4—Ba2—O4x | 106.57 (4) | O4xiii—Fe1—O1iv | 92.17 (3) |
O4viii—Ba2—O4x | 73.43 (4) | O4xiv—Fe1—O1iv | 92.17 (3) |
O4ix—Ba2—O4x | 180.0 | O4—Fe1—O1xv | 92.17 (3) |
O4—Ba2—O3ix | 111.55 (2) | O4ix—Fe1—O1xv | 92.17 (3) |
O4viii—Ba2—O3ix | 68.45 (2) | O4xiii—Fe1—O1xv | 87.83 (3) |
O4ix—Ba2—O3ix | 55.51 (2) | O4xiv—Fe1—O1xv | 87.83 (3) |
O4x—Ba2—O3ix | 124.49 (2) | O1iv—Fe1—O1xv | 180.0 |
O4—Ba2—O3x | 68.45 (2) | O1—P1—O1iii | 111.11 (9) |
O4viii—Ba2—O3x | 111.55 (2) | O1—P1—O2 | 109.59 (3) |
O4ix—Ba2—O3x | 124.49 (2) | O1iii—P1—O2 | 109.59 (3) |
O4x—Ba2—O3x | 55.51 (2) | O1—P1—O2iii | 109.59 (3) |
O3ix—Ba2—O3x | 180.0 | O1iii—P1—O2iii | 109.59 (3) |
O4—Ba2—O3viii | 124.49 (2) | O2—P1—O2iii | 107.28 (9) |
O4viii—Ba2—O3viii | 55.51 (2) | O3—P2—O3xii | 112.84 (7) |
O4ix—Ba2—O3viii | 68.45 (2) | O3—P2—O4xii | 112.49 (4) |
O4x—Ba2—O3viii | 111.55 (2) | O3xii—P2—O4xii | 108.95 (5) |
O3ix—Ba2—O3viii | 77.32 (3) | O3—P2—O4 | 108.95 (5) |
O3x—Ba2—O3viii | 102.68 (3) | O3xii—P2—O4 | 112.49 (4) |
O4—Ba2—O3 | 55.51 (2) | O4xii—P2—O4 | 100.50 (6) |
Symmetry codes: (i) −x+1, −y+1/2, z−1; (ii) x, y, z−1; (iii) −x+1, −y+1/2, z; (iv) −x+3/2, −y+1, z−1/2; (v) x−1/2, y−1/2, z−1/2; (vi) −x+3/2, y−1/2, z−1/2; (vii) x−1/2, −y+1, z−1/2; (viii) −x+2, −y+1, −z+2; (ix) −x+2, y, z; (x) x, −y+1, −z+2; (xi) −x+3/2, −y+1/2, −z+3/2; (xii) −x+3/2, y, −z+3/2; (xiii) x, −y+1, −z+1; (xiv) −x+2, −y+1, −z+1; (xv) x+1/2, y, −z+3/2. |
q(i) = formal oxidation number; sof(i) = site occupancy; CN(i) = classical coordination number; Q(i) = calculated charge; V(i) = calculated valence; ECoN(i) = effective coordination number. |
Cation | q(i) | sof(i) | CN(i) | ECoN(i) | V(i) | Q(i) | q(i)/Q(i) |
Ba1 | 1.98 | 0.99 | 8 | 7.99 | 2.37 | 1.98 | 1.00 |
Ba2 | 0.02 | 0.01 | 8 | 5.43 | 0.02 | 0.99 | |
Ni | 2.00 | 1.00 | 6 | 5.97 | 2.00 | 1.98 | 1.01 |
Fe | 3.00 | 1.00 | 4 | 5.96 | 3.01 | 2.99 | 1.00 |
P1 | 5.00 | 1.00 | 4 | 3.99 | 4.95 | 4.83 | 1.04 |
P2 | 5.00 | 1.00 | 4 | 3.96 | 4.85 | 5.11 | 0.98 |
Element | Atomic percentage | Sigma |
O | 56.74 | 0.13 |
P | 19.60 | 0.16 |
Fe | 5.63 | 0.17 |
Ni | 12.25 | 0.27 |
Ba | 5.78 | 0.30 |
Total | 100.00 |
Acknowledgements
The authors thank the Faculty of Science, Mohammed V University in Rabat, for the X-ray measurements.
References
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231–1235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Anahmadi, H., Fathi, M., El hajri, F., Benzekri, Z., Sibous, S., Idrissi, B. C., El youbi, M. S., Souizi, A. & Boukhris, S. (2022). J. Mol. Struct. 1248, 131449. Web of Science CrossRef Google Scholar
Attfield, J. P., Sleight, A. W. & Cheetham, A. K. (1986). Nature, 322, 620–622. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. (1977). Acta Cryst. B33, 1305–1310. CrossRef CAS IUCr Journals Web of Science Google Scholar
Brown, I. D. (1978). Chem. Soc. Rev. 7, 359–376. CrossRef CAS Web of Science Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker, (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA Google Scholar
Cheng, Q., Zhao, X., Yang, G., Mao, L., Liao, F., Chen, L., He, P., Pan, D. & Chen, S. (2021). Energy Storage Materials, 41, 842–882. Web of Science CrossRef Google Scholar
Ci, Z., Que, M., Shi, Y., Zhu, G. & Wang, Y. (2014). Inorg. Chem. 53, 2195–2199. Web of Science CrossRef CAS PubMed Google Scholar
Dwibedi, D., Barpanda, P. & Yamada, A. (2020). Small Methods, 4, 2000051. Web of Science CrossRef Google Scholar
Eon, J.-G. & Nespolo, M. (2015). Acta Cryst. B71, 34–47. Web of Science CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Glaum, R., Gruehn, R. & Möller, M. (1986). Z. Anorg. Allg. Chem. 543, 111–116. CrossRef ICSD CAS Web of Science Google Scholar
Hoppe, R., Voigt, S., Glaum, H., Kissel, J., Müller, H. P. & Bernet, K. (1989). J. Less-Common Met. 156, 105–122. CrossRef CAS Web of Science Google Scholar
Indumathi, K., Tamilselvan, S., Rajasekaran, L., David, A. D. J., Muhammad, G. S., Ramalingam, G. & Biruntha, M. (2022). Mater. Lett. 309, 131371. Web of Science CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Li, Y. Q., Hirosaki, N., Xie, R. J., Takeda, T. & Mitomo, M. (2008). Chem. Mater. 20, 6704–6714. Web of Science CrossRef ICSD CAS Google Scholar
Li, Z., Geng, X., Wang, Y. & Chen, Y. (2021). J. Lumin. 240, 118428. Web of Science CrossRef Google Scholar
Maeda, K. (2004). Microporous Mesoporous Mater. 73, 47–55. Web of Science CrossRef CAS Google Scholar
Nespolo, M. & Guillot, B. (2016). J. Appl. Cryst. 49, 317–321. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 1255–1258. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2017). Acta Cryst. E73, 893–895. CrossRef ICSD IUCr Journals Google Scholar
Rekha, P., Yadav, S. & Singh, L. (2021). Ceram. Int. 47, 16385–16401. Web of Science CrossRef CAS Google Scholar
Salinas-Sanchez, A., Garcia-Muñoz, J. L., Rodriguez-Carvajal, J., Saez-Puche, R. & Martinez, J. L. (1992). J. Solid State Chem. 100, 201–211. CAS Google Scholar
Santos, R. D. S., Oliveira, J. L., Araujo, R. M. & Rezende, M. V. dos S. (2022). J. Solid State Chem. 306, 122769. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wan, C., Meng, J., Zhang, F., Deng, X. & Yang, C. (2010). Solid State Commun. 150, 1493–1495. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, X., Chen, J., Chai, C., Zheng, S. & Chen, C. (2019). Optik (Stuttg). 198, 163238. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.