research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of bis­­(4-methyl­pyridine-κN)bis­­(seleno­cyanato-κN)zinc(II) and catena-poly[[bis­­(4-methyl­pyridine-κN)cadmium(II)]-di-μ-seleno­cyanato-κ2N:Se;κ2Se:N]

crossmark logo

aInstitut für Anorganische Chemie, Universität Kiel, Max-Eyth Str. 2, 24118 Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 30 January 2023; accepted 1 February 2023; online 7 February 2023)

The reactions of Zn(NO3)2.6H2O and Cd(NO3)2.4H2O with KSeCN and 4-meth­yl­pyridine (C6H7N; 4-picoline) lead to the formation of crystals of bis­(4-methyl­pyridine-κN)bis­(seleno­cyanato-κN)zinc(II), [Cd(NCSe)2(C6H7N)2] (1), and catena-poly[[bis­(4-methyl­pyridine-κN)cadmium(II)]-di-μ-seleno­cyanato-κ2N:Se;κ2Se:N], [Cd(NCSe)2(C6H7N)2]n (2), suitable for single-crystal X-ray diffraction. The asymmetric unit of compound 1 consists of one Zn cation that is located on a twofold rotation axis as well as one seleno­cyanate anion and one 4-methyl­pyridine ligand in general positions. The Zn cations are tetra­hedrally coordinated by two terminal N-bonding thio­cyanate anions and two 4-methyl­pyridine ligands, forming discrete complexes. The asymmetric unit of compound 2 consists of two crystallographically independent Cd cations, of which one is located on a twofold rotation axis and the second on a center of inversion, as well as two crystallographically independent seleno­cyanate anions and two crystallographically independent 4-methyl­pyridine ligands in general positions. The Cd cations are octa­hedrally coordinated by two N- and two S-bonding seleno­cyanate anions and two 4-methyl­pyridine ligands and are linked into chains by pairs of seleno­cyanate anions. Within the chains, the Cd cations show an alternating ciscistrans and all-trans coordination and therefore, the chains are corrugated. PXRD investigations prove that the Zn compound was obtained as a pure phase and that the Cd compound contains a very small amount of an additional and unknown phase. In the IR spectrum of 1, the CN stretching vibration of the seleno­cyanate anion is observed at 2072 cm−1, whereas in the 2 it is shifted to 2094 cm−1, in agreement with the crystal structures.

1. Chemical context

Thio- and seleno­cyanate anions are versatile ligands because of their variable coordination modes (Buckingham, 1994[Buckingham, D. A. (1994). Coord. Chem. Rev. 135-136, 587-621.]; Barnett et al., 2002[Barnett, S. A., Blake, A. J., Champness, N. R. & Wilson, C. (2002). Chem. Commun. pp. 1640-1641.]; Werner et al., 2015a[Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015a). Eur. J. Inorg. Chem. 2015, 3236-3245.]). The most common mode is the terminal coordination and μ-1,3-bridging mode, where the latter is more pronounced for chalcophilic metal cations, whereas the former dominates for less chalcophilic metal cations. For a given metal thio- or seleno­cyanate and a given mono-coordinating coligand, usually several compounds with a different ratio between the metal cation and the coligand are observed, for example M(NCX)2(L)4 and M(NCX)2(L)2, or in very few cases also M(NCX)2(L) (M = +2 charge transition-metal cation, X = S, Se and L = neutral mono coordinating coligand). For compounds with the composition M(NCX)2(L)4 and octa­hedrally coordinated metal cations mostly discrete complexes are observed and hundreds of them are reported in the literature. For ligand-deficient compounds with the composition M(NCS)2(L)2, the octa­hedral coordin­ation still dominates, but some metal ions such as Co2+ can show both octa­hedral and tetra­hedral coordination (Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]), whereas for ZnII, the tetra­hedral coordination is found exclusively.

[Scheme 1]

For simple geometrical considerations, compounds with the composition M(NCX)2(L)2 and cations that shows an octa­hedral coordination must contain μ-1,3-bridging thio or seleno­cyanate anions, and in this case the structural variability is much larger. In practically all cases they consist of M(NCX)2 chains or layers, but compared to chain compounds, layered structures are rare. In most of the layered compounds, the transition-metal cations are linked by single μ-1,3-bridging anionic ligands into layers (Werner et al., 2015b[Werner, J., Tomkowicz, Z., Reinert, T. & Näther, C. (2015b). Eur. J. Inorg. Chem. 2015, 3066-3075.]) or two metal cations are connected via pairs of anionic ligands into dinuclear units that condense into layers via single μ-1,3-bridging anions (Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]). Moreover, for an octa­hedral coordination, in principle five different isomers exist, including the all-trans, the all-cis and three ciscistrans coordinations. The majority of chain compounds show an all-trans coordination in which the metal cations are linked by pairs of anionic ligands, leading to the formation of linear chains (Banerjee et al., 2005[Banerjee, S., Wu, B., Lassahn, P. G., Janiak, C. & Ghosh, A. (2005). Inorg. Chim. Acta, 358, 535-544.]; Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Werner et al., 2014[Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333-17342.]; Rams et al., 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]). Linear chains are also observed in compounds where the coligands are still in the trans-position, whereas the thio­cyanate N and S atoms are in the cis-position (Rams et al., 2017[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232-3243.]; Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779-4789.]), but there are very few examples where the coligands are in the cis-position, leading to the formation of corrugated chains (Banerjee et al., 2005[Banerjee, S., Wu, B., Lassahn, P. G., Janiak, C. & Ghosh, A. (2005). Inorg. Chim. Acta, 358, 535-544.]; Shi, Chen & Liu, 2006[Shi, J. M., Chen, J. N. & Liu, L. D. (2006). Pol. J. Chem. 80, 1909-1912.]; Makhlouf et al., 2022[Makhlouf, J., Valkonen, A. & Smirani, W. (2022). Polyhedron, 213, 115625.]; Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.]). Corrugated chains are also observed for an all-cis coordination, but only very few examples have been reported (Shi, Sun et al., 2006[Shi, J. M., Sun, Y. M., Liu, Z. & Liu, L. D. (2006). Chem. Phys. Lett. 418, 84-89.]; Zhang et al., 2006[Zhang, S.-G., Li, W.-N. & Shi, J.-M. (2006). Acta Cryst. E62, m3506-m3608.]; Marsh, 2009[Marsh, R. E. (2009). Acta Cryst. B65, 782-783.]). However, all of the structure types mentioned above are well known for thio­cyanate coordination compounds, whereas the structures of seleno­cyanate compounds are not as well explored and it has not been thoroughly investigated whether compounds with thio- or seleno­cyanate anions and the same metal:coligand ratio always show the same structures and are, for example, isotypic. This might partly be traced back to the fact that some of the seleno­cyanate compounds are not very stable and that compounds with bridging anionic ligands are more difficult to prepare if less chalcophilic metal cations are used (Wriedt & Näther, 2010[Wriedt, M. & Näther, C. (2010). Chem. Commun. 46, 4707-4709.]).

To investigate this in more detail, we prepared compounds based on Zn(NCSe)2 and Cd(NCSe)2, where the former metal ion prefers a tetra­hedral and the latter an octa­hedral coordination. CdII is also very chalcophilic, which means that compounds with bridging anionic ligands can easily be prepared. 4-Methyl­pyridine (C6H7N) was selected as coligand, for which the corresponding thio­cyanate compounds have been reported, whereas compounds with seleno­cyanate are unknown.

With Zn(NCS)2, compounds include three discrete complexes with the composition Zn(NCS)2(4-methyl­pyridine)4, in which the Zn cations are octa­hedrally coordinated by two terminal N-bonded thio­cyanate anions and four 4-methyl­pyridine ligands [Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcodes EFESOX and YORHAO (Lipkowski et al., 1994[Lipkowski, J., Soldatov, D. V., Kislykh, N. V., Pervukhina, N. V. & Dyadin, Y. A. (1994). J. Inclusion Phenom. Mol. Recognit. Chem. 17, 305-316.]) as well as QQQBUD (Ratho & Patel, 1969[Ratho, T. & Patel, T. (1969). Indian J. Phys. 43, 166-169.])]. Two of them (EFESOX and YORHAO) represent clathrates with additional 4-methyl­pyridine mol­ecules or 4-methyl­pyridine and water mol­ecules. There is also one 4-methyl­pyridine-deficient compound with the composition Zn(NCS)2(4-methyl­pyridine)2, in which the Zn cations are tetra­hedrally coordinated by two terminal N-bonded thio­cyanate anions and two 4-methyl­pyridine ligands (refcode VONTEX; Lipkowski, 1990[Lipkowski, J. (1990). J. Coord. Chem. 22, 153-158.]).

With Cd(NCS)2, a solvate with the composition Cd(NCS)2(4-methyl­pyridine)4·4-methyl­pyridine·water has been reported, in which the Cd cations are octa­hedrally coordinated by two terminal N-bonded seleno­cyanate anions and four 4-methyl­pyridine ligands [refcodes DEXYIO (Dyadin et al., 1984[Dyadin, Yu. A., Kislykh, N. V., Chekhova, G. N., Podberezskaya, N. V., Pervukhina, N. V., Logvinenko, V. A. & Oglezneva, I. M. J. (1984). J. Inclusion Phenom. Mol. Recognit. Chem. 2, 233-240.]), DEXYIO10, (Pervukhina et al., 1986[Pervukhina, N. V., Podberezskaya, N. V., Bakakin, V. V., Kislikh, N. V., Chekhova, G. N. & Dyadin, Yu. A. (1986). J. Struct. Chem. 26, 934-941.]) and DEXYIO11 (Marsh, 1995[Marsh, R. E. (1995). Acta Cryst. B51, 897-907.])]. More importantly, two compounds with the composition Cd(NCS)2(4-methyl­pyridine)2 are found that represent isomers. In one of these, the Cd cations are octa­hedrally coordinated by two terminal N- and S-bonded seleno­cyanate anions and two 4-methyl­pyridine ligands in an all-trans coordination. The Cd cations are linked by pairs of seleno­cyanate anions into chains, which because of the all-trans coordination are linear (FAPCOO02; Neumann et al., 2020[Neumann, T., Gallo, G., Jess, I., Dinnebier, R. E. & Näther, C. (2020). CrystEngComm, 22, 184-194.]). The second isomer was first reported in the triclinic space group P[\overline{1}] (FAPCOO; Taniguchi et al., 1986[Taniguchi, M., Shimoi, M. & Ouchi, A. (1986). Bull. Chem. Soc. Jpn, 59, 2299-2302.]) but it was later pointed out that it is better described as monoclinic, in space group C2/c (FAPCOO01; Marsh, 1995[Marsh, R. E. (1995). Acta Cryst. B51, 897-907.]). In this compound, the Cd cations are also octa­hedrally coord­inated, linked into chains, but they are corrugated because an alternating all-trans and ciscistrans coordination is observed. The thermodynamic relations were determined for both isomers, indicating that they are related by monotropism with the isomer with corrugated chains as the thermodynamically stable phase (Neumann et al., 2020[Neumann, T., Gallo, G., Jess, I., Dinnebier, R. E. & Näther, C. (2020). CrystEngComm, 22, 184-194.]). Finally there is one 4-methyl­pyridine-deficient compound with the composition Cd(NCS)2(4-methyl­pyridine), in which the Cd cations are linked by pairs of anionic ligands into chains and each two of these chains are condensed into double chains via μ-1,1,3-(S,N,N)-bridging thio­cyanate anions (refcode VUCBUT; Neumann et al., 2020[Neumann, T., Gallo, G., Jess, I., Dinnebier, R. E. & Näther, C. (2020). CrystEngComm, 22, 184-194.]).

To search for new compounds related to those noted above, Zn(NO3)2·6H2O and Cd(NO3)2·4H2O were reacted with KSeCN and 4-methyl­pyridine (4-picoline)2, which led to the formation of two compounds with the composition Zn(NCSe)2(4-methyl­pyridine)2 (1) and Cd(NCeS)2(4-methyl­pyridine)2 (2). IR spectroscopic investigations revealed that the CN stretching vibration is located at 2072 cm−1 for 1 and at 2094 cm−1 for 2, indicating that compound 1 contains terminally coordinated anionic ligands, whereas in 2 this value is at the borderline between that expected for a terminal and a bridging coordination (Figs. S1 and S2 in the supporting information). For both compounds, single crystals were obtained and characterized by single-crystal X-ray diffraction. Based on the crystallographic data, PXRD patterns were calculated and compared with the experimental pattern, showing that compound 1 was obtained as a pure phase, whereas compound 2 is contaminated with a very small amount of an unknown phase (Figs. S3 and S4). It is noted that even if Cd(NO3)2·4H2O and KSeCN are used in excess in the synthesis, there are no hints of the formation of a 4-methyl­pyridine-deficient compound with the composition Cd(NCSe)2(4-methyl­pyridine), as observed with Cd(NCS)2 (Neumann et al., 2020[Neumann, T., Gallo, G., Jess, I., Dinnebier, R. E. & Näther, C. (2020). CrystEngComm, 22, 184-194.]).

2. Structural commentary

The asymmetric unit of compound 1 consists of one seleno­cyanate anion and one 4-methyl­pyridine ligand in general positions, as well as one ZnII cation that is located on a twofold rotation axis (Fig. 1[link]). The Zn cations are tetra­hedrally coordinated by two symmetry-related terminal N-bonded seleno­cyanate anions and two symmetry-related 4-methyl­pyridine ligands (Fig. 1[link]). The tetra­hedra are slightly distorted with the Ns—Zn—Ns (s = seleno­cyanate) angle as the largest (Table 1[link]). It is noted that compound 1 is isotypic to Zn(NCS)2(4-methyl­pyridine)2 reported by Lipkowski (1990[Lipkowski, J. (1990). J. Coord. Chem. 22, 153-158.]).

Table 1
Selected geometric parameters (Å, °) for 1[link]

Zn1—N1 1.945 (4) Zn1—N11 2.021 (3)
       
N1—Zn1—N1i 120.0 (3) N1—Zn1—N11 106.45 (15)
N1—Zn1—N11i 106.61 (15) N11i—Zn1—N11 110.59 (18)
Symmetry code: (i) [-x, -y+1, z].
[Figure 1]
Figure 1
The mol­ecular structure of 1 with displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) −x, −y + 1, z.

The asymmetric unit of compound 2 consists of two crystallographically independent Cd cations, of which Cd1 is located on a twofold rotation axis whereas Cd2 is located on a center of inversion, as well as two crystallographically independent seleno­cyanate anions and two crystallographically independent 4-methyl­pyridine ligands (Fig. 2[link]). Both Cd cations are octa­hedrally coordinated by two N- and two S-bonding seleno­cyanate anions and two 4-methyl­pyridine ligands but Cd1 is in a ciscistrans coordination with the pyridine N atoms of the 4-methyl­pyridine ligand in the cis position, whereas Cd2 is in an all-trans coordination (Fig. 2[link]). Both octa­hedra are slightly distorted but Cd1 is more distorted than Cd2 (Table 2[link]). The Cd cations are linked by pairs of seleno­cyanate anions into chains that show an alternating ciscistrans and all-trans coordination. Because of the former, these chains are corrugated (Fig. 3[link]).

Table 2
Selected geometric parameters (Å, °) for 2[link]

Cd1—N1 2.338 (3) Cd2—N2 2.328 (4)
Cd1—N11 2.362 (4) Cd2—N21 2.370 (4)
Cd1—Se2 2.8085 (6) Cd2—Se1 2.8073 (5)
       
N1i—Cd1—N1 178.5 (2) N2ii—Cd2—N2 180.0
N1—Cd1—N11i 92.29 (13) N2—Cd2—N21ii 90.70 (14)
N1—Cd1—N11 86.63 (14) N2—Cd2—N21 89.30 (14)
N11i—Cd1—N11 87.53 (18) N21ii—Cd2—N21 180.0
N1i—Cd1—Se2 82.62 (11) N2—Cd2—Se1ii 84.99 (10)
N1—Cd1—Se2 98.42 (10) N21—Cd2—Se1ii 89.86 (9)
N11i—Cd1—Se2 169.06 (8) N2—Cd2—Se1 95.01 (10)
N11—Cd1—Se2 90.90 (9) N21—Cd2—Se1 90.14 (9)
Se2—Cd1—Se2i 92.64 (3) Se1ii—Cd2—Se1 180.000 (16)
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
The coordination spheres of the two Cd cations in 2 with displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i) −x + 1, y, −z + [{1\over 2}]; (ii) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1.
[Figure 3]
Figure 3
View of part of a chain in the crystal structure of compound 2 showing the alternating ciscistrans and all-trans coordination.

Compound 2 is isotypic to the second isomer of Cd(NCS)2(4-methyl­pyridine)2 that crystallizes in the monoclinic space group C2/c (Marsh, 1995[Marsh, R. E. (1995). Acta Cryst. B51, 897-907.]). In this context, it is noted that two modifications are also known for the corres­ponding Fe compound Fe(NCS)2(4-methyl­pyridine)2 (Neu­mann et al., 2020[Neumann, T., Gallo, G., Jess, I., Dinnebier, R. E. & Näther, C. (2020). CrystEngComm, 22, 184-194.]), of which form I is isotypic to compound 2 and the corrugated chain isomer of Cd(NCS)2(4-methyl­pyridine)2, whereas form II of the Fe compound is isotypic to the linear chain isomer. For the Fe isomers, the same thermodynamic relations were found as for the isomers with Cd(NCS)2 with the corrugated chain isomer as the thermodynamically stable form (Neumann et al., 2020[Neumann, T., Gallo, G., Jess, I., Dinnebier, R. E. & Näther, C. (2020). CrystEngComm, 22, 184-194.]). Moreover, compound 2 is also isotypic to Cd(NCS)2(4-chloro­pyridine)2 reported by Goher et al. (2003[Goher, A. S., Mautner, F. A., Abu-Youssef, M. A. M., Hafez, A. K., Badr, A. M. A. & Gspan, C. (2003). Polyhedron, 22, 3137-3143.]; refcode EMASIU). This can be traced back to the fact that the van der Waals radii of a methyl group and a chlorine atom are comparable, which is expressed by the so-called chloro–methyl exchange rule (Desiraju & Sarma, 1986[Desiraju, G. R. & Sarma, J. A. R. P. (1986). Proc. Indian Acad. Sci. Chem. Sci. 96, 599-605.] and references cited therein).

Finally, it is noted that some compounds with the general composition Cd(NCSe)2(L)2 with L as a monocoordinating coligand are reported, in which the Cd cations are linked by pairs of anionic ligands into chains, but the majority of compounds show an all-trans coordination and the formation of linear chains. An overview is given in the database survey.

3. Supra­molecular features

In the crystal structure of compound 1, the discrete complexes are arranged into columns that propagate along the c-axis direction (Fig. 4[link]). Within these columns, the seleno­cyanate anions and the 4-methyl­pyridine ligands always point in the same direction, from which the non-centrosymmetric arrangement is visible (Fig. 4[link]). There are no directional inter­molecular inter­actions between the complexes and nor is there any indication of ππ inter­actions.

[Figure 4]
Figure 4
Crystal structure of compound 1 viewed along the b-axis direction.

In compound 2, the chains are closely packed and propagate along the [101] direction (Fig. 5[link]). As in compound 1, no pronounced inter­molecular inter­actions are observed.

[Figure 5]
Figure 5
Crystal structure of compound 2 viewed along [101].

4. Database survey

According to a search in the Cambridge Structural Database (CSD Version 5.43, March 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), no seleno­cyanate coordination compounds with 4-methyl­pyridine as anionic ligand have been reported but many compounds with the thio­cyanate as anion can be found. Those with Zn(NCS)2 and Cd(NCS)2 were already mentioned in the Chemical context section (see above).

It is also noted that several Cd(NCSe)2 chain compounds are reported in the CSD, but in all of them the Cd cations show an all-trans coordination and are linked into linear chains [BIWTOR (Fettouhi et al., 2008[Fettouhi, M., Wazeer, M. I. M. & Isab, A. A. (2008). Inorg. Chem. Commun. 11, 252-255.]), DAYWAE (Sadhu et al., 2017[Sadhu, M. H., Solanki, A., Kundu, T., Hingu, V., Ganguly, B. & Kumar, S. B. (2017). Polyhedron, 133, 8-15.]), DOJBEK (Choudhury et al., 2008[Choudhury, R. R., Choudhury, C. R., Batten, S. R. & Mitra, S. (2008). Struct. Chem. 19, 645-649.]), FAPGAG (Jess et al., 2012[Jess, I., Boeckmann, J. & Näther, C. (2012). Dalton Trans. 41, 228-236.]), FIMJIW (Werner et al., 2013[Werner, J., Jess, I. & Näther, C. (2013). Z. Naturforsch. Teil B, 68, 643-652.]), NAQXIO (Boeckmann, Jess et al., 2011[Boeckmann, J., Jess, I., Reinert, T. & Näther, C. (2011). Eur. J. Inorg. Chem. pp. 5502-5511.]), OLOZAQ (Li & Liu, 2003[Li, D. & Liu, D. (2003). Appl. Organomet. Chem. 17, 321-322.]), OWOHOY (Boeckmann, Reinert & Näther, 2011[Boeckmann, J., Reinert, T. & Näther, C. (2011). Z. Anorg. Allg. Chem. 637, 940-946.]), QIPYAP (Secondo et al., 2000[Secondo, P. M., Land, J. M., Baughman, R. G. & Collier, H. L. (2000). Inorg. Chim. Acta, 309, 13-22.]) and ZANQAI (Werner et al., 2012[Werner, J., Boeckmann, J., Jess, I. & Näther, C. (2012). Acta Cryst. E68, m704.])].

However, in this context it is noted that some seleno­cyanate compounds with pyridine as coligand are found, of which those with the composition M(NCSe)2(pyridine)2 (M = Zn, Co, Ni, Cd) are of the most inter­est. The Zn compound crystallizes as discrete complexes with a tetra­hedral coordination (OWOJEQ; Boeckmann, Reinert & Näther, 2011[Boeckmann, J., Reinert, T. & Näther, C. (2011). Z. Anorg. Allg. Chem. 637, 940-946.]), wheres the compounds with FeII, CoII and CdII crystallize as linear chains with an all-trans coordination [CAQVIB (Boeckmann et al., 2012[Boeckmann, J., Wriedt, M. & Näther, C. (2012). Chem. Eur. J. 18, 5284-5289.]), ITISUA (Boeckmann & Näther, 2011[Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104-7106.])].

5. Synthesis and crystallization

Synthesis

Zn(NO3)2·6H2O and Cd(NO3)2·4H2O were purchased from Sigma Aldrich and KSeCN was purchased from Alfa Aesar. All chemicals were used without any further purification.

Synthesis of compound 1.

0.5 mmol (143 mg) of Zn(NO3)2·6H2O and 1 mmol (144 mg) of KSeCN were reacted with 1 mmol (97.2 µl) of 4-methyl­pyridine in 2 ml of ethanol. The reaction mixture was stirred for 2 d and the colorless precipitate was filtered off, washed with a very small amount of ethanol and dried at room temperature. Single crystals were obtained from the filtrate by slow evaporation of the solvent.

Synthesis of compound 2.

0.5 mmol (154 mg) of Cd(NO3)2·4H2O and 1 mmol (144 mg) of KSeCN were reacted with 1 mmol (97.2 µl) of 4-methyl­pyridine in 2 ml of ethanol. The reaction mixture was stirred for 2 d and the colorless precipitate was filtered off, washed with a very small amount of ethanol and dried at room temperature. Single crystals were obtained from the filtrate by slow evaporation of the solvent.

Experimental details

The XRPD measurements were performed with a Stoe Transmission Powder Diffraction System (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator using Cu Kα1 radiation (λ = 1.540598 Å).

The IR spectra were measured using an ATI Mattson Genesis Series FTIR Spectrometer, control software: WINFIRST, from ATI Mattson.

Thermogravimetry and differential thermoanalysis (TG–DTA) measurements were performed in a dynamic nitro­gen atmosphere in Al2O3 crucibles using a STA–PT 1000 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned with idealized geometry (C—H = 0.93–0.96 Å; methyl H atoms allowed to rotate but not to tip) and were refined isotropically with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model.

Table 3
Experimental details

  1 2
Crystal data
Chemical formula [Zn(NCSe)2(C6H7N)2] [Cd(NCSe)2(C6H7N)2]
Mr 461.58 508.61
Crystal system, space group Orthorhombic, Fdd2 Monoclinic, C2/c
Temperature (K) 293 293
a, b, c (Å) 37.3964 (18), 18.4780 (7), 5.1164 (2) 20.7296 (11), 9.4896 (3), 19.7364 (10)
α, β, γ (°) 90, 90, 90 90, 113.794 (3), 90
V3) 3535.5 (3) 3552.5 (3)
Z 8 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 5.51 5.33
Crystal size (mm) 0.25 × 0.20 × 0.20 0.18 × 0.14 × 0.10
 
Data collection
Diffractometer Stoe IPDS2 Stoe IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Numerical (X-RED and X-SHAPE; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.305, 0.547 0.321, 0.446
No. of measured, independent and observed [I > 2σ(I)] reflections 14188, 1953, 1823 17056, 3469, 2911
Rint 0.027 0.038
(sin θ/λ)max−1) 0.649 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.067, 1.13 0.039, 0.076, 1.13
No. of reflections 1953 3469
No. of parameters 97 194
No. of restraints 1 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.22 0.74, −0.63
Absolute structure Flack x determined using 675 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.012 (8)
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(4-methylpyridine-κN)bis(selenocyanato-κN)zinc(II) (I) top
Crystal data top
[Zn(NCSe)2(C6H7N)2]Dx = 1.734 Mg m3
Mr = 461.58Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 14188 reflections
a = 37.3964 (18) Åθ = 2.2–27.5°
b = 18.4780 (7) ŵ = 5.51 mm1
c = 5.1164 (2) ÅT = 293 K
V = 3535.5 (3) Å3Block, colorless
Z = 80.25 × 0.20 × 0.20 mm
F(000) = 1792
Data collection top
STOE IPDS-2
diffractometer
1823 reflections with I > 2σ(I)
ω scansRint = 0.027
Absorption correction: numerical
(X-Red and X-Shape; Stoe, 2008)
θmax = 27.5°, θmin = 2.2°
Tmin = 0.305, Tmax = 0.547h = 4848
14188 measured reflectionsk = 2323
1953 independent reflectionsl = 65
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0306P)2 + 2.9003P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max < 0.001
S = 1.13Δρmax = 0.26 e Å3
1953 reflectionsΔρmin = 0.22 e Å3
97 parametersAbsolute structure: Flack x determined using 675 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.012 (8)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.0000000.5000000.44116 (13)0.05955 (17)
Se10.05719 (2)0.30585 (3)0.91932 (12)0.1023 (2)
N110.03820 (7)0.54594 (16)0.2162 (7)0.0548 (7)
C110.03560 (12)0.6142 (2)0.1324 (10)0.0702 (12)
H110.0168460.6424760.1939390.084*
C10.03662 (12)0.3754 (3)0.7402 (9)0.0681 (11)
N10.02308 (11)0.4217 (2)0.6310 (9)0.0806 (11)
C150.06600 (11)0.5073 (2)0.1294 (9)0.0651 (10)
H150.0684560.4597450.1857250.078*
C120.05934 (12)0.6443 (2)0.0402 (10)0.0748 (12)
H120.0563420.6919240.0950900.090*
C160.11412 (15)0.6356 (4)0.3232 (15)0.0985 (16)
H16A0.1156970.6869870.2984950.148*
H16B0.1064380.6254960.4984540.148*
H16C0.1371570.6141170.2940570.148*
C140.09088 (11)0.5347 (2)0.0380 (11)0.0734 (11)
H140.1102020.5063250.0892670.088*
C130.08745 (11)0.6043 (3)0.1317 (9)0.0670 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0556 (3)0.0672 (3)0.0558 (3)0.0044 (3)0.0000.000
Se10.1184 (4)0.0790 (3)0.1095 (5)0.0235 (3)0.0162 (4)0.0132 (4)
N110.0497 (14)0.0573 (16)0.0573 (19)0.0027 (12)0.0047 (14)0.0011 (15)
C110.065 (2)0.064 (2)0.081 (3)0.0077 (18)0.007 (2)0.006 (2)
C10.069 (2)0.073 (3)0.063 (3)0.007 (2)0.002 (2)0.002 (2)
N10.081 (2)0.088 (3)0.073 (3)0.002 (2)0.007 (2)0.017 (2)
C150.063 (2)0.0566 (19)0.076 (3)0.0029 (16)0.0013 (19)0.001 (2)
C120.080 (3)0.069 (2)0.075 (3)0.001 (2)0.008 (3)0.013 (2)
C160.090 (3)0.120 (4)0.085 (3)0.019 (3)0.021 (3)0.015 (4)
C140.063 (2)0.076 (3)0.081 (3)0.0048 (18)0.011 (2)0.007 (3)
C130.064 (2)0.079 (3)0.057 (3)0.014 (2)0.0001 (18)0.0001 (19)
Geometric parameters (Å, º) top
Zn1—N11.945 (4)C15—C141.362 (7)
Zn1—N1i1.945 (4)C15—H150.9300
Zn1—N11i2.021 (3)C12—C131.368 (6)
Zn1—N112.021 (3)C12—H120.9300
Se1—C11.756 (5)C16—C131.513 (7)
N11—C111.335 (5)C16—H16A0.9600
N11—C151.337 (5)C16—H16B0.9600
C11—C121.371 (6)C16—H16C0.9600
C11—H110.9300C14—C131.379 (6)
C1—N11.140 (5)C14—H140.9300
N1—Zn1—N1i120.0 (3)C14—C15—H15118.6
N1—Zn1—N11i106.61 (15)C13—C12—C11119.9 (4)
N1i—Zn1—N11i106.44 (15)C13—C12—H12120.1
N1—Zn1—N11106.45 (15)C11—C12—H12120.1
N1i—Zn1—N11106.61 (15)C13—C16—H16A109.5
N11i—Zn1—N11110.59 (18)C13—C16—H16B109.5
C11—N11—C15117.0 (4)H16A—C16—H16B109.5
C11—N11—Zn1121.9 (3)C13—C16—H16C109.5
C15—N11—Zn1121.0 (3)H16A—C16—H16C109.5
N11—C11—C12122.9 (4)H16B—C16—H16C109.5
N11—C11—H11118.5C15—C14—C13120.1 (4)
C12—C11—H11118.5C15—C14—H14120.0
N1—C1—Se1177.9 (4)C13—C14—H14120.0
C1—N1—Zn1179.3 (4)C12—C13—C14117.2 (4)
N11—C15—C14122.9 (4)C12—C13—C16121.4 (4)
N11—C15—H15118.6C14—C13—C16121.3 (5)
Symmetry code: (i) x, y+1, z.
catena-Poly[[bis(4-methylpyridine-κN)cadmium(II)]-di-µ-selenocyanato-κ2N:Se;κ2Se:N] (II) top
Crystal data top
[Cd(NCSe)2(C6H7N)2]F(000) = 1936
Mr = 508.61Dx = 1.902 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.7296 (11) ÅCell parameters from 17056 reflections
b = 9.4896 (3) Åθ = 2.2–26.0°
c = 19.7364 (10) ŵ = 5.33 mm1
β = 113.794 (3)°T = 293 K
V = 3552.5 (3) Å3Block, colorless
Z = 80.18 × 0.14 × 0.10 mm
Data collection top
STOE IPDS-2
diffractometer
2911 reflections with I > 2σ(I)
ω scansRint = 0.038
Absorption correction: numerical
(X-Red and X-Shape; Stoe, 2008)
θmax = 26.0°, θmin = 2.2°
Tmin = 0.321, Tmax = 0.446h = 2525
17056 measured reflectionsk = 811
3469 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0229P)2 + 7.6388P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
3469 reflectionsΔρmax = 0.74 e Å3
194 parametersΔρmin = 0.63 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.5000000.47303 (5)0.2500000.05827 (14)
Cd20.7500000.2500000.5000000.05746 (13)
N10.5569 (2)0.4762 (5)0.37921 (19)0.0724 (11)
C10.5986 (2)0.4628 (4)0.4381 (2)0.0539 (10)
Se10.66318 (2)0.44348 (6)0.53116 (2)0.06746 (15)
N20.6944 (2)0.2763 (5)0.3720 (2)0.0715 (11)
C20.6512 (2)0.2729 (5)0.3135 (2)0.0582 (10)
Se20.58388 (3)0.26863 (6)0.22157 (3)0.07812 (18)
N110.57906 (18)0.6528 (4)0.2507 (2)0.0640 (9)
C110.6021 (2)0.6648 (5)0.1971 (2)0.0700 (12)
H110.5850890.6018020.1576710.084*
C120.6496 (3)0.7651 (5)0.1968 (3)0.0679 (12)
H120.6632340.7698340.1573690.081*
C130.6773 (2)0.8592 (5)0.2548 (3)0.0629 (11)
C140.6536 (3)0.8466 (6)0.3102 (3)0.0938 (18)
H140.6700370.9077350.3504370.113*
C150.6059 (3)0.7438 (6)0.3062 (3)0.0909 (18)
H150.5912480.7372340.3448830.109*
C160.7307 (3)0.9687 (6)0.2579 (3)0.0824 (15)
H16A0.7763090.9256250.2733020.124*
H16B0.7322021.0408180.2926210.124*
H16C0.7177411.0098120.2097220.124*
N210.67039 (19)0.0657 (4)0.4930 (2)0.0641 (9)
C210.6897 (3)0.0359 (6)0.5440 (3)0.0803 (15)
H210.7360130.0366570.5789510.096*
C220.6451 (3)0.1392 (6)0.5477 (3)0.0844 (15)
H220.6617080.2075260.5845250.101*
C230.5759 (3)0.1424 (5)0.4974 (3)0.0708 (13)
C240.5563 (3)0.0392 (6)0.4441 (3)0.0744 (13)
H240.5105430.0375490.4078770.089*
C250.6039 (3)0.0619 (6)0.4438 (3)0.0736 (13)
H250.5886630.1309290.4072290.088*
C260.5257 (3)0.2518 (6)0.5017 (4)0.0890 (17)
H26A0.4791460.2124120.4847380.133*
H26B0.5403000.2825380.5521030.133*
H26C0.5253600.3307520.4711690.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0473 (2)0.0720 (3)0.0452 (2)0.0000.00794 (18)0.000
Cd20.0497 (2)0.0680 (3)0.0476 (2)0.0026 (2)0.01232 (19)0.00515 (19)
N10.061 (2)0.095 (3)0.045 (2)0.012 (2)0.0049 (17)0.0056 (19)
C10.051 (2)0.058 (3)0.052 (2)0.0048 (18)0.021 (2)0.0023 (18)
Se10.0620 (3)0.0856 (4)0.0431 (2)0.0160 (2)0.0091 (2)0.0016 (2)
N20.068 (2)0.097 (3)0.044 (2)0.018 (2)0.0162 (18)0.0062 (19)
C20.062 (3)0.059 (3)0.055 (2)0.008 (2)0.025 (2)0.0001 (19)
Se20.0686 (3)0.0937 (4)0.0547 (3)0.0124 (3)0.0068 (2)0.0188 (2)
N110.056 (2)0.078 (3)0.059 (2)0.0090 (19)0.0253 (17)0.0172 (19)
C110.070 (3)0.083 (3)0.056 (2)0.013 (3)0.024 (2)0.019 (2)
C120.071 (3)0.077 (3)0.061 (3)0.003 (2)0.033 (2)0.010 (2)
C130.054 (2)0.065 (3)0.070 (3)0.001 (2)0.025 (2)0.012 (2)
C140.113 (4)0.100 (4)0.084 (4)0.043 (4)0.057 (3)0.045 (3)
C150.110 (4)0.102 (4)0.084 (4)0.035 (4)0.063 (3)0.039 (3)
C160.077 (3)0.081 (4)0.096 (4)0.012 (3)0.042 (3)0.018 (3)
N210.061 (2)0.069 (2)0.062 (2)0.0001 (19)0.0245 (18)0.0037 (19)
C210.073 (3)0.079 (4)0.073 (3)0.007 (3)0.014 (3)0.007 (3)
C220.088 (4)0.074 (3)0.082 (3)0.009 (3)0.025 (3)0.006 (3)
C230.076 (3)0.064 (3)0.082 (3)0.006 (3)0.042 (3)0.019 (3)
C240.054 (3)0.082 (4)0.083 (3)0.005 (2)0.023 (2)0.014 (3)
C250.060 (3)0.082 (3)0.074 (3)0.004 (3)0.022 (2)0.003 (3)
C260.089 (4)0.080 (4)0.114 (5)0.018 (3)0.058 (4)0.022 (3)
Geometric parameters (Å, º) top
Cd1—N1i2.338 (3)C13—C141.373 (6)
Cd1—N12.338 (3)C13—C161.501 (7)
Cd1—N11i2.362 (4)C14—C151.370 (7)
Cd1—N112.362 (4)C14—H140.9300
Cd1—Se22.8085 (6)C15—H150.9300
Cd1—Se2i2.8086 (6)C16—H16A0.9600
Cd2—N2ii2.328 (4)C16—H16B0.9600
Cd2—N22.328 (4)C16—H16C0.9600
Cd2—N21ii2.370 (4)N21—C251.329 (6)
Cd2—N212.370 (4)N21—C211.332 (6)
Cd2—Se1ii2.8073 (5)C21—C221.369 (7)
Cd2—Se12.8073 (5)C21—H210.9300
N1—C11.142 (5)C22—C231.378 (7)
C1—Se11.793 (4)C22—H220.9300
N2—C21.141 (5)C23—C241.373 (7)
C2—Se21.788 (5)C23—C261.497 (7)
N11—C151.329 (6)C24—C251.377 (7)
N11—C111.329 (5)C24—H240.9300
C11—C121.372 (6)C25—H250.9300
C11—H110.9300C26—H26A0.9600
C12—C131.381 (6)C26—H26B0.9600
C12—H120.9300C26—H26C0.9600
N1i—Cd1—N1178.5 (2)C11—C12—C13120.3 (4)
N1i—Cd1—N11i86.63 (14)C11—C12—H12119.8
N1—Cd1—N11i92.29 (13)C13—C12—H12119.8
N1i—Cd1—N1192.30 (13)C14—C13—C12116.2 (4)
N1—Cd1—N1186.63 (14)C14—C13—C16121.5 (4)
N11i—Cd1—N1187.53 (18)C12—C13—C16122.3 (4)
N1i—Cd1—Se282.62 (11)C15—C14—C13119.9 (5)
N1—Cd1—Se298.42 (10)C15—C14—H14120.0
N11i—Cd1—Se2169.06 (8)C13—C14—H14120.0
N11—Cd1—Se290.90 (9)N11—C15—C14124.2 (5)
N1i—Cd1—Se2i98.42 (10)N11—C15—H15117.9
N1—Cd1—Se2i82.62 (11)C14—C15—H15117.9
N11i—Cd1—Se2i90.90 (9)C13—C16—H16A109.5
N11—Cd1—Se2i169.06 (8)C13—C16—H16B109.5
Se2—Cd1—Se2i92.64 (3)H16A—C16—H16B109.5
N2ii—Cd2—N2180.0C13—C16—H16C109.5
N2ii—Cd2—N21ii89.30 (14)H16A—C16—H16C109.5
N2—Cd2—N21ii90.70 (14)H16B—C16—H16C109.5
N2ii—Cd2—N2190.70 (14)C25—N21—C21116.0 (4)
N2—Cd2—N2189.30 (14)C25—N21—Cd2123.7 (3)
N21ii—Cd2—N21180.0C21—N21—Cd2120.0 (3)
N2ii—Cd2—Se1ii95.00 (10)N21—C21—C22123.7 (5)
N2—Cd2—Se1ii84.99 (10)N21—C21—H21118.1
N21ii—Cd2—Se1ii90.14 (9)C22—C21—H21118.1
N21—Cd2—Se1ii89.86 (9)C21—C22—C23120.4 (5)
N2ii—Cd2—Se185.00 (10)C21—C22—H22119.8
N2—Cd2—Se195.01 (10)C23—C22—H22119.8
N21ii—Cd2—Se189.86 (9)C24—C23—C22115.8 (5)
N21—Cd2—Se190.14 (9)C24—C23—C26122.8 (5)
Se1ii—Cd2—Se1180.000 (16)C22—C23—C26121.4 (5)
C1—N1—Cd1161.8 (4)C23—C24—C25120.7 (5)
N1—C1—Se1179.0 (4)C23—C24—H24119.7
C1—Se1—Cd297.03 (13)C25—C24—H24119.7
C2—N2—Cd2159.7 (4)N21—C25—C24123.3 (5)
N2—C2—Se2179.5 (5)N21—C25—H25118.4
C2—Se2—Cd194.25 (14)C24—C25—H25118.4
C15—N11—C11115.8 (4)C23—C26—H26A109.5
C15—N11—Cd1122.2 (3)C23—C26—H26B109.5
C11—N11—Cd1121.9 (3)H26A—C26—H26B109.5
N11—C11—C12123.5 (4)C23—C26—H26C109.5
N11—C11—H11118.3H26A—C26—H26C109.5
C12—C11—H11118.3H26B—C26—H26C109.5
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by the state of Schleswig-Holstein.

References

First citationBanerjee, S., Wu, B., Lassahn, P. G., Janiak, C. & Ghosh, A. (2005). Inorg. Chim. Acta, 358, 535–544.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarnett, S. A., Blake, A. J., Champness, N. R. & Wilson, C. (2002). Chem. Commun. pp. 1640–1641.  Web of Science CSD CrossRef Google Scholar
First citationBoeckmann, J., Jess, I., Reinert, T. & Näther, C. (2011). Eur. J. Inorg. Chem. pp. 5502–5511.  Web of Science CSD CrossRef Google Scholar
First citationBoeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104–7106.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoeckmann, J., Reinert, T. & Näther, C. (2011). Z. Anorg. Allg. Chem. 637, 940–946.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoeckmann, J., Wriedt, M. & Näther, C. (2012). Chem. Eur. J. 18, 5284–5289.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBöhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBuckingham, D. A. (1994). Coord. Chem. Rev. 135–136, 587–621.  CrossRef Web of Science Google Scholar
First citationChoudhury, R. R., Choudhury, C. R., Batten, S. R. & Mitra, S. (2008). Struct. Chem. 19, 645–649.  Web of Science CSD CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Sarma, J. A. R. P. (1986). Proc. Indian Acad. Sci. Chem. Sci. 96, 599–605.  CrossRef CAS Google Scholar
First citationDyadin, Yu. A., Kislykh, N. V., Chekhova, G. N., Podberezskaya, N. V., Pervukhina, N. V., Logvinenko, V. A. & Oglezneva, I. M. J. (1984). J. Inclusion Phenom. Mol. Recognit. Chem. 2, 233–240.  Google Scholar
First citationFettouhi, M., Wazeer, M. I. M. & Isab, A. A. (2008). Inorg. Chem. Commun. 11, 252–255.  Web of Science CSD CrossRef CAS Google Scholar
First citationGoher, A. S., Mautner, F. A., Abu-Youssef, M. A. M., Hafez, A. K., Badr, A. M. A. & Gspan, C. (2003). Polyhedron, 22, 3137–3143.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJess, I., Boeckmann, J. & Näther, C. (2012). Dalton Trans. 41, 228–236.  Web of Science CAS PubMed Google Scholar
First citationJochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779–4789.  Web of Science CSD CrossRef Google Scholar
First citationLi, D. & Liu, D. (2003). Appl. Organomet. Chem. 17, 321–322.  Web of Science CSD CrossRef CAS Google Scholar
First citationLipkowski, J. (1990). J. Coord. Chem. 22, 153–158.  CSD CrossRef CAS Web of Science Google Scholar
First citationLipkowski, J., Soldatov, D. V., Kislykh, N. V., Pervukhina, N. V. & Dyadin, Y. A. (1994). J. Inclusion Phenom. Mol. Recognit. Chem. 17, 305–316.  CSD CrossRef CAS Web of Science Google Scholar
First citationMakhlouf, J., Valkonen, A. & Smirani, W. (2022). Polyhedron, 213, 115625.  Web of Science CSD CrossRef Google Scholar
First citationMarsh, R. E. (1995). Acta Cryst. B51, 897–907.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMarsh, R. E. (2009). Acta Cryst. B65, 782–783.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeumann, T., Gallo, G., Jess, I., Dinnebier, R. E. & Näther, C. (2020). CrystEngComm, 22, 184–194.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPervukhina, N. V., Podberezskaya, N. V., Bakakin, V. V., Kislikh, N. V., Chekhova, G. N. & Dyadin, Yu. A. (1986). J. Struct. Chem. 26, 934–941.  CrossRef Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232–3243.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRatho, T. & Patel, T. (1969). Indian J. Phys. 43, 166–169.  CAS Google Scholar
First citationSadhu, M. H., Solanki, A., Kundu, T., Hingu, V., Ganguly, B. & Kumar, S. B. (2017). Polyhedron, 133, 8–15.  Web of Science CSD CrossRef CAS Google Scholar
First citationSecondo, P. M., Land, J. M., Baughman, R. G. & Collier, H. L. (2000). Inorg. Chim. Acta, 309, 13–22.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J. M., Chen, J. N. & Liu, L. D. (2006). Pol. J. Chem. 80, 1909–1912.  CAS Google Scholar
First citationShi, J. M., Sun, Y. M., Liu, Z. & Liu, L. D. (2006). Chem. Phys. Lett. 418, 84–89.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTaniguchi, M., Shimoi, M. & Ouchi, A. (1986). Bull. Chem. Soc. Jpn, 59, 2299–2302.  CSD CrossRef CAS Web of Science Google Scholar
First citationWerner, J., Boeckmann, J., Jess, I. & Näther, C. (2012). Acta Cryst. E68, m704.  CSD CrossRef IUCr Journals Google Scholar
First citationWerner, J., Jess, I. & Näther, C. (2013). Z. Naturforsch. Teil B, 68, 643–652.  Web of Science CSD CrossRef CAS Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015a). Eur. J. Inorg. Chem. 2015, 3236–3245.  Web of Science CSD CrossRef CAS Google Scholar
First citationWerner, J., Tomkowicz, Z., Reinert, T. & Näther, C. (2015b). Eur. J. Inorg. Chem. 2015, 3066–3075.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWriedt, M. & Näther, C. (2010). Chem. Commun. 46, 4707–4709.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, S.-G., Li, W.-N. & Shi, J.-M. (2006). Acta Cryst. E62, m3506–m3608.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds