research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a methyl benzoate quadruple-bonded dimolybdenum complex

crossmark logo

aDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
*Correspondence e-mail: dkiper@fas.harvard.edu

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 23 December 2022; accepted 16 February 2023; online 28 February 2023)

Quadruple-bond dimolybdenum complexes provide invaluable insight into the two-electron bond, with structural chemistry providing a foundation for examination of bond properties. The synthesis and solid-state structure of the quadruple-bonded dimolybdenum(II) complex tetra­kis­(μ-4-methyl­benzoato-κ2O:O′)bis[(tetra­hydro­furan-κO)molybdenum(II)] tetra­hydro­furan disolvate, [Mo2(C8H7O2)4(C4H8O)2]·2C4H8O, are presented. This complex crystallizes in a triclinic cell with low-symmetry space group P[\overline{1}]. The dimolybdenum paddlewheel structure comprises four methyl­benzoate ligands and two axial THF ligands. The dimolybdenum bond distance of 2.1012 (4) Å is exemplary of this class of compounds.

1. Chemical context

The two-electron bond (Lewis, 1916[Lewis, G. N. (1916). J. Am. Chem. Soc. 38, 762-785.]) is the most basic element in the field of chemistry. Quadruple-bond complexes have been central in experimentally defining the two-electron bond within a unified context of the valence (Heitler & London, 1927[Heitler, W. & London, F. (1927). Z. Phys. 44, 455-472.]) and mol­ecular orbital (Pauling, 1928[Pauling, L. (1928). Chem. Rev. 5, 173-213.]; Lennard-Jones, 1929[Lennard-Jones, J. E. (1929). Trans. Faraday Soc. 25, 668-686.]; Mulliken, 1932[Mulliken, R. S. (1932). Phys. Rev. 41, 751-758.]; James & Coolidge, 1933[James, H. M. & Coolidge, A. S. (1933). J. Chem. Phys. 1, 825-835.]; Coulson & Fischer, 1949[Coulson, C. A. & Fischer, I. (1949). London, Edinb. Dubl. Philos. Mag. J. Sci. 40, 386-393.]) bonding models. The importance of quadruple-bond complexes in elucidating the two-electron bond arises from the four states that originate from the two-orbital electron configuration: 1φφ, 3φφ*, 1φφ*, and 1φ*φ*, where φ and φ* represent bonding and anti­bonding orbitals, respectively. In experimental systems with σ and π bonding frameworks, the excited states are not all accessible because of the dissociation or rotation arising from population of σ and π anti­bonding orbitals. Quadruple-bonded metal–metal complexes, whose metal–metal linkages are characterized by a σ2π4δ2 ground state, are able to overcome this limitation. Pioneered by a σ2π4 framework and locked from rotation by diametrically opposed bulky ligands or bidentate ligands, all four states defining the δ2 two-electron bond (1δδ, 3δδ*, 1δδ*, and 1δ*δ*) may experimentally be verified for dimolybdenum quadruple-bond complexes (Engebretson et al., 1994[Engebretson, D. S., Zaleski, J. M., Leroi, G. E. & Nocera, D. G. (1994). Science, 265, 759-762.], 1999[Engebretson, D. S., Graj, E. M., Leroi, G. E. & Nocera, D. G. (1999). J. Am. Chem. Soc. 121, 868-869.]; Cotton & Nocera, 2000[Cotton, F. A. & Nocera, D. G. (2000). Acc. Chem. Res. 33, 483-490.]; Boettcher et al., 2022[Boettcher, J. C., Hung, C., Kohli, S., Engebretson, D. S., Morphet, D. R., Campbell, B. M., Dogutan, D. K. & Nocera, G. D. (2022). J. Phys. Chem. Lett. 13, 6956-6960.]).

In the preliminary investigation of Mo2(O2CCH3)4, Lawton & Mason (1965[Lawton, D. & Mason, R. (1965). J. Am. Chem. Soc. 87, 921-922.]) determined the dimolybdenum bond distance to be 2.11 Å, which was later adjusted by Cotton & Norman (1971[Cotton, F. A. & Norman, J. G. (1971). J. Coord. Chem. 1, 161-171.]) to 2.0934 Å. As a result of the weak overlap of the dxy orbitals constituting a δ bond, one-electron oxidation or reduction of a dimolybdenum core does little to perturb the dimolybdenum bond distance, allowing for the spectroelectrochemical determination of the degree of overlap between these orbitals (Boettcher et al., 2022[Boettcher, J. C., Hung, C., Kohli, S., Engebretson, D. S., Morphet, D. R., Campbell, B. M., Dogutan, D. K. & Nocera, G. D. (2022). J. Phys. Chem. Lett. 13, 6956-6960.]).

How the properties of the equatorial ligands affect the dimolybdenum bond distance has been a central question in the structural chemistry of quadruple-bond complexes (Han, 2011[Han, L.-J. (2011). Acta Cryst. E67, m1289-m1290.]). Cotton proposed that either electron-withdrawing or electron-donating substituents in the ligand field of the dimolybdenum core will modulate the bonding within the quadruple-bond framework (Cotton et al., 1978[Cotton, F. A., Extine, M. & Gage, L. D. (1978). Inorg. Chem. 17, 172-176.]). A comparative analysis of electron-donating, -neutral and -withdrawing ligands drives to the heart of this issue. Previous studies have examined the electron-neutral Mo2(p-O2CC6H5)4 (Cotton et al., 1978[Cotton, F. A., Extine, M. & Gage, L. D. (1978). Inorg. Chem. 17, 172-176.]) and electron-withdrawing Mo2(p-O2CC6H4CF3)4 (Aigeldinger et al., 2022[Aigeldinger, E., Brandao, L., Powell, T., Hartnett, A. C., Sun, R., Dogutan, D. K. & Zheng, S.-L. (2022). Acta Cryst. E78, 154-158.]) groups on the paddlewheel motif to understand the electronic effect of homologous R groups on Mo—Mo bond distances. With this motivation, we have utilized a dimolybdenum core with 4-methyl­benzoate and tetra­hydro­furan (THF) ligands to extend the electronic effect of varying substituents. Here we present the crystal structure and synthesis of tetra­kis(μ-4-methyl­benzoato-κ2O:O')-bis­(tetra­hydro­furan) dimolyb­den­um(II) solvate [Mo2(p-O2CC6H4CH3)4·2(C4H8O)]·C4H8O. The presence of an electron-donating methyl group on the bridging benzoate ligands results in a minor elongation of the dimolybdenum bond with respect to the parent benzoate compound and compression in comparison to a benzoate complex with an electron-withdrawing tri­fluoro­methyl group.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the dimolybdenum complex, [Mo2(p-O2CC6H4CH3)4·2(C4H8O)] is presented in Fig. 1[link] as ascertained using single-crystal X-ray diffraction. The asymmetric unit contains half of the mol­ecule (Fig. 1[link]), which upon inversion about the quadruple bond, yields the complete mol­ecular structure. Pertinent bond metrics for [Mo2(p-O2CC6H4CH3)4·2(C4H8O)]·2C4H8O were collected and compiled in Table 1[link]. Complete tables of the structural metrics of the title compound are listed in the supporting information. The dimolybdenum bond distance is 2.1012 (4) Å, which is consistent with the previously reported Mo—Mo quadruple-bond distances of 2.06–2.17 Å (Cotton et al., 2002[Cotton, F. A., Daniels, L. M., Hillard, E. A. & Murillo, C. A. (2002). Inorg. Chem. 41, 2466-2470.]). Noting that the dimolybdenum bond distance of the unsubstituted phenyl analogue, Mo2(O2CC6H5)4, is 2.096 (1) Å (Cotton et al., 1978[Cotton, F. A., Extine, M. & Gage, L. D. (1978). Inorg. Chem. 17, 172-176.]), the addition of the methyl group at the 4-position of the benzoate results in an increase of the dimolybdenum bond distance by 0.0053 (1) Å.

Table 1
Selected geometric parameters (Å, °)

Mo1—O3 2.0955 (15) Mo1—O2i 2.1119 (15)
Mo1—O1 2.1011 (15) Mo1—O4i 2.1177 (15)
Mo1—Mo1i 2.1012 (4) Mo1—O1S 2.5980 (16)
       
O3—Mo1—Mo1i 92.27 (4) Mo1i—Mo1—O2i 90.28 (4)
O1—Mo1—Mo1i 93.14 (4) Mo1i—Mo1—O4i 91.23 (4)
Symmetry code: (i) [-x+1, -y, -z+1].
[Figure 1]
Figure 1
Ellipsoid plot of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms and unbound THF solvent mol­ecules are omitted for clarity. Color scheme: C (gray), O (red), Mo (teal). The Mo1 atom connects to its symmetry-generated atom with an Mo1—Mo1i bond length of 2.1012 (4) Å [symmetry code: (i) −x + 1, −y, −z + 1; Table 1[link]]

The electron-donating nature of the methyl-substituted benzoates is illuminated by comparing the pKa values of carboxyl­ate ligands [pKa = 4.37 for p-O2CC6H4CH3, pKa = 4.19 for O2CC6H5 (Hollingsworth et al., 2002[Hollingsworth, C. A., Seybold, P. G. & Hadad, C. M. (2002). Int. J. Quantum Chem. 90, 1396-1403.]); pKa = 3.77 for p-O2CC6H4CF3 (Rumble, 2021[Rumble, J. R. (2021). CRC Handbook of Chemistry, Physics, 102nd ed. Boca Raton: CRC Press.])]. A comparative analysis of the dimolybdenum bond lengths of [Mo2(p-O2CC6H4CH3)4·(C4H8O)] and [Mo2(p-O2CC6H4CF3)·(C4H8O)] demonstrates that the addition of an electron-donating equatorial ligand does not lead to a distinguishable variation; the d(Mo—Mo) for [Mo2(p-O2CC6H4CF3)·(C4H8O)] is 2.1098 (7) Å (Aigeldinger et al., 2022[Aigeldinger, E., Brandao, L., Powell, T., Hartnett, A. C., Sun, R., Dogutan, D. K. & Zheng, S.-L. (2022). Acta Cryst. E78, 154-158.]) and in this study d(Mo—Mo) for [Mo2(p-O2CC6H4CH3)·(C4H8O)] is 2.1012 (4) Å. Therefore, the addition of a ligand with electron-donating or withdrawing properties does not perturb the dimolybdenum quadruple-bond length. These observations support the findings of Han (2011[Han, L.-J. (2011). Acta Cryst. E67, m1289-m1290.]) and Aigeldinger (Aigeldinger et al., 2022[Aigeldinger, E., Brandao, L., Powell, T., Hartnett, A. C., Sun, R., Dogutan, D. K. & Zheng, S.-L. (2022). Acta Cryst. E78, 154-158.]), concluding that while holding the axial ligand (THF) constant, placing a series of R groups on the carboxyl­ate negligibly perturbs the Mo—Mo bond distance.

3. Supra­molecular features

Mol­ecular packing arrangements are shown in Fig. 2[link]. The structure was solved in the triclinic space group P[\overline{1}]. Unbound THF mol­ecules are ordered in between p-O2CC6H4CH3 ligands of adjacent mol­ecules, along the b-axis, with the oxygen atom facing away from the metal center and toward the methyl groups.

[Figure 2]
Figure 2
Crystal packing of the title compound shown along (a) the a-axis, (b) the b-axis, and (c) the c-axis. THF solvent mol­ecules are present in the lattice. Color scheme: C (gray), O (red), Mo (teal). Hydrogen atoms are omitted for clarity.

The O2 oxygen atoms of the unbound THF solvent mol­ecules are located at distances of 4.178 (3) and 6.530 (4) Å from the C13 atoms of the p-O2CC6H4CH3 ligands of adjacent mol­ecules.

4. Database survey

A search in the Cambridge Structural Database (WebCSD, accessed November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the CSD search fragment C32H28Mo2O8 for Mo2(p-O2CC6H4CH3)4 yielded no hits. The CSD search fragment C40H44Mo2O10 for [Mo2(p-O2CC6H4CH3)4·(C4H8O)] also yielded no hits. The CSD reference code for Mo2(O2CCH3)4 (Cotton et al., 1974[Cotton, F. A., Mester, Z. C. & Webb, T. R. (1974). Acta Cryst. B30, 2768-2770.]) is MOLACE01 and for Mo2(O2CC6H5)4 (Cotton et al., 1978[Cotton, F. A., Extine, M. & Gage, L. D. (1978). Inorg. Chem. 17, 172-176.]) is MOBZOA.

5. Synthesis and crystallization

Fig. 3[link] shows the overall synthetic reaction scheme. Molybdenum hexa­carbonyl [Mo(CO)6], p-toluic acid, anhydrous THF, and 1,2-di­chloro­benzene were purchased from Sigma-Aldrich. Mo(CO)6 and p-toluic acid were combined in an oven-dried flask with anhydrous THF and anhydrous 1,2-di­chloro­benzene. The reaction was heated under reflux for 48 h at 413 K under a dry N2 atmosphere (Pence et al., 1999[Pence, L. E., Weisgerber, A. M. & Maounis, F. A. (1999). J. Chem. Educ. 76, 404-405.]). The reaction mixture was cooled, dried, and washed with anhydrous di­chloro­methane and pentane.

[Figure 3]
Figure 3
Synthesis scheme for [Mo2(p-O2CC6H4CH3)4(C4H8O)2].

The crystallization was prepared in a glove box. The crude product was dissolved in anhydrous THF, filtered, and recrystallized by vapor diffusion of pentane using a 6 by 50 mm borosilicate glass crystallization tube housed within a 20 mL glass vial. The assembly was allowed to stand at 238 K for 14 days. Orange block-shaped crystals were observed and harvested for X-ray diffraction analysis.

6. Refinement

Table 2[link] contains crystal data, data collection, and structure refinement details. A single orange block (0.220 mm × 0.180 mm × 0.140 mm) was chosen for single-crystal X-ray diffraction using a Bruker D8 goniometer equipped with an Photon100 CMOS detector. Data were collected as a series of φ and/or ω scans. Data integration down to 0.84 Å resolution was carried out using SAINT V8.37A with reflection spot size optimization. Absorption corrections were made with the program SADABS2016/2 (Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]). Space-group assignments were determined by examination of systematic absences, E-statistics, and successive refinement of the structures. The structure was solved by the intrinsic phasing method and refined by least-squares methods also using SHELXT2014/5 and SHELXL2014/7 with the OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) inter­face. The program PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) was employed to confirm the absence of higher symmetry space groups. All non-H atoms, including the disorder fragment, were located in difference-Fourier maps, and then refined anisotropically. Outlier reflections were omitted from refinement when appropriate. Hydrogen atoms on C atoms were placed at idealized positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the atoms they are linked to (1.5 times for methyl groups). Crystallographic refinement details, including the software employed, have been delineated within the crystallographic information (*.cif).

Table 2
Experimental details

Crystal data
Chemical formula [Mo(C8H7O2)4(C4H8O)2]·2C4H8O
Mr 1020.84
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.3923 (7), 10.6505 (8), 12.2955 (9)
α, β, γ (°) 78.001 (2), 74.374 (2), 69.853 (2)
V3) 1102.96 (14)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.63
Crystal size (mm) 0.22 × 0.18 × 0.14
 
Data collection
Diffractometer Bruker D8 goniometer with Photon 100 CMOS detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.731, 0.767
No. of measured, independent and observed [I > 2σ(I)] reflections 22892, 3909, 3693
Rint 0.027
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.067, 1.09
No. of reflections 3909
No. of parameters 282
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.90, −0.65
Computer programs: SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Cell refinement: SAINT 8.37A (Bruker, 2015); data reduction: SAINT 8.37A (Bruker, 2015); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Tetrakis(µ-4-methylbenzoato-κ2O:O')[bis(tetrahydrofuran-κO)molybdenum(II)] tetrahydrofuran disolvate top
Crystal data top
[Mo2(C8H7O2)4(C4H8O)2]·2C4H8OZ = 1
Mr = 1020.84F(000) = 528
Triclinic, P1Dx = 1.537 Mg m3
a = 9.3923 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6505 (8) ÅCell parameters from 9495 reflections
c = 12.2955 (9) Åθ = 2.4–27.2°
α = 78.001 (2)°µ = 0.63 mm1
β = 74.374 (2)°T = 100 K
γ = 69.853 (2)°Block, orange
V = 1102.96 (14) Å30.22 × 0.18 × 0.14 mm
Data collection top
Bruker D8 goniometer with Photon 100 CMOS detector
diffractometer
3693 reflections with I > 2σ(I)
Radiation source: IµS microfocus tubeRint = 0.027
ω and phi scansθmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.731, Tmax = 0.767k = 1212
22892 measured reflectionsl = 1414
3909 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0302P)2 + 1.5476P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
3909 reflectionsΔρmax = 0.90 e Å3
282 parametersΔρmin = 0.65 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. All non-H atoms were located in difference-Fourier maps, and then refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.39274 (2)0.06805 (2)0.53300 (2)0.01099 (8)
O10.46193 (18)0.23761 (15)0.44960 (13)0.0131 (3)
O20.68863 (17)0.09443 (15)0.37715 (13)0.0127 (3)
O30.46834 (18)0.07766 (15)0.67574 (13)0.0132 (3)
O40.69515 (18)0.07015 (15)0.60914 (13)0.0129 (3)
C10.5992 (3)0.2138 (2)0.38833 (19)0.0134 (5)
C20.6581 (3)0.3276 (2)0.33066 (19)0.0130 (5)
C30.5784 (3)0.4587 (2)0.35819 (19)0.0149 (5)
H30.48180.47590.41170.018*
C40.6392 (3)0.5629 (2)0.3081 (2)0.0170 (5)
H40.58540.65060.32940.020*
C50.7784 (3)0.5418 (2)0.2267 (2)0.0164 (5)
C60.8555 (3)0.4114 (2)0.1982 (2)0.0167 (5)
H60.94960.39510.14210.020*
C70.7978 (3)0.3058 (2)0.24985 (19)0.0152 (5)
H70.85350.21750.23030.018*
C80.8424 (3)0.6562 (2)0.1713 (2)0.0211 (5)
H8A0.78220.71320.11540.032*
H8B0.95130.62020.13290.032*
H8C0.83570.70980.22940.032*
C90.6052 (3)0.0033 (2)0.68511 (19)0.0134 (5)
C100.6588 (3)0.0043 (2)0.78726 (19)0.0135 (5)
C110.5778 (3)0.1055 (2)0.8573 (2)0.0187 (5)
H110.48760.17340.83930.022*
C120.6274 (3)0.1077 (2)0.9520 (2)0.0201 (5)
H120.57190.17840.99760.024*
C130.7570 (3)0.0086 (2)0.9827 (2)0.0170 (5)
C140.8374 (3)0.0929 (2)0.9130 (2)0.0160 (5)
H140.92610.16200.93230.019*
C150.7901 (3)0.0945 (2)0.81614 (19)0.0154 (5)
H150.84750.16350.76900.018*
C160.8066 (3)0.0121 (3)1.0881 (2)0.0225 (5)
H16A0.73140.01011.15550.034*
H16B0.81140.10251.08820.034*
H16C0.90930.05381.08920.034*
O1S0.10283 (19)0.19386 (16)0.61146 (14)0.0175 (4)
C1S0.0151 (3)0.1276 (3)0.6333 (2)0.0256 (6)
H1SA0.05750.11210.71610.031*
H1SB0.02930.03950.60340.031*
C2S0.1417 (3)0.2203 (3)0.5732 (2)0.0280 (6)
H2SA0.18050.16850.53600.034*
H2SB0.22970.27310.62730.034*
C3S0.0621 (3)0.3109 (3)0.4864 (3)0.0319 (7)
H3SA0.00800.26930.41550.038*
H3SB0.13700.39970.46790.038*
C4S0.0514 (3)0.3239 (2)0.5461 (2)0.0207 (5)
H4SA0.14010.34590.49020.025*
H4SB0.00050.39540.59660.025*
O2S0.2645 (3)0.5866 (2)0.05605 (18)0.0418 (5)
C5S0.2502 (4)0.5990 (3)0.1730 (3)0.0358 (7)
H5SA0.14890.66380.20270.043*
H5SB0.33430.63040.18090.043*
C6S0.2628 (3)0.4590 (3)0.2366 (2)0.0319 (6)
H6SA0.30310.44520.30610.038*
H6SB0.16130.44130.25750.038*
C7S0.3761 (4)0.3726 (3)0.1498 (3)0.0346 (7)
H7SA0.36800.28000.16550.042*
H7SB0.48420.36840.14630.042*
C8S0.3238 (4)0.4464 (3)0.0429 (3)0.0358 (7)
H8SA0.41210.43030.02360.043*
H8SB0.24200.41520.03100.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01006 (11)0.01080 (11)0.01143 (11)0.00298 (7)0.00185 (7)0.00096 (7)
O10.0120 (8)0.0122 (8)0.0138 (8)0.0031 (6)0.0019 (6)0.0013 (6)
O20.0110 (8)0.0115 (8)0.0140 (8)0.0029 (6)0.0010 (6)0.0016 (6)
O30.0117 (8)0.0131 (8)0.0141 (8)0.0027 (6)0.0024 (6)0.0022 (6)
O40.0117 (8)0.0137 (8)0.0127 (8)0.0035 (6)0.0016 (6)0.0025 (6)
C10.0132 (12)0.0167 (12)0.0114 (11)0.0046 (9)0.0043 (9)0.0018 (9)
C20.0130 (11)0.0145 (11)0.0120 (11)0.0043 (9)0.0045 (9)0.0001 (9)
C30.0124 (11)0.0167 (12)0.0142 (11)0.0036 (9)0.0022 (9)0.0012 (9)
C40.0190 (12)0.0113 (11)0.0201 (12)0.0019 (9)0.0071 (10)0.0013 (9)
C50.0169 (12)0.0169 (12)0.0164 (12)0.0061 (10)0.0075 (10)0.0027 (9)
C60.0147 (12)0.0184 (12)0.0162 (12)0.0061 (10)0.0019 (9)0.0011 (9)
C70.0155 (12)0.0136 (11)0.0158 (12)0.0029 (9)0.0034 (9)0.0028 (9)
C80.0208 (13)0.0165 (12)0.0249 (13)0.0073 (10)0.0036 (10)0.0010 (10)
C90.0138 (12)0.0102 (11)0.0155 (12)0.0053 (9)0.0022 (9)0.0015 (9)
C100.0131 (11)0.0142 (11)0.0136 (11)0.0072 (9)0.0018 (9)0.0009 (9)
C110.0187 (12)0.0156 (12)0.0200 (13)0.0032 (10)0.0041 (10)0.0022 (10)
C120.0233 (13)0.0172 (12)0.0190 (12)0.0050 (10)0.0012 (10)0.0073 (10)
C130.0187 (12)0.0210 (12)0.0146 (12)0.0130 (10)0.0012 (9)0.0003 (9)
C140.0124 (11)0.0194 (12)0.0159 (12)0.0068 (10)0.0028 (9)0.0014 (9)
C150.0143 (12)0.0160 (12)0.0150 (12)0.0056 (9)0.0001 (9)0.0030 (9)
C160.0254 (14)0.0297 (14)0.0159 (12)0.0129 (11)0.0040 (10)0.0031 (10)
O1S0.0154 (8)0.0144 (8)0.0207 (9)0.0039 (7)0.0050 (7)0.0020 (7)
C1S0.0168 (13)0.0222 (13)0.0380 (16)0.0108 (11)0.0065 (11)0.0047 (11)
C2S0.0230 (14)0.0279 (15)0.0367 (16)0.0105 (12)0.0138 (12)0.0023 (12)
C3S0.0328 (16)0.0319 (16)0.0329 (16)0.0119 (13)0.0164 (13)0.0076 (12)
C4S0.0186 (13)0.0149 (12)0.0242 (13)0.0051 (10)0.0027 (10)0.0041 (10)
O2S0.0511 (14)0.0390 (12)0.0312 (11)0.0086 (11)0.0081 (10)0.0058 (9)
C5S0.0371 (17)0.0394 (17)0.0315 (16)0.0117 (14)0.0052 (13)0.0086 (13)
C6S0.0288 (15)0.0413 (17)0.0281 (15)0.0157 (13)0.0076 (12)0.0005 (13)
C7S0.0352 (17)0.0314 (16)0.0390 (17)0.0140 (13)0.0055 (13)0.0046 (13)
C8S0.0331 (16)0.0350 (17)0.0391 (17)0.0134 (13)0.0022 (13)0.0065 (13)
Geometric parameters (Å, º) top
Mo1—O32.0955 (15)C13—C141.396 (3)
Mo1—O12.1011 (15)C13—C161.501 (3)
Mo1—Mo1i2.1012 (4)C14—C151.384 (3)
Mo1—O2i2.1119 (15)C14—H140.9500
Mo1—O4i2.1177 (15)C15—H150.9500
Mo1—O1S2.5980 (16)C16—H16A0.9800
O1—C11.275 (3)C16—H16B0.9800
O2—C11.271 (3)C16—H16C0.9800
O2—Mo1i2.1119 (15)O1S—C4S1.443 (3)
O3—C91.278 (3)O1S—C1S1.449 (3)
O4—C91.274 (3)C1S—C2S1.515 (4)
O4—Mo1i2.1177 (15)C1S—H1SA0.9900
C1—C21.473 (3)C1S—H1SB0.9900
C2—C71.396 (3)C2S—C3S1.506 (4)
C2—C31.402 (3)C2S—H2SA0.9900
C3—C41.378 (3)C2S—H2SB0.9900
C3—H30.9500C3S—C4S1.503 (4)
C4—C51.395 (3)C3S—H3SA0.9900
C4—H40.9500C3S—H3SB0.9900
C5—C61.397 (3)C4S—H4SA0.9900
C5—C81.499 (3)C4S—H4SB0.9900
C6—C71.378 (3)O2S—C8S1.430 (4)
C6—H60.9500O2S—C5S1.438 (4)
C7—H70.9500C5S—C6S1.514 (4)
C8—H8A0.9800C5S—H5SA0.9900
C8—H8B0.9800C5S—H5SB0.9900
C8—H8C0.9800C6S—C7S1.497 (4)
C9—C101.477 (3)C6S—H6SA0.9900
C10—C151.393 (3)C6S—H6SB0.9900
C10—C111.397 (3)C7S—C8S1.497 (4)
C11—C121.373 (4)C7S—H7SA0.9900
C11—H110.9500C7S—H7SB0.9900
C12—C131.392 (4)C8S—H8SA0.9900
C12—H120.9500C8S—H8SB0.9900
O3—Mo1—O189.23 (6)C13—C14—H14119.5
O3—Mo1—Mo1i92.27 (4)C14—C15—C10120.5 (2)
O1—Mo1—Mo1i93.14 (4)C14—C15—H15119.8
O3—Mo1—O2i89.85 (6)C10—C15—H15119.8
O1—Mo1—O2i176.49 (6)C13—C16—H16A109.5
Mo1i—Mo1—O2i90.28 (4)C13—C16—H16B109.5
O3—Mo1—O4i176.30 (6)H16A—C16—H16B109.5
O1—Mo1—O4i89.37 (6)C13—C16—H16C109.5
Mo1i—Mo1—O4i91.23 (4)H16A—C16—H16C109.5
O2i—Mo1—O4i91.34 (6)H16B—C16—H16C109.5
O3—Mo1—O1S94.89 (6)C4S—O1S—C1S108.66 (18)
O1—Mo1—O1S97.74 (6)C4S—O1S—Mo1111.78 (13)
Mo1i—Mo1—O1S167.04 (4)C1S—O1S—Mo1120.84 (14)
O2i—Mo1—O1S78.97 (5)O1S—C1S—C2S106.7 (2)
O4i—Mo1—O1S81.90 (6)O1S—C1S—H1SA110.4
C1—O1—Mo1116.16 (14)C2S—C1S—H1SA110.4
C1—O2—Mo1i118.39 (14)O1S—C1S—H1SB110.4
C9—O3—Mo1117.32 (14)C2S—C1S—H1SB110.4
C9—O4—Mo1i117.29 (14)H1SA—C1S—H1SB108.6
O2—C1—O1122.0 (2)C3S—C2S—C1S103.6 (2)
O2—C1—C2118.7 (2)C3S—C2S—H2SA111.0
O1—C1—C2119.3 (2)C1S—C2S—H2SA111.0
C7—C2—C3118.6 (2)C3S—C2S—H2SB111.0
C7—C2—C1120.3 (2)C1S—C2S—H2SB111.0
C3—C2—C1121.0 (2)H2SA—C2S—H2SB109.0
C4—C3—C2120.4 (2)C4S—C3S—C2S102.6 (2)
C4—C3—H3119.8C4S—C3S—H3SA111.2
C2—C3—H3119.8C2S—C3S—H3SA111.2
C3—C4—C5121.3 (2)C4S—C3S—H3SB111.2
C3—C4—H4119.4C2S—C3S—H3SB111.2
C5—C4—H4119.4H3SA—C3S—H3SB109.2
C4—C5—C6117.9 (2)O1S—C4S—C3S105.1 (2)
C4—C5—C8120.9 (2)O1S—C4S—H4SA110.7
C6—C5—C8121.2 (2)C3S—C4S—H4SA110.7
C7—C6—C5121.3 (2)O1S—C4S—H4SB110.7
C7—C6—H6119.3C3S—C4S—H4SB110.7
C5—C6—H6119.3H4SA—C4S—H4SB108.8
C6—C7—C2120.4 (2)C8S—O2S—C5S108.1 (2)
C6—C7—H7119.8O2S—C5S—C6S105.4 (2)
C2—C7—H7119.8O2S—C5S—H5SA110.7
C5—C8—H8A109.5C6S—C5S—H5SA110.7
C5—C8—H8B109.5O2S—C5S—H5SB110.7
H8A—C8—H8B109.5C6S—C5S—H5SB110.7
C5—C8—H8C109.5H5SA—C5S—H5SB108.8
H8A—C8—H8C109.5C7S—C6S—C5S101.5 (2)
H8B—C8—H8C109.5C7S—C6S—H6SA111.5
O4—C9—O3121.8 (2)C5S—C6S—H6SA111.5
O4—C9—C10119.8 (2)C7S—C6S—H6SB111.5
O3—C9—C10118.3 (2)C5S—C6S—H6SB111.5
C15—C10—C11118.5 (2)H6SA—C6S—H6SB109.3
C15—C10—C9121.3 (2)C6S—C7S—C8S101.3 (2)
C11—C10—C9120.1 (2)C6S—C7S—H7SA111.5
C12—C11—C10120.5 (2)C8S—C7S—H7SA111.5
C12—C11—H11119.7C6S—C7S—H7SB111.5
C10—C11—H11119.7C8S—C7S—H7SB111.5
C11—C12—C13121.5 (2)H7SA—C7S—H7SB109.3
C11—C12—H12119.2O2S—C8S—C7S107.0 (2)
C13—C12—H12119.2O2S—C8S—H8SA110.3
C12—C13—C14117.9 (2)C7S—C8S—H8SA110.3
C12—C13—C16120.3 (2)O2S—C8S—H8SB110.3
C14—C13—C16121.8 (2)C7S—C8S—H8SB110.3
C15—C14—C13121.0 (2)H8SA—C8S—H8SB108.6
C15—C14—H14119.5
Mo1i—O2—C1—O11.7 (3)O4—C9—C10—C11165.2 (2)
Mo1i—O2—C1—C2176.87 (14)O3—C9—C10—C1114.6 (3)
Mo1—O1—C1—O20.8 (3)C15—C10—C11—C120.4 (4)
Mo1—O1—C1—C2177.72 (15)C9—C10—C11—C12179.6 (2)
O2—C1—C2—C711.2 (3)C10—C11—C12—C131.3 (4)
O1—C1—C2—C7170.2 (2)C11—C12—C13—C140.9 (4)
O2—C1—C2—C3166.7 (2)C11—C12—C13—C16178.8 (2)
O1—C1—C2—C311.9 (3)C12—C13—C14—C150.3 (3)
C7—C2—C3—C41.5 (3)C16—C13—C14—C15180.0 (2)
C1—C2—C3—C4176.4 (2)C13—C14—C15—C101.2 (3)
C2—C3—C4—C51.9 (4)C11—C10—C15—C140.8 (3)
C3—C4—C5—C60.7 (3)C9—C10—C15—C14179.2 (2)
C3—C4—C5—C8179.0 (2)C4S—O1S—C1S—C2S2.6 (3)
C4—C5—C6—C71.0 (3)Mo1—O1S—C1S—C2S128.57 (18)
C8—C5—C6—C7179.3 (2)O1S—C1S—C2S—C3S19.8 (3)
C5—C6—C7—C21.5 (4)C1S—C2S—C3S—C4S33.5 (3)
C3—C2—C7—C60.2 (3)C1S—O1S—C4S—C3S24.1 (3)
C1—C2—C7—C6178.1 (2)Mo1—O1S—C4S—C3S111.77 (19)
Mo1i—O4—C9—O31.3 (3)C2S—C3S—C4S—O1S35.7 (3)
Mo1i—O4—C9—C10178.91 (15)C8S—O2S—C5S—C6S14.8 (3)
Mo1—O3—C9—O42.6 (3)O2S—C5S—C6S—C7S34.5 (3)
Mo1—O3—C9—C10177.62 (14)C5S—C6S—C7S—C8S39.8 (3)
O4—C9—C10—C1514.9 (3)C5S—O2S—C8S—C7S11.0 (3)
O3—C9—C10—C15165.3 (2)C6S—C7S—C8S—O2S32.4 (3)
Symmetry code: (i) x+1, y, z+1.
 

Footnotes

Authors contributed equally to this work.

§Additional correspondence author, email: zheng@chemistry.harvard.edu.

Funding information

We thank Daniel G. Nocera for helpful discussions and contributions to the preparation of the manuscript. DKD acknowledges Harvard University, Department of Chemistry and Chemical Biology. BMC acknowledges support from the National Science Foundation Graduate Research Fellowship Program under Grant DGE–2140743 and the Herchel Smith Graduate Fellowship Program at Harvard University.

References

First citationAigeldinger, E., Brandao, L., Powell, T., Hartnett, A. C., Sun, R., Dogutan, D. K. & Zheng, S.-L. (2022). Acta Cryst. E78, 154–158.  CrossRef IUCr Journals Google Scholar
First citationBoettcher, J. C., Hung, C., Kohli, S., Engebretson, D. S., Morphet, D. R., Campbell, B. M., Dogutan, D. K. & Nocera, G. D. (2022). J. Phys. Chem. Lett. 13, 6956–6960.  CrossRef CAS PubMed Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A., Daniels, L. M., Hillard, E. A. & Murillo, C. A. (2002). Inorg. Chem. 41, 2466–2470.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCotton, F. A., Extine, M. & Gage, L. D. (1978). Inorg. Chem. 17, 172–176.  CSD CrossRef CAS Web of Science Google Scholar
First citationCotton, F. A., Mester, Z. C. & Webb, T. R. (1974). Acta Cryst. B30, 2768–2770.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCotton, F. A. & Nocera, D. G. (2000). Acc. Chem. Res. 33, 483–490.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCotton, F. A. & Norman, J. G. (1971). J. Coord. Chem. 1, 161–171.  CSD CrossRef Google Scholar
First citationCoulson, C. A. & Fischer, I. (1949). London, Edinb. Dubl. Philos. Mag. J. Sci. 40, 386–393.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEngebretson, D. S., Graj, E. M., Leroi, G. E. & Nocera, D. G. (1999). J. Am. Chem. Soc. 121, 868–869.  Web of Science CrossRef CAS Google Scholar
First citationEngebretson, D. S., Zaleski, J. M., Leroi, G. E. & Nocera, D. G. (1994). Science, 265, 759–762.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHan, L.-J. (2011). Acta Cryst. E67, m1289–m1290.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHeitler, W. & London, F. (1927). Z. Phys. 44, 455–472.  CrossRef CAS Google Scholar
First citationHollingsworth, C. A., Seybold, P. G. & Hadad, C. M. (2002). Int. J. Quantum Chem. 90, 1396–1403.  CrossRef CAS Google Scholar
First citationJames, H. M. & Coolidge, A. S. (1933). J. Chem. Phys. 1, 825–835.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLawton, D. & Mason, R. (1965). J. Am. Chem. Soc. 87, 921–922.  CSD CrossRef CAS Web of Science Google Scholar
First citationLennard-Jones, J. E. (1929). Trans. Faraday Soc. 25, 668–686.  CAS Google Scholar
First citationLewis, G. N. (1916). J. Am. Chem. Soc. 38, 762–785.  CrossRef CAS Google Scholar
First citationMulliken, R. S. (1932). Phys. Rev. 41, 751–758.  CrossRef CAS Google Scholar
First citationPauling, L. (1928). Chem. Rev. 5, 173–213.  CrossRef Google Scholar
First citationPence, L. E., Weisgerber, A. M. & Maounis, F. A. (1999). J. Chem. Educ. 76, 404–405.  Web of Science CrossRef CAS Google Scholar
First citationRumble, J. R. (2021). CRC Handbook of Chemistry, Physics, 102nd ed. Boca Raton: CRC Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds