research communications
Structural, Hirshfeld surface and three-dimensional interaction energy studies of 2-(6-iodo-4-oxo-3,4-dihydroquinazolin-3-yl)ethanesulfonyl fluoride
aDepartment of Engineering Physics, Adichunchanagiri Institute of Technology, Chikkamagaluru - 577102, Karnataka, India, bDepartment of Physics, Government Engineering College, B M Road, Dairy Circle, Hassan - 573 201, Karnataka, India, and cDepartment of Engineering Physics, BGS Institute of Technology, Adichunchanagiri University, B G Nagara, Karnataka, India
*Correspondence e-mail: bnlphysics@gmail.com
In the crystal, molecules of the title compound, C10H8FIN2O3S, are connected through C—H⋯N and C—H⋯O hydrogen bonds, I⋯O halogen bonds, π–π stacking interactions between the benzene and pyrimidine rings, and edge-to-edge electrostatic interactions, as shown by the analysis of the Hirshfeld surface and two-dimensional fingerprint plots, as well as intermolecular interaction energies calculated using the electron-density model at the HF/3–21 G level of theory.
Keywords: Single-crystal structure; C—H⋯N and C—H⋯O hydrogen bonds; I⋯O halogen bond; Hirshfeld surface; intermolecular energies.
CCDC reference: 1987361
1. Chemical context
Quinazoline is an aromatic heterocycle consisting of a benzene ring fused with a pyrimidine ring. Its derivatives are well known for their biological activities such as anti-analgesic, anti-inflammatory, anti-hypertensive, sedative, hypnotic, anti-histaminic, anti-tumor, anti-microbial, anti-convulsant, anti-bacterial, anti-fungal, enzyme inhibition, and anti-HIV activities (Kumar et al., 1981; Baker et al., 1952; Rewcastle et al., 1995; Hitkari et al., 1995; Bertelli et al., 2000; Yang et al., 2009; Cao et al., 2009; De Clercq, 2001). Compounds bearing the quinazoline moiety also are potent cytotoxic agents (Ibrahim et al., 1988; Riou et al., 1991; Braña et al., 1994; Helissey et al., 1994), show anti-oxidant (Al-Amiery et al., 2014) and insecticidal (Yang et al., 2021) activities. In view of their therapeutic importance, we report herein the Hirshfeld surface and three-dimensional interaction energy studies of 2-(6-iodo-4-oxo-3,4-dihydroquinazolin-3-yl)ethanesulfonyl fluoride, (I).
2. Structural commentary
The molecular structure of (I) (Fig. 1) shows an out-of-plane conformation of the (CH2)2SO2F side chain, the C9/C10/S1 fragment forming a dihedral angle of 76.1 (5)° with the quinazoline (N1/N2/C1–C8) system mean plane, whereas the I1 and O1 substituents do not deviate appreciably from the latter plane. The molecule is stabilized by a weak intramolecular C10—H10B⋯O1 hydrogen bond, forming an S(6) ring motif. The S1 atom has a slightly distorted tetrahedral geometry. In the heterocycle, the N1=C1 bond [1.271 (8) Å] is essentially double, while those at the three-coordinate N2 atom are nominally single [C1—N2 = 1.359 (7), N2—C2 = 1.384 (6) Å].
The bond lengths and angles are in agreement with those in related structures (El-Hiti et al., 2014; Al-Salahi et al., 2012; Utayeva et al., 2013; Priya et al., 2011; Lakshminarayana et al., 2009, 2022; Sreenatha et al., 2018a,b, 2020, 2022).
3. Supramolecular features
In the crystal, each molecule donates three and accepts three intermolecular hydrogen bonds, viz. C1—H1⋯N1, C10—H10B⋯O1, C10—H10A⋯O1 (Table 1) and their inversion equivalents. Thus, each molecule participates in three centrosymmetric dimers with R22(6), R22(12) and R22(12) ring motifs, respectively (Fig. 2). Molecules related by the a translation, form a continuous stack via π–π interactions between the benzene and the pyrimidine rings (which are parallel within 1.5°), with a mean interplanar separation of 3.503 (4) Å (Fig. 3). The I1⋯O2(x − 1, y + 1, z) contact of 3.152 (6) Å is considerably shorter than the sum of the van der Waals radii of 3.61 Å (Batsanov, 1995; Rowland & Taylor, 1996) and can be described as a halogen bond (Metrangolo & Resnati, 2001), the nearly linear angle C6—I1⋯O2 = 175.9 (3)° being typical of such bonds.
4. Database survey
A survey of the Cambridge Structural Database (CSD version 5.41, update of October 2022; Groom et al., 2016) revealed only one structure, namely (Z)-ethyl-2-cyano-2-(3H-quinazoline-4-ylidene)acetate (ACEZUE; Tulyasheva et al., 2005), which shares such features of (I) as one two-coordinate (N1) and one three-coordinate (N2) nitrogen atom of the quinazoline ring system, as well as an exocyclic double bond at C2, although in this case the H atom at N2 is not substituted. Of the other comparable quinazoline derivatives, in 3-amino-6-bromo-1-methyl-2, 4-(1H,3H)-quinazolinedione (ABMQZD; Ardebili & While, 1978) both N atoms are three-coordinate, while in N-(5-methyl-1,2-oxazol-3-yl)-4-[(quinazolin-4-yl) level of theoryamino]benzene-1-sulfonamide and N-(3,4-dimethyl-1,2-oxazol-5-yl)-4-[(quinazolin-4-yl)amino]benzene-1-sulfonamide (GEYYOB, GEYYUH; Sunil Kumar et al., 2018) both are two-coordinate.
5. Hirshfeld surfaces and 2D fingerprint calculations
The Hirshfeld surfaces and two-dimensional fingerprint plots were calculated using CrystalExplorer17.5 (Spackman et al., 2009) to analyse the intermolecular interactions. The three-dimensional Hirshfeld surface mapped over the normalized contact distance (dnorm) is shown in Fig. 4. The eight bright-red spots, indicating shortened contacts, correspond to the three pairs of intermolecular hydrogen bonds and one pair of halogen bonds discussed in Section 3. The two-dimensional fingerprint plots show the H⋯O contacts to be the most common (23.0%), followed by H⋯H (13.5%), H⋯C (11.5%), H⋯I (9.9%), I⋯O (7.8%), H⋯F (6.7%), H⋯N (6.4%), I⋯F (4.0%), I⋯C (3.2%), O⋯O (2.2%) and C⋯N (1.9%) (including the reverse ones for all heteronuclear contacts). The characteristic spikes in the plots of the H⋯O and H⋯N contacts indicate intermolecular hydrogen bonds, those in the I⋯O plot indicate halogen bonds (Fig. 5).
6. Three-dimensional framework analysis of interaction energies
Quantification of intermolecular interactions energies is important for molecular recognition, protein modelling and drug design (Volkov & Coppens, 2004). We computed these energies for (I) with the HF/3-21G(d,p) electron-density model (Grimme, 2006), using CrystalExplorer17.5 software. Eleven molecules surrounding the original one with shortest intermolecular atom–atom distances of 3.8 Å or less were included in the calculations. The total interaction energy (Etot) between each pair of molecules comprises coloumbic (Eele), dispersion (Edis), polarization (Epol) and exchange-repulsion interaction energies (Erep) (Turner et al., 2015, 2017). The Eele, Edis and Etot intermolecular energy frameworks for (I) are shown graphically in Fig. 6 and numerically in Fig. 7. The molecular stacks (Fig. 3, top line in the Fig. 7 table) are held together mostly by dispersion (van der Waals) interactions, supported by the shortest C—H⋯O hydrogen bonds, while edge-to-edge intermolecular contacts (lines 5 to 8) have larger contributions of electrostatic interactions. The interaction between halogen-bonded molecules (line 3) is smaller than the above in absolute terms (10.8 kJ mol−1), but is remarkable given that only one pair of atoms is actually in contact.
7. Synthesis and crystallization
To an ice-cooled stirred suspension of NaH (60% suspension in mineral oil; 125 mg, 2.0 mmol, 2.0 equiv) and 6-iodoquinazolin-4(3H)-one (1.0 mmol, 1.0 equiv) in DMF (2 mL), a solution of 2-bromoethanesulfonyl fluoride (350 mg, 1.0 mmol, 1.0 equiv) in DMF (1 mL) was added, under an N2 atmosphere. The reaction was heated at 353 K for 4 h under an N2 atmosphere (monitored by TLC). After the complete conversion of the reactants as confirmed from TLC analysis, the reaction mixture was quenched with saturated NH4Cl solution (25 mL), extracted with EtOAc (25 mL) and the collected organic layer was further washed with water (25 mL) and brine (25 mL), then dried over anhydrous Na2SO4 and concentrated under vacuum. Compound (I) was isolated by silica gel (using chloroform and methanol as mobile phase) and recrystallized from DMF.
8. Refinement
Crystal data, data collection and structure . Hydrogen atoms were placed in idealized positions and refined using a riding model with C—H 0.93 Å for sp2 and 0.97 Å for sp3 C atoms, with Uiso(H) = 1.2Ueq(C) for both.
details are summarized in Table 2Supporting information
CCDC reference: 1987361
https://doi.org/10.1107/S205698902201221X/zv2021sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902201221X/zv2021Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902201221X/zv2021Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: PLATON (Spek, 2020).C10H8FIN2O3S | Z = 2 |
Mr = 382.14 | F(000) = 368 |
Triclinic, P1 | Dx = 2.026 Mg m−3 |
a = 5.0230 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.3241 (11) Å | Cell parameters from 3207 reflections |
c = 11.5509 (11) Å | θ = 2.9–28.6° |
α = 103.081 (2)° | µ = 2.74 mm−1 |
β = 96.742 (1)° | T = 293 K |
γ = 97.860 (1)° | Block, colourless |
V = 626.43 (11) Å3 | 0.34 × 0.30 × 0.27 mm |
Bruker APEXII diffractometer | 2315 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.035 |
Graphite monochromator | θmax = 28.6°, θmin = 2.9° |
SAINT (Bruker, 2009) scans | h = −6→6 |
4073 measured reflections | k = −15→15 |
3207 independent reflections | l = −15→9 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.055 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.166 | (Δ/σ)max = 0.027 |
S = 1.11 | Δρmax = 0.88 e Å−3 |
3207 reflections | Δρmin = −1.39 e Å−3 |
164 parameters | Extinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.075 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.12293 (8) | 0.97164 (3) | 0.27666 (4) | 0.0627 (3) | |
S1 | 0.6688 (3) | 0.23549 (14) | 0.14355 (16) | 0.0558 (4) | |
C4 | 0.6072 (11) | 0.6675 (5) | 0.4017 (4) | 0.0400 (10) | |
O1 | 0.7389 (9) | 0.6113 (4) | 0.0952 (3) | 0.0492 (9) | |
C6 | 0.3202 (11) | 0.8380 (5) | 0.3281 (5) | 0.0452 (12) | |
N1 | 0.7570 (11) | 0.5853 (5) | 0.4409 (4) | 0.0502 (11) | |
C3 | 0.5977 (10) | 0.6826 (5) | 0.2840 (4) | 0.0374 (10) | |
C2 | 0.7379 (10) | 0.6082 (4) | 0.2009 (4) | 0.0370 (10) | |
C1 | 0.8777 (12) | 0.5224 (5) | 0.3644 (5) | 0.0473 (12) | |
H1 | 0.976779 | 0.467243 | 0.390691 | 0.057* | |
C10 | 0.8383 (12) | 0.3422 (5) | 0.0775 (5) | 0.0466 (12) | |
H10A | 0.946662 | 0.300744 | 0.022171 | 0.056* | |
H10B | 0.705250 | 0.375036 | 0.031537 | 0.056* | |
C9 | 1.0223 (10) | 0.4478 (5) | 0.1700 (5) | 0.0424 (11) | |
H9A | 1.146034 | 0.414079 | 0.219643 | 0.051* | |
H9B | 1.130812 | 0.496966 | 0.128183 | 0.051* | |
C5 | 0.4554 (11) | 0.7690 (5) | 0.2498 (5) | 0.0416 (11) | |
H5 | 0.452220 | 0.780100 | 0.172336 | 0.050* | |
C7 | 0.3249 (13) | 0.8216 (6) | 0.4448 (6) | 0.0554 (14) | |
H7 | 0.231139 | 0.867697 | 0.498211 | 0.066* | |
O3 | 0.4727 (11) | 0.2855 (6) | 0.2052 (7) | 0.0900 (19) | |
O2 | 0.8528 (12) | 0.1889 (8) | 0.2130 (10) | 0.139 (4) | |
N2 | 0.8762 (8) | 0.5277 (4) | 0.2479 (4) | 0.0393 (9) | |
F1 | 0.532 (2) | 0.1389 (6) | 0.0379 (6) | 0.167 (4) | |
C8 | 0.4670 (14) | 0.7380 (6) | 0.4805 (5) | 0.0534 (14) | |
H8 | 0.470010 | 0.728088 | 0.558397 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0622 (3) | 0.0401 (3) | 0.0873 (4) | 0.01597 (19) | 0.0067 (2) | 0.0166 (2) |
S1 | 0.0624 (8) | 0.0382 (7) | 0.0754 (11) | 0.0114 (6) | 0.0258 (8) | 0.0219 (7) |
C4 | 0.049 (2) | 0.038 (3) | 0.031 (2) | 0.001 (2) | 0.005 (2) | 0.0078 (19) |
O1 | 0.069 (2) | 0.049 (2) | 0.038 (2) | 0.0201 (19) | 0.0135 (17) | 0.0178 (16) |
C6 | 0.046 (3) | 0.033 (3) | 0.055 (3) | 0.007 (2) | 0.006 (2) | 0.007 (2) |
N1 | 0.072 (3) | 0.048 (3) | 0.034 (2) | 0.017 (2) | 0.003 (2) | 0.0161 (19) |
C3 | 0.042 (2) | 0.034 (2) | 0.036 (2) | 0.0027 (19) | 0.0040 (19) | 0.0112 (19) |
C2 | 0.045 (2) | 0.031 (2) | 0.036 (3) | 0.0049 (19) | 0.0046 (19) | 0.0147 (19) |
C1 | 0.062 (3) | 0.040 (3) | 0.039 (3) | 0.011 (2) | −0.007 (2) | 0.014 (2) |
C10 | 0.064 (3) | 0.038 (3) | 0.042 (3) | 0.010 (2) | 0.018 (2) | 0.012 (2) |
C9 | 0.044 (2) | 0.040 (3) | 0.050 (3) | 0.014 (2) | 0.012 (2) | 0.017 (2) |
C5 | 0.050 (3) | 0.038 (3) | 0.037 (3) | 0.006 (2) | 0.005 (2) | 0.012 (2) |
C7 | 0.067 (4) | 0.045 (3) | 0.056 (3) | 0.012 (3) | 0.021 (3) | 0.009 (3) |
O3 | 0.078 (3) | 0.079 (4) | 0.142 (5) | 0.028 (3) | 0.065 (4) | 0.053 (4) |
O2 | 0.073 (4) | 0.141 (7) | 0.265 (11) | 0.040 (4) | 0.031 (5) | 0.160 (8) |
N2 | 0.044 (2) | 0.036 (2) | 0.040 (2) | 0.0097 (18) | 0.0016 (17) | 0.0129 (17) |
F1 | 0.280 (10) | 0.083 (4) | 0.098 (4) | −0.080 (5) | 0.054 (5) | −0.009 (3) |
C8 | 0.076 (4) | 0.048 (3) | 0.041 (3) | 0.010 (3) | 0.017 (3) | 0.015 (2) |
I1—C6 | 2.075 (5) | C2—N2 | 1.384 (6) |
S1—O3 | 1.390 (6) | C1—N2 | 1.359 (7) |
S1—O2 | 1.389 (6) | C1—H1 | 0.9300 |
S1—F1 | 1.467 (6) | C10—C9 | 1.521 (8) |
S1—C10 | 1.748 (5) | C10—H10A | 0.9700 |
C4—C3 | 1.404 (7) | C10—H10B | 0.9700 |
C4—N1 | 1.393 (7) | C9—N2 | 1.462 (6) |
C4—C8 | 1.392 (8) | C9—H9A | 0.9700 |
O1—C2 | 1.230 (6) | C9—H9B | 0.9700 |
C6—C5 | 1.363 (8) | C5—H5 | 0.9300 |
C6—C7 | 1.400 (9) | C7—C8 | 1.367 (9) |
N1—C1 | 1.271 (8) | C7—H7 | 0.9300 |
C3—C5 | 1.387 (7) | C8—H8 | 0.9300 |
C3—C2 | 1.443 (7) | ||
O3—S1—O2 | 113.9 (5) | C9—C10—H10A | 109.1 |
O3—S1—F1 | 108.8 (5) | S1—C10—H10A | 109.1 |
O2—S1—F1 | 110.1 (6) | C9—C10—H10B | 109.1 |
O3—S1—C10 | 110.6 (3) | S1—C10—H10B | 109.1 |
O2—S1—C10 | 110.8 (3) | H10A—C10—H10B | 107.8 |
F1—S1—C10 | 101.9 (3) | N2—C9—C10 | 114.0 (4) |
C3—C4—N1 | 121.3 (5) | N2—C9—H9A | 108.8 |
C3—C4—C8 | 118.8 (5) | C10—C9—H9A | 108.8 |
N1—C4—C8 | 119.8 (5) | N2—C9—H9B | 108.8 |
C5—C6—C7 | 119.6 (5) | C10—C9—H9B | 108.8 |
C5—C6—I1 | 120.1 (4) | H9A—C9—H9B | 107.7 |
C7—C6—I1 | 120.3 (4) | C6—C5—C3 | 121.0 (5) |
C1—N1—C4 | 116.9 (4) | C6—C5—H5 | 119.5 |
C4—C3—C5 | 119.6 (5) | C3—C5—H5 | 119.5 |
C4—C3—C2 | 119.2 (4) | C8—C7—C6 | 120.2 (6) |
C5—C3—C2 | 121.2 (4) | C8—C7—H7 | 119.9 |
O1—C2—N2 | 120.0 (5) | C6—C7—H7 | 119.9 |
O1—C2—C3 | 125.0 (4) | C1—N2—C2 | 121.1 (4) |
N2—C2—C3 | 115.0 (4) | C1—N2—C9 | 120.1 (4) |
N1—C1—N2 | 126.4 (5) | C2—N2—C9 | 118.8 (4) |
N1—C1—H1 | 116.8 | C7—C8—C4 | 120.8 (5) |
N2—C1—H1 | 116.8 | C7—C8—H8 | 119.6 |
C9—C10—S1 | 112.5 (4) | C4—C8—H8 | 119.6 |
C3—C4—N1—C1 | −2.0 (8) | I1—C6—C5—C3 | 177.4 (4) |
C8—C4—N1—C1 | 179.1 (6) | C4—C3—C5—C6 | −1.2 (8) |
N1—C4—C3—C5 | −177.4 (5) | C2—C3—C5—C6 | 179.1 (5) |
C8—C4—C3—C5 | 1.6 (8) | C5—C6—C7—C8 | 0.8 (9) |
N1—C4—C3—C2 | 2.3 (7) | I1—C6—C7—C8 | −176.6 (5) |
C8—C4—C3—C2 | −178.8 (5) | N1—C1—N2—C2 | 1.0 (9) |
C4—C3—C2—O1 | 178.3 (5) | N1—C1—N2—C9 | −179.1 (6) |
C5—C3—C2—O1 | −2.1 (8) | O1—C2—N2—C1 | −179.9 (5) |
C4—C3—C2—N2 | −1.0 (7) | C3—C2—N2—C1 | −0.6 (7) |
C5—C3—C2—N2 | 178.7 (4) | O1—C2—N2—C9 | 0.2 (7) |
C4—N1—C1—N2 | 0.3 (9) | C3—C2—N2—C9 | 179.5 (4) |
O3—S1—C10—C9 | 70.2 (5) | C10—C9—N2—C1 | 106.4 (6) |
O2—S1—C10—C9 | −57.1 (7) | C10—C9—N2—C2 | −73.7 (6) |
F1—S1—C10—C9 | −174.2 (6) | C6—C7—C8—C4 | −0.4 (10) |
S1—C10—C9—N2 | −67.0 (5) | C3—C4—C8—C7 | −0.7 (9) |
C7—C6—C5—C3 | 0.0 (8) | N1—C4—C8—C7 | 178.2 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···N1i | 0.93 | 2.46 | 3.284 (8) | 148 |
C10—H10B···O1ii | 0.97 | 2.56 | 3.493 (7) | 160 |
C10—H10A···O1iii | 0.97 | 2.45 | 3.151 (7) | 129 |
C9—H9A···O3iv | 0.97 | 2.33 | 3.150 (8) | 141 |
C10—H10B···O1 | 0.97 | 2.59 | 3.121 (7) | 115 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) −x+2, −y+1, −z; (iv) x+1, y, z. |
Acknowledgements
The authors are thankful to Dr A. S. Jeevan Chakravarthy, C/O Professor H. ILA, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Amruthahalli, Bengaluru − 560064, Karnataka, and to the Department of Engineering Physics, Adichunchanagiri Institute of Technology, Chikkamagaluru, Karnataka, India, for support.
References
Al-Amiery, A. A., Kadhum, A. A., Shamel, M., Satar, M., Khalid, Y. & Mohamad, A. B. (2014). Med. Chem. Res. 23, 236–242. CAS Google Scholar
Al-Salahi, R., Marzouk, M., Abbas, M. & Ng, S. W. (2012). Acta Cryst. E68, o1806. CSD CrossRef IUCr Journals Google Scholar
Ardebili, M. H. P. & White, J. G. (1978). Acta Cryst. B34, 2890–2891. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Baker, B. R., Schaub, R. E., McEvoy, F. J. & Williams, J. H. (1952). J. Org. Chem. 17, 132–140. CrossRef CAS Web of Science Google Scholar
Batsanov, S. S. (1995). Russ. Chem. Bull. 44, 18–23. CrossRef Web of Science Google Scholar
Bertelli, L., Biagi, G., Giorgi, I., Livi, O., Manera, C., Scartoni, V., Lucacchini, A., Giannaccini, G. & Barili, P. L. (2000). Eur. J. Med. Chem. 235, 333–341. Web of Science CrossRef Google Scholar
Braña, M. F., Castellano, J. M., Keilhauer, G., Machuca, A., Martín, Y., Redondo, C., Schlick, E. & Walker, N. (1994). Anticancer Drug. Des. 9, 527–538. PubMed Web of Science Google Scholar
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cao, S.-L., Guo, Y.-W., Wang, X.-B., Zhang, M., Feng, Y.-P., Jiang, Y.-Y., Wang, Y., Gao, Q. & Ren, J. (2009). Arch. Pharm. Chem. Life Sci. 342, 182–189. Web of Science CrossRef CAS Google Scholar
De Clercq, E. (2001). Curr. Med. Chem. 8, 1543–1572. Web of Science CrossRef PubMed CAS Google Scholar
El-Hiti, G. A., Smith, K., Hegazy, A. S., Alshammari, M. B. & Kariuki, B. M. (2014). Acta Cryst. E70, o1279. CSD CrossRef IUCr Journals Google Scholar
Grimme, S. (2006). J. Comput. Chem. 27, 1787–1799. Web of Science CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Helissey, P., Cros, S. & Giorgi-Renault, S. (1994). Anticancer Drug. Des. 9, 51–67. CAS PubMed Web of Science Google Scholar
Hitkari, A., Bhalla, M., Saxena, A. K., Verma, M., Gupta, M. P. & Shanker, K. (1995). Boll. Chim. Farm. 134, 609–615. CAS PubMed Google Scholar
Ibrahim, E. S., Montgomerie, A. M., Sneddon, A. H., Proctor, G. R. & Green, B. (1988). Eur. J. Med. Chem. 23, 183–188. CrossRef CAS Web of Science Google Scholar
Kumar, P., Agarwal, J. C., Nath, C., Bhargava, K. P. & Shanker, K. (1981). Pharmazie, 36, 780. PubMed Web of Science Google Scholar
Lakshminarayana, B. N., Shashidhara Prasad, J., Gnanendra, C. R., Sridhar, M. A. & Chenne Gowda, D. (2009). Acta Cryst. E65, o1237. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lakshminarayana, B. N., Sreenatha, N. R., Jeevan Chakravarthy, A. S., Suchithra, B. & Hariprasad, S. (2022). Crystallogr. Rep. 67, 201–208. Web of Science CSD CrossRef CAS Google Scholar
Metrangolo, P. & Resnati, G. (2001). Chem. Eur. J. 7, 2511–2519. CrossRef PubMed CAS Google Scholar
Priya, M. G. R., Srinivasan, T., Girija, K., Chandran, N. R. & Velmurugan, D. (2011). Acta Cryst. E67, o2310. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rewcastle, G. W., Denny, W. A., Bridges, A. J., Zhou, H., Cody, D. R., McMichael, A. & Fry, D. W. (1995). J. Med. Chem. 38, 3482–3487. CrossRef CAS PubMed Web of Science Google Scholar
Riou, J.-F., Helissey, P., Grondard, L. & Giorgi-Renault, S. (1991). Mol. Pharmacol. 40, 699–706. PubMed CAS Web of Science Google Scholar
Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Sreenatha, N. R., Ganesha, D. P., Jeevan Chakravarthy, A. S., Suchithra, B. & Lakshminarayana, B. N. (2022). Heliyon, 8, e10151. Web of Science CSD CrossRef PubMed Google Scholar
Sreenatha, N. R., Jeevan Chakravarthy, A. S., Suchithra, B., Lakshminarayana, B. N., Hariprasad, S. & Ganesha, D. P. (2020). J. Mol. Struct. 1210, 127979. Web of Science CSD CrossRef Google Scholar
Sreenatha, N. R., Lakshminarayana, B. N., Ganesha, D. P., Gnanendra, C. R., Nagaraju, S. & Madan Kumar, S. (2018a). Chem. Data Collect. 17–18, 394–403. CSD CrossRef Google Scholar
Sreenatha, N. R., Lakshminarayana, B. N., Ganesha, D. P., Vijayshankar, S. & Nagaraju, S. (2018b). X-ray Struct. Anal. Online, 34, 23–24. https://doi.org/10.2116/xraystruct.34.23 Google Scholar
Sunil Kumar, A., Kudva, J., Madan Kumar, S., Vishwanatha, U., Kumar, V. & Naral, D. (2018). J. Mol. Struct. 1167, 142–153. Web of Science CSD CrossRef CAS Google Scholar
Tulyasheva, M., Rasulev, B. F., Tojiboev, A. G., Turgunov, K. K., Tashkhodjaev, B., Abdullaev, N. D. & Shakhidoyatov, K. M. (2005). Molecules, 10, 1209–1217. Web of Science CrossRef PubMed CAS Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. The University of Western Australia. Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Utayeva, F. R., Okmanov, R. Y., Mukarramov, N. I., Shakhidoyatov, K. M. & Tashkhodjaev, B. (2013). Acta Cryst. E69, o1094. CSD CrossRef IUCr Journals Google Scholar
Volkov, A. & Coppens, P. (2004). J. Comput. Chem. 25, 921–934. Web of Science CrossRef PubMed CAS Google Scholar
Yang, S., Lai, Q. Q., Lai, F. W., Jiang, X. Y., Zhao, C. & Xu, H. H. (2021). Pest Manag. Sci. 77, 1013–1022. Web of Science CrossRef CAS PubMed Google Scholar
Yang, X.-H., Chen, X.-B. & Zhou, S.-X. (2009). Acta Cryst. E65, o185–o186. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.