research communications
Synthesis and topology analysis of chloridotriphenyl(triphenyl phosphate-κO)tin(IV)
aDépartement de Sciences Appliquées et Technologies Emergentes, Ecole Supérieure des Sciences et Techniques de l'Ingénieur, Université Amadou Mahtar Mbow, BP 45927 Dakar NAFA VDN, Dakar, Senegal, bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, and cLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
*Correspondence e-mail: serigne.pouye@uam.edu.sn, sylvain_bernes@hotmail.com
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
The title SnIV complex, [Sn(C6H5)3Cl(C18H15O4P)], is a formal adduct between triphenyl phosphate (PhO)3P=O and the stannane derivative chloridotriphenyltin, SnPh3Cl. The structure reveals that this molecule displays the largest Sn—O bond length for compounds including the X=O→SnPh3Cl fragment (X = P, S, C, or V), 2.6644 (17) Å. However, an AIM topology analysis based on the wavefunction calculated from the refined X-ray structure shows the presence of a bond (3,−1), lying on the interbasin surface separating the coordinated phosphate O atom and the Sn atom. This study thus shows that an actual polar is formed between (PhO)3P=O and SnPh3Cl moieties.
Keywords: crystal structure; stannane; triphenylphosphate; QTAIM; topology analysis.
CCDC reference: 2235598
1. Chemical context
An interesting feature of tin(IV) is its ability to perform as a hypervalent centre: pentacoordinated tin compounds, like chlorido(dimethyl sulfoxide)triphenyltin, SnPh3(DMSO)Cl (Pouye et al., 2018), are as common as tetracoordinated tin compounds, for example chloridotriphenyltin, SnPh3Cl (Tse et al., 1986; Ng, 1995). This leaves the possibility open to synthesize compounds with intermediate valency, between four and five. The title compound is such a compound, which is formally obtained as the adduct of SnPh3Cl and triphenylphosphate, (PhO)3P=O, for which the X-ray structure is available (Svetich & Caughlan, 1965). While the phosphate group P=O coordinates the Sn centre, more than four electrons in the valence shell of Sn, 4d105s25p2, must be involved in the formation of the bonds around Sn. Herein, we are interested in the nature of the bond between Sn and the phosphate O atom.
2. Structural commentary
The title molecule, SnPh3Cl-(PhO)3P=O, crystallizes in P with one molecule in the (Fig. 1). The P=O group of the phosphate coordinates the Sn centre, trans to the Cl atom, with a P—O—Sn angle of 177.58 (12)°. The five-coordinate Sn centre displays a distorted trigonal–bipyramidal geometry, very different from the tetrahedral geometry observed for SnPh3Cl, and consistent with dsp3 hybrid orbitals on the metal centre. Conversely, the phosphate moiety in the title compound features a tetrahedral geometry close to that of free (PhO)3P=O. The main structural feature is the staggered arrangement of the six phenyl rings, minimizing intramolecular The same conformation was previously obtained in the adduct between SnPh3Cl and triphenylphosphine oxide Ph3P=O (Ng & Kumar Das, 1992) or in the complex chlorido[chloromethyl(diphenyl)phosphine oxide]triphenyltin, SnPh3Cl-Ph2(CH2Cl)P=O (Kapoor et al., 2007).
In the title compound, the Sn—O bond length is 2.6644 (17) Å. A survey of the CSD shows that for X=O→SnPh3Cl fragments where X = P, S, C or V, the X=O—Sn angles range from 119.4 to 176.3°, while Sn—O bond lengths range from 2.29 to 2.64 Å (CSD 5.43 with all updates; Groom et al., 2016). There is no correlation between the bond lengths and angles (R2 = 0.002 for a linear fit). The largest Sn—O bond in the set of 40 structures retrieved from the CSD is 2.642 Å, for a dinuclear Sn complex (Gholivand et al., 2015) closely related to the title compound. The title complex has thus the largest Sn—O bond length and P=O—Sn angle in this series, which could reflect a bond order less than 1 for the σ bond Sn—O. The situation is quite different, for example, for a non-hindered phosphastanninane, which forms dimers through P=O—Sn bonds, with a short Sn—O bond length of 2.425 Å (Weichmann & Meunier-Piret, 1993).
However, in the title compound, the SnPh3Cl moiety is certainly bound to the phosphate, since the sum of van der Waals radii for Sn and O is 3.69 Å, much larger than the observed Sn—O separation (Bondi, 1964). In other words, SnPh3Cl—(PhO)3P=O can not be described as a between SnPh3Cl and (PhO)3P=O. This can be confirmed through the topology analysis of electron density in the complex, and in particular the computation of critical points, in the context of the Bader's QTAIM theory (quantum theory of atoms in molecules; Bader, 2009). Therefore, starting from the SHELXL (Table 1), a wave function was calculated using ORCA (Neese, 2018), and the structural model further refined with olex2.refine and NoSpherA2 (Bourhis et al., 2015; Kleemiss et al., 2021) within OLEX2 (Dolomanov et al., 2009). The relativistic basis set x2c-SVP and the generalized gradient approximation PBE functional were used. This refined model included isotropic H atoms with free coordinates, and converged to R1 = 3.26%, a slight improvement over the SHELXL at R1 = 3.48%.
A (3,−1) bond ). The charge density for this is ρ = 0.024 a.u. (corresponding to 2.552 × 10 10 C m−3), and a topology bond path connects the nuclear critical points (3,−3) placed on O1 and Sn1. The nature of the Sn1—O1 bond can be further characterized by computing the Laplacian of the electron density, , in the vicinity of the bond: in the valence-atomic orbital region between the O and Sn atoms, the bond has a small critical density and a positive Laplacian (Fig. 3). Regions combining and are dominated by closed-shell interactions suffering from Pauli repulsions, as in ionic bonds (for an extremely clear and well-written introduction to the valence-bond theory in the AIM context, see Shaik et al., 2015). In the present case, the Sn1—O1 bond can thus be seen as a polar single σ (covalent) bond mainly characterized by electrostatic interactions. This description is obviously consistent with the large gap between Sn and O, on the Pauling scale. Moreover, the bond polarization is reflected in calculated CHELPG charges (atomic charges fitting the molecular electrostatic potential; Breneman & Wiberg, 1990): +0.597 for Sn1 and −0.543 for O1, as calculated by Multiwfn (Lu & Chen, 2012).
is then observed at the midpoint of the atomic pair O1/Sn1, lying on the interbasin surface separating atoms O1 and Sn1 (Fig. 23. Supramolecular features
Although six phenyl rings are present in the molecular complex, its conformation does not favour the emergence of π–π interactions in the The only relevant intermolecular interactions are weak C—H⋯O contacts. Two neighbouring complexes are connected through weak interactions between the oxygen atoms O3 in the (PhO)3P=O moieties, and the hydrogen atoms H30A belonging to neighbouring molecules (dH⋯O = 2.71 Å and θC—H⋯O = 146.8°; Table 2, entry 1). These interactions lead to discrete dimers, forming centrosymmetric R22(8) ring motifs (Fig. 4). Other similar contacts in the crystal have their C—H⋯O angles below 120° (Table 2, entry 2), and are thus expected to have no contribution to crystal stabilization (Wood et al., 2009).
4. Synthesis and crystallization
This organotin complex was synthesized by reacting Ph3PO4 (1 mmol, 326 mg) on SnPh3Cl (1 mmol, 385 mg) in ethanol. The mixture was refluxed (T = 473 K) under stirring for 1 h. The obtained solution was slightly cloudy, then it was filtered off. The filtrate was slowly evaporated at 300 K for one week, to give colourless crystals suitable for X-ray diffraction.
5. details
Crystal data, data collection and structure . All H atoms were placed in calculated positions, with C—H bond lengths of 0.93 Å and Uiso(H) = 1.2 Ueq(carrier C atom).
details are summarized in Table 1Supporting information
CCDC reference: 2235598
https://doi.org/10.1107/S2056989023000270/zl4052sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023000270/zl4052Isup2.hkl
Data collection: X-AREA 1.86 (Stoe & Cie, 2018); cell
X-AREA 1.86 (Stoe & Cie, 2018); data reduction: X-AREA 1.86 (Stoe & Cie, 2018); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Sn(C6H5)3Cl(C18H15O4P)] | Z = 2 |
Mr = 711.71 | F(000) = 720 |
Triclinic, P1 | Dx = 1.421 Mg m−3 |
a = 10.0455 (4) Å | Ag Kα radiation, λ = 0.56083 Å |
b = 12.0370 (5) Å | Cell parameters from 46721 reflections |
c = 13.8304 (6) Å | θ = 2.3–25.3° |
α = 93.552 (4)° | µ = 0.50 mm−1 |
β = 93.469 (3)° | T = 295 K |
γ = 93.128 (3)° | Prism, colourless |
V = 1663.21 (12) Å3 | 0.40 × 0.24 × 0.16 mm |
Stoe Stadivari diffractometer | 9400 independent reflections |
Radiation source: Sealed X-ray tube, Axo Astix-f Microfocus source | 6297 reflections with I > 2σ(I) |
Graded multilayer mirror monochromator | Rint = 0.032 |
Detector resolution: 5.81 pixels mm-1 | θmax = 23.0°, θmin = 2.3° |
ω scans | h = −12→13 |
Absorption correction: multi-scan (X-AREA; Stoe & Cie, 2018) | k = −16→16 |
Tmin = 0.674, Tmax = 1.000 | l = −19→19 |
49761 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0346P)2 + 0.9327P] where P = (Fo2 + 2Fc2)/3 |
9400 reflections | (Δ/σ)max = 0.001 |
388 parameters | Δρmax = 0.76 e Å−3 |
0 restraints | Δρmin = −0.71 e Å−3 |
0 constraints |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.73207 (2) | 0.23155 (2) | 0.60158 (2) | 0.06119 (8) | |
Cl1 | 0.79804 (12) | 0.18751 (10) | 0.43845 (7) | 0.1046 (3) | |
C1 | 0.8729 (3) | 0.3660 (2) | 0.6418 (2) | 0.0604 (7) | |
C2 | 0.8753 (4) | 0.4636 (3) | 0.5943 (3) | 0.0792 (9) | |
H2A | 0.814217 | 0.470870 | 0.542093 | 0.095* | |
C3 | 0.9677 (4) | 0.5510 (3) | 0.6234 (3) | 0.0980 (12) | |
H3A | 0.967353 | 0.616668 | 0.591253 | 0.118* | |
C4 | 1.0582 (4) | 0.5410 (4) | 0.6982 (4) | 0.1008 (13) | |
H4A | 1.120050 | 0.599718 | 0.717309 | 0.121* | |
C5 | 1.0591 (4) | 0.4452 (4) | 0.7457 (3) | 0.1002 (12) | |
H5A | 1.122164 | 0.438458 | 0.796706 | 0.120* | |
C6 | 0.9660 (3) | 0.3576 (3) | 0.7182 (2) | 0.0774 (9) | |
H6A | 0.966543 | 0.292768 | 0.751420 | 0.093* | |
C7 | 0.7760 (3) | 0.0812 (2) | 0.6660 (2) | 0.0610 (7) | |
C8 | 0.8984 (3) | 0.0358 (3) | 0.6565 (3) | 0.0816 (9) | |
H8A | 0.961034 | 0.069823 | 0.619299 | 0.098* | |
C9 | 0.9288 (4) | −0.0604 (4) | 0.7022 (4) | 0.1027 (14) | |
H9A | 1.011318 | −0.090327 | 0.695210 | 0.123* | |
C10 | 0.8386 (5) | −0.1106 (3) | 0.7568 (4) | 0.1053 (14) | |
H10A | 0.860158 | −0.173904 | 0.788342 | 0.126* | |
C11 | 0.7168 (5) | −0.0686 (3) | 0.7656 (3) | 0.0940 (11) | |
H11A | 0.654337 | −0.104370 | 0.801756 | 0.113* | |
C12 | 0.6851 (3) | 0.0271 (3) | 0.7210 (2) | 0.0733 (8) | |
H12A | 0.601730 | 0.055436 | 0.728065 | 0.088* | |
C13 | 0.5272 (3) | 0.2577 (2) | 0.56897 (19) | 0.0601 (6) | |
C14 | 0.4720 (3) | 0.3564 (3) | 0.5952 (2) | 0.0714 (8) | |
H14A | 0.526938 | 0.416259 | 0.622712 | 0.086* | |
C15 | 0.3369 (4) | 0.3680 (4) | 0.5813 (3) | 0.0947 (12) | |
H15A | 0.301226 | 0.435244 | 0.599491 | 0.114* | |
C16 | 0.2548 (4) | 0.2808 (5) | 0.5407 (3) | 0.1001 (13) | |
H16A | 0.163297 | 0.288594 | 0.532147 | 0.120* | |
C17 | 0.3069 (4) | 0.1832 (4) | 0.5131 (3) | 0.0960 (12) | |
H17A | 0.250940 | 0.124019 | 0.485647 | 0.115* | |
C18 | 0.4433 (3) | 0.1712 (3) | 0.5257 (2) | 0.0771 (9) | |
H18A | 0.478618 | 0.104607 | 0.504898 | 0.093* | |
P1 | 0.61706 (6) | 0.31982 (6) | 0.87530 (5) | 0.04891 (15) | |
O1 | 0.65797 (17) | 0.28553 (15) | 0.77937 (12) | 0.0551 (4) | |
O2 | 0.69211 (17) | 0.26752 (17) | 0.96296 (13) | 0.0599 (4) | |
O3 | 0.63487 (19) | 0.44813 (15) | 0.90462 (13) | 0.0581 (4) | |
O4 | 0.46665 (17) | 0.29271 (16) | 0.89412 (14) | 0.0599 (5) | |
C19 | 0.8332 (3) | 0.2685 (2) | 0.97307 (19) | 0.0580 (6) | |
C20 | 0.8990 (3) | 0.1840 (3) | 0.9319 (2) | 0.0817 (10) | |
H20A | 0.852379 | 0.127052 | 0.893273 | 0.098* | |
C21 | 1.0357 (4) | 0.1836 (4) | 0.9480 (3) | 0.1044 (14) | |
H21A | 1.081703 | 0.124937 | 0.922090 | 0.125* | |
C22 | 1.1033 (4) | 0.2699 (5) | 1.0023 (3) | 0.1053 (14) | |
H22A | 1.195691 | 0.270597 | 1.012357 | 0.126* | |
C23 | 1.0363 (4) | 0.3540 (4) | 1.0413 (3) | 0.1084 (14) | |
H23A | 1.083077 | 0.412464 | 1.078131 | 0.130* | |
C24 | 0.8999 (3) | 0.3543 (3) | 1.0273 (3) | 0.0854 (10) | |
H24A | 0.853900 | 0.412281 | 1.054415 | 0.102* | |
C25 | 0.5859 (3) | 0.5270 (2) | 0.84188 (18) | 0.0531 (6) | |
C26 | 0.6648 (3) | 0.5650 (2) | 0.7723 (2) | 0.0670 (7) | |
H26A | 0.749342 | 0.538655 | 0.765506 | 0.080* | |
C27 | 0.6166 (4) | 0.6431 (3) | 0.7122 (3) | 0.0854 (10) | |
H27A | 0.668221 | 0.668757 | 0.663711 | 0.103* | |
C28 | 0.4931 (5) | 0.6831 (3) | 0.7239 (3) | 0.0926 (12) | |
H28A | 0.460557 | 0.735260 | 0.683014 | 0.111* | |
C29 | 0.4173 (4) | 0.6455 (3) | 0.7964 (3) | 0.0966 (12) | |
H29A | 0.334446 | 0.674085 | 0.805287 | 0.116* | |
C30 | 0.4631 (3) | 0.5663 (3) | 0.8557 (2) | 0.0732 (8) | |
H30A | 0.411566 | 0.540112 | 0.904119 | 0.088* | |
C31 | 0.4067 (2) | 0.1843 (2) | 0.8716 (2) | 0.0599 (7) | |
C32 | 0.3518 (3) | 0.1565 (3) | 0.7802 (3) | 0.0808 (9) | |
H32A | 0.355169 | 0.207309 | 0.732295 | 0.097* | |
C33 | 0.2910 (4) | 0.0513 (4) | 0.7604 (4) | 0.1065 (14) | |
H33A | 0.254556 | 0.030130 | 0.698124 | 0.128* | |
C34 | 0.2843 (4) | −0.0213 (4) | 0.8311 (5) | 0.126 (2) | |
H34A | 0.243098 | −0.091981 | 0.817172 | 0.151* | |
C35 | 0.3373 (4) | 0.0085 (4) | 0.9224 (5) | 0.133 (2) | |
H35A | 0.331360 | −0.041837 | 0.970579 | 0.159* | |
C36 | 0.4003 (3) | 0.1133 (3) | 0.9443 (3) | 0.0913 (12) | |
H36A | 0.436863 | 0.134381 | 1.006540 | 0.110* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.06419 (12) | 0.06082 (13) | 0.05806 (12) | 0.00085 (9) | 0.00682 (8) | −0.00058 (8) |
Cl1 | 0.1275 (8) | 0.1191 (8) | 0.0673 (5) | 0.0055 (7) | 0.0309 (5) | −0.0156 (5) |
C1 | 0.0594 (15) | 0.0638 (17) | 0.0582 (16) | −0.0030 (13) | 0.0183 (12) | −0.0024 (13) |
C2 | 0.084 (2) | 0.083 (2) | 0.072 (2) | −0.0097 (18) | 0.0163 (17) | 0.0134 (17) |
C3 | 0.107 (3) | 0.084 (3) | 0.105 (3) | −0.025 (2) | 0.030 (2) | 0.017 (2) |
C4 | 0.091 (3) | 0.095 (3) | 0.112 (3) | −0.033 (2) | 0.024 (2) | −0.016 (3) |
C5 | 0.086 (2) | 0.116 (3) | 0.092 (3) | −0.014 (2) | −0.009 (2) | −0.014 (2) |
C6 | 0.0771 (19) | 0.078 (2) | 0.075 (2) | −0.0028 (17) | 0.0031 (16) | −0.0006 (17) |
C7 | 0.0608 (15) | 0.0557 (16) | 0.0642 (17) | 0.0002 (12) | 0.0015 (13) | −0.0097 (13) |
C8 | 0.0617 (17) | 0.077 (2) | 0.105 (3) | 0.0056 (16) | −0.0001 (17) | −0.0011 (19) |
C9 | 0.076 (2) | 0.085 (3) | 0.144 (4) | 0.019 (2) | −0.029 (2) | 0.000 (3) |
C10 | 0.124 (4) | 0.067 (2) | 0.121 (4) | 0.008 (2) | −0.030 (3) | 0.011 (2) |
C11 | 0.129 (3) | 0.065 (2) | 0.087 (3) | −0.014 (2) | 0.016 (2) | 0.0034 (18) |
C12 | 0.082 (2) | 0.0543 (17) | 0.083 (2) | 0.0007 (15) | 0.0145 (17) | −0.0064 (15) |
C13 | 0.0697 (16) | 0.0635 (17) | 0.0458 (14) | 0.0025 (13) | −0.0029 (12) | 0.0015 (12) |
C14 | 0.084 (2) | 0.0667 (19) | 0.0622 (18) | 0.0093 (16) | −0.0065 (15) | −0.0029 (14) |
C15 | 0.099 (3) | 0.108 (3) | 0.080 (2) | 0.043 (2) | −0.003 (2) | 0.005 (2) |
C16 | 0.070 (2) | 0.153 (4) | 0.078 (2) | 0.017 (3) | −0.0119 (18) | 0.016 (3) |
C17 | 0.082 (2) | 0.120 (3) | 0.080 (2) | −0.022 (2) | −0.0217 (19) | 0.008 (2) |
C18 | 0.089 (2) | 0.071 (2) | 0.0669 (19) | −0.0022 (17) | −0.0087 (16) | −0.0092 (16) |
P1 | 0.0494 (3) | 0.0549 (4) | 0.0420 (3) | 0.0027 (3) | 0.0035 (3) | −0.0006 (3) |
O1 | 0.0571 (9) | 0.0637 (11) | 0.0437 (9) | 0.0015 (8) | 0.0061 (7) | −0.0044 (8) |
O2 | 0.0549 (10) | 0.0743 (13) | 0.0510 (10) | 0.0046 (9) | 0.0009 (8) | 0.0111 (9) |
O3 | 0.0720 (11) | 0.0541 (10) | 0.0464 (9) | 0.0041 (9) | −0.0033 (8) | −0.0042 (8) |
O4 | 0.0513 (9) | 0.0674 (12) | 0.0615 (11) | 0.0064 (9) | 0.0094 (8) | 0.0008 (9) |
C19 | 0.0562 (14) | 0.0694 (18) | 0.0484 (14) | 0.0061 (13) | −0.0022 (11) | 0.0069 (12) |
C20 | 0.080 (2) | 0.093 (2) | 0.070 (2) | 0.0265 (18) | −0.0112 (16) | −0.0145 (18) |
C21 | 0.088 (3) | 0.128 (4) | 0.100 (3) | 0.053 (3) | 0.000 (2) | −0.005 (3) |
C22 | 0.063 (2) | 0.155 (4) | 0.097 (3) | 0.016 (2) | −0.011 (2) | 0.005 (3) |
C23 | 0.073 (2) | 0.128 (4) | 0.117 (3) | −0.002 (2) | −0.020 (2) | −0.019 (3) |
C24 | 0.074 (2) | 0.091 (2) | 0.087 (2) | 0.0094 (18) | −0.0114 (18) | −0.0196 (19) |
C25 | 0.0626 (14) | 0.0483 (14) | 0.0464 (13) | −0.0016 (11) | 0.0005 (11) | −0.0056 (11) |
C26 | 0.0746 (18) | 0.0590 (17) | 0.0669 (18) | −0.0069 (14) | 0.0164 (14) | −0.0012 (14) |
C27 | 0.126 (3) | 0.0600 (19) | 0.070 (2) | −0.012 (2) | 0.015 (2) | 0.0070 (16) |
C28 | 0.126 (3) | 0.066 (2) | 0.083 (3) | 0.004 (2) | −0.022 (2) | 0.0166 (18) |
C29 | 0.085 (2) | 0.096 (3) | 0.112 (3) | 0.028 (2) | −0.001 (2) | 0.018 (2) |
C30 | 0.0692 (18) | 0.081 (2) | 0.071 (2) | 0.0089 (16) | 0.0116 (15) | 0.0089 (16) |
C31 | 0.0414 (12) | 0.0672 (17) | 0.0730 (18) | 0.0040 (12) | 0.0091 (12) | 0.0137 (14) |
C32 | 0.0707 (19) | 0.091 (2) | 0.078 (2) | −0.0193 (17) | 0.0099 (16) | 0.0018 (18) |
C33 | 0.078 (2) | 0.108 (3) | 0.127 (4) | −0.028 (2) | 0.010 (2) | −0.022 (3) |
C34 | 0.069 (2) | 0.075 (3) | 0.232 (7) | −0.010 (2) | −0.009 (3) | 0.016 (4) |
C35 | 0.071 (2) | 0.109 (4) | 0.224 (6) | −0.005 (2) | −0.017 (3) | 0.096 (4) |
C36 | 0.0629 (18) | 0.107 (3) | 0.107 (3) | 0.0014 (18) | −0.0116 (18) | 0.050 (2) |
Sn1—C1 | 2.116 (3) | P1—O4 | 1.5690 (18) |
Sn1—C7 | 2.122 (3) | P1—O3 | 1.5701 (19) |
Sn1—C13 | 2.124 (3) | P1—O2 | 1.5718 (19) |
Sn1—Cl1 | 2.4252 (9) | O2—C19 | 1.415 (3) |
Sn1—O1 | 2.6644 (17) | O3—C25 | 1.414 (3) |
C1—C6 | 1.380 (4) | O4—C31 | 1.416 (3) |
C1—C2 | 1.381 (4) | C19—C20 | 1.357 (4) |
C2—C3 | 1.388 (5) | C19—C24 | 1.359 (4) |
C2—H2A | 0.9300 | C20—C21 | 1.378 (5) |
C3—C4 | 1.351 (6) | C20—H20A | 0.9300 |
C3—H3A | 0.9300 | C21—C22 | 1.367 (6) |
C4—C5 | 1.362 (6) | C21—H21A | 0.9300 |
C4—H4A | 0.9300 | C22—C23 | 1.349 (6) |
C5—C6 | 1.389 (5) | C22—H22A | 0.9300 |
C5—H5A | 0.9300 | C23—C24 | 1.373 (5) |
C6—H6A | 0.9300 | C23—H23A | 0.9300 |
C7—C8 | 1.382 (4) | C24—H24A | 0.9300 |
C7—C12 | 1.385 (4) | C25—C30 | 1.365 (4) |
C8—C9 | 1.393 (5) | C25—C26 | 1.368 (4) |
C8—H8A | 0.9300 | C26—C27 | 1.381 (5) |
C9—C10 | 1.355 (6) | C26—H26A | 0.9300 |
C9—H9A | 0.9300 | C27—C28 | 1.369 (6) |
C10—C11 | 1.359 (6) | C27—H27A | 0.9300 |
C10—H10A | 0.9300 | C28—C29 | 1.379 (6) |
C11—C12 | 1.382 (5) | C28—H28A | 0.9300 |
C11—H11A | 0.9300 | C29—C30 | 1.377 (5) |
C12—H12A | 0.9300 | C29—H29A | 0.9300 |
C13—C14 | 1.376 (4) | C30—H30A | 0.9300 |
C13—C18 | 1.386 (4) | C31—C36 | 1.362 (4) |
C14—C15 | 1.375 (5) | C31—C32 | 1.362 (4) |
C14—H14A | 0.9300 | C32—C33 | 1.380 (5) |
C15—C16 | 1.368 (6) | C32—H32A | 0.9300 |
C15—H15A | 0.9300 | C33—C34 | 1.354 (7) |
C16—C17 | 1.355 (6) | C33—H33A | 0.9300 |
C16—H16A | 0.9300 | C34—C35 | 1.359 (7) |
C17—C18 | 1.387 (5) | C34—H34A | 0.9300 |
C17—H17A | 0.9300 | C35—C36 | 1.388 (6) |
C18—H18A | 0.9300 | C35—H35A | 0.9300 |
P1—O1 | 1.4547 (18) | C36—H36A | 0.9300 |
C1—Sn1—C7 | 114.01 (11) | O4—P1—O3 | 102.20 (11) |
C1—Sn1—C13 | 121.56 (11) | O1—P1—O2 | 115.88 (11) |
C7—Sn1—C13 | 116.86 (11) | O4—P1—O2 | 102.24 (10) |
C1—Sn1—Cl1 | 98.73 (8) | O3—P1—O2 | 102.52 (10) |
C7—Sn1—Cl1 | 99.82 (8) | P1—O1—Sn1 | 177.58 (12) |
C13—Sn1—Cl1 | 99.13 (8) | C19—O2—P1 | 121.84 (16) |
C6—C1—C2 | 118.1 (3) | C25—O3—P1 | 120.89 (15) |
C6—C1—Sn1 | 119.7 (2) | C31—O4—P1 | 120.63 (16) |
C2—C1—Sn1 | 122.2 (2) | C20—C19—C24 | 121.3 (3) |
C1—C2—C3 | 120.8 (4) | C20—C19—O2 | 120.6 (3) |
C1—C2—H2A | 119.6 | C24—C19—O2 | 118.1 (3) |
C3—C2—H2A | 119.6 | C19—C20—C21 | 119.3 (4) |
C4—C3—C2 | 120.2 (4) | C19—C20—H20A | 120.3 |
C4—C3—H3A | 119.9 | C21—C20—H20A | 120.3 |
C2—C3—H3A | 119.9 | C22—C21—C20 | 119.6 (4) |
C3—C4—C5 | 120.2 (4) | C22—C21—H21A | 120.2 |
C3—C4—H4A | 119.9 | C20—C21—H21A | 120.2 |
C5—C4—H4A | 119.9 | C23—C22—C21 | 120.2 (4) |
C4—C5—C6 | 120.2 (4) | C23—C22—H22A | 119.9 |
C4—C5—H5A | 119.9 | C21—C22—H22A | 119.9 |
C6—C5—H5A | 119.9 | C22—C23—C24 | 120.7 (4) |
C1—C6—C5 | 120.5 (4) | C22—C23—H23A | 119.7 |
C1—C6—H6A | 119.8 | C24—C23—H23A | 119.7 |
C5—C6—H6A | 119.8 | C19—C24—C23 | 118.9 (4) |
C8—C7—C12 | 117.8 (3) | C19—C24—H24A | 120.6 |
C8—C7—Sn1 | 120.8 (2) | C23—C24—H24A | 120.6 |
C12—C7—Sn1 | 121.4 (2) | C30—C25—C26 | 122.2 (3) |
C7—C8—C9 | 120.6 (4) | C30—C25—O3 | 118.5 (2) |
C7—C8—H8A | 119.7 | C26—C25—O3 | 119.2 (3) |
C9—C8—H8A | 119.7 | C25—C26—C27 | 118.7 (3) |
C10—C9—C8 | 120.3 (4) | C25—C26—H26A | 120.7 |
C10—C9—H9A | 119.8 | C27—C26—H26A | 120.7 |
C8—C9—H9A | 119.8 | C28—C27—C26 | 120.3 (3) |
C9—C10—C11 | 120.0 (4) | C28—C27—H27A | 119.8 |
C9—C10—H10A | 120.0 | C26—C27—H27A | 119.8 |
C11—C10—H10A | 120.0 | C27—C28—C29 | 119.7 (3) |
C10—C11—C12 | 120.4 (4) | C27—C28—H28A | 120.2 |
C10—C11—H11A | 119.8 | C29—C28—H28A | 120.2 |
C12—C11—H11A | 119.8 | C30—C29—C28 | 120.7 (4) |
C11—C12—C7 | 120.8 (3) | C30—C29—H29A | 119.7 |
C11—C12—H12A | 119.6 | C28—C29—H29A | 119.7 |
C7—C12—H12A | 119.6 | C25—C30—C29 | 118.4 (3) |
C14—C13—C18 | 118.1 (3) | C25—C30—H30A | 120.8 |
C14—C13—Sn1 | 122.1 (2) | C29—C30—H30A | 120.8 |
C18—C13—Sn1 | 119.7 (2) | C36—C31—C32 | 122.4 (3) |
C15—C14—C13 | 121.0 (3) | C36—C31—O4 | 118.1 (3) |
C15—C14—H14A | 119.5 | C32—C31—O4 | 119.4 (3) |
C13—C14—H14A | 119.5 | C31—C32—C33 | 118.5 (4) |
C16—C15—C14 | 120.2 (4) | C31—C32—H32A | 120.8 |
C16—C15—H15A | 119.9 | C33—C32—H32A | 120.8 |
C14—C15—H15A | 119.9 | C34—C33—C32 | 120.3 (4) |
C17—C16—C15 | 119.9 (4) | C34—C33—H33A | 119.9 |
C17—C16—H16A | 120.0 | C32—C33—H33A | 119.9 |
C15—C16—H16A | 120.0 | C33—C34—C35 | 120.5 (4) |
C16—C17—C18 | 120.3 (4) | C33—C34—H34A | 119.7 |
C16—C17—H17A | 119.8 | C35—C34—H34A | 119.7 |
C18—C17—H17A | 119.8 | C34—C35—C36 | 120.5 (4) |
C13—C18—C17 | 120.4 (4) | C34—C35—H35A | 119.7 |
C13—C18—H18A | 119.8 | C36—C35—H35A | 119.7 |
C17—C18—H18A | 119.8 | C31—C36—C35 | 117.7 (4) |
O1—P1—O4 | 116.16 (11) | C31—C36—H36A | 121.1 |
O1—P1—O3 | 115.72 (11) | C35—C36—H36A | 121.1 |
C6—C1—C2—C3 | −0.8 (5) | O2—P1—O4—C31 | −77.4 (2) |
Sn1—C1—C2—C3 | 179.0 (3) | P1—O2—C19—C20 | −89.0 (3) |
C1—C2—C3—C4 | 0.9 (6) | P1—O2—C19—C24 | 92.9 (3) |
C2—C3—C4—C5 | −0.2 (7) | C24—C19—C20—C21 | 2.1 (5) |
C3—C4—C5—C6 | −0.7 (7) | O2—C19—C20—C21 | −176.0 (3) |
C2—C1—C6—C5 | 0.0 (5) | C19—C20—C21—C22 | −2.2 (6) |
Sn1—C1—C6—C5 | −179.9 (3) | C20—C21—C22—C23 | 1.2 (7) |
C4—C5—C6—C1 | 0.8 (6) | C21—C22—C23—C24 | 0.0 (8) |
C12—C7—C8—C9 | −0.8 (5) | C20—C19—C24—C23 | −0.9 (6) |
Sn1—C7—C8—C9 | 177.4 (3) | O2—C19—C24—C23 | 177.2 (3) |
C7—C8—C9—C10 | −0.2 (6) | C22—C23—C24—C19 | −0.2 (7) |
C8—C9—C10—C11 | 1.4 (7) | P1—O3—C25—C30 | 95.6 (3) |
C9—C10—C11—C12 | −1.6 (7) | P1—O3—C25—C26 | −87.1 (3) |
C10—C11—C12—C7 | 0.6 (6) | C30—C25—C26—C27 | −2.0 (4) |
C8—C7—C12—C11 | 0.6 (5) | O3—C25—C26—C27 | −179.2 (3) |
Sn1—C7—C12—C11 | −177.6 (3) | C25—C26—C27—C28 | 1.3 (5) |
C18—C13—C14—C15 | 1.7 (5) | C26—C27—C28—C29 | 0.5 (6) |
Sn1—C13—C14—C15 | −174.0 (3) | C27—C28—C29—C30 | −1.6 (6) |
C13—C14—C15—C16 | −0.1 (6) | C26—C25—C30—C29 | 0.9 (5) |
C14—C15—C16—C17 | −0.8 (6) | O3—C25—C30—C29 | 178.1 (3) |
C15—C16—C17—C18 | −0.1 (6) | C28—C29—C30—C25 | 0.9 (6) |
C14—C13—C18—C17 | −2.6 (5) | P1—O4—C31—C36 | 96.4 (3) |
Sn1—C13—C18—C17 | 173.3 (3) | P1—O4—C31—C32 | −86.9 (3) |
C16—C17—C18—C13 | 1.8 (6) | C36—C31—C32—C33 | −2.0 (5) |
O1—P1—O2—C19 | 49.9 (2) | O4—C31—C32—C33 | −178.5 (3) |
O4—P1—O2—C19 | 177.3 (2) | C31—C32—C33—C34 | 1.3 (6) |
O3—P1—O2—C19 | −77.1 (2) | C32—C33—C34—C35 | −0.1 (7) |
O1—P1—O3—C25 | 50.1 (2) | C33—C34—C35—C36 | −0.6 (8) |
O4—P1—O3—C25 | −77.1 (2) | C32—C31—C36—C35 | 1.3 (5) |
O2—P1—O3—C25 | 177.17 (18) | O4—C31—C36—C35 | 177.8 (3) |
O1—P1—O4—C31 | 49.7 (2) | C34—C35—C36—C31 | 0.0 (7) |
O3—P1—O4—C31 | 176.67 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C30—H30A···O3i | 0.93 | 2.71 | 3.526 (4) | 147 |
C30—H30A···O2i | 0.93 | 3.13 | 3.593 (4) | 113 |
Symmetry code: (i) −x+1, −y+1, −z+2. |
Footnotes
‡Other affiliation: Laboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal.
Acknowledgements
We thank Dr Hugo Vazquez-Lima (ICUAP, Puebla, Mexico) for guidance in the QTAIM interpretation.
Funding information
Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (grant No. 268178).
References
Bader, R. F. W. (2009). J. Phys. Chem. A, 113, 10391–10396. Web of Science CrossRef PubMed CAS Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Breneman, C. M. & Wiberg, K. B. (1990). J. Comput. Chem. 11, 361–373. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gholivand, K., Gholami, A., Ebrahimi, A. A. V., Abolghasemi, S. T., Esrafili, M. D., Fadaei, F. T. & Schenk, K. J. (2015). RSC Adv. 5, 17482–17492. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kapoor, R. N., Cervantes-Lee, F. & Pannell, K. H. (2007). J. Mex. Chem. Soc. 51, 122–128. CAS Google Scholar
Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692. Web of Science CSD CrossRef CAS Google Scholar
Lu, T. & Chen, F. (2012). J. Comput. Chem. 33, 580–592. Web of Science CrossRef PubMed Google Scholar
Neese, F. (2018). WIREs Comput. Mol. Sci. 8, e1327. Google Scholar
Ng, S. W. (1995). Acta Cryst. C51, 2292–2293. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Ng, S. W. & Kumar Das, V. G. (1992). Acta Cryst. C48, 1839–1841. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Pouye, S. F., Cissé, I., Diop, L., Ríos-Merino, F. J. & Bernès, S. (2018). Acta Cryst. E74, 163–166. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shaik, S., Danovich, D., Braida, B., Wu, W. & Hiberty, P. C. (2015). Struct. Bond. 170, 169–211. This book chapter is available from the HAL repository: https://hal.archives-ouvertes.fr/hal-01627700 Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2018). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany. Google Scholar
Svetich, G. W. & Caughlan, C. N. (1965). Acta Cryst. 19, 645–650. CSD CrossRef IUCr Journals Web of Science Google Scholar
Tse, J. S., Lee, F. L. & Gabe, E. J. (1986). Acta Cryst. C42, 1876–1878. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Weichmann, H. & Meunier-Piret, J. (1993). Organometallics, 12, 4097–4103. CSD CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.