research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, analysis of mol­ecular and crystal structures, estimation of inter­molecular inter­actions and biological properties of 1-benzyl-6-fluoro-3-[5-(4-methylcyclo­hexyl)-1,2,4-oxa­diazol-3-yl]-7-(piperidin-1-yl)quinolin-4-one

crossmark logo

aSSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv 61001, Ukraine, bThe National University of Pharmacy, 53 Pushkinska St, Kharkiv 61002, Ukraine, cV. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61077, Ukraine, and dDepartment of Pharmaceutical Chemistry, University of Vienna, Althanstrabe 14, A-1090, Vienna, Austria
*Correspondence e-mail: vakslerea@gmail.com

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 5 January 2023; accepted 13 February 2023; online 21 February 2023)

The title compound, C30H33N4O2F, can be obtained via a two-step synthetic scheme involving 1-benzyl-6-fluoro-4-oxo-7-(piperidin-1-yl)-1,4-di­hydro­quino­line-3-carbo­nitrile as a starting compound that undergoes substitution with hydroxyl­amine and subsequent cyclization with 4-methyl­cyclo­hexane-1-carb­oxy­lic acid. It crystallizes from 2-propanol in the triclinic space group P[\overline{1}] with a mol­ecule of the title compound and one of 2-propanol in the asymmetric unit. After the mol­ecular structure was clarified using NMR and LC/MS, the mol­ecular and crystalline arrangements were defined with SC-XRD. A Hirshfeld surface analysis was performed for a better understanding of the inter­molecular inter­actions. One strong (O—H⋯O) and three weak [C—H⋯F (intra­molecular) and two C—H⋯O] hydrogen bonds were found. The contributions of short contacts to the Hirshfeld surface were estimated using two-dimensional fingerprint plots showing that O⋯H/H⋯O, C⋯H/H⋯C and C⋯C contacts are the most significant for the title compound and O⋯H for the 2-propanol. The crystal structure appears to have isotropically packed tetra­mers containing two mol­ecules of the title compound and two mol­ecules of 2-propanol as the building unit according to analysis of the distribution of pairwise inter­action energies. A mol­ecular docking study was carried out to evaluate the inter­actions of the title compound with the active centers of macromolecules corresponding to viral targets, namely, anti-hepatitis B activity [HBV, capsid Y132A mutant (VCID 8772) PDB ID: 5E0I] and anti-COVID-19 main protease activity (PDB ID: 6LU7). The data obtained revealed a noticeable affinity towards them that exceeded that of the reference ligands.

1. Chemical context

One of the promising areas of investigation in the search for new anti­biotic compounds is the synthesis of fluoro­quinolone derivatives. These purely synthetic compounds have been known since 1962 when the first drug from this group, nalidixic acid, was discovered. The scope of their application has changed and substanti­ally broadened from that time since fluorine atoms were included in the 6-position of the quinoline mol­ecule. Today, fluoro­quinolones have positive pharmacokinetic properties, high oral bioavailability, a wide spectrum of action, and good tolerability (Ezelarab et al., 2018[Ezelarab, H. A. A., Abbas, S. H., Hassan, H. A. & Abuo-Rahma, G. E. A. (2018). Arch. Pharm. Chem. Life Sci. 351, 9, e1800141.]). At present, four generations of fluoro­quinolones exist (Mohammed et al., 2019[Mohammed, H. H. H., Abuo-Rahma, G. E. A., Abbas, S. H. & Abdelhafez, E. M. N. (2019). Curr. Med. Chem. 26, 3132-3149.]), the last of which has found successful use even in the treatment of bacterial pneumonia that developed against the background of COVID-19 (Beović et al., 2020[Beović, B., Doušak, D., Ferreira-Coimbra, J., Nadrah, K., Rubulotta, F., Belliato, M., Berger-Estilita, J., Ayoade, F., Rello, J. & Erdem, H. (2020). JAC, 75, 3386-3390.]). Fluoro­quinolones also show their own anti­viral potential (Xu et al., 2019[Xu, Z., Zhao, S.-J., Lv, Z.-S., Gao, F., Wang, Y., Zhang, F., Bai, L. & Deng, J.-L. (2019). Eur. J. Med. Chem. 162, 396-406.]; Cardoso-Ortiz, et al., 2023[Cardoso-Ortiz, J., Leyva-Ramos, S., Baines, K. M., Gómez-Durán, C. F. A., Hernández-López, H., Palacios-Can, F. J., Valcarcel-Gamiño, J. A., Leyva-Peralta, M. A. & Razo-Hernández, R. S. (2023). J. Mol. Struct. 1274, 134507.]), which opens up prospects for their use in mixed infections. Hence today there is inter­est in new fluoro­quinolones as potential simultaneous anti­bacterial and anti­viral agents.

[Scheme 1]

One of the ways to create fluoro­quinolones with combined action is the synthesis of hybrid structures that contain several pharmacophores. The basic fluoro­quinolone mol­ecule can be structurally modified in several directions at once, which significantly expands both the synthetic possibilities and the opportunities for further research into the biological activity of new compounds (Suaifan & Mohammed, 2019[Suaifan, G. A. R. Y. & Mohammed, A. A. M. (2019). Bioorg. Med. Chem. 27, 3005-3060.]). Structural modification of the bicyclic system of fluoro­quinolones is possible due to the substitution of a nitro­gen atom in position 1, a carboxyl group in position 3, an oxo group in position 4, a fluorine atom in position 6 and by hybridization with heterocyclic nitro­gen fragments in position 7 (see scheme). Thus, hybrids of fluoro­quinolones with derivatives of phenyl­thia­zole, quinazoline, thia­zolidine, thia­diazole, pyrimidine, dithienylethene, and 1,2,4-triazole are widely described in the literature (Suaifan & Mohammed, 2019[Suaifan, G. A. R. Y. & Mohammed, A. A. M. (2019). Bioorg. Med. Chem. 27, 3005-3060.]; Jia & Zhao, 2021[Jia, Y. & Zhao, L. (2021). Eur. J. Med. Chem. 224, 113741.]). Our scientific team has been fruitfully working in this direction (Bylov et al., 1999[Bylov, I. E., Bilokin, Y. V. & Kovalenko, S. M. (1999). HC, 5, 3, 281-284.]; Silin et al., 2004[Silin, O. V., Savchenko, T. I., Kovalenko, S. M., Nikitchenko, V. M. & Ivachtchenko, A. V. (2004). Heterocycles, 63, 8, 1883-1890.]; Savchenko et al., 2007[Savchenko, T. I., Silin, O. V., Kovalenko, S. M., Musatov, V. I., Nikitchenko, V. M. & Ivachtchenko, A. V. (2007). Synth. Commun. 37, 1321-1330.]; Hryhoriv et al., 2022[Hryhoriv, H., Mariutsa, I., Kovalenko, S. M., Georgiyants, V., Perekhoda, L., Filimonova, N., Geyderikh, O. & Sidorenko, L. (2022). Sci. Pharm. 90, 1, 2.]; Vaksler et al., 2022[Vaksler, Y., Hryhoriv, H. V., Kovalenko, S. M., Perekhoda, L. O. & Georgiyants, V. A. (2022). Acta Cryst. E78, 890-896.]). At the same time, a thorough analysis of literature sources demonstrates that modification of the 3-position of fluoro­quinolones is promising and insufficiently researched (Oniga et al., 2018[Oniga, S., Palage, M., Araniciu, C., Marc, G., Oniga, O., Vlase, L., Prisăcari, V., Valica, V., Curlat, S. & Uncu, L. (2018). Farmacia, 66, 6, 19.]). We therefore decided to broaden our investigations of these compounds with studies of 5-[1-benzyl-6-fluoro-7-(piperidin-1-yl)-quin­o­lin-4(1H)-on-3-yl]-3-(4-methyl­cyclo­hex-1-yl)-1,2,4-oxa­dia­zole.

2. Structural commentary

The asymmetric unit contains a mol­ecule of 5-[1-benzyl-6-fluoro-7-(piperidin-1-yl)-quinolin-4(1H)-on-3-yl]-3-(4-meth­yl­cyclo­hex-1-yl)-1,2,4-oxa­diazole and one of isopropyl alcohol (Fig. 1[link]). 1,2,4-Oxa­diazole and the quinoline moiety are coplanar [with a dihedral angle between their mean planes of 5.3 (2)° due to π-system conjugation from atom C1 to C8. The piperidine ring is almost unaffected by steric repulsion with other substituents, therefore it is only slightly rotated relative to the bicyclic fragment [the dihedral angle between their mean planes is 28.0 (2)°]. It adopts a chair conformation with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 6, 1354-1358.]) Q = 0.557 (3) Å, θ = 178.0 (3)°, φ = 269 (6)°. Atoms N4 and C14 deviate from the mean plane of the other atoms of this ring by 0.652 (2) and −0.696 (3) Å, respectively. Atom N4 has a pyramidal configuration, the sum of bond angles centered at it is 345°. The benzyl substituent is located in the position -ac relative to the endocyclic N3–C3 bond [the C3—N3—C17—C18 torsion angle is 103.8 (3)°] and rotated around the N3–C17 bond [N3—C17—C18—C23 = −35.2 (4)°]. The cyclo­hexyl fragment also adopts a chair conformation as well [puckering parameters Q = 0.516 (5) Å, θ = 177.7 (4)°, φ = 331 (10)°] with C24 and C27 deviating from the mean plane through the other ring atoms by 0.590 (3) and −0.622 (4) Å, respectively. It rotates more than the piperidine moiety [the dihedral angle between the mean planes of cyclo­hexane and oxa­diazole derivatives is 46.7 (2)°].

[Figure 1]
Figure 1
Mol­ecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level.

3. Supra­molecular features

Regarding the van der Waals radii proposed in Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 3, 441-451.] for all the atoms except hydrogen (Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 18, 7384-7391.]), a very weak non-classical intra­molecular hydrogen bond C12—H12A⋯F1 involving the carbon atom from the piperidine moiety (Table 1[link]) is found together with the three inter­molecular hydrogen bonds of two types. The first type is the strong bond O—H⋯O between the hy­droxy­lic group of isopropyl alcohol and the keto oxygen atom of the main mol­ecule. The isopropyl alcohol mol­ecule is disordered over two positions (A and B) in a 0.655 (8):0.345 (8) ratio due to a rotation around this hydrogen bond. The weak non-classical C—H⋯O hydrogen bonds involving the oxygen atom of the isopropyl alcohol and methyl­ene groups from the piperidine ring and benzyl moiety belong to the second type. While the bond C16—H16B⋯O1A exists only for the disordered position A, the bond involving the benzyl moiety exists for both disordered positions of the solvent mol­ecule: C17—H17B⋯O1A and C17—H17B⋯O1B. In addition, ππ stacking between the quinoline fragments of the original mol­ecule and its symmetry equivalent at −x, −y + 1, −z + 2 [regarding the short contacts C3⋯C6 = 3.379 (4) Å and C5⋯C10 = 3.392 (4) Å] should be mentioned. The mol­ecules of the title compound are bound in pairs with ππ stacking (as the pair of symmetry equivalents x, y, z and −x, −y + 1, −z + 2) and the pairwise inter­actions are complemented by the strong O—H⋯O and weak C—H⋯O hydrogen bonds involving two isopropyl alcohol mol­ecules (symmetry operations: x − 1, y + 1, z and −x + 1, −y, −z + 2). Therefore, the strongly bound tetra­mers (Fig. 2[link]) consisting of two mol­ecules of the title compound and two mol­ecules of isopropyl alcohol exist in the crystal despite the fact of disorder.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯F1 0.97 2.19 2.873 (4) 126
C16—H16B⋯O1Ai 0.97 2.53 3.441 (9) 155
C17—H17B⋯O1Ai 0.97 2.59 3.504 (9) 157
C17—H17B⋯O1Bi 0.97 2.55 3.491 (17) 162
O1A—H1A⋯O2ii 0.82 2.09 2.906 (9) 180
O1B—H1B⋯O2ii 0.82 1.84 2.662 (19) 180
Symmetry codes: (i) [-x+1, -y, -z+2]; (ii) [x+1, y-1, z].
[Figure 2]
Figure 2
Tetra­meric building unit bonding: hydrogen bonds (in cyan) and short contacts (in magenta).

Short inter­molecular contacts are also observed. Firstly, the shortening of inter­atomic distances C30⋯F1 [3.130 (6) Å, x − 1, y, z − 1] and H25B⋯H25B′ [2.260 Å, −x, −y + 1, −z + 1] indicates some of the packing effects influencing the conformation of the p-methyl­cyclo­hexyl moiety. Secondly, short contacts exist between the methyl groups of the isopropyl mol­ecules corresponding to neighboring tetra­mers (C2B⋯H2BB', 2.56 Å; H2BB⋯H2BB', 2.10 Å; C2B⋯C2B′, 3.26 (3) Å; H2BA⋯H2BB', 2.28 Å, symmetry operation:x + 2, −y, −z + 1). They indicate the existence of repulsion between these isopropyl mol­ecules and so shed light on the reasons for the greater advantage of position A (Fig. 3[link]).

[Figure 3]
Figure 3
Comparison of hydrogen bonds (in cyan) and short contacts (in magenta) of the 2-propanol mol­ecules in positions A and B.

4. Hirshfeld surface analysis

A Hirshfeld surface analysis (Spackman & Byrom, 1997[Spackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 3-4, 215-220.]) was applied to the studied structure. Originally, it was a method that allows the crystal space to be distributed into the regions belonging to different mol­ecules, i.e. regions where the specified promolecular electron density exceeds the procrystal density. It was modernized with 2D-fingerprint plots in CrystalExplorer17 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) and can be used for the evaluation of inter­molecular inter­actions. The standard `high' resolution was applied in this study. Four regions with dnorm significantly lower than the van der Waals contact length (in red) emerge on the surface of the title compound (Fig. 4[link]a) and two more regions exhibit for the isopropyl alcohol (Fig. 4[link]b). Indeed, the biggest shortening occurs for the strongest hydrogen bonds: O1A—H1A⋯O2 or O1B—H1B⋯O2 in positions A and B, respectively. The regions where the shortening of dnorm is less pronounced are associated with the C16—H16B⋯O1A hydrogen bond and the C30⋯F1 short contact. In addition, with a renormalization of dnorm from [−0.3991;1.7486] to [−0.0001;1.7486], the appearance of other inter­molecular contacts described above is visible (Fig. 4[link]c,d). As expected, the Hirshfeld surface of the iso­propanol repeats the contacts O—H⋯O and C16—H16B⋯O1A. Thereby, the appearance of the tetra­mers described above is also confirmed using Hirshfeld surface analysis, especially after renormalization.

[Figure 4]
Figure 4
Distribution of the value dnorm onto the Hirshfeld surfaces of the title compound (a, c) and isopropyl alcohol (b, d) with default normalization (a, b) and renormalized (c, d) for position A.

The 2D-fingerprint plots showed five types of inter­molecular contacts whose contribution into the Hirshfeld surface area for the title compound exceeds 5.0%. They are H⋯H, 61.9%; C⋯H, 11.3%; O⋯H, 9.4%; N⋯H, 5.3%, and F⋯H, 5.0%. However, just three of them relate to areas with the values of the inter­nal and external distances (di and de) below the van der Waals radii of the corresponding atoms (Fig. 5[link]ac). Sharp peaks, whose appearance is usually associated with the formation of inter­molecular inter­actions, are found for the C⋯H and O⋯H contacts, as well as for the `less significant' C⋯C contact (3.9% of the area). They point out the hydrogen bonds and stacking inter­actions in a manner similar to the conventional supra­molecular analysis. Similarly to it, the three contributions exceeding 5.0% of the Hirshfeld surface area are found for isopropyl alcohol: H⋯H, 78.1%; O⋯H, 15.3%, and N⋯H, 5.7%; with just one type below the van der Waals radii of the corresponding atoms: O⋯H (Fig. 5[link]d). The contributions of inter­molecular contacts do not differ significantly for positions A and B, except for the appearance of the short contact C2B⋯C2B′ (Fig. 6[link]) on the Hirshfeld surface.

[Figure 5]
Figure 5
Two-dimensional-fingerprint plots and contributions of the contacts in the title compound [(a) C⋯H/H⋯C, (b) O⋯H/H⋯O and (c) F⋯H / H⋯F] and the isopropyl alcohol mol­ecule (d) for position A.
[Figure 6]
Figure 6
Comparison of the Hirshfeld surfaces of the 2-propanol mol­ecule in positions A and B.

5. Analysis of the pairwise inter­action energies

The topological analysis allowed us to construct a model of the inter­molecular inter­actions in a crystal. However, this model cannot be confirmed without an assessment of the energetic structure and the contributions of various inter­actions: hydrogen bonds, as obviously strong classical ones, as non-classical ones with a variable and often underestimated strength (Sutor, 1962[Sutor, D. J. (1962). Nature, 195, 68-69.]; Desiraju, 1996[Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.], 2005[Desiraju, G. R. (2005). Chem. Commun. pp. 2995-3001.]), continuously underrated stacking (Dharmarwardana et al., 2021[Dharmarwardana, M., Otten, B. M., Ghimire, M. M., Arimilli, B. S., Williams, C. M., Boateng, S., Lu, Z., McCandless, G. T., Gassensmith, J. J. & Omary, M. A. (2021). PNAS, 118, 44, e2106572118.]; Shishkina et al., 2019[Shishkina, S. V., Konovalova, I. S., Kovalenko, S. M., Trostianko, P. V., Geleverya, A. O. & Bunyatyan, N. D. (2019). CrystEngComm, 21, 45, 6945-6957.]; Zhao & Truhlar, 2008[Zhao, Y. & Truhlar, D. G. (2008). J. Phys. Chem. C, 112, 4061-4067.]) and non-specific inter­actions. The procedure proposed by Konovalova et al. (2010[Konovalova, I. S., Shishkina, S. V., Paponov, B. V. & Shishkin, O. V. (2010). CrystEngComm, 12, 3, 909-916.]) and Shishkin et al. (2012[Shishkin, O. V., Dyakonenko, V. V. & Maleev, A. V. (2012). CrystEngComm, 14, 5, 1795-1804.]) was applied to define the pairwise inter­action energies of the mol­ecules in crystals in a two-step procedure considering the mol­ecule and the stacking-dimer of mol­ecules as a building unit on a par with the mol­ecule of isopropyl alcohol. The pairs were formed containing the central building unit and its neighboring building units from the first coordination shell. Calculations of the inter­action energies for each pair were performed using the B97 functional (Becke, 1997[Becke, A. D. (1997). J. Chem. Phys. 107, 8554-8560.]; Schmider & Becke, 1998[Schmider, H. L. & Becke, A. D. (1998). J. Chem. Phys. 108, 9624-9631.]) with the parameterized three-body (D3) dispersion correction (Grimme et al., 2010[Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. (2010). J. Chem. Phys. 132, 154104.]) and Becke–Johnson dumping (Grimme et al., 2011[Grimme, S., Ehrlich, S. & Goerigk, L. (2011). J. Comput. Chem. 32, 1456-1465.]). The basis set def2-TZVP was used (Weigend & Ahlrichs, 2005[Weigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297-3305.]; Weigend, 2006[Weigend, F. (2006). Phys. Chem. Chem. Phys. 8, 1057-1065.]) and the basis set superposition error (BSSE) correction was implemented according to the Boys–Bernardi counterpoise scheme (Boys & Bernardi, 1970[Boys, S. F. & Bernardi, F. (1970). Mol. Phys. 19, 553-566.]) in the software package ORCA 3.0.3 (Neese et al., 2020[Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. (2020). J. Chem. Phys. 152, 224108.]). Energy vector diagrams were used for the visualization of the calculated inter­action energies in a standard way (Shishkin et al., 2012[Shishkin, O. V., Dyakonenko, V. V. & Maleev, A. V. (2012). CrystEngComm, 14, 5, 1795-1804.], 2014[Shishkin, O. V., Zubatyuk, R. I., Shishkina, S. V., Dyakonenko, V. V. & Medviediev, V. V. (2014). Phys. Chem. Chem. Phys. 16, 6773-6786.]). In addition to this, the inter­action energy decomposition was performed using an `accurate' energy model in the program CrystalExplorer17 for the model with the mol­ecules as building units to clarify the nature of the inter­actions.

The inter­actions in the stacking-bonded dimer of the title compound turned out to be two times stronger than any other inter­action of an individual mol­ecule in the crystal structure (∼33.0 kcal mol−1). The dispersion is many times superior to the electrostatic and polarization components in it (−28.3 versus −9.3 and −3.8 kcal mol−1). The other observation is that the aforementioned tetra­mers contain the sole inter­action of the title mol­ecules in the crystal that has the electrostatic component higher than the dispersive one (−7.7 and −8.5 kcal mol−1 in total for positions A and B, respectively, −2.6 versus −5.4 and −2.2 kcal mol−1 in components in position A). It is also the strongest inter­action for the iso­propanol mol­ecule (Table 2[link]). The other inter­action for which the hydrogen bonding is at least comparable to the dispersion component is also included in the tetra­mer with C—H⋯O bonding (−4.4 and −5.9 kcal mol−1 in total for positions A and B, respectively, −5.8 versus −2.8 and −1.1 kcal mol−1 in the components in position A). Since hydrogen bonding is a directed and thus more rigid inter­action than the non-specific inter­actions like dispersion, the tetra­mers including two mol­ecules of the title compound and two mol­ecules of isopropyl alcohol can be distinguished as a basic structural motif (Fig. 7[link]). It can be added that the last inter­action with the hydrogen bonding comparable to the dispersion component within the structure appears in between the tetra­mers with the symmetry equivalent −x + 1, −y + 1, −z + 2 of the title compound (−11.8 kcal mol−1 in total; −8.5 versus −4.3 and −2.2 kcal mol−1 in the components). However, any short contacts or hydrogen bonds are not observable in this pair of mol­ecules and the inter­actions of tetra­mers are completely isotropic according to the energies (Table 3[link]). So, the influence of hydrogen bonding seems limited solely to the additional connection of the stacking-bonded dimer. The second strongest inter­action of the title compound has a dispersive nature. It is the inter­action of the p-methyl­cyclo­hexyl moieties of the original mol­ecule and the symmetry equivalent −x, −y + 1, −z + 1 (−15.0 kcal mol−1 in total; −14.6 versus −1.7 and −0.9 kcal mol−1 in the components). At that, the influence of the short contact C30⋯F1 is negligible, because the inter­action energy in the dimer including the symmetry equivalent x − 1, y, z − 1 of the title compound is very small (−1.8 kcal mol−1 in total). Since the electrostatic inter­actions are weak around the p-methyl­cyclo­hexyl moiety, it is possible to notice that the rotation of the corresponding group is affected mostly by the dispersive inter­actions among the inter­molecular ones. The iso­propanol exhibits strong hydrogen bonding within the tetra­mers, but its mol­ecules endure just minor inter­actions with the neighbors not connected by hydrogen bonds (Table 2[link]). The last observation is that the disorder and the subsequent shortening of the distance between the iso­propanol mol­ecules in position B (the short contact C2B⋯C2B′) significantly affects the inter­molecular inter­actions in the corresponding pairs of iso­propanol mol­ecules (−1.4 versus 1.5 kcal mol−1 in positions A and B, respectively). This leads to a loss in the total inter­action energy from −23.4 to −20.6 kcal mol−1 in position B, making it less energetically favorable for the isopropyl alcohol because of the steric repulsion (lower dispersive inter­action) of the methyl moieties.

Table 2
Symmetry codes, binding types and inter­action energies (kcal mol−1) of the building units (BU) (single mol­ecules) with neighbors

Pair of BU Central BU Neighboring BU and corresponding symmetry operation Eint Inter­action
Position A        
1 TC x − 1, y, z − 1; TC −1.8 C30⋯F1
2 TC x − 1, y + 1, z − 1; TC −3.9 Non-specific
3 TC -x + 2, −y, −z + 2; IP −1.6 Non-specific
4 TC x, y − 1, z; TC −2.6 Non-specific
5 TC x, y, z + 1; IP −1.1 Non-specific
6 TC -x + 1, −y + 1, −z + 2; TC −11.8 Non-specific
7 TC -x + 1, −y + 1, −z + 1; IP −2.8 Non-specific
8 TC -x + 1, −y, −z + 3; TC −1.8 Non-specific
9 TC -x + 1, −y, −z + 2; TC −9.2 Non-specific
10 TC -x + 1, −y, −z + 2; IP −4.4 C16—H16B⋯O1A, C17—H17B⋯O1A
11 TC x, y + 1, z; TC −2.6 Non-specific
12 TC x − 1, y + 1, z; IP −7.7 O1A—H1A⋯O2
13 TC x + 1, y − 1, z + 1; TC −3.9 Non-specific
14 TC -x, −y + 1, −z + 2; TC −33.0 C3⋯C6, C5⋯C10
15 TC x − 1, y, z; IP −3.6 Non-specific
16 TC -x, −y + 1, −z + 1; TC −15.0 Non-specific
17 TC -x, −y + 1, −z + 1; IP −0.8 Non-specific
18 TC x + 1, y, z + 1; TC −1.8 C30⋯F1
19 TC -x, −y, −z + 2; TC −8.3 Non-specific
20 TC -x − 1, −y + 1, −z + 1; TC −4.2 Non-specific
21 IP x + 1, y, z; TC −3.6 Non-specific
22 IP -x + 2, −y, −z + 2; TC −1.6 Non-specific
23 IP x + 1, y − 1, z; TC −7.7 O1A—H1A⋯O2
24 IP -x + 2, −y, −z + 1; IP −1.4 Non-specific
25 IP -x + 1, −y + 1, −z + 1; TC −2.8 Non-specific
26 IP x, y, z − 1; TC −1.1 Non-specific
27 IP x + 1, −y, −z + 2; TC −4.4 C16—H16B⋯O1A, C17—H17B⋯O1A
28 IP -x, −y + 1, −z + 1; TC −0.8 Non-specific
         
Position B        
1 TC x − 1, y, z − 1; TC −1.8 C30⋯F1
2 TC x − 1, y + 1, z − 1; TC −3.9 Non-specific
3 TC -x + 2, −y, −z + 2; IP −1.3 Non-specific
4 TC x, y − 1, z; TC −2.6 Non-specific
5 TC x, y, z + 1; IP −0.9 Non-specific
6 TC -x + 1, −y + 1, −z + 2; TC −11.8 Non-specific
7 TC -x + 1, −y + 1, −z + 1; IP −1.9 Non-specific
8 TC -x + 1, −y, −z + 3; TC −1.8 Non-specific
9 TC -x + 1, −y, −z + 2; TC −9.2 Non-specific
10 TC -x + 1, −y, −z + 2; IP −5.9 C16—H16B⋯O1B, C17—H17B⋯O1B
11 TC x, y + 1, z; TC −2.6 Non-specific
12 TC x − 1, y + 1, z; IP −8.5 O1B—H1B⋯O2
13 TC x + 1, y − 1, z + 1; TC −3.9 Non-specific
14 TC -x, −y + 1, −z + 2; TC −33.0 C3⋯C6, C5⋯C10
15 TC x − 1, y, z; IP −2.4 Non-specific
16 TC -x, −y + 1, −z + 1; TC −15.0 Non-specific
17 TC -x, −y + 1, −z + 1; IP −1.1 Non-specific
18 TC x + 1, y, z + 1; TC −1.8 C30⋯F1
19 TC -x, −y, −z + 2; TC −8.3 Non-specific
20 TC -x − 1, −y + 1, −z + 1; TC −4.2 Non-specific
21 IP x + 1, y, z; TC −2.4 Non-specific
22 IP -x + 2, −y, −z + 2; TC −1.3 Non-specific
23 IP x + 1, y − 1, z; TC −8.5 O1B—H1B⋯O2
24 IP -x + 2, −y, −z + 1; IP 1.5 Non-specific
25 IP -x + 1, −y + 1, −z + 1; TC −1.9 Non-specific
26 IP x, y, z − 1; TC −0.9 Non-specific
27 IP -x + 1, −y, −z + 2; TC −5.9 C16—H16B⋯O1B, C17—H17B⋯O1B
28 IP -x, −y + 1, −z + 1; TC −1.1 Non-specific

Table 3
Symmetry codes, binding types and inter­action energies of the building units (BU) (kcal mol−1) (tetra­mers) with neighbors

Pair of BU Symmetry operation for neighboring BU Eint
Position A    
1 x − 1, y, z − 1 −7.9
2 x − 1, y, z −13.9
3 x − 1, y + 1, z − 1 −13.0
4 x − 1, y + 1, z −9.7
5 x, y − 1, z −19.5
6 x, y − 1, z + 1 −7.5
7 x, y, z − 1 −15.7
8 x, y, z + 1 −15.7
9 x, y + 1, z − 1 −7.5
10 x, y + 1, z −19.5
11 x + 1, y − 1, z −9.7
12 x + 1, y − 1, z + 1 −13.0
13 x + 1, y, z −13.9
14 x + 1, y, z + 1 −7.9
     
Position B    
1 x − 1, y, z − 1 −7.9
2 x − 1, y, z −13.9
3 x − 1, y + 1, z − 1 −13.2
4 x − 1, y + 1, z −9.7
5 x, y − 1, z −17.0
6 x, y − 1, z + 1 −2.9
7 x, y, z − 1 −15.8
8 x, y, z + 1 −15.8
9 x, y + 1, z − 1 −2.9
10 x, y + 1, z −17.0
11 x + 1, y − 1, z −9.7
12 x + 1, y − 1, z + 1 −13.2
13 x + 1, y, z −13.9
14 x + 1, y, z + 1 −7.9
[Figure 7]
Figure 7
Crystal packing of the mol­ecules (a) and energy vector diagrams of the mol­ecules and tetra­mers as building units, (b) and (c), respectively, for position A. Projection in the direction [100].

6. Mol­ecular docking

To estimate the potential biological properties and the possible inter­actions of the title compound with the active centers of target viral macromolecules, we conducted a mol­ecular docking study. Two targets from the Protein Data Bank (PDB) were utilized for this purpose. The first one is the capsid of the Hepatitis B virus (HBV capsid Y132A mutant VCID 8772, PDB ID: 5E0I; Klumpp, et al., 2015[Klumpp, K., Lam, A. M., Lukacs, C., Vogel, R., Ren, S., Espiritu, C., Baydo, R., Atkins, K., Abendroth, J., Liao, G., Efimov, A., Hartman, G. & Flores, O. A. (2015). PNAS, 112, 49, 15196-15201.]). The second is COVID-19 main protease PDB ID: 6LU7 (Jin et al., 2020[Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., Yang, X., Bai, F., Liu, H., Liu, X., Guddat, L. W., Xu, W., Xiao, G., Qin, C., Shi, Z., Jiang, H., Rao, Z. & Yang, H. (2020). Nature, 582, 289-293.]).

The crystal structure of the HBV capsid Y132A contains 157 amino acid residues; the mol­ecular weight is 109.09 kDa. Methyl 4-(2-bromo-4-fluoro­phen­yl)-6-(morpholin-4-ylmeth­yl)-2-(1,3-thia­zol-2-yl)pyrimidine-5-carboxyl­ate was used as a reference ligand. For 5E0I there are six protein chains designated as A, B, C, D, E, and F. According to our computations, the residual mean squared deviation between experimental data from X-ray diffraction analysis and the docking-generated position is around 1 Å, which is even better than the X-ray resolution reported for the structures (1.95 and 2.16 Å, respectively). Hence, for the docking procedure, we can use any of the above-mentioned chains. We used chain A in the actual calculations.

The crystal structure of the COVID-19 main protease contains 306 amino acid residues; the mol­ecular weight is 34.51 kDa. N-[(5-Methyl­isoxazol-3-yl)carbon­yl]alanyl-L-valyl-N1-(1R,2Z)-4-(benz­yloxy)-4-oxo-1-{[(3R)-2-oxopyrrolidin-3-yl]meth­yl}but-2-en­yl)-L-leucinamide was used as a reference ligand.

These target macromolecules had previously been utilized for similar research, and therefore we proceeded with them both to obtain the docking results, and determine whether we could enhance the anti­viral properties that were observed for some fluoro­quinolones that had been hybridized with heterocycles.

For the graphical analysis, the free software packages Jmol (Jmol, 2022[Jmol (2022). An open-source Java viewer for chemical structures in 3D. https://www.jmol.org/.]) and PyMol (DeLano, 2002[DeLano, W. L. (2002). CCP4 Newsletter On Protein Crystallography, 40, 82-92.]) were used. The virtual screening, pharmacophore investigation, and mol­ecular docking procedures, with the subsequent analysis of their data, were performed using the LigandScout 4.4 software complex (Wolber & Langer, 2005[Wolber, G. & Langer, T. (2005). J. Chem. Inf. Model. 45, 1, 160-169.]). For the calculations of standard mol­ecular QSAR parameters, the popular resource SwissADME from the Swiss Institute of Bioinformatics (Daina et al., 2017[Daina, A., Michielin, O. & Zoete, V. (2017). Sci. Rep. 7, 42717.]) was utilized.

According to the results of docking studies, it was found that the tested mol­ecule has a significant affinity to both targets (Table 4[link]). This is evidenced by the values of the scoring functions and the free binding energy in comparison to the values of the described reference ligands. Among the QSAR properties obtained from SwissADME, we included only the most important, namely MlogP (calculated by using the Moriguchi approach), LogS (by ESOL) and topological polar surface area (TPSA) (Daina, et al., 2017[Daina, A., Michielin, O. & Zoete, V. (2017). Sci. Rep. 7, 42717.]). These parameters are important characteristics of the transport properties of a drug through membranes. While the LogS and TPSA parameters correspond to the drug likeliness criterion, the lipophilicity for the title compound is noticeably larger. However, this difficulty can potentially be eliminated by some structural chemical modifications, for example, by incorporating appropriate substituents.

Table 4
Basic characteristics of mol­ecular docking

Compounds BE (kcal mol−1) Binding affinity score MLogP LogS (ESOL) TPSA (Å2)
Ligand + 5E0I −6.9 −17.34 1.76 −4.65 105.68
Title compound + 5E0I −8.8 −18.03 4.50 −7.19 64.16
Ligand + 6LU7 −7.6 −21.86 0.38 −4.89 197.83
Title compound + 6LU7 −9.1 −19.61 4.50 −7.19 64.16

An analysis of the geometric location in the active sites of the selected targets showed that the formation of complexes is facilitated by hydrogen bonds (shown with dotted red arrows) and hydro­phobic (van der Waals) inter­molecular inter­actions (designated in yellow) (Fig. 8[link]). The DA distances involved in hydrogen bonds (in Å) are presented in the left part of this figure. It can be seen that the obtained lengths are quite large, but fall within the typical range for hydrogen bonds (2.5–4.0 Å).

[Figure 8]
Figure 8
Inter­actions (on the left) and configuration of the title compound (on the right) within the active centers of target viral macromolecules (5E0I – at the top, 6LU7 – at the bottom).

Therefore, the investigated compound is promising for further in vitro research of both the anti­microbial and anti­viral activity.

7. Synthesis and crystallization

The starting reagents are commercially available and, as well as solvents, were purchased from Sigma Aldrich and were used without further purification.

The initial substance (compound 1 in the reaction scheme), 1-benzyl-6-fluoro-4-oxo-7-(piperidin-1-yl)-1,4-di­hydro­quin­o­line-3-carbo­nitrile, was synthesized via N-alkyl­ation of 6,7-di­fluoro­quinolin-4-one-3-nitrile, followed by amination of the resultant inter­mediates with piperidine according to the procedures described in Spiridonova et al. (2011[Spiridonova, N. V., Silin, O. V., Kovalenko, S. M. & Zhuravel, I. O. (2011). Zh. Org. Farm. Khim. 9, 4, 65-69.]). This compound is convenient for further cyclization reactions to obtain various heterocyclic-substituted derivatives. Furthermore, this method is promising for the creation of new substances with anti­microbial activity.

Compound 1 (1 mmol) and N,N′-carbonyl­diimidazole (1.1 mmol) were dissolved in N,N-di­methyl­formamide and stirred at 373 K for 20 minutes. After that hydroxyl­amine (1.1 mmol) was added and heating was maintained for 6 h. The mixture was cooled to room temperature, then water was added, and the obtained precipitate was filtered and recrystallized from an iso­propanol–DMF mixture. Then 1 mmol of the obtained compound (2), N,N′-carbonyl­diimidazole (1.1 mmol) (compound 3) and 4-methyl­cyclo­hexane-1-carb­oxy­lic acid (1 mmol) (compound 4) were dissolved in N,N-di­methyl­formamide (80 mL). The mixture was stirred at 333 K for 1 h. The mixture was then cooled to room temperature and the obtained precipitate was filtered, washed with ethanol and recrystallized from an ethanol–DMF mixture.

[Scheme 2]

Further crystallization by slow evaporation of a solution in iso­propanol was carried out to provide single block-like colorless crystals suitable for X-ray diffraction analysis (m.p. 476–477 K).

8. NMR and LC/MS characterization

The NMR spectra were recorded on a Varian MR-400 spectrometer with standard pulse sequences operating at 400 MHz for 1H NMR and 101 MHz for 13C NMR. For the NMR spectra, DMSO-d6 was used as a solvent. Chemical shift values are referenced to residual protons (δ 2.49 ppm) and carbons (δ 39.6 ppm) of the solvent as an inter­nal standard.

LC/MS spectra were recorded on an ELSD Alltech 3300 liquid chromatograph equipped with a UV detector (λmax = 254 nm), API-150EX mass-spectrometer and using a Zorbax SB-C18 column, Phenomenex (100 × 4 mm) Rapid Resolution HT Cartridge 4.6×30mm, 1.8-Micron. Elution started with a 0.1 M solution of HCOOH in water and ended with a 0.1 M solution of HCOOH in aceto­nitrile using a linear gradient at a flow rate of 0.15 ml min−1 and an analysis cycle time of 25 min.

Characteristics of title mol­ecule: LC/MS: [MH]+ = 501.26. 1H NMR (400 MHz, DMSO-d6) δ 9.08 (s, 1H, H-2), 8.06 (d, J = 12.0 Hz, 1H, H-5), 7.35–7.23 (m, 5H, Ph-CH2), 6.31 (d, J = 4.4 Hz, 1H, H-8), 5.43 (s, 2H, Ph-CH2), 3.27–3.20 (m, 4H, piperidine H-2), 3.13 (p, J = 6.5 Hz, 1H, cyclo­hexane H-1), cyclo­aliphatics: [2.24–2.14 (m, 2H), 1.98–1.88 (m, 2H), 1.73–1.45 (m, 9H), 1.35–1.23 (m, 2H)], 0.91 (d, J = 5.9 Hz, 3H, CH3). 13C NMR (101 MHz, DMSO-d6) δ 181.35, 181.33, 178.80, 165.60, 151.45, 149.00, 146.21, 144.87, 144.75, 138.83, 138.80, 137.36, 129.16, 128.13, 127.52, 122.73, 122.66, 113.97, 113.75, 104.96, 104.91, 104.27, 54.03, 50.90, 50.86, 33.49, 33.36, 30.48, 27.72, 25.90, 24.07, 20.97.

9. Database survey

A search of the Cambridge Structural Database (Version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) did not show any closely related structures to the 5-[1-benzyl-6-fluoro-7-(piperidin-1-yl)-quinolin-4(1H)-on-3-yl]-3-(4-methyl­cyclo­hex-1-yl)-1,2,4-oxa­diazole. The compound with the closest structure is N-benzyl-1-butyl-6-fluoro-4-oxo-7-(piperidin-1-yl)-1,4-di­hydro­quinoline-3-carboxamide (Hiltensperger et al., 2012[Hiltensperger, G., Jones, N. G., Niedermeier, S., Stich, A., Kaiser, M., Jung, J., Puhl, S., Damme, A., Braunschweig, H., Meinel, L., Engstler, M. & Holzgrabe, U. (2012). J. Med. Chem. 55, 2538-2548.]), which belongs, however, to another class of anti­parasitic fluoro­quinolone derivatives.

10. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All hydrogen atoms were refined using a riding model with Uiso = nUeq of the carrier atom (n = 1.5 for methyl and hydroxyl groups and n = 1.2 for other hydrogen atoms). During the refinement, the distances between the atoms of the disordered isopropyl alcohol were restrained to the following values: 1.524 Å for bonds C1A—C2A, C1B—C2B, C1A—C3A, C1B—C3B with an estimated standard deviation of 0.015 Å (according to Dunitz & Bürgi, 1994[Dunitz, J. D. & Bürgi, H.-B. (1994). Editors. Structure Correlation, Vol. 2, pp. 767-784. Weinheim: VCH.]) and 1.432 Å for bonds O1A—C1A/O1B—C1B with an estimated standard deviation of 0.011 Å. The atoms of each disordered position of the isopropyl alcohol were restrained to have the same Uij components with an estimated standard deviation of 0.01 Å2 (0.02 Å2 for terminal atoms). They were subject to a `rigid bond' restraint as well with an estimated standard deviation of 0.0025 Å2.

Table 5
Experimental details

Crystal data
Chemical formula C30H33FN4O2·C3H8O
Mr 560.70
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.9499 (6), 11.2976 (9), 14.9913 (12)
α, β, γ (°) 68.650 (8), 89.473 (6), 78.976 (6)
V3) 1537.2 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.18 × 0.14 × 0.1
 
Data collection
Diffractometer Xcalibur, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.986, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14562, 5407, 2707
Rint 0.043
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.189, 0.97
No. of reflections 5407
No. of parameters 412
No. of restraints 54
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.24
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a)'; program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

\ 1-Benzyl-6-fluoro-3-[5-(4-methylcyclohexyl)-1,2,4-oxadiazol-3-yl]-\ 7-(piperidin-1-yl)quinolin-4-one top
Crystal data top
C30H33FN4O2·C3H8OF(000) = 600
Mr = 560.70Dx = 1.211 Mg m3
Triclinic, P1Melting point: 476.15 K
a = 9.9499 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2976 (9) ÅCell parameters from 2589 reflections
c = 14.9913 (12) Åθ = 4.0–28.2°
α = 68.650 (8)°µ = 0.08 mm1
β = 89.473 (6)°T = 296 K
γ = 78.976 (6)°Block, yellow
V = 1537.2 (2) Å30.18 × 0.14 × 0.1 mm
Z = 2
Data collection top
Xcalibur, Atlas
diffractometer
5407 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2707 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 10.3779 pixels mm-1θmax = 25.0°, θmin = 3.4°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 1213
Tmin = 0.986, Tmax = 1.000l = 1617
14562 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.189 w = 1/[σ2(Fo2) + (0.0881P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
5407 reflectionsΔρmax = 0.30 e Å3
412 parametersΔρmin = 0.24 e Å3
54 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.40408 (18)0.53219 (16)1.12186 (12)0.0810 (6)
O10.1510 (2)0.7148 (3)0.59426 (15)0.0918 (7)
O20.10050 (19)0.6960 (2)0.82423 (13)0.0688 (6)
N10.0680 (3)0.6992 (3)0.67646 (18)0.0839 (8)
N20.1356 (3)0.5139 (3)0.69218 (17)0.0729 (7)
N30.0757 (2)0.3148 (2)0.95995 (15)0.0535 (6)
N40.4118 (2)0.2672 (2)1.21202 (14)0.0543 (6)
C10.1860 (3)0.6009 (4)0.6103 (2)0.0727 (9)
C20.0628 (3)0.5791 (3)0.73033 (19)0.0595 (8)
C30.0080 (3)0.3883 (3)0.87466 (19)0.0564 (7)
H30.0474810.3500410.8484370.068*
C40.0143 (3)0.5143 (3)0.82355 (18)0.0524 (7)
C50.0951 (3)0.5791 (3)0.86249 (18)0.0528 (7)
C60.2576 (3)0.5490 (3)0.99624 (18)0.0548 (7)
H60.2634350.6357740.9672960.066*
C70.3312 (3)0.4740 (3)1.07963 (19)0.0554 (7)
C80.3322 (3)0.3400 (3)1.12679 (18)0.0510 (7)
C90.2445 (3)0.2905 (3)1.08445 (17)0.0495 (7)
H90.2390410.2036281.1133680.059*
C100.1645 (2)0.3672 (3)0.99992 (17)0.0479 (7)
C110.1729 (3)0.4969 (3)0.95330 (17)0.0495 (7)
C120.5588 (3)0.2719 (3)1.21148 (19)0.0655 (8)
H12A0.5695090.3607731.1788410.079*
H12B0.6051730.2205471.1764080.079*
C130.6240 (3)0.2206 (3)1.3121 (2)0.0767 (10)
H13A0.7209440.2229631.3097460.092*
H13B0.5819150.2753751.3459360.092*
C140.6068 (3)0.0834 (3)1.3656 (2)0.0829 (11)
H14A0.6427670.0540731.4315990.100*
H14B0.6574520.0264221.3361420.100*
C150.4562 (3)0.0782 (3)1.3629 (2)0.0732 (9)
H15A0.4463620.0114601.3920070.088*
H15B0.4087600.1250751.4005580.088*
C160.3905 (3)0.1353 (3)1.26275 (19)0.0602 (8)
H16A0.4286920.0810341.2275560.072*
H16B0.2927860.1364511.2653260.072*
C170.0544 (3)0.1821 (3)1.0101 (2)0.0596 (8)
H17A0.0297770.1733440.9832030.072*
H17B0.0421780.1688471.0771200.072*
C180.1692 (3)0.0775 (3)1.0047 (2)0.0613 (8)
C190.2007 (4)0.0381 (3)1.0801 (3)0.0839 (10)
H190.1531160.0497651.1353030.101*
C200.3014 (5)0.1382 (4)1.0764 (4)0.1067 (13)
H200.3197310.2167751.1282580.128*
C210.3726 (5)0.1226 (5)0.9984 (5)0.1236 (16)
H210.4410610.1900200.9962140.148*
C220.3450 (6)0.0083 (5)0.9226 (4)0.150 (2)
H220.3950910.0028150.8684340.180*
C230.2423 (5)0.0921 (4)0.9254 (3)0.1159 (15)
H230.2231900.1699910.8728370.139*
C240.2713 (3)0.5875 (4)0.5338 (2)0.0853 (11)
H240.3448760.5444810.5656010.102*
C250.1882 (4)0.5005 (4)0.4899 (3)0.1171 (15)
H25A0.1571370.4154460.5393890.141*
H25B0.1076610.5348880.4649560.141*
C260.2665 (4)0.4864 (4)0.4101 (3)0.1127 (14)
H26A0.2050760.4347010.3814330.135*
H26B0.3390780.4402110.4368240.135*
C270.3268 (4)0.6112 (4)0.3353 (2)0.0948 (12)
H270.2506410.6531710.3075280.114*
C280.4127 (5)0.6966 (4)0.3779 (3)0.1274 (16)
H28A0.4928460.6607440.4018950.153*
H28B0.4444420.7812280.3280720.153*
C290.3383 (5)0.7134 (4)0.4595 (3)0.1212 (15)
H29A0.2692210.7645820.4334560.145*
H29B0.4034220.7608780.4891930.145*
C300.4034 (4)0.5969 (5)0.2541 (3)0.1172 (14)
H30A0.4827050.5611900.2776320.176*
H30B0.3443260.5399120.2294180.176*
H30C0.4318280.6803540.2038840.176*
O1A0.9230 (8)0.0496 (7)0.7385 (6)0.090 (2)0.655 (8)
H1A0.9731320.1213270.7628740.135*0.655 (8)
C1A0.9840 (10)0.0330 (8)0.6585 (6)0.119 (3)0.655 (8)
H1AA1.0647920.0150190.6397070.143*0.655 (8)
C2A0.8698 (11)0.0861 (12)0.5824 (7)0.189 (5)0.655 (8)
H2AA0.8450040.0163820.5683470.283*0.655 (8)
H2AB0.8988080.1461710.5254140.283*0.655 (8)
H2AC0.7919230.1300180.6043230.283*0.655 (8)
C3A1.0152 (10)0.1391 (9)0.6815 (7)0.195 (5)0.655 (8)
H3AA0.9369610.1763120.7073820.292*0.655 (8)
H3AB1.0373920.2040360.6243930.292*0.655 (8)
H3AC1.0919950.1071520.7280490.292*0.655 (8)
O1B0.957 (2)0.063 (2)0.7405 (12)0.153 (7)0.345 (8)
H1B1.0012480.1371510.7661920.229*0.345 (8)
C1B0.9053 (17)0.0324 (15)0.6486 (10)0.133 (6)0.345 (8)
H1BA0.8509890.0125210.6222320.160*0.345 (8)
C2B1.0239 (15)0.0430 (19)0.5902 (14)0.186 (9)0.345 (8)
H2BA1.0038820.1221320.5348810.280*0.345 (8)
H2BB1.0441140.0295140.5699420.280*0.345 (8)
H2BC1.1016920.0434780.6274130.280*0.345 (8)
C3B0.8059 (16)0.1510 (13)0.6445 (11)0.149 (6)0.345 (8)
H3BA0.7245420.1269300.6746730.223*0.345 (8)
H3BB0.7825080.2071770.5787590.223*0.345 (8)
H3BC0.8465760.1953440.6775350.223*0.345 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1060 (13)0.0556 (11)0.0826 (12)0.0242 (10)0.0315 (9)0.0220 (10)
O10.1174 (18)0.0798 (18)0.0625 (14)0.0149 (14)0.0320 (12)0.0096 (13)
O20.0827 (14)0.0481 (14)0.0633 (12)0.0152 (11)0.0102 (10)0.0050 (11)
N10.112 (2)0.069 (2)0.0580 (16)0.0174 (16)0.0288 (14)0.0085 (15)
N20.0910 (18)0.0633 (18)0.0559 (16)0.0016 (14)0.0208 (13)0.0184 (14)
N30.0655 (14)0.0434 (14)0.0499 (13)0.0095 (11)0.0098 (11)0.0157 (11)
N40.0632 (14)0.0502 (15)0.0447 (13)0.0128 (11)0.0068 (10)0.0108 (11)
C10.091 (2)0.062 (2)0.062 (2)0.0046 (18)0.0144 (16)0.0248 (18)
C20.0696 (18)0.053 (2)0.0481 (17)0.0020 (15)0.0063 (13)0.0145 (16)
C30.0642 (17)0.054 (2)0.0531 (17)0.0091 (14)0.0077 (13)0.0236 (16)
C40.0611 (17)0.0470 (18)0.0469 (16)0.0073 (14)0.0036 (12)0.0163 (14)
C50.0604 (17)0.0467 (19)0.0480 (16)0.0082 (14)0.0028 (12)0.0149 (14)
C60.0686 (18)0.0418 (17)0.0515 (16)0.0150 (14)0.0021 (13)0.0121 (14)
C70.0675 (18)0.0500 (19)0.0555 (17)0.0198 (15)0.0057 (14)0.0231 (15)
C80.0623 (17)0.0444 (17)0.0460 (15)0.0127 (13)0.0006 (12)0.0154 (13)
C90.0632 (16)0.0378 (16)0.0494 (15)0.0109 (13)0.0001 (12)0.0178 (13)
C100.0565 (16)0.0434 (17)0.0429 (15)0.0092 (13)0.0009 (12)0.0153 (13)
C110.0564 (16)0.0463 (18)0.0440 (15)0.0091 (13)0.0003 (12)0.0153 (13)
C120.0619 (19)0.071 (2)0.0582 (18)0.0141 (15)0.0036 (13)0.0164 (16)
C130.070 (2)0.087 (3)0.0651 (19)0.0174 (18)0.0105 (15)0.0177 (19)
C140.079 (2)0.085 (3)0.063 (2)0.0060 (19)0.0141 (15)0.0062 (19)
C150.083 (2)0.070 (2)0.0539 (18)0.0086 (17)0.0047 (14)0.0109 (16)
C160.0689 (18)0.0499 (19)0.0557 (17)0.0096 (14)0.0011 (13)0.0137 (15)
C170.0751 (19)0.0438 (18)0.0613 (18)0.0197 (15)0.0098 (14)0.0169 (15)
C180.084 (2)0.0416 (18)0.0646 (19)0.0140 (16)0.0119 (15)0.0262 (16)
C190.100 (3)0.059 (2)0.084 (2)0.004 (2)0.0161 (18)0.022 (2)
C200.122 (3)0.060 (3)0.129 (4)0.009 (2)0.041 (3)0.037 (3)
C210.122 (4)0.093 (4)0.170 (5)0.009 (3)0.014 (4)0.080 (4)
C220.205 (5)0.103 (4)0.141 (4)0.009 (4)0.052 (4)0.064 (4)
C230.171 (4)0.075 (3)0.090 (3)0.009 (3)0.024 (3)0.034 (2)
C240.089 (2)0.102 (3)0.056 (2)0.007 (2)0.0193 (16)0.025 (2)
C250.123 (3)0.094 (3)0.135 (3)0.024 (2)0.065 (3)0.065 (3)
C260.129 (3)0.099 (3)0.114 (3)0.014 (2)0.046 (2)0.061 (3)
C270.105 (3)0.118 (4)0.069 (2)0.029 (2)0.0087 (19)0.039 (2)
C280.167 (4)0.101 (3)0.095 (3)0.037 (3)0.069 (3)0.043 (3)
C290.164 (4)0.088 (3)0.097 (3)0.034 (3)0.071 (3)0.045 (2)
C300.137 (3)0.133 (4)0.091 (3)0.022 (3)0.033 (2)0.055 (3)
O1A0.094 (3)0.058 (3)0.106 (4)0.009 (3)0.010 (2)0.020 (3)
C1A0.115 (6)0.090 (5)0.122 (6)0.021 (4)0.019 (3)0.005 (4)
C2A0.195 (9)0.196 (10)0.123 (6)0.062 (8)0.024 (5)0.015 (6)
C3A0.225 (9)0.146 (7)0.215 (9)0.118 (7)0.015 (7)0.028 (6)
O1B0.182 (14)0.119 (9)0.081 (7)0.048 (7)0.009 (6)0.013 (7)
C1B0.142 (10)0.101 (8)0.083 (8)0.015 (8)0.027 (6)0.031 (7)
C2B0.128 (11)0.186 (14)0.144 (11)0.005 (9)0.040 (9)0.042 (10)
C3B0.176 (12)0.091 (9)0.115 (10)0.021 (7)0.002 (8)0.013 (7)
Geometric parameters (Å, º) top
F1—C71.361 (3)C20—C211.334 (6)
O1—N11.427 (3)C21—H210.9300
O1—C11.333 (4)C21—C221.355 (6)
O2—C51.245 (3)C22—H220.9300
N1—C21.293 (4)C22—C231.388 (6)
N2—C11.292 (4)C23—H230.9300
N2—C21.383 (4)C24—H240.9800
N3—C31.344 (3)C24—C251.494 (5)
N3—C101.399 (3)C24—C291.485 (5)
N3—C171.469 (3)C25—H25A0.9700
N4—C81.393 (3)C25—H25B0.9700
N4—C121.474 (3)C25—C261.506 (5)
N4—C161.463 (3)C26—H26A0.9700
C1—C241.501 (4)C26—H26B0.9700
C2—C41.462 (4)C26—C271.464 (5)
C3—H30.9300C27—H270.9800
C3—C41.363 (4)C27—C281.481 (5)
C4—C51.439 (4)C27—C301.515 (5)
C5—C111.462 (4)C28—H28A0.9700
C6—H60.9300C28—H28B0.9700
C6—C71.351 (3)C28—C291.523 (5)
C6—C111.395 (4)C29—H29A0.9700
C7—C81.417 (4)C29—H29B0.9700
C8—C91.390 (4)C30—H30A0.9600
C9—H90.9300C30—H30B0.9600
C9—C101.395 (3)C30—H30C0.9600
C10—C111.394 (4)O1A—H1A0.8200
C12—H12A0.9700O1A—C1A1.438 (8)
C12—H12B0.9700C1A—H1AA0.9800
C12—C131.507 (4)C1A—C2A1.489 (9)
C13—H13A0.9700C1A—C3A1.448 (10)
C13—H13B0.9700C2A—H2AA0.9600
C13—C141.506 (4)C2A—H2AB0.9600
C14—H14A0.9700C2A—H2AC0.9600
C14—H14B0.9700C3A—H3AA0.9600
C14—C151.512 (4)C3A—H3AB0.9600
C15—H15A0.9700C3A—H3AC0.9600
C15—H15B0.9700O1B—H1B0.8200
C15—C161.499 (4)O1B—C1B1.430 (10)
C16—H16A0.9700C1B—H1BA0.9800
C16—H16B0.9700C1B—C2B1.460 (13)
C17—H17A0.9700C1B—C3B1.487 (13)
C17—H17B0.9700C2B—H2BA0.9600
C17—C181.504 (4)C2B—H2BB0.9600
C18—C191.362 (4)C2B—H2BC0.9600
C18—C231.363 (5)C3B—H3BA0.9600
C19—H190.9300C3B—H3BB0.9600
C19—C201.377 (5)C3B—H3BC0.9600
C20—H200.9300
C1—O1—N1106.8 (2)C20—C21—C22119.9 (5)
C2—N1—O1102.7 (3)C22—C21—H21120.1
C1—N2—C2103.3 (3)C21—C22—H22119.9
C3—N3—C10119.1 (2)C21—C22—C23120.2 (4)
C3—N3—C17119.8 (2)C23—C22—H22119.9
C10—N3—C17121.1 (2)C18—C23—C22120.4 (4)
C8—N4—C12116.85 (19)C18—C23—H23119.8
C8—N4—C16116.8 (2)C22—C23—H23119.8
C16—N4—C12111.4 (2)C1—C24—H24106.9
O1—C1—C24118.7 (3)C25—C24—C1110.4 (3)
N2—C1—O1112.6 (3)C25—C24—H24106.9
N2—C1—C24128.7 (3)C29—C24—C1113.8 (3)
N1—C2—N2114.5 (3)C29—C24—H24106.9
N1—C2—C4124.0 (3)C29—C24—C25111.5 (3)
N2—C2—C4121.6 (3)C24—C25—H25A109.0
N3—C3—H3117.4C24—C25—H25B109.0
N3—C3—C4125.2 (3)C24—C25—C26113.1 (3)
C4—C3—H3117.4H25A—C25—H25B107.8
C3—C4—C2118.2 (3)C26—C25—H25A109.0
C3—C4—C5119.5 (2)C26—C25—H25B109.0
C5—C4—C2122.3 (3)C25—C26—H26A109.0
O2—C5—C4124.3 (2)C25—C26—H26B109.0
O2—C5—C11120.9 (3)H26A—C26—H26B107.8
C4—C5—C11114.8 (2)C27—C26—C25112.9 (3)
C7—C6—H6119.8C27—C26—H26A109.0
C7—C6—C11120.4 (3)C27—C26—H26B109.0
C11—C6—H6119.8C26—C27—H27106.9
F1—C7—C8118.6 (2)C26—C27—C28110.4 (3)
C6—C7—F1117.8 (3)C26—C27—C30112.9 (4)
C6—C7—C8123.6 (3)C28—C27—H27106.9
N4—C8—C7121.0 (3)C28—C27—C30112.4 (3)
C9—C8—N4123.7 (2)C30—C27—H27106.9
C9—C8—C7115.3 (2)C27—C28—H28A108.8
C8—C9—H9119.0C27—C28—H28B108.8
C8—C9—C10122.0 (3)C27—C28—C29113.7 (3)
C10—C9—H9119.0H28A—C28—H28B107.7
C9—C10—N3120.6 (2)C29—C28—H28A108.8
C11—C10—N3118.9 (2)C29—C28—H28B108.8
C11—C10—C9120.5 (3)C24—C29—C28112.5 (3)
C6—C11—C5119.6 (2)C24—C29—H29A109.1
C10—C11—C5122.2 (3)C24—C29—H29B109.1
C10—C11—C6118.1 (2)C28—C29—H29A109.1
N4—C12—H12A109.4C28—C29—H29B109.1
N4—C12—H12B109.4H29A—C29—H29B107.8
N4—C12—C13111.1 (2)C27—C30—H30A109.5
H12A—C12—H12B108.0C27—C30—H30B109.5
C13—C12—H12A109.4C27—C30—H30C109.5
C13—C12—H12B109.4H30A—C30—H30B109.5
C12—C13—H13A109.5H30A—C30—H30C109.5
C12—C13—H13B109.5H30B—C30—H30C109.5
H13A—C13—H13B108.1C1A—O1A—H1A111.0
C14—C13—C12110.8 (3)O1A—C1A—H1AA112.1
C14—C13—H13A109.5O1A—C1A—C2A102.5 (8)
C14—C13—H13B109.5O1A—C1A—C3A109.0 (8)
C13—C14—H14A109.8C2A—C1A—H1AA112.1
C13—C14—H14B109.8C3A—C1A—H1AA112.1
C13—C14—C15109.4 (3)C3A—C1A—C2A108.4 (9)
H14A—C14—H14B108.2C1A—C2A—H2AA109.5
C15—C14—H14A109.8C1A—C2A—H2AB109.5
C15—C14—H14B109.8C1A—C2A—H2AC109.5
C14—C15—H15A109.1H2AA—C2A—H2AB109.5
C14—C15—H15B109.1H2AA—C2A—H2AC109.5
H15A—C15—H15B107.8H2AB—C2A—H2AC109.5
C16—C15—C14112.5 (2)C1A—C3A—H3AA109.5
C16—C15—H15A109.1C1A—C3A—H3AB109.5
C16—C15—H15B109.1C1A—C3A—H3AC109.5
N4—C16—C15111.7 (3)H3AA—C3A—H3AB109.5
N4—C16—H16A109.3H3AA—C3A—H3AC109.5
N4—C16—H16B109.3H3AB—C3A—H3AC109.5
C15—C16—H16A109.3C1B—O1B—H1B141.8
C15—C16—H16B109.3O1B—C1B—H1BA103.5
H16A—C16—H16B107.9O1B—C1B—C2B105.0 (17)
N3—C17—H17A108.6O1B—C1B—C3B118.6 (16)
N3—C17—H17B108.6C2B—C1B—H1BA103.5
N3—C17—C18114.6 (2)C2B—C1B—C3B120.3 (15)
H17A—C17—H17B107.6C3B—C1B—H1BA103.5
C18—C17—H17A108.6C1B—C2B—H2BA109.5
C18—C17—H17B108.6C1B—C2B—H2BB109.5
C19—C18—C17119.8 (3)C1B—C2B—H2BC109.5
C19—C18—C23117.8 (3)H2BA—C2B—H2BB109.5
C23—C18—C17122.4 (3)H2BA—C2B—H2BC109.5
C18—C19—H19119.2H2BB—C2B—H2BC109.5
C18—C19—C20121.6 (4)C1B—C3B—H3BA109.5
C20—C19—H19119.2C1B—C3B—H3BB109.5
C19—C20—H20119.9C1B—C3B—H3BC109.5
C21—C20—C19120.1 (4)H3BA—C3B—H3BB109.5
C21—C20—H20119.9H3BA—C3B—H3BC109.5
C20—C21—H21120.1H3BB—C3B—H3BC109.5
F1—C7—C8—N43.4 (4)C7—C6—C11—C5179.3 (2)
F1—C7—C8—C9173.7 (2)C7—C6—C11—C101.4 (4)
O1—N1—C2—N20.7 (3)C7—C8—C9—C101.8 (4)
O1—N1—C2—C4178.5 (2)C8—N4—C12—C13164.6 (3)
O1—C1—C24—C25110.5 (4)C8—N4—C16—C15166.8 (2)
O1—C1—C24—C2915.7 (5)C8—C9—C10—N3179.0 (2)
O2—C5—C11—C62.0 (4)C8—C9—C10—C111.7 (4)
O2—C5—C11—C10177.2 (2)C9—C10—C11—C5177.4 (2)
N1—O1—C1—N20.3 (4)C9—C10—C11—C63.3 (4)
N1—O1—C1—C24178.4 (3)C10—N3—C3—C42.6 (4)
N1—C2—C4—C3178.0 (3)C10—N3—C17—C1876.8 (3)
N1—C2—C4—C51.8 (4)C11—C6—C7—F1175.2 (2)
N2—C1—C24—C2567.3 (5)C11—C6—C7—C82.4 (4)
N2—C1—C24—C29166.5 (3)C12—N4—C8—C753.5 (3)
N2—C2—C4—C32.8 (4)C12—N4—C8—C9129.7 (3)
N2—C2—C4—C5177.4 (2)C12—N4—C16—C1555.4 (3)
N3—C3—C4—C2178.2 (2)C12—C13—C14—C1555.0 (4)
N3—C3—C4—C52.0 (4)C13—C14—C15—C1653.5 (4)
N3—C10—C11—C51.9 (4)C14—C15—C16—N454.0 (4)
N3—C10—C11—C6177.3 (2)C16—N4—C8—C7171.0 (2)
N3—C17—C18—C19146.5 (3)C16—N4—C8—C95.8 (4)
N3—C17—C18—C2335.2 (4)C16—N4—C12—C1357.6 (3)
N4—C8—C9—C10178.8 (2)C17—N3—C3—C4176.8 (2)
N4—C12—C13—C1457.9 (3)C17—N3—C10—C95.8 (4)
C1—O1—N1—C20.6 (3)C17—N3—C10—C11174.9 (2)
C1—N2—C2—N10.6 (4)C17—C18—C19—C20177.4 (3)
C1—N2—C2—C4178.7 (3)C17—C18—C23—C22178.3 (4)
C1—C24—C25—C26178.1 (4)C18—C19—C20—C211.3 (6)
C1—C24—C29—C28174.5 (4)C19—C18—C23—C220.1 (6)
C2—N2—C1—O10.1 (3)C19—C20—C21—C220.5 (7)
C2—N2—C1—C24177.7 (3)C20—C21—C22—C230.5 (8)
C2—C4—C5—O24.5 (4)C21—C22—C23—C180.7 (8)
C2—C4—C5—C11175.9 (2)C23—C18—C19—C201.0 (5)
C3—N3—C10—C9174.9 (2)C24—C25—C26—C2754.2 (5)
C3—N3—C10—C114.4 (4)C25—C24—C29—C2848.9 (5)
C3—N3—C17—C18103.8 (3)C25—C26—C27—C2854.2 (5)
C3—C4—C5—O2175.3 (2)C25—C26—C27—C30179.0 (4)
C3—C4—C5—C114.3 (4)C26—C27—C28—C2953.2 (5)
C4—C5—C11—C6178.3 (2)C27—C28—C29—C2451.5 (6)
C4—C5—C11—C102.4 (3)C29—C24—C25—C2650.6 (5)
C6—C7—C8—N4179.0 (2)C30—C27—C28—C29179.7 (4)
C6—C7—C8—C93.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···F10.972.192.873 (4)126
C16—H16B···O1Ai0.972.533.441 (9)155
C17—H17B···O1Ai0.972.593.504 (9)157
C17—H17B···O1Bi0.972.553.491 (17)162
O1A—H1A···O2ii0.822.092.906 (9)180
O1B—H1B···O2ii0.821.842.662 (19)180
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y1, z.
Symmetry codes, binding types and interaction energies (kcal mol-1) of the building units (BU) (single molecules) with neighbors top
Pair of BUCentral BUNeighboring BU and corresponding symmetry operationEintInteraction
Position A
1TCx - 1, y, z - 1; TC-1.8C30···F1
2TCx - 1, y + 1, z - 1; TC-3.9Non-specific
3TC-x + 2, -y, -z + 2; IP-1.6Non-specific
4TCx, y - 1, z; TC-2.6Non-specific
5TCx, y, z + 1; IP-1.1Non-specific
6TC-x + 1, -y + 1, -z + 2; TC-11.8Non-specific
7TC-x + 1, -y + 1, -z + 1; IP-2.8Non-specific
8TC-x + 1, -y, -z + 3; TC-1.8Non-specific
9TC-x + 1, -y, -z + 2; TC-9.2Non-specific
10TC-x + 1, -y, -z + 2; IP-4.4C16—H16B···O1A, C17—H17B···O1A
11TCx, y + 1, z; TC-2.6Non-specific
12TCx - 1, y + 1, z; IP-7.7O1A—H1A···O2
13TCx + 1, y - 1, z + 1; TC-3.9Non-specific
14TC-x, -y + 1, -z + 2; TC-33.0C3···C6, C5···C10
15TCx - 1, y, z; IP-3.6Non-specific
16TC-x, -y + 1, -z + 1; TC-15.0Non-specific
17TC-x, -y + 1, -z + 1; IP-0.8Non-specific
18TCx + 1, y, z + 1; TC-1.8C30···F1
19TC-x, -y, -z + 2; TC-8.3Non-specific
20TC-x - 1, -y + 1, -z + 1; TC-4.2Non-specific
21IPx + 1, y, z; TC-3.6Non-specific
22IP-x + 2, -y, -z + 2; TC-1.6Non-specific
23IPx + 1, y - 1, z; TC-7.7O1A—H1A···O2
24IP-x + 2, -y, -z + 1; IP-1.4Non-specific
25IP-x + 1, -y + 1, -z + 1; TC-2.8Non-specific
26IPx, y, z - 1; TC-1.1Non-specific
27IPx + 1, -y, -z + 2; TC-4.4C16—H16B···O1A, C17—H17B···O1A
28IP-x, -y + 1, -z + 1; TC-0.8Non-specific
Position B
1TCx - 1, y, z - 1; TC-1.8C30···F1
2TCx - 1, y + 1, z - 1; TC-3.9Non-specific
3TC-x + 2, -y, -z + 2; IP-1.3Non-specific
4TCx, y - 1, z; TC-2.6Non-specific
5TCx, y, z + 1; IP-0.9Non-specific
6TC-x + 1, -y + 1, -z + 2; TC-11.8Non-specific
7TC-x + 1, -y + 1, -z + 1; IP-1.9Non-specific
8TC-x + 1, -y, -z + 3; TC-1.8Non-specific
9TC-x + 1, -y, -z + 2; TC-9.2Non-specific
10TC-x + 1, -y, -z + 2; IP-5.9C16—H16B···O1B, C17—H17B···O1B
11TCx, y + 1, z; TC-2.6Non-specific
12TCx - 1, y + 1, z; IP-8.5O1B—H1B···O2
13TCx + 1, y - 1, z + 1; TC-3.9Non-specific
14TC-x, -y + 1, -z + 2; TC-33.0C3···C6, C5···C10
15TCx - 1, y, z; IP-2.4Non-specific
16TC-x, -y + 1, -z + 1; TC-15.0Non-specific
17TC-x, -y + 1, -z + 1; IP-1.1Non-specific
18TCx + 1, y, z + 1; TC-1.8C30···F1
19TC-x, -y, -z + 2; TC-8.3Non-specific
20TC-x - 1, -y + 1, -z + 1; TC-4.2Non-specific
21IPx + 1, y, z; TC-2.4Non-specific
22IP-x + 2, -y, -z + 2; TC-1.3Non-specific
23IPx + 1, y - 1, z; TC-8.5O1B—H1B···O2
24IP-x + 2, -y, -z + 1; IP1.5Non-specific
25IP-x + 1, -y + 1, -z + 1; TC-1.9Non-specific
26IPx, y, z - 1; TC-0.9Non-specific
27IP-x + 1, -y, -z + 2; TC-5.9C16—H16B···O1B, C17—H17B···O1B
28IP-x, -y + 1, -z + 1; TC-1.1Non-specific
Symmetry codes, binding types and interaction energies of the building units (BU) (kcal mol-1) (tetramers) with neighbors top
Pair of BUSymmetry operation for neighboring BUEint
Position A
1x - 1, y, z - 1-7.9
2x - 1, y, z-13.9
3x - 1, y + 1, z - 1-13.0
4x - 1, y + 1, z-9.7
5x, y - 1, z-19.5
6x, y - 1, z + 1-7.5
7x, y, z - 1-15.7
8x, y, z + 1-15.7
9x, y + 1, z - 1-7.5
10x, y + 1, z-19.5
11x + 1, y - 1, z-9.7
12x + 1, y - 1, z + 1-13.0
13x + 1, y, z-13.9
14x + 1, y, z + 1-7.9
Position B
1x - 1, y, z - 1-7.9
2x - 1, y, z-13.9
3x - 1, y + 1, z - 1-13.2
4x - 1, y + 1, z-9.7
5x, y - 1, z-17.0
6x, y - 1, z + 1-2.9
7x, y, z - 1-15.8
8x, y, z + 1-15.8
9x, y + 1, z - 1-2.9
10x, y + 1, z-17.0
11x + 1, y - 1, z-9.7
12x + 1, y - 1, z + 1-13.2
13x + 1, y, z-13.9
14x + 1, y, z + 1-7.9
Basic characteristics of molecular docking top
CompoundsBE (kcal mol-1)Binding affinity scoreMLogPLogS (ESOL)TPSA (Å2)
Ligand + 5E0I-6.9-17.341.76-4.65105.68
Title compound + 5E0I-8.8-18.034.50-7.1964.16
Ligand + 6LU7-7.6-21.860.38-4.89197.83
Title compound + 6LU7-9.1-19.614.50-7.1964.16
Hydrogen-bond characteristics top
D—H···AD—H, ÅH···A, ÅD···A, ÅD—H···A, deg
C12—H12A···F10.972.192.873 (4)126.4
C16—H16B···O1Ai0.972.533.440 (8)155.3
C17—H17B···O1Ai0.972.593.503 (9)157.1
C17—H17B···O1Bi0.972.553.491 (18)162.4
O1A—H1A···O2ii0.822.092.905 (8)179.7
O1B—H1B···O2ii0.821.842.662 (19)179.6
Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) x - 1, y + 1, z.

Funding information

Funding for this research was provided by: National Research Foundation of Ukraine (grant No. 2021.01/0062).

References

First citationBecke, A. D. (1997). J. Chem. Phys. 107, 8554–8560.  CrossRef CAS Web of Science Google Scholar
First citationBeović, B., Doušak, D., Ferreira-Coimbra, J., Nadrah, K., Rubulotta, F., Belliato, M., Berger-Estilita, J., Ayoade, F., Rello, J. & Erdem, H. (2020). JAC, 75, 3386–3390.  PubMed Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 3, 441–451.  Google Scholar
First citationBoys, S. F. & Bernardi, F. (1970). Mol. Phys. 19, 553–566.  CrossRef CAS Web of Science Google Scholar
First citationBylov, I. E., Bilokin, Y. V. & Kovalenko, S. M. (1999). HC, 5, 3, 281–284.  Google Scholar
First citationCardoso-Ortiz, J., Leyva-Ramos, S., Baines, K. M., Gómez-Durán, C. F. A., Hernández-López, H., Palacios-Can, F. J., Valcarcel-Gamiño, J. A., Leyva-Peralta, M. A. & Razo-Hernández, R. S. (2023). J. Mol. Struct. 1274, 134507.  PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 6, 1354–1358.  Google Scholar
First citationDaina, A., Michielin, O. & Zoete, V. (2017). Sci. Rep. 7, 42717.  Web of Science CrossRef PubMed Google Scholar
First citationDeLano, W. L. (2002). CCP4 Newsletter On Protein Crystallography, 40, 82–92.  Google Scholar
First citationDesiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDesiraju, G. R. (2005). Chem. Commun. pp. 2995–3001.  Web of Science CrossRef Google Scholar
First citationDharmarwardana, M., Otten, B. M., Ghimire, M. M., Arimilli, B. S., Williams, C. M., Boateng, S., Lu, Z., McCandless, G. T., Gassensmith, J. J. & Omary, M. A. (2021). PNAS, 118, 44, e2106572118.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDunitz, J. D. & Bürgi, H.-B. (1994). Editors. Structure Correlation, Vol. 2, pp. 767–784. Weinheim: VCH.  Google Scholar
First citationEzelarab, H. A. A., Abbas, S. H., Hassan, H. A. & Abuo-Rahma, G. E. A. (2018). Arch. Pharm. Chem. Life Sci. 351, 9, e1800141.  Google Scholar
First citationGrimme, S., Antony, J., Ehrlich, S. & Krieg, H. (2010). J. Chem. Phys. 132, 154104.  Web of Science CrossRef PubMed Google Scholar
First citationGrimme, S., Ehrlich, S. & Goerigk, L. (2011). J. Comput. Chem. 32, 1456–1465.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHiltensperger, G., Jones, N. G., Niedermeier, S., Stich, A., Kaiser, M., Jung, J., Puhl, S., Damme, A., Braunschweig, H., Meinel, L., Engstler, M. & Holzgrabe, U. (2012). J. Med. Chem. 55, 2538–2548.  CSD CrossRef CAS PubMed Google Scholar
First citationHryhoriv, H., Mariutsa, I., Kovalenko, S. M., Georgiyants, V., Perekhoda, L., Filimonova, N., Geyderikh, O. & Sidorenko, L. (2022). Sci. Pharm. 90, 1, 2.  Google Scholar
First citationJia, Y. & Zhao, L. (2021). Eur. J. Med. Chem. 224, 113741.  CrossRef PubMed Google Scholar
First citationJin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., Yang, X., Bai, F., Liu, H., Liu, X., Guddat, L. W., Xu, W., Xiao, G., Qin, C., Shi, Z., Jiang, H., Rao, Z. & Yang, H. (2020). Nature, 582, 289–293.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJmol (2022). An open-source Java viewer for chemical structures in 3D. https://www.jmol.org/Google Scholar
First citationKlumpp, K., Lam, A. M., Lukacs, C., Vogel, R., Ren, S., Espiritu, C., Baydo, R., Atkins, K., Abendroth, J., Liao, G., Efimov, A., Hartman, G. & Flores, O. A. (2015). PNAS, 112, 49, 15196–15201.  Google Scholar
First citationKonovalova, I. S., Shishkina, S. V., Paponov, B. V. & Shishkin, O. V. (2010). CrystEngComm, 12, 3, 909–916.  Google Scholar
First citationMohammed, H. H. H., Abuo-Rahma, G. E. A., Abbas, S. H. & Abdelhafez, E. M. N. (2019). Curr. Med. Chem. 26, 3132–3149.  CrossRef CAS PubMed Google Scholar
First citationNeese, F., Wennmohs, F., Becker, U. & Riplinger, C. (2020). J. Chem. Phys. 152, 224108.  Web of Science CrossRef PubMed Google Scholar
First citationOniga, S., Palage, M., Araniciu, C., Marc, G., Oniga, O., Vlase, L., Prisăcari, V., Valica, V., Curlat, S. & Uncu, L. (2018). Farmacia, 66, 6, 19.  Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 18, 7384–7391.  Google Scholar
First citationSavchenko, T. I., Silin, O. V., Kovalenko, S. M., Musatov, V. I., Nikitchenko, V. M. & Ivachtchenko, A. V. (2007). Synth. Commun. 37, 1321–1330.  CrossRef CAS Google Scholar
First citationSchmider, H. L. & Becke, A. D. (1998). J. Chem. Phys. 108, 9624–9631.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShishkina, S. V., Konovalova, I. S., Kovalenko, S. M., Trostianko, P. V., Geleverya, A. O. & Bunyatyan, N. D. (2019). CrystEngComm, 21, 45, 6945–6957.  Google Scholar
First citationShishkin, O. V., Dyakonenko, V. V. & Maleev, A. V. (2012). CrystEngComm, 14, 5, 1795–1804.  Google Scholar
First citationShishkin, O. V., Zubatyuk, R. I., Shishkina, S. V., Dyakonenko, V. V. & Medviediev, V. V. (2014). Phys. Chem. Chem. Phys. 16, 6773–6786.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSilin, O. V., Savchenko, T. I., Kovalenko, S. M., Nikitchenko, V. M. & Ivachtchenko, A. V. (2004). Heterocycles, 63, 8, 1883–1890.  Google Scholar
First citationSpackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 3–4, 215–220.  Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpiridonova, N. V., Silin, O. V., Kovalenko, S. M. & Zhuravel, I. O. (2011). Zh. Org. Farm. Khim. 9, 4, 65–69.  Google Scholar
First citationSuaifan, G. A. R. Y. & Mohammed, A. A. M. (2019). Bioorg. Med. Chem. 27, 3005–3060.  CrossRef CAS PubMed Google Scholar
First citationSutor, D. J. (1962). Nature, 195, 68–69.  CAS Google Scholar
First citationVaksler, Y., Hryhoriv, H. V., Kovalenko, S. M., Perekhoda, L. O. & Georgiyants, V. A. (2022). Acta Cryst. E78, 890–896.  CSD CrossRef IUCr Journals Google Scholar
First citationWeigend, F. (2006). Phys. Chem. Chem. Phys. 8, 1057–1065.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWeigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297–3305.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWolber, G. & Langer, T. (2005). J. Chem. Inf. Model. 45, 1, 160–169.  Google Scholar
First citationXu, Z., Zhao, S.-J., Lv, Z.-S., Gao, F., Wang, Y., Zhang, F., Bai, L. & Deng, J.-L. (2019). Eur. J. Med. Chem. 162, 396–406.  CrossRef CAS PubMed Google Scholar
First citationZhao, Y. & Truhlar, D. G. (2008). J. Phys. Chem. C, 112, 4061–4067.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds