research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and topology analysis of chlorido­triphen­yl(tri­phenyl phosphate-κO)tin(IV)

crossmark logo

aDépartement de Sciences Appliquées et Technologies Emergentes, Ecole Supérieure des Sciences et Techniques de l'Ingénieur, Université Amadou Mahtar Mbow, BP 45927 Dakar NAFA VDN, Dakar, Senegal, bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, and cLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
*Correspondence e-mail: serigne.pouye@uam.edu.sn, sylvain_bernes@hotmail.com

Edited by M. Zeller, Purdue University, USA (Received 21 November 2022; accepted 10 January 2023; online 17 January 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The title SnIV complex, [Sn(C6H5)3Cl(C18H15O4P)], is a formal adduct between triphenyl phosphate (PhO)3P=O and the stannane derivative chlorido­tri­phenyl­tin, SnPh3Cl. The structure refinement reveals that this mol­ecule displays the largest Sn—O bond length for compounds including the X=O→SnPh3Cl fragment (X = P, S, C, or V), 2.6644 (17) Å. However, an AIM topology analysis based on the wavefunction calculated from the refined X-ray structure shows the presence of a bond critical point (3,−1), lying on the inter­basin surface separating the coordinated phosphate O atom and the Sn atom. This study thus shows that an actual polar covalent bond is formed between (PhO)3P=O and SnPh3Cl moieties.

1. Chemical context

An inter­esting feature of tin(IV) is its ability to perform as a hypervalent centre: penta­coordinated tin compounds, like chlorido­(dimethyl sulfoxide)­tri­phenyl­tin, SnPh3(DMSO)Cl (Pouye et al., 2018[Pouye, S. F., Cissé, I., Diop, L., Ríos-Merino, F. J. & Bernès, S. (2018). Acta Cryst. E74, 163-166.]), are as common as tetra­coordinated tin compounds, for example chlorido­tri­phenyl­tin, SnPh3Cl (Tse et al., 1986[Tse, J. S., Lee, F. L. & Gabe, E. J. (1986). Acta Cryst. C42, 1876-1878.]; Ng, 1995[Ng, S. W. (1995). Acta Cryst. C51, 2292-2293.]). This leaves the possibility open to synthesize compounds with inter­mediate valency, between four and five. The title compound is such a compound, which is formally obtained as the adduct of SnPh3Cl and tri­phenyl­phosphate, (PhO)3P=O, for which the X-ray structure is available (Svetich & Caughlan, 1965[Svetich, G. W. & Caughlan, C. N. (1965). Acta Cryst. 19, 645-650.]). While the phosphate group P=O coordinates the Sn centre, more than four electrons in the valence shell of Sn, 4d105s25p2, must be involved in the formation of the bonds around Sn. Herein, we are inter­ested in the nature of the bond between Sn and the phosphate O atom.

[Scheme 1]

2. Structural commentary

The title mol­ecule, SnPh3Cl-(PhO)3P=O, crystallizes in space group P[\overline{1}] with one mol­ecule in the asymmetric unit (Fig. 1[link]). The P=O group of the phosphate coordinates the Sn centre, trans to the Cl atom, with a P—O—Sn angle of 177.58 (12)°. The five-coordinate Sn centre displays a distorted trigonal–bipyramidal geometry, very different from the tetra­hedral geometry observed for SnPh3Cl, and consistent with dsp3 hybrid orbitals on the metal centre. Conversely, the phosphate moiety in the title compound features a tetra­hedral geometry close to that of free (PhO)3P=O. The main structural feature is the staggered arrangement of the six phenyl rings, minimizing intra­molecular steric hindrance. The same conformation was previously obtained in the adduct between SnPh3Cl and tri­phenyl­phosphine oxide Ph3P=O (Ng & Kumar Das, 1992[Ng, S. W. & Kumar Das, V. G. (1992). Acta Cryst. C48, 1839-1841.]) or in the complex chlorido­[chloro­meth­yl(diphen­yl)phosphine oxide]tri­phenyl­tin, SnPh3Cl-Ph2(CH2Cl)P=O (Kapoor et al., 2007[Kapoor, R. N., Cervantes-Lee, F. & Pannell, K. H. (2007). J. Mex. Chem. Soc. 51, 122-128.]).

[Figure 1]
Figure 1
Mol­ecular structure of the title compound viewed along the P=O—Sn—Cl axis. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

In the title compound, the Sn—O bond length is 2.6644 (17) Å. A survey of the CSD shows that for X=O→SnPh3Cl fragments where X = P, S, C or V, the X=O—Sn angles range from 119.4 to 176.3°, while Sn—O bond lengths range from 2.29 to 2.64 Å (CSD 5.43 with all updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). There is no correlation between the bond lengths and angles (R2 = 0.002 for a linear fit). The largest Sn—O bond in the set of 40 structures retrieved from the CSD is 2.642 Å, for a dinuclear Sn complex (Gholivand et al., 2015[Gholivand, K., Gholami, A., Ebrahimi, A. A. V., Abolghasemi, S. T., Esrafili, M. D., Fadaei, F. T. & Schenk, K. J. (2015). RSC Adv. 5, 17482-17492.]) closely related to the title compound. The title complex has thus the largest Sn—O bond length and P=O—Sn angle in this series, which could reflect a bond order less than 1 for the σ bond Sn—O. The situation is quite different, for example, for a non-hindered phosphastanninane, which forms dimers through P=O—Sn bonds, with a short Sn—O bond length of 2.425 Å (Weichmann & Meunier-Piret, 1993[Weichmann, H. & Meunier-Piret, J. (1993). Organometallics, 12, 4097-4103.]).

However, in the title compound, the SnPh3Cl moiety is certainly bound to the phosphate, since the sum of van der Waals radii for Sn and O is 3.69 Å, much larger than the observed Sn—O separation (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). In other words, SnPh3Cl—(PhO)3P=O can not be described as a co-crystal between SnPh3Cl and (PhO)3P=O. This can be confirmed through the topology analysis of electron density in the complex, and in particular the computation of critical points, in the context of the Bader's QTAIM theory (quantum theory of atoms in mol­ecules; Bader, 2009[Bader, R. F. W. (2009). J. Phys. Chem. A, 113, 10391-10396.]). Therefore, starting from the SHELXL refinement (Table 1[link]), a wave function was calculated using ORCA (Neese, 2018[Neese, F. (2018). WIREs Comput. Mol. Sci. 8, e1327.]), and the structural model further refined with olex2.refine and NoSpherA2 (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]; Kleemiss et al., 2021[Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675-1692.]) within OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]). The relativistic basis set x2c-SVP and the generalized gradient approximation PBE functional were used. This refined model included isotropic H atoms with free coordinates, and converged to R1 = 3.26%, a slight improvement over the SHELXL refinement at R1 = 3.48%.

Table 1
Experimental details

Crystal data
Chemical formula [Sn(C6H5)3Cl(C18H15O4P)]
Mr 711.71
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 295
a, b, c (Å) 10.0455 (4), 12.0370 (5), 13.8304 (6)
α, β, γ (°) 93.552 (4), 93.469 (3), 93.128 (3)
V3) 1663.21 (12)
Z 2
Radiation type Ag Kα, λ = 0.56083 Å
μ (mm−1) 0.50
Crystal size (mm) 0.40 × 0.24 × 0.16
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2018[Stoe & Cie (2018). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.674, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 49761, 9400, 6297
Rint 0.032
(sin θ/λ)max−1) 0.697
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.00
No. of reflections 9400
No. of parameters 388
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.76, −0.71
Computer programs: X-AREA (Stoe & Cie, 2018[Stoe & Cie (2018). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

A (3,−1) bond critical point is then observed at the midpoint of the atomic pair O1/Sn1, lying on the inter­basin surface separating atoms O1 and Sn1 (Fig. 2[link]). The charge density for this critical point is ρ = 0.024 a.u. (corresponding to 2.552 × 10 10 C m−3), and a topology bond path connects the nuclear critical points (3,−3) placed on O1 and Sn1. The nature of the Sn1—O1 bond can be further characterized by computing the Laplacian of the electron density, [ \nabla ^{2}\left( \rho \right)], in the vicinity of the bond: in the valence-atomic orbital region between the O and Sn atoms, the bond critical point has a small critical density and a positive Laplacian (Fig. 3[link]). Regions combining [ \rho \rightarrow 0] and [ \nabla ^{2}\left( \rho \right) > 0] are dominated by closed-shell inter­actions suffering from Pauli repulsions, as in ionic bonds (for an extremely clear and well-written introduction to the valence-bond theory in the AIM context, see Shaik et al., 2015[Shaik, S., Danovich, D., Braida, B., Wu, W. & Hiberty, P. C. (2015). Struct. Bond. 170, 169-211. This book chapter is available from the HAL repository: https://hal.archives-ouvertes.fr/hal-01627700]). In the present case, the Sn1—O1 bond can thus be seen as a polar single σ (covalent) bond mainly characterized by electrostatic inter­actions. This description is obviously consistent with the large electronegativity gap between Sn and O, [ \Delta \chi \approx 1.5] on the Pauling scale. Moreover, the bond polarization is reflected in calculated CHELPG charges (atomic charges fitting the mol­ecular electrostatic potential; Breneman & Wiberg, 1990[Breneman, C. M. & Wiberg, K. B. (1990). J. Comput. Chem. 11, 361-373.]): +0.597 for Sn1 and −0.543 for O1, as calculated by Multiwfn (Lu & Chen, 2012[Lu, T. & Chen, F. (2012). J. Comput. Chem. 33, 580-592.]).

[Figure 2]
Figure 2
Contour map of the electron density ρ (brown contour lines) with the gradient vector field of ρ (green flux lines) in the vicinity of the P=O—Sn—Cl group. Bond and nuclear critical points are represented by blue and brown dots, respectively, while the purple bold lines are the bond paths (Bader, 2009[Bader, R. F. W. (2009). J. Phys. Chem. A, 113, 10391-10396.]) connecting nuclear critical points. The map was calculated and plotted using Multiwfn (Lu & Chen, 2012[Lu, T. & Chen, F. (2012). J. Comput. Chem. 33, 580-592.]).
[Figure 3]
Figure 3
Contour map of the Laplacian of ρ in the vicinity of the P=O—Sn—Cl group. Solid red lines are isocontours with positive Laplacian (charge depletion regions) and dashed blue lines are isocontours with negative Laplacian (charge accumulation regions). Bond critical points and nuclear critical points are shown as blue and brown dots, respectively. The purple bold lines are the bond paths (Bader, 2009[Bader, R. F. W. (2009). J. Phys. Chem. A, 113, 10391-10396.]) connecting nuclear critical points in the map. The map was calculated and plotted using Multiwfn (Lu & Chen, 2012[Lu, T. & Chen, F. (2012). J. Comput. Chem. 33, 580-592.]).

3. Supra­molecular features

Although six phenyl rings are present in the mol­ecular complex, its conformation does not favour the emergence of ππ inter­actions in the crystal structure. The only relevant inter­molecular inter­actions are weak C—H⋯O contacts. Two neighbouring complexes are connected through weak inter­actions between the oxygen atoms O3 in the (PhO)3P=O moieties, and the hydrogen atoms H30A belonging to neighbouring molecules (dH⋯O = 2.71 Å and θC—H⋯O = 146.8°; Table 2[link], entry 1). These inter­actions lead to discrete dimers, forming centrosymmetric R22(8) ring motifs (Fig. 4[link]). Other similar contacts in the crystal have their C—H⋯O angles below 120° (Table 2[link], entry 2), and are thus expected to have no contribution to crystal stabilization (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C30—H30A⋯O3i 0.93 2.71 3.526 (4) 147
C30—H30A⋯O2i 0.93 3.13 3.593 (4) 113
Symmetry code: (i) [-x+1, -y+1, -z+2].
[Figure 4]
Figure 4
Dimeric cluster in the crystal structure, formed through weak C—H⋯O hydrogen bonds (dashed blue lines).

4. Synthesis and crystallization

This organotin complex was synthesized by reacting Ph3PO4 (1 mmol, 326 mg) on SnPh3Cl (1 mmol, 385 mg) in ethanol. The mixture was refluxed (T = 473 K) under stirring for 1 h. The obtained solution was slightly cloudy, then it was filtered off. The filtrate was slowly evaporated at 300 K for one week, to give colourless crystals suitable for X-ray diffraction.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were placed in calculated positions, with C—H bond lengths of 0.93 Å and Uiso(H) = 1.2 Ueq(carrier C atom).

Supporting information


Computing details top

Data collection: X-AREA 1.86 (Stoe & Cie, 2018); cell refinement: X-AREA 1.86 (Stoe & Cie, 2018); data reduction: X-AREA 1.86 (Stoe & Cie, 2018); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Chloridotriphenyl(triphenyl phosphate-κO)tin(IV) top
Crystal data top
[Sn(C6H5)3Cl(C18H15O4P)]Z = 2
Mr = 711.71F(000) = 720
Triclinic, P1Dx = 1.421 Mg m3
a = 10.0455 (4) ÅAg Kα radiation, λ = 0.56083 Å
b = 12.0370 (5) ÅCell parameters from 46721 reflections
c = 13.8304 (6) Åθ = 2.3–25.3°
α = 93.552 (4)°µ = 0.50 mm1
β = 93.469 (3)°T = 295 K
γ = 93.128 (3)°Prism, colourless
V = 1663.21 (12) Å30.40 × 0.24 × 0.16 mm
Data collection top
Stoe Stadivari
diffractometer
9400 independent reflections
Radiation source: Sealed X-ray tube, Axo Astix-f Microfocus source6297 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.032
Detector resolution: 5.81 pixels mm-1θmax = 23.0°, θmin = 2.3°
ω scansh = 1213
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2018)
k = 1616
Tmin = 0.674, Tmax = 1.000l = 1919
49761 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.9327P]
where P = (Fo2 + 2Fc2)/3
9400 reflections(Δ/σ)max = 0.001
388 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.71 e Å3
0 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.73207 (2)0.23155 (2)0.60158 (2)0.06119 (8)
Cl10.79804 (12)0.18751 (10)0.43845 (7)0.1046 (3)
C10.8729 (3)0.3660 (2)0.6418 (2)0.0604 (7)
C20.8753 (4)0.4636 (3)0.5943 (3)0.0792 (9)
H2A0.8142170.4708700.5420930.095*
C30.9677 (4)0.5510 (3)0.6234 (3)0.0980 (12)
H3A0.9673530.6166680.5912530.118*
C41.0582 (4)0.5410 (4)0.6982 (4)0.1008 (13)
H4A1.1200500.5997180.7173090.121*
C51.0591 (4)0.4452 (4)0.7457 (3)0.1002 (12)
H5A1.1221640.4384580.7967060.120*
C60.9660 (3)0.3576 (3)0.7182 (2)0.0774 (9)
H6A0.9665430.2927680.7514200.093*
C70.7760 (3)0.0812 (2)0.6660 (2)0.0610 (7)
C80.8984 (3)0.0358 (3)0.6565 (3)0.0816 (9)
H8A0.9610340.0698230.6192990.098*
C90.9288 (4)0.0604 (4)0.7022 (4)0.1027 (14)
H9A1.0113180.0903270.6952100.123*
C100.8386 (5)0.1106 (3)0.7568 (4)0.1053 (14)
H10A0.8601580.1739040.7883420.126*
C110.7168 (5)0.0686 (3)0.7656 (3)0.0940 (11)
H11A0.6543370.1043700.8017560.113*
C120.6851 (3)0.0271 (3)0.7210 (2)0.0733 (8)
H12A0.6017300.0554360.7280650.088*
C130.5272 (3)0.2577 (2)0.56897 (19)0.0601 (6)
C140.4720 (3)0.3564 (3)0.5952 (2)0.0714 (8)
H14A0.5269380.4162590.6227120.086*
C150.3369 (4)0.3680 (4)0.5813 (3)0.0947 (12)
H15A0.3012260.4352440.5994910.114*
C160.2548 (4)0.2808 (5)0.5407 (3)0.1001 (13)
H16A0.1632970.2885940.5321470.120*
C170.3069 (4)0.1832 (4)0.5131 (3)0.0960 (12)
H17A0.2509400.1240190.4856470.115*
C180.4433 (3)0.1712 (3)0.5257 (2)0.0771 (9)
H18A0.4786180.1046070.5048980.093*
P10.61706 (6)0.31982 (6)0.87530 (5)0.04891 (15)
O10.65797 (17)0.28553 (15)0.77937 (12)0.0551 (4)
O20.69211 (17)0.26752 (17)0.96296 (13)0.0599 (4)
O30.63487 (19)0.44813 (15)0.90462 (13)0.0581 (4)
O40.46665 (17)0.29271 (16)0.89412 (14)0.0599 (5)
C190.8332 (3)0.2685 (2)0.97307 (19)0.0580 (6)
C200.8990 (3)0.1840 (3)0.9319 (2)0.0817 (10)
H20A0.8523790.1270520.8932730.098*
C211.0357 (4)0.1836 (4)0.9480 (3)0.1044 (14)
H21A1.0817030.1249370.9220900.125*
C221.1033 (4)0.2699 (5)1.0023 (3)0.1053 (14)
H22A1.1956910.2705971.0123570.126*
C231.0363 (4)0.3540 (4)1.0413 (3)0.1084 (14)
H23A1.0830770.4124641.0781310.130*
C240.8999 (3)0.3543 (3)1.0273 (3)0.0854 (10)
H24A0.8539000.4122811.0544150.102*
C250.5859 (3)0.5270 (2)0.84188 (18)0.0531 (6)
C260.6648 (3)0.5650 (2)0.7723 (2)0.0670 (7)
H26A0.7493420.5386550.7655060.080*
C270.6166 (4)0.6431 (3)0.7122 (3)0.0854 (10)
H27A0.6682210.6687570.6637110.103*
C280.4931 (5)0.6831 (3)0.7239 (3)0.0926 (12)
H28A0.4605570.7352600.6830140.111*
C290.4173 (4)0.6455 (3)0.7964 (3)0.0966 (12)
H29A0.3344460.6740850.8052870.116*
C300.4631 (3)0.5663 (3)0.8557 (2)0.0732 (8)
H30A0.4115660.5401120.9041190.088*
C310.4067 (2)0.1843 (2)0.8716 (2)0.0599 (7)
C320.3518 (3)0.1565 (3)0.7802 (3)0.0808 (9)
H32A0.3551690.2073090.7322950.097*
C330.2910 (4)0.0513 (4)0.7604 (4)0.1065 (14)
H33A0.2545560.0301300.6981240.128*
C340.2843 (4)0.0213 (4)0.8311 (5)0.126 (2)
H34A0.2430980.0919810.8171720.151*
C350.3373 (4)0.0085 (4)0.9224 (5)0.133 (2)
H35A0.3313600.0418370.9705790.159*
C360.4003 (3)0.1133 (3)0.9443 (3)0.0913 (12)
H36A0.4368630.1343811.0065400.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.06419 (12)0.06082 (13)0.05806 (12)0.00085 (9)0.00682 (8)0.00058 (8)
Cl10.1275 (8)0.1191 (8)0.0673 (5)0.0055 (7)0.0309 (5)0.0156 (5)
C10.0594 (15)0.0638 (17)0.0582 (16)0.0030 (13)0.0183 (12)0.0024 (13)
C20.084 (2)0.083 (2)0.072 (2)0.0097 (18)0.0163 (17)0.0134 (17)
C30.107 (3)0.084 (3)0.105 (3)0.025 (2)0.030 (2)0.017 (2)
C40.091 (3)0.095 (3)0.112 (3)0.033 (2)0.024 (2)0.016 (3)
C50.086 (2)0.116 (3)0.092 (3)0.014 (2)0.009 (2)0.014 (2)
C60.0771 (19)0.078 (2)0.075 (2)0.0028 (17)0.0031 (16)0.0006 (17)
C70.0608 (15)0.0557 (16)0.0642 (17)0.0002 (12)0.0015 (13)0.0097 (13)
C80.0617 (17)0.077 (2)0.105 (3)0.0056 (16)0.0001 (17)0.0011 (19)
C90.076 (2)0.085 (3)0.144 (4)0.019 (2)0.029 (2)0.000 (3)
C100.124 (4)0.067 (2)0.121 (4)0.008 (2)0.030 (3)0.011 (2)
C110.129 (3)0.065 (2)0.087 (3)0.014 (2)0.016 (2)0.0034 (18)
C120.082 (2)0.0543 (17)0.083 (2)0.0007 (15)0.0145 (17)0.0064 (15)
C130.0697 (16)0.0635 (17)0.0458 (14)0.0025 (13)0.0029 (12)0.0015 (12)
C140.084 (2)0.0667 (19)0.0622 (18)0.0093 (16)0.0065 (15)0.0029 (14)
C150.099 (3)0.108 (3)0.080 (2)0.043 (2)0.003 (2)0.005 (2)
C160.070 (2)0.153 (4)0.078 (2)0.017 (3)0.0119 (18)0.016 (3)
C170.082 (2)0.120 (3)0.080 (2)0.022 (2)0.0217 (19)0.008 (2)
C180.089 (2)0.071 (2)0.0669 (19)0.0022 (17)0.0087 (16)0.0092 (16)
P10.0494 (3)0.0549 (4)0.0420 (3)0.0027 (3)0.0035 (3)0.0006 (3)
O10.0571 (9)0.0637 (11)0.0437 (9)0.0015 (8)0.0061 (7)0.0044 (8)
O20.0549 (10)0.0743 (13)0.0510 (10)0.0046 (9)0.0009 (8)0.0111 (9)
O30.0720 (11)0.0541 (10)0.0464 (9)0.0041 (9)0.0033 (8)0.0042 (8)
O40.0513 (9)0.0674 (12)0.0615 (11)0.0064 (9)0.0094 (8)0.0008 (9)
C190.0562 (14)0.0694 (18)0.0484 (14)0.0061 (13)0.0022 (11)0.0069 (12)
C200.080 (2)0.093 (2)0.070 (2)0.0265 (18)0.0112 (16)0.0145 (18)
C210.088 (3)0.128 (4)0.100 (3)0.053 (3)0.000 (2)0.005 (3)
C220.063 (2)0.155 (4)0.097 (3)0.016 (2)0.011 (2)0.005 (3)
C230.073 (2)0.128 (4)0.117 (3)0.002 (2)0.020 (2)0.019 (3)
C240.074 (2)0.091 (2)0.087 (2)0.0094 (18)0.0114 (18)0.0196 (19)
C250.0626 (14)0.0483 (14)0.0464 (13)0.0016 (11)0.0005 (11)0.0056 (11)
C260.0746 (18)0.0590 (17)0.0669 (18)0.0069 (14)0.0164 (14)0.0012 (14)
C270.126 (3)0.0600 (19)0.070 (2)0.012 (2)0.015 (2)0.0070 (16)
C280.126 (3)0.066 (2)0.083 (3)0.004 (2)0.022 (2)0.0166 (18)
C290.085 (2)0.096 (3)0.112 (3)0.028 (2)0.001 (2)0.018 (2)
C300.0692 (18)0.081 (2)0.071 (2)0.0089 (16)0.0116 (15)0.0089 (16)
C310.0414 (12)0.0672 (17)0.0730 (18)0.0040 (12)0.0091 (12)0.0137 (14)
C320.0707 (19)0.091 (2)0.078 (2)0.0193 (17)0.0099 (16)0.0018 (18)
C330.078 (2)0.108 (3)0.127 (4)0.028 (2)0.010 (2)0.022 (3)
C340.069 (2)0.075 (3)0.232 (7)0.010 (2)0.009 (3)0.016 (4)
C350.071 (2)0.109 (4)0.224 (6)0.005 (2)0.017 (3)0.096 (4)
C360.0629 (18)0.107 (3)0.107 (3)0.0014 (18)0.0116 (18)0.050 (2)
Geometric parameters (Å, º) top
Sn1—C12.116 (3)P1—O41.5690 (18)
Sn1—C72.122 (3)P1—O31.5701 (19)
Sn1—C132.124 (3)P1—O21.5718 (19)
Sn1—Cl12.4252 (9)O2—C191.415 (3)
Sn1—O12.6644 (17)O3—C251.414 (3)
C1—C61.380 (4)O4—C311.416 (3)
C1—C21.381 (4)C19—C201.357 (4)
C2—C31.388 (5)C19—C241.359 (4)
C2—H2A0.9300C20—C211.378 (5)
C3—C41.351 (6)C20—H20A0.9300
C3—H3A0.9300C21—C221.367 (6)
C4—C51.362 (6)C21—H21A0.9300
C4—H4A0.9300C22—C231.349 (6)
C5—C61.389 (5)C22—H22A0.9300
C5—H5A0.9300C23—C241.373 (5)
C6—H6A0.9300C23—H23A0.9300
C7—C81.382 (4)C24—H24A0.9300
C7—C121.385 (4)C25—C301.365 (4)
C8—C91.393 (5)C25—C261.368 (4)
C8—H8A0.9300C26—C271.381 (5)
C9—C101.355 (6)C26—H26A0.9300
C9—H9A0.9300C27—C281.369 (6)
C10—C111.359 (6)C27—H27A0.9300
C10—H10A0.9300C28—C291.379 (6)
C11—C121.382 (5)C28—H28A0.9300
C11—H11A0.9300C29—C301.377 (5)
C12—H12A0.9300C29—H29A0.9300
C13—C141.376 (4)C30—H30A0.9300
C13—C181.386 (4)C31—C361.362 (4)
C14—C151.375 (5)C31—C321.362 (4)
C14—H14A0.9300C32—C331.380 (5)
C15—C161.368 (6)C32—H32A0.9300
C15—H15A0.9300C33—C341.354 (7)
C16—C171.355 (6)C33—H33A0.9300
C16—H16A0.9300C34—C351.359 (7)
C17—C181.387 (5)C34—H34A0.9300
C17—H17A0.9300C35—C361.388 (6)
C18—H18A0.9300C35—H35A0.9300
P1—O11.4547 (18)C36—H36A0.9300
C1—Sn1—C7114.01 (11)O4—P1—O3102.20 (11)
C1—Sn1—C13121.56 (11)O1—P1—O2115.88 (11)
C7—Sn1—C13116.86 (11)O4—P1—O2102.24 (10)
C1—Sn1—Cl198.73 (8)O3—P1—O2102.52 (10)
C7—Sn1—Cl199.82 (8)P1—O1—Sn1177.58 (12)
C13—Sn1—Cl199.13 (8)C19—O2—P1121.84 (16)
C6—C1—C2118.1 (3)C25—O3—P1120.89 (15)
C6—C1—Sn1119.7 (2)C31—O4—P1120.63 (16)
C2—C1—Sn1122.2 (2)C20—C19—C24121.3 (3)
C1—C2—C3120.8 (4)C20—C19—O2120.6 (3)
C1—C2—H2A119.6C24—C19—O2118.1 (3)
C3—C2—H2A119.6C19—C20—C21119.3 (4)
C4—C3—C2120.2 (4)C19—C20—H20A120.3
C4—C3—H3A119.9C21—C20—H20A120.3
C2—C3—H3A119.9C22—C21—C20119.6 (4)
C3—C4—C5120.2 (4)C22—C21—H21A120.2
C3—C4—H4A119.9C20—C21—H21A120.2
C5—C4—H4A119.9C23—C22—C21120.2 (4)
C4—C5—C6120.2 (4)C23—C22—H22A119.9
C4—C5—H5A119.9C21—C22—H22A119.9
C6—C5—H5A119.9C22—C23—C24120.7 (4)
C1—C6—C5120.5 (4)C22—C23—H23A119.7
C1—C6—H6A119.8C24—C23—H23A119.7
C5—C6—H6A119.8C19—C24—C23118.9 (4)
C8—C7—C12117.8 (3)C19—C24—H24A120.6
C8—C7—Sn1120.8 (2)C23—C24—H24A120.6
C12—C7—Sn1121.4 (2)C30—C25—C26122.2 (3)
C7—C8—C9120.6 (4)C30—C25—O3118.5 (2)
C7—C8—H8A119.7C26—C25—O3119.2 (3)
C9—C8—H8A119.7C25—C26—C27118.7 (3)
C10—C9—C8120.3 (4)C25—C26—H26A120.7
C10—C9—H9A119.8C27—C26—H26A120.7
C8—C9—H9A119.8C28—C27—C26120.3 (3)
C9—C10—C11120.0 (4)C28—C27—H27A119.8
C9—C10—H10A120.0C26—C27—H27A119.8
C11—C10—H10A120.0C27—C28—C29119.7 (3)
C10—C11—C12120.4 (4)C27—C28—H28A120.2
C10—C11—H11A119.8C29—C28—H28A120.2
C12—C11—H11A119.8C30—C29—C28120.7 (4)
C11—C12—C7120.8 (3)C30—C29—H29A119.7
C11—C12—H12A119.6C28—C29—H29A119.7
C7—C12—H12A119.6C25—C30—C29118.4 (3)
C14—C13—C18118.1 (3)C25—C30—H30A120.8
C14—C13—Sn1122.1 (2)C29—C30—H30A120.8
C18—C13—Sn1119.7 (2)C36—C31—C32122.4 (3)
C15—C14—C13121.0 (3)C36—C31—O4118.1 (3)
C15—C14—H14A119.5C32—C31—O4119.4 (3)
C13—C14—H14A119.5C31—C32—C33118.5 (4)
C16—C15—C14120.2 (4)C31—C32—H32A120.8
C16—C15—H15A119.9C33—C32—H32A120.8
C14—C15—H15A119.9C34—C33—C32120.3 (4)
C17—C16—C15119.9 (4)C34—C33—H33A119.9
C17—C16—H16A120.0C32—C33—H33A119.9
C15—C16—H16A120.0C33—C34—C35120.5 (4)
C16—C17—C18120.3 (4)C33—C34—H34A119.7
C16—C17—H17A119.8C35—C34—H34A119.7
C18—C17—H17A119.8C34—C35—C36120.5 (4)
C13—C18—C17120.4 (4)C34—C35—H35A119.7
C13—C18—H18A119.8C36—C35—H35A119.7
C17—C18—H18A119.8C31—C36—C35117.7 (4)
O1—P1—O4116.16 (11)C31—C36—H36A121.1
O1—P1—O3115.72 (11)C35—C36—H36A121.1
C6—C1—C2—C30.8 (5)O2—P1—O4—C3177.4 (2)
Sn1—C1—C2—C3179.0 (3)P1—O2—C19—C2089.0 (3)
C1—C2—C3—C40.9 (6)P1—O2—C19—C2492.9 (3)
C2—C3—C4—C50.2 (7)C24—C19—C20—C212.1 (5)
C3—C4—C5—C60.7 (7)O2—C19—C20—C21176.0 (3)
C2—C1—C6—C50.0 (5)C19—C20—C21—C222.2 (6)
Sn1—C1—C6—C5179.9 (3)C20—C21—C22—C231.2 (7)
C4—C5—C6—C10.8 (6)C21—C22—C23—C240.0 (8)
C12—C7—C8—C90.8 (5)C20—C19—C24—C230.9 (6)
Sn1—C7—C8—C9177.4 (3)O2—C19—C24—C23177.2 (3)
C7—C8—C9—C100.2 (6)C22—C23—C24—C190.2 (7)
C8—C9—C10—C111.4 (7)P1—O3—C25—C3095.6 (3)
C9—C10—C11—C121.6 (7)P1—O3—C25—C2687.1 (3)
C10—C11—C12—C70.6 (6)C30—C25—C26—C272.0 (4)
C8—C7—C12—C110.6 (5)O3—C25—C26—C27179.2 (3)
Sn1—C7—C12—C11177.6 (3)C25—C26—C27—C281.3 (5)
C18—C13—C14—C151.7 (5)C26—C27—C28—C290.5 (6)
Sn1—C13—C14—C15174.0 (3)C27—C28—C29—C301.6 (6)
C13—C14—C15—C160.1 (6)C26—C25—C30—C290.9 (5)
C14—C15—C16—C170.8 (6)O3—C25—C30—C29178.1 (3)
C15—C16—C17—C180.1 (6)C28—C29—C30—C250.9 (6)
C14—C13—C18—C172.6 (5)P1—O4—C31—C3696.4 (3)
Sn1—C13—C18—C17173.3 (3)P1—O4—C31—C3286.9 (3)
C16—C17—C18—C131.8 (6)C36—C31—C32—C332.0 (5)
O1—P1—O2—C1949.9 (2)O4—C31—C32—C33178.5 (3)
O4—P1—O2—C19177.3 (2)C31—C32—C33—C341.3 (6)
O3—P1—O2—C1977.1 (2)C32—C33—C34—C350.1 (7)
O1—P1—O3—C2550.1 (2)C33—C34—C35—C360.6 (8)
O4—P1—O3—C2577.1 (2)C32—C31—C36—C351.3 (5)
O2—P1—O3—C25177.17 (18)O4—C31—C36—C35177.8 (3)
O1—P1—O4—C3149.7 (2)C34—C35—C36—C310.0 (7)
O3—P1—O4—C31176.67 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C30—H30A···O3i0.932.713.526 (4)147
C30—H30A···O2i0.933.133.593 (4)113
Symmetry code: (i) x+1, y+1, z+2.
 

Footnotes

Other affiliation: Laboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal.

Acknowledgements

We thank Dr Hugo Vazquez-Lima (ICUAP, Puebla, Mexico) for guidance in the QTAIM inter­pretation.

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (grant No. 268178).

References

First citationBader, R. F. W. (2009). J. Phys. Chem. A, 113, 10391–10396.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBreneman, C. M. & Wiberg, K. B. (1990). J. Comput. Chem. 11, 361–373.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGholivand, K., Gholami, A., Ebrahimi, A. A. V., Abolghasemi, S. T., Esrafili, M. D., Fadaei, F. T. & Schenk, K. J. (2015). RSC Adv. 5, 17482–17492.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKapoor, R. N., Cervantes-Lee, F. & Pannell, K. H. (2007). J. Mex. Chem. Soc. 51, 122–128.  CAS Google Scholar
First citationKleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, T. & Chen, F. (2012). J. Comput. Chem. 33, 580–592.  Web of Science CrossRef PubMed Google Scholar
First citationNeese, F. (2018). WIREs Comput. Mol. Sci. 8, e1327.  Google Scholar
First citationNg, S. W. (1995). Acta Cryst. C51, 2292–2293.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNg, S. W. & Kumar Das, V. G. (1992). Acta Cryst. C48, 1839–1841.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPouye, S. F., Cissé, I., Diop, L., Ríos-Merino, F. J. & Bernès, S. (2018). Acta Cryst. E74, 163–166.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShaik, S., Danovich, D., Braida, B., Wu, W. & Hiberty, P. C. (2015). Struct. Bond. 170, 169–211. This book chapter is available from the HAL repository: https://hal.archives-ouvertes.fr/hal-01627700  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2018). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSvetich, G. W. & Caughlan, C. N. (1965). Acta Cryst. 19, 645–650.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationTse, J. S., Lee, F. L. & Gabe, E. J. (1986). Acta Cryst. C42, 1876–1878.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWeichmann, H. & Meunier-Piret, J. (1993). Organometallics, 12, 4097–4103.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds