research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structural, Hirshfeld surface and three-dimensional inter­action energy studies of 2-(6-iodo-4-oxo-3,4-di­hydro­quinazolin-3-yl)ethane­sulfonyl fluoride

crossmark logo

aDepartment of Engineering Physics, Adichunchanagiri Institute of Technology, Chikkamagaluru - 577102, Karnataka, India, bDepartment of Physics, Government Engineering College, B M Road, Dairy Circle, Hassan - 573 201, Karnataka, India, and cDepartment of Engineering Physics, BGS Institute of Technology, Adichunchanagiri University, B G Nagara, Karnataka, India
*Correspondence e-mail: bnlphysics@gmail.com

Edited by A. S. Batsanov, University of Durham, United Kingdom (Received 17 October 2022; accepted 28 December 2022; online 6 January 2023)

In the crystal, mol­ecules of the title compound, C10H8FIN2O3S, are connected through C—H⋯N and C—H⋯O hydrogen bonds, I⋯O halogen bonds, ππ stacking inter­actions between the benzene and pyrimidine rings, and edge-to-edge electrostatic inter­actions, as shown by the analysis of the Hirshfeld surface and two-dimensional fingerprint plots, as well as inter­molecular inter­action energies calculated using the electron-density model at the HF/3–21 G level of theory.

1. Chemical context

Quinazoline is an aromatic heterocycle consisting of a benzene ring fused with a pyrimidine ring. Its derivatives are well known for their biological activities such as anti-analgesic, anti-inflammatory, anti-hypertensive, sedative, hypnotic, anti-histaminic, anti-tumor, anti-microbial, anti-convulsant, anti-bacterial, anti-fungal, enzyme inhibition, and anti-HIV activities (Kumar et al., 1981[Kumar, P., Agarwal, J. C., Nath, C., Bhargava, K. P. & Shanker, K. (1981). Pharmazie, 36, 780.]; Baker et al., 1952[Baker, B. R., Schaub, R. E., McEvoy, F. J. & Williams, J. H. (1952). J. Org. Chem. 17, 132-140.]; Rewcastle et al., 1995[Rewcastle, G. W., Denny, W. A., Bridges, A. J., Zhou, H., Cody, D. R., McMichael, A. & Fry, D. W. (1995). J. Med. Chem. 38, 3482-3487.]; Hitkari et al., 1995[Hitkari, A., Bhalla, M., Saxena, A. K., Verma, M., Gupta, M. P. & Shanker, K. (1995). Boll. Chim. Farm. 134, 609-615.]; Bertelli et al., 2000[Bertelli, L., Biagi, G., Giorgi, I., Livi, O., Manera, C., Scartoni, V., Lucacchini, A., Giannaccini, G. & Barili, P. L. (2000). Eur. J. Med. Chem. 235, 333-341.]; Yang et al., 2009[Yang, X.-H., Chen, X.-B. & Zhou, S.-X. (2009). Acta Cryst. E65, o185-o186.]; Cao et al., 2009[Cao, S.-L., Guo, Y.-W., Wang, X.-B., Zhang, M., Feng, Y.-P., Jiang, Y.-Y., Wang, Y., Gao, Q. & Ren, J. (2009). Arch. Pharm. Chem. Life Sci. 342, 182-189.]; De Clercq, 2001[De Clercq, E. (2001). Curr. Med. Chem. 8, 1543-1572.]). Compounds bearing the quinazoline moiety also are potent cytotoxic agents (Ibrahim et al., 1988[Ibrahim, E. S., Montgomerie, A. M., Sneddon, A. H., Proctor, G. R. & Green, B. (1988). Eur. J. Med. Chem. 23, 183-188.]; Riou et al., 1991[Riou, J.-F., Helissey, P., Grondard, L. & Giorgi-Renault, S. (1991). Mol. Pharmacol. 40, 699-706.]; Braña et al., 1994[Braña, M. F., Castellano, J. M., Keilhauer, G., Machuca, A., Martín, Y., Redondo, C., Schlick, E. & Walker, N. (1994). Anticancer Drug. Des. 9, 527-538.]; Helissey et al., 1994[Helissey, P., Cros, S. & Giorgi-Renault, S. (1994). Anticancer Drug. Des. 9, 51-67.]), show anti-oxidant (Al-Amiery et al., 2014[Al-Amiery, A. A., Kadhum, A. A., Shamel, M., Satar, M., Khalid, Y. & Mohamad, A. B. (2014). Med. Chem. Res. 23, 236-242.]) and insecticidal (Yang et al., 2021[Yang, S., Lai, Q. Q., Lai, F. W., Jiang, X. Y., Zhao, C. & Xu, H. H. (2021). Pest Manag. Sci. 77, 1013-1022.]) activities. In view of their therapeutic importance, we report herein the crystal structure, Hirshfeld surface and three-dimensional inter­action energy studies of 2-(6-iodo-4-oxo-3,4-di­hydro­quinazolin-3-yl)ethane­sulfonyl fluoride, (I)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] (Fig. 1[link]) shows an out-of-plane conformation of the (CH2)2SO2F side chain, the C9/C10/S1 fragment forming a dihedral angle of 76.1 (5)° with the quinazoline (N1/N2/C1–C8) system mean plane, whereas the I1 and O1 substituents do not deviate appreciably from the latter plane. The mol­ecule is stabilized by a weak intra­molecular C10—H10B⋯O1 hydrogen bond, forming an S(6) ring motif. The S1 atom has a slightly distorted tetra­hedral geometry. In the heterocycle, the N1=C1 bond [1.271 (8) Å] is essentially double, while those at the three-coordinate N2 atom are nominally single [C1—N2 = 1.359 (7), N2—C2 = 1.384 (6) Å].

[Figure 1]
Figure 1
Mol­ecular structure of (I)[link]. The atomic displacement ellipsoids are drawn at the 50% probability level.

The bond lengths and angles are in agreement with those in related structures (El-Hiti et al., 2014[El-Hiti, G. A., Smith, K., Hegazy, A. S., Alshammari, M. B. & Kariuki, B. M. (2014). Acta Cryst. E70, o1279.]; Al-Salahi et al., 2012[Al-Salahi, R., Marzouk, M., Abbas, M. & Ng, S. W. (2012). Acta Cryst. E68, o1806.]; Utayeva et al., 2013[Utayeva, F. R., Okmanov, R. Y., Mukarramov, N. I., Shakhidoyatov, K. M. & Tashkhodjaev, B. (2013). Acta Cryst. E69, o1094.]; Priya et al., 2011[Priya, M. G. R., Srinivasan, T., Girija, K., Chandran, N. R. & Velmurugan, D. (2011). Acta Cryst. E67, o2310.]; Lakshminarayana et al., 2009[Lakshminarayana, B. N., Shashidhara Prasad, J., Gnanendra, C. R., Sridhar, M. A. & Chenne Gowda, D. (2009). Acta Cryst. E65, o1237.], 2022[Lakshminarayana, B. N., Sreenatha, N. R., Jeevan Chakravarthy, A. S., Suchithra, B. & Hariprasad, S. (2022). Crystallogr. Rep. 67, 201-208.]; Sreenatha et al., 2018a[Sreenatha, N. R., Lakshminarayana, B. N., Ganesha, D. P., Gnanendra, C. R., Nagaraju, S. & Madan Kumar, S. (2018a). Chem. Data Collect. 17-18, 394-403.],b[Sreenatha, N. R., Lakshminarayana, B. N., Ganesha, D. P., Vijayshankar, S. & Nagaraju, S. (2018b). X-ray Struct. Anal. Online, 34, 23-24. https://doi.org/10.2116/xraystruct.34.23], 2020[Sreenatha, N. R., Jeevan Chakravarthy, A. S., Suchithra, B., Lakshminarayana, B. N., Hariprasad, S. & Ganesha, D. P. (2020). J. Mol. Struct. 1210, 127979.], 2022[Sreenatha, N. R., Ganesha, D. P., Jeevan Chakravarthy, A. S., Suchithra, B. & Lakshminarayana, B. N. (2022). Heliyon, 8, e10151.]).

3. Supra­molecular features

In the crystal, each mol­ecule donates three and accepts three inter­molecular hydrogen bonds, viz. C1—H1⋯N1, C10—H10B⋯O1, C10—H10A⋯O1 (Table 1[link]) and their inversion equivalents. Thus, each mol­ecule participates in three centrosymmetric dimers with R22(6), R22(12) and R22(12) ring motifs, respectively (Fig. 2[link]). Mol­ecules related by the a translation, form a continuous stack via ππ inter­actions between the benzene and the pyrimidine rings (which are parallel within 1.5°), with a mean inter­planar separation of 3.503 (4) Å (Fig. 3[link]). The I1⋯O2(x − 1, y + 1, z) contact of 3.152 (6) Å is considerably shorter than the sum of the van der Waals radii of 3.61 Å (Batsanov, 1995[Batsanov, S. S. (1995). Russ. Chem. Bull. 44, 18-23.]; Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]) and can be described as a halogen bond (Metrangolo & Resnati, 2001[Metrangolo, P. & Resnati, G. (2001). Chem. Eur. J. 7, 2511-2519.]), the nearly linear angle C6—I1⋯O2 = 175.9 (3)° being typical of such bonds.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N1i 0.93 2.46 3.284 (8) 148
C10—H10B⋯O1ii 0.97 2.56 3.493 (7) 160
C10—H10A⋯O1iii 0.97 2.45 3.151 (7) 129
C9—H9A⋯O3iv 0.97 2.33 3.150 (8) 141
C10—H10B⋯O1 0.97 2.59 3.121 (7) 115
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+1, -y+1, -z]; (iii) [-x+2, -y+1, -z]; (iv) x+1, y, z.
[Figure 2]
Figure 2
Inter­molecular hydrogen (see Table 1[link]) and halogen bonds in the structure of (I)[link].
[Figure 3]
Figure 3
ππ stacking in the structure of (I)[link].

4. Database survey

A survey of the Cambridge Structural Database (CSD version 5.41, update of October 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed only one structure, namely (Z)-ethyl-2-cyano-2-(3H-quinazoline-4-yl­idene)acetate (ACEZUE; Tulyasheva et al., 2005[Tulyasheva, M., Rasulev, B. F., Tojiboev, A. G., Turgunov, K. K., Tashkhodjaev, B., Abdullaev, N. D. & Shakhidoyatov, K. M. (2005). Molecules, 10, 1209-1217.]), which shares such features of (I)[link] as one two-coordinate (N1) and one three-coordinate (N2) nitro­gen atom of the quinazoline ring system, as well as an exocyclic double bond at C2, although in this case the H atom at N2 is not substituted. Of the other comparable quinazoline derivatives, in 3-amino-6-bromo-1-methyl-2, 4-(1H,3H)-quinazolinedione (ABMQZD; Ardebili & While, 1978[Ardebili, M. H. P. & White, J. G. (1978). Acta Cryst. B34, 2890-2891.]) both N atoms are three-coordinate, while in N-(5-methyl-1,2-oxazol-3-yl)-4-[(quinazolin-4-yl) level of theoryamino]­benzene-1-sulfonamide and N-(3,4-dimethyl-1,2-oxazol-5-yl)-4-[(quinazolin-4-yl)amino]­benzene-1-sulfonamide (GEY­YOB, GEYYUH; Sunil Kumar et al., 2018[Sunil Kumar, A., Kudva, J., Madan Kumar, S., Vishwanatha, U., Kumar, V. & Naral, D. (2018). J. Mol. Struct. 1167, 142-153.]) both are two-coordinate.

5. Hirshfeld surfaces and 2D fingerprint calculations

The Hirshfeld surfaces and two-dimensional fingerprint plots were calculated using CrystalExplorer17.5 (Spackman et al., 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) to analyse the inter­molecular inter­actions. The three-dimensional Hirshfeld surface mapped over the normalized contact distance (dnorm) is shown in Fig. 4[link]. The eight bright-red spots, indicating shortened contacts, correspond to the three pairs of inter­molecular hydrogen bonds and one pair of halogen bonds discussed in Section 3. The two-dimensional fingerprint plots show the H⋯O contacts to be the most common (23.0%), followed by H⋯H (13.5%), H⋯C (11.5%), H⋯I (9.9%), I⋯O (7.8%), H⋯F (6.7%), H⋯N (6.4%), I⋯F (4.0%), I⋯C (3.2%), O⋯O (2.2%) and C⋯N (1.9%) (including the reverse ones for all heteronuclear contacts). The characteristic spikes in the plots of the H⋯O and H⋯N contacts indicate inter­molecular hydrogen bonds, those in the I⋯O plot indicate halogen bonds (Fig. 5[link]).

[Figure 4]
Figure 4
Different aspects of the three-dimensional Hirshfeld surface of (I)[link] mapped over dnorm. Red spots indicate shortened contacts, revealing inter­molecular hydrogen and halogen bonds
[Figure 5]
Figure 5
Selected two-dimensional fingerprint plots of structure (I)[link]; di and de are the distances from the Hirshfeld surface to the nearest inter­nal and external atoms. Arrows indicate the `spikes' characteristic of hydrogen and halogen bonds

6. Three-dimensional framework analysis of inter­action energies

Qu­anti­fication of inter­molecular inter­actions energies is important for mol­ecular recognition, protein modelling and drug design (Volkov & Coppens, 2004[Volkov, A. & Coppens, P. (2004). J. Comput. Chem. 25, 921-934.]). We computed these energies for (I)[link] with the HF/3-21G(d,p) electron-density model (Grimme, 2006[Grimme, S. (2006). J. Comput. Chem. 27, 1787-1799.]), using CrystalExplorer17.5 software. Eleven mol­ecules surrounding the original one with shortest inter­molecular atom–atom distances of 3.8 Å or less were included in the calculations. The total inter­action energy (Etot) between each pair of mol­ecules comprises coloumbic (Eele), dispersion (Edis), polarization (Epol) and exchange-repulsion inter­action energies (Erep) (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.], 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. The University of Western Australia.]). The Eele, Edis and Etot inter­molecular energy frameworks for (I)[link] are shown graphically in Fig. 6[link] and numerically in Fig. 7[link]. The mol­ecular stacks (Fig. 3[link], top line in the Fig. 7[link] table) are held together mostly by dispersion (van der Waals) inter­actions, supported by the shortest C—H⋯O hydrogen bonds, while edge-to-edge inter­molecular contacts (lines 5 to 8) have larger contributions of electrostatic inter­actions. The inter­action between halogen-bonded mol­ecules (line 3) is smaller than the above in absolute terms (10.8 kJ mol−1), but is remarkable given that only one pair of atoms is actually in contact.

[Figure 6]
Figure 6
Inter­molecular energy frameworks of (a) Eele, (b) Edis and (c) Etot in the structure of (I)[link], viewed down the b axis.
[Figure 7]
Figure 7
Inter­molecular energies (in kJ mol−1) and their components in the structure of (I)[link]. N is the number of mol­ecules in a group, Symop is the symmetry operator, R is the distance between mol­ecular centroids in Å.

7. Synthesis and crystallization

To an ice-cooled stirred suspension of NaH (60% suspension in mineral oil; 125 mg, 2.0 mmol, 2.0 equiv) and 6-iodo­quinazolin-4(3H)-one (1.0 mmol, 1.0 equiv) in DMF (2 mL), a solution of 2-bromo­ethane­sulfonyl fluoride (350 mg, 1.0 mmol, 1.0 equiv) in DMF (1 mL) was added, under an N2 atmosphere. The reaction was heated at 353 K for 4 h under an N2 atmosphere (monitored by TLC). After the complete conversion of the reactants as confirmed from TLC analysis, the reaction mixture was quenched with saturated NH4Cl solution (25 mL), extracted with EtOAc (25 mL) and the collected organic layer was further washed with water (25 mL) and brine (25 mL), then dried over anhydrous Na2SO4 and concentrated under vacuum. Compound (I)[link] was isolated by silica gel chromatography (using chloro­form and methanol as mobile phase) and recrystallized from DMF.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were placed in idealized positions and refined using a riding model with C—H 0.93 Å for sp2 and 0.97 Å for sp3 C atoms, with Uiso(H) = 1.2Ueq(C) for both.

Table 2
Experimental details

Crystal data
Chemical formula C10H8FIN2O3S
Mr 382.14
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 5.0230 (5), 11.3241 (11), 11.5509 (11)
α, β, γ (°) 103.081 (2), 96.742 (1), 97.860 (1)
V3) 626.43 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.74
Crystal size (mm) 0.34 × 0.30 × 0.27
 
Data collection
Diffractometer Bruker APEXII
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 4073, 3207, 2315
Rint 0.035
(sin θ/λ)max−1) 0.673
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.166, 1.11
No. of reflections 3207
No. of parameters 164
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.88, −1.39
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: PLATON (Spek, 2020).

2-(6-Iodo-4-oxo-3,4-dihydroquinazolin-3-yl)ethanesulfonyl fluoride top
Crystal data top
C10H8FIN2O3SZ = 2
Mr = 382.14F(000) = 368
Triclinic, P1Dx = 2.026 Mg m3
a = 5.0230 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.3241 (11) ÅCell parameters from 3207 reflections
c = 11.5509 (11) Åθ = 2.9–28.6°
α = 103.081 (2)°µ = 2.74 mm1
β = 96.742 (1)°T = 293 K
γ = 97.860 (1)°Block, colourless
V = 626.43 (11) Å30.34 × 0.30 × 0.27 mm
Data collection top
Bruker APEXII
diffractometer
2315 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 28.6°, θmin = 2.9°
SAINT (Bruker, 2009) scansh = 66
4073 measured reflectionsk = 1515
3207 independent reflectionsl = 159
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.166(Δ/σ)max = 0.027
S = 1.11Δρmax = 0.88 e Å3
3207 reflectionsΔρmin = 1.39 e Å3
164 parametersExtinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.075 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.12293 (8)0.97164 (3)0.27666 (4)0.0627 (3)
S10.6688 (3)0.23549 (14)0.14355 (16)0.0558 (4)
C40.6072 (11)0.6675 (5)0.4017 (4)0.0400 (10)
O10.7389 (9)0.6113 (4)0.0952 (3)0.0492 (9)
C60.3202 (11)0.8380 (5)0.3281 (5)0.0452 (12)
N10.7570 (11)0.5853 (5)0.4409 (4)0.0502 (11)
C30.5977 (10)0.6826 (5)0.2840 (4)0.0374 (10)
C20.7379 (10)0.6082 (4)0.2009 (4)0.0370 (10)
C10.8777 (12)0.5224 (5)0.3644 (5)0.0473 (12)
H10.9767790.4672430.3906910.057*
C100.8383 (12)0.3422 (5)0.0775 (5)0.0466 (12)
H10A0.9466620.3007440.0221710.056*
H10B0.7052500.3750360.0315370.056*
C91.0223 (10)0.4478 (5)0.1700 (5)0.0424 (11)
H9A1.1460340.4140790.2196430.051*
H9B1.1308120.4969660.1281830.051*
C50.4554 (11)0.7690 (5)0.2498 (5)0.0416 (11)
H50.4522200.7801000.1723360.050*
C70.3249 (13)0.8216 (6)0.4448 (6)0.0554 (14)
H70.2311390.8676970.4982110.066*
O30.4727 (11)0.2855 (6)0.2052 (7)0.0900 (19)
O20.8528 (12)0.1889 (8)0.2130 (10)0.139 (4)
N20.8762 (8)0.5277 (4)0.2479 (4)0.0393 (9)
F10.532 (2)0.1389 (6)0.0379 (6)0.167 (4)
C80.4670 (14)0.7380 (6)0.4805 (5)0.0534 (14)
H80.4700100.7280880.5583970.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0622 (3)0.0401 (3)0.0873 (4)0.01597 (19)0.0067 (2)0.0166 (2)
S10.0624 (8)0.0382 (7)0.0754 (11)0.0114 (6)0.0258 (8)0.0219 (7)
C40.049 (2)0.038 (3)0.031 (2)0.001 (2)0.005 (2)0.0078 (19)
O10.069 (2)0.049 (2)0.038 (2)0.0201 (19)0.0135 (17)0.0178 (16)
C60.046 (3)0.033 (3)0.055 (3)0.007 (2)0.006 (2)0.007 (2)
N10.072 (3)0.048 (3)0.034 (2)0.017 (2)0.003 (2)0.0161 (19)
C30.042 (2)0.034 (2)0.036 (2)0.0027 (19)0.0040 (19)0.0112 (19)
C20.045 (2)0.031 (2)0.036 (3)0.0049 (19)0.0046 (19)0.0147 (19)
C10.062 (3)0.040 (3)0.039 (3)0.011 (2)0.007 (2)0.014 (2)
C100.064 (3)0.038 (3)0.042 (3)0.010 (2)0.018 (2)0.012 (2)
C90.044 (2)0.040 (3)0.050 (3)0.014 (2)0.012 (2)0.017 (2)
C50.050 (3)0.038 (3)0.037 (3)0.006 (2)0.005 (2)0.012 (2)
C70.067 (4)0.045 (3)0.056 (3)0.012 (3)0.021 (3)0.009 (3)
O30.078 (3)0.079 (4)0.142 (5)0.028 (3)0.065 (4)0.053 (4)
O20.073 (4)0.141 (7)0.265 (11)0.040 (4)0.031 (5)0.160 (8)
N20.044 (2)0.036 (2)0.040 (2)0.0097 (18)0.0016 (17)0.0129 (17)
F10.280 (10)0.083 (4)0.098 (4)0.080 (5)0.054 (5)0.009 (3)
C80.076 (4)0.048 (3)0.041 (3)0.010 (3)0.017 (3)0.015 (2)
Geometric parameters (Å, º) top
I1—C62.075 (5)C2—N21.384 (6)
S1—O31.390 (6)C1—N21.359 (7)
S1—O21.389 (6)C1—H10.9300
S1—F11.467 (6)C10—C91.521 (8)
S1—C101.748 (5)C10—H10A0.9700
C4—C31.404 (7)C10—H10B0.9700
C4—N11.393 (7)C9—N21.462 (6)
C4—C81.392 (8)C9—H9A0.9700
O1—C21.230 (6)C9—H9B0.9700
C6—C51.363 (8)C5—H50.9300
C6—C71.400 (9)C7—C81.367 (9)
N1—C11.271 (8)C7—H70.9300
C3—C51.387 (7)C8—H80.9300
C3—C21.443 (7)
O3—S1—O2113.9 (5)C9—C10—H10A109.1
O3—S1—F1108.8 (5)S1—C10—H10A109.1
O2—S1—F1110.1 (6)C9—C10—H10B109.1
O3—S1—C10110.6 (3)S1—C10—H10B109.1
O2—S1—C10110.8 (3)H10A—C10—H10B107.8
F1—S1—C10101.9 (3)N2—C9—C10114.0 (4)
C3—C4—N1121.3 (5)N2—C9—H9A108.8
C3—C4—C8118.8 (5)C10—C9—H9A108.8
N1—C4—C8119.8 (5)N2—C9—H9B108.8
C5—C6—C7119.6 (5)C10—C9—H9B108.8
C5—C6—I1120.1 (4)H9A—C9—H9B107.7
C7—C6—I1120.3 (4)C6—C5—C3121.0 (5)
C1—N1—C4116.9 (4)C6—C5—H5119.5
C4—C3—C5119.6 (5)C3—C5—H5119.5
C4—C3—C2119.2 (4)C8—C7—C6120.2 (6)
C5—C3—C2121.2 (4)C8—C7—H7119.9
O1—C2—N2120.0 (5)C6—C7—H7119.9
O1—C2—C3125.0 (4)C1—N2—C2121.1 (4)
N2—C2—C3115.0 (4)C1—N2—C9120.1 (4)
N1—C1—N2126.4 (5)C2—N2—C9118.8 (4)
N1—C1—H1116.8C7—C8—C4120.8 (5)
N2—C1—H1116.8C7—C8—H8119.6
C9—C10—S1112.5 (4)C4—C8—H8119.6
C3—C4—N1—C12.0 (8)I1—C6—C5—C3177.4 (4)
C8—C4—N1—C1179.1 (6)C4—C3—C5—C61.2 (8)
N1—C4—C3—C5177.4 (5)C2—C3—C5—C6179.1 (5)
C8—C4—C3—C51.6 (8)C5—C6—C7—C80.8 (9)
N1—C4—C3—C22.3 (7)I1—C6—C7—C8176.6 (5)
C8—C4—C3—C2178.8 (5)N1—C1—N2—C21.0 (9)
C4—C3—C2—O1178.3 (5)N1—C1—N2—C9179.1 (6)
C5—C3—C2—O12.1 (8)O1—C2—N2—C1179.9 (5)
C4—C3—C2—N21.0 (7)C3—C2—N2—C10.6 (7)
C5—C3—C2—N2178.7 (4)O1—C2—N2—C90.2 (7)
C4—N1—C1—N20.3 (9)C3—C2—N2—C9179.5 (4)
O3—S1—C10—C970.2 (5)C10—C9—N2—C1106.4 (6)
O2—S1—C10—C957.1 (7)C10—C9—N2—C273.7 (6)
F1—S1—C10—C9174.2 (6)C6—C7—C8—C40.4 (10)
S1—C10—C9—N267.0 (5)C3—C4—C8—C70.7 (9)
C7—C6—C5—C30.0 (8)N1—C4—C8—C7178.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N1i0.932.463.284 (8)148
C10—H10B···O1ii0.972.563.493 (7)160
C10—H10A···O1iii0.972.453.151 (7)129
C9—H9A···O3iv0.972.333.150 (8)141
C10—H10B···O10.972.593.121 (7)115
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x+2, y+1, z; (iv) x+1, y, z.
 

Acknowledgements

The authors are thankful to Dr A. S. Jeevan Chakravarthy, C/O Professor H. ILA, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Amruthahalli, Bengaluru − 560064, Karnataka, and to the Department of Engineering Physics, Adichunchanagiri Institute of Technology, Chikkamagaluru, Karnataka, India, for support.

References

First citationAl-Amiery, A. A., Kadhum, A. A., Shamel, M., Satar, M., Khalid, Y. & Mohamad, A. B. (2014). Med. Chem. Res. 23, 236–242.  CAS Google Scholar
First citationAl-Salahi, R., Marzouk, M., Abbas, M. & Ng, S. W. (2012). Acta Cryst. E68, o1806.  CSD CrossRef IUCr Journals Google Scholar
First citationArdebili, M. H. P. & White, J. G. (1978). Acta Cryst. B34, 2890–2891.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBaker, B. R., Schaub, R. E., McEvoy, F. J. & Williams, J. H. (1952). J. Org. Chem. 17, 132–140.  CrossRef CAS Web of Science Google Scholar
First citationBatsanov, S. S. (1995). Russ. Chem. Bull. 44, 18–23.  CrossRef Web of Science Google Scholar
First citationBertelli, L., Biagi, G., Giorgi, I., Livi, O., Manera, C., Scartoni, V., Lucacchini, A., Giannaccini, G. & Barili, P. L. (2000). Eur. J. Med. Chem. 235, 333–341.  Web of Science CrossRef Google Scholar
First citationBraña, M. F., Castellano, J. M., Keilhauer, G., Machuca, A., Martín, Y., Redondo, C., Schlick, E. & Walker, N. (1994). Anticancer Drug. Des. 9, 527–538.  PubMed Web of Science Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, S.-L., Guo, Y.-W., Wang, X.-B., Zhang, M., Feng, Y.-P., Jiang, Y.-Y., Wang, Y., Gao, Q. & Ren, J. (2009). Arch. Pharm. Chem. Life Sci. 342, 182–189.  Web of Science CrossRef CAS Google Scholar
First citationDe Clercq, E. (2001). Curr. Med. Chem. 8, 1543–1572.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Hiti, G. A., Smith, K., Hegazy, A. S., Alshammari, M. B. & Kariuki, B. M. (2014). Acta Cryst. E70, o1279.  CSD CrossRef IUCr Journals Google Scholar
First citationGrimme, S. (2006). J. Comput. Chem. 27, 1787–1799.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHelissey, P., Cros, S. & Giorgi-Renault, S. (1994). Anticancer Drug. Des. 9, 51–67.  CAS PubMed Web of Science Google Scholar
First citationHitkari, A., Bhalla, M., Saxena, A. K., Verma, M., Gupta, M. P. & Shanker, K. (1995). Boll. Chim. Farm. 134, 609–615.  CAS PubMed Google Scholar
First citationIbrahim, E. S., Montgomerie, A. M., Sneddon, A. H., Proctor, G. R. & Green, B. (1988). Eur. J. Med. Chem. 23, 183–188.  CrossRef CAS Web of Science Google Scholar
First citationKumar, P., Agarwal, J. C., Nath, C., Bhargava, K. P. & Shanker, K. (1981). Pharmazie, 36, 780.  PubMed Web of Science Google Scholar
First citationLakshminarayana, B. N., Shashidhara Prasad, J., Gnanendra, C. R., Sridhar, M. A. & Chenne Gowda, D. (2009). Acta Cryst. E65, o1237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLakshminarayana, B. N., Sreenatha, N. R., Jeevan Chakravarthy, A. S., Suchithra, B. & Hariprasad, S. (2022). Crystallogr. Rep. 67, 201–208.  Web of Science CSD CrossRef CAS Google Scholar
First citationMetrangolo, P. & Resnati, G. (2001). Chem. Eur. J. 7, 2511–2519.  CrossRef PubMed CAS Google Scholar
First citationPriya, M. G. R., Srinivasan, T., Girija, K., Chandran, N. R. & Velmurugan, D. (2011). Acta Cryst. E67, o2310.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRewcastle, G. W., Denny, W. A., Bridges, A. J., Zhou, H., Cody, D. R., McMichael, A. & Fry, D. W. (1995). J. Med. Chem. 38, 3482–3487.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRiou, J.-F., Helissey, P., Grondard, L. & Giorgi-Renault, S. (1991). Mol. Pharmacol. 40, 699–706.  PubMed CAS Web of Science Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSreenatha, N. R., Ganesha, D. P., Jeevan Chakravarthy, A. S., Suchithra, B. & Lakshminarayana, B. N. (2022). Heliyon, 8, e10151.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSreenatha, N. R., Jeevan Chakravarthy, A. S., Suchithra, B., Lakshminarayana, B. N., Hariprasad, S. & Ganesha, D. P. (2020). J. Mol. Struct. 1210, 127979.  Web of Science CSD CrossRef Google Scholar
First citationSreenatha, N. R., Lakshminarayana, B. N., Ganesha, D. P., Gnanendra, C. R., Nagaraju, S. & Madan Kumar, S. (2018a). Chem. Data Collect. 1718, 394–403.  CSD CrossRef Google Scholar
First citationSreenatha, N. R., Lakshminarayana, B. N., Ganesha, D. P., Vijayshankar, S. & Nagaraju, S. (2018b). X-ray Struct. Anal. Online, 34, 23–24. https://doi.org/10.2116/xraystruct.34.23  Google Scholar
First citationSunil Kumar, A., Kudva, J., Madan Kumar, S., Vishwanatha, U., Kumar, V. & Naral, D. (2018). J. Mol. Struct. 1167, 142–153.  Web of Science CSD CrossRef CAS Google Scholar
First citationTulyasheva, M., Rasulev, B. F., Tojiboev, A. G., Turgunov, K. K., Tashkhodjaev, B., Abdullaev, N. D. & Shakhidoyatov, K. M. (2005). Molecules, 10, 1209–1217.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. The University of Western Australia.  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationUtayeva, F. R., Okmanov, R. Y., Mukarramov, N. I., Shakhidoyatov, K. M. & Tashkhodjaev, B. (2013). Acta Cryst. E69, o1094.  CSD CrossRef IUCr Journals Google Scholar
First citationVolkov, A. & Coppens, P. (2004). J. Comput. Chem. 25, 921–934.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, S., Lai, Q. Q., Lai, F. W., Jiang, X. Y., Zhao, C. & Xu, H. H. (2021). Pest Manag. Sci. 77, 1013–1022.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYang, X.-H., Chen, X.-B. & Zhou, S.-X. (2009). Acta Cryst. E65, o185–o186.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds