research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of four 4-(4-nitro­phen­yl)piperazinium salts with hydrogen succinate, 4-amino­benzoate, 2-(4-chloro­phen­yl)acetate and 2,3,4,5,6-penta­fluoro­benzoate anions

crossmark logo

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, and bDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: ybb2706@gmail.com, yathirajan@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 3 February 2023; accepted 4 February 2023; online 9 February 2023)

The syntheses and crystal structures are presented for four organic salts of the 4-(4-nitro­phen­yl)piperazinium cation, namely, 4-(4-nitro­phen­yl)piperazinium hydrogen succinate, C10H14N3O2+·C4H5O4 (I), 4-(4-nitro­phen­yl)piperazinium 4-amino­benzoate monohydrate, C10H14N3O2+·C7H6NO2·H2O (II), 4-(4-nitro­phen­yl)piperazinium 2-(4-chloro­phen­yl)acetate, C10H14N3O2+·C8H6ClO2 (III) and 4-(4-nitro­phen­yl)piperazinium 2,3,4,5,6-penta­fluoro­benzoate, C10H14N3O2+·C7F5O2 (IV). The salts form from mixtures of N-(4-nitro­phen­yl)piperazine and the corresponding acid [succinic acid (I), 4-amino­benzoic acid (II), 2-(4-chloro­phen­yl)acetic acid (III) and 2,3,4,5,6-penta­fluoro­benzoic acid (IV)] in mixed solvents of methanol and ethyl acetate. Salts I, III, and IV are anhydrous, whereas II is a monohydrate. In each structure, the overall conformation of the cation is determined by the disposition of the exocyclic N—C bond of the piperazine ring (either axial or equatorial) and twists about the N—C bond between the piperazine ring and its attached 4-nitro­phenyl ring. The packing motifs in each structure are quite different, though all are dominated by strong N—H⋯O hydrogen bonds, which are augmented in I and II by O—H⋯O hydrogen bonds, and in III by a ππ stacking inter­action between inversion-related 4-nitro­phenyl groups.

1. Chemical context

4-Nitro­phenyl­piperazinium chloride monohydrate has been used as an inter­mediate in the synthesis of anti­cancer drugs, transcriptase inhibitors and anti­fungal reagents (Berkheij et al., 2005[Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369-2371.]; Chaudhary et al., 2006[Chaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819-1826.]; Kharb et al., 2012[Kharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470-2488.]; Upadhayaya et al., 2004[Upadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225-2238.]). It is also an important reagent for potassium channel openers, which show significant biomolecular current-voltage rectification characteristics (Lu, 2007[Lu, Y.-X. (2007). Acta Cryst. E63, o3611.]). The design, synthesis and biological profiling of aryl­piperazine-based scaffolds for the management of androgen-sensitive prostatic disorders was described by Gupta et al. (2016[Gupta, S., Pandey, D., Mandalapu, D., Bala, V., Sharma, V., Shukla, M., Yadav, S. K., Singh, N., Jaiswal, S., Maikhuri, J. P., Lal, J., Siddiqi, M. I., Gupta, G. & Sharma, V. L. (2016). Med. Chem. Commun. 7, 2111-2121.]). 4-Nitro­phenyl­piperazine was the starting material in the synthesis and biological evaluation of new piperazine-containing hydrazone derivatives (Kaya et al., 2016[Kaya, B., Ozkay, Y., Temel, H. E. & Kaplancikli, Z. A. (2016). J. Chem. 5878410.]). A review on the piperazine skeleton in the structural modification of natural products was recently published by Zhang et al. (2021[Zhang, R.-H., Guo, H.-Y., Deng, H., Li, J. & Quan, Z.-S. (2021). J. Enzyme Inhib. Med. Chem. 36, 1165-1197.]).

As part of our studies in this area, this paper describes the crystal structures of four salts of 4-nitro­phenyl­piperazine with organic acids, viz, 4-(4-nitro­phen­yl)piperazinium hydrogen succinate, C10H14N3O2+·C4H5O4 (I), 4-(4-nitro­phen­yl)pip­er­azinium 4-amino­benzoate monohydrate, C10H14N3O2+·C7H6NO2·H2O (II), 4-(4-nitro­phen­yl)piperazinium 2-(4-chloro­phen­yl)acetate, C10H14N3O2+·C8H6ClO2 (III) and 4-(4-nitro­phen­yl)piperazinium 2,3,4,5,6-penta­fluoro­benzoate, C10H14N3O2+·C7F5O2 (IV).

[Scheme 1]

2. Structural commentary

The overall conformations of the 4-nitro­phenyl­piperazinium cations in IIV are determined by the N2—C5 bonds, which link the 4-nitro­phenyl and piperazinium rings (Figs. 1[link]–4[link][link][link]). Within each structure, atom N2 is non-planar, the sums of bond angles being 352.73 (16)° (I), 344.91 (12)° (II), 348.75 (15)° (III), and 348.85 (17)° (IV), so the connection of the exocyclic carbon atom is either equatorial (II, III) or axial (I, IV). The relative twist about these N2—C5 bonds, e.g. qu­anti­fied by the C2—N2—C5—C6 torsional angles [–168.06 (10)° for I, 149.97 (9)° for II, 167.32 (10)° for III, and −170.03 (10)° for IV] determine the overall cation shape. In each case, the 4-nitro group is essentially coplanar with its attached phenyl ring.

[Figure 1]
Figure 1
The mol­ecular structure (50% displacement ellipsoids) of I. Hydrogen atoms are shown as arbitrary circles. The dashed line indicates a hydrogen bond.
[Figure 2]
Figure 2
The mol­ecular structure (50% displacement ellipsoids) of II. Hydrogen atoms are shown as arbitrary circles. The dashed lines indicate hydrogen bonds.
[Figure 3]
Figure 3
The mol­ecular structure (50% displacement ellipsoids) of III. Hydrogen atoms are shown as arbitrary circles. The dashed line indicates a hydrogen bond.
[Figure 4]
Figure 4
The mol­ecular structure (50% displacement ellipsoids) of IV. Hydrogen atoms are shown as arbitrary circles. The dashed line indicates a hydrogen bond.

The succinate anion in I has minor twists about its three C—C bonds [torsion angles 165.46 (9), 166.06 (8), and 169.97 (9)° for O4—C11—C12—C13, C11—C12—C13—C14, and C12—C13—C14—O6, respectively], which leads to a dihedral angle of 34.63 (9)° between its carboxyl­ate/carb­oxy­lic acid groups. The 4-amino­benzoate anion of II is close to planar, having a dihedral angle between the carboxyl­ate group and its benzene ring of 10.70 (7)°. The amine group at N4 is also slightly non-planar [the sum of angles about N4 is 349 (2)°]. In the 2-(4-chloro­phen­yl)acetate anion of III, twists about the C11—C12 and C12—C13 bonds place the carboxyl­ate group almost perpendicular [85.02 (9)°] to the benzene ring. Lastly, in the penta­fluoro­benzoate anion of IV, the carboxyl­ate group is 55.95 (10)° out of coplanarity with the phenyl ring.

Throughout all four structures, individual bond lengths and angles take on normal values except for an elongated O—H bond [1.17 (2) Å] in I, which will be described in more detail in the next section (Supra­molecular features).

3. Supra­molecular features

Hydrogen bonding plays a significant role in the packing of all four salts (see Tables 1[link]–4[link][link][link]). In each structure, the asymmetric units were chosen to give the shortest hydrogen bonds between the cationic NH2 group and the anionic carboxyl­ate groups. In I, II, and IV, these hydrogen bonds to the anion are equatorial relative to the piperazine ring, while that in III is axial. Nevertheless, in each structure, the NH2+ group acts as a hydrogen-bond donor through both its hydrogen atoms. In I, III, and IV this is to a second anion, whereas in II it is to the included water mol­ecule. Throughout the four structures, all conventional N—H⋯O and all but one O—H⋯O (in I, vide infra) hydrogen bonds take on normal distances and angles (Tables 1[link]–4[link][link][link]).

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯O3 0.934 (15) 1.793 (16) 2.7250 (12) 175.5 (13)
N1—H1NB⋯O5i 0.903 (16) 1.945 (16) 2.8127 (12) 160.5 (13)
O6—H6O⋯O4ii 1.17 (2) 1.27 (2) 2.4367 (10) 176 (2)
C1—H1A⋯O6iii 0.99 2.49 3.1374 (13) 123
C3—H3A⋯O5i 0.99 2.59 3.3238 (15) 130
C3—H3B⋯O2iv 0.99 2.51 3.4168 (15) 153
C4—H4A⋯O2v 0.99 2.55 3.5053 (15) 162
C4—H4B⋯O4vi 0.99 2.45 3.2354 (13) 136
C10—H10⋯O4vii 0.95 2.57 3.4146 (13) 149
Symmetry codes: (i) [-x+1, y+1, -z+{\script{1\over 2}}]; (ii) [x, y-1, z]; (iii) x, y+1, z; (iv) [x, -y+2, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (vi) [-x+1, y, -z+{\script{1\over 2}}]; (vii) [-x+1, -y+2, -z+1].

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯O3 0.936 (17) 1.804 (17) 2.737 (1) 174.7 (15)
N1—H1NB⋯O1Wi 0.942 (15) 1.864 (15) 2.7934 (11) 168.4 (13)
N4—H4NA⋯O1ii 0.879 (18) 2.258 (18) 3.0861 (13) 156.9 (15)
N4—H4NB⋯O2iii 0.886 (18) 2.248 (17) 3.0315 (13) 147.3 (14)
O1W—H1W1⋯O3iv 0.877 (18) 1.890 (18) 2.7569 (11) 169.7 (16)
O1W—H2W1⋯O4 0.885 (18) 1.755 (18) 2.6388 (11) 177.2 (17)
C1—H1C⋯O1W 0.99 2.50 3.2511 (12) 132
C2—H2B⋯O4i 0.99 2.58 3.5572 (13) 170
C4—H4A⋯O3v 0.99 2.51 3.4578 (12) 161
C4—H4B⋯O1Wvi 0.99 2.53 3.2921 (12) 134
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x, y+1, z-1]; (iii) [x+1, y+1, z-1]; (iv) [x-1, y, z]; (v) [-x+2, -y+2, -z+1]; (vi) x+1, y, z.

Table 3
Hydrogen-bond geometry (Å, °) for III[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯O4i 0.894 (16) 1.848 (16) 2.7252 (12) 166.3 (14)
N1—H1NB⋯O3 0.937 (16) 1.765 (17) 2.6903 (12) 169.0 (15)
C4—H4A⋯O4ii 0.99 2.46 3.2539 (14) 137
C7—H7⋯O1iii 0.95 2.59 3.2256 (15) 124
C12—H12A⋯O3iv 0.99 2.49 3.4710 (14) 173
C15—H15⋯O2v 0.95 2.37 3.1944 (15) 146
C18—H18⋯O3vi 0.95 2.55 3.2644 (15) 132
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [x-1, y, z]; (iii) [-x-1, -y+1, -z]; (iv) [-x+1, -y+1, -z+1]; (v) [x+1, y-1, z+1]; (vi) x+1, y, z.

Table 4
Hydrogen-bond geometry (Å, °) for IV[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯O3 0.929 (15) 1.754 (16) 2.6723 (13) 169.4 (14)
N1—H1NB⋯O4i 0.915 (16) 1.816 (16) 2.7310 (13) 178.8 (14)
C1—H1C⋯F5ii 0.99 2.49 3.4813 (14) 177
C1—H1D⋯F4iii 0.99 2.49 3.3996 (14) 153
C4—H4B⋯O3iv 0.99 2.56 3.3421 (15) 136
C6—H6⋯F2v 0.95 2.54 3.4536 (15) 161
Symmetry codes: (i) x+1, y, z; (ii) [-x+2, -y+1, -z+1]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x+2, -y, -z+1]; (v) [-x+1, -y, -z+1].

The structure of I includes an unusually short O6—H6⋯O4(x, y − 1, z) hydrogen bond [O⋯O = 2.4367 (10) Å], which links adjacent hydrogen-succinate anions into chains that propagate parallel to the b-axis direction (Fig. 5[link]). Difference map density for this hydrogen (H6) appears roughly equidistant from both oxygen atoms (Fig. 6[link]), and refines to give O6—H6 = 1.17 (2) Å (Table 1[link]). For unusually strong hydrogen bonds, the migration of the hydrogen atom towards the midpoint between the donor and acceptor atoms is an expected phenomenon. In such instances, the case for positional refinement of the hydrogen atom, or even placement at the difference map peak coordinates is compelling (Fábry, 2018[Fábry, J. (2018). Acta Cryst. E74, 1344-1357.]), and is backed by density-functional theory computational analysis (see e.g. Bhardwaj et al., 2020[Bhardwaj, M., Ai, Q., Parkin, S. R. & Grossman, R. B. (2020). Acta Cryst. E76, 77-81.]). A number of weak C—H⋯O inter­actions also occur.

[Figure 5]
Figure 5
A partial packing plot of I showing extended double chains of O—H⋯O hydrogen-bonded (dotted lines) succinate anions, linked via N—H⋯O hydrogen bonds to the 4-nitro­phenyl­piperazinium cations. Hydrogen atoms not involved in hydrogen bonds are omitted.
[Figure 6]
Figure 6
Difference-Fourier electron-density map for the region of the hydrogen atom situated close to the donor–acceptor midpoint in the short O—H⋯O hydrogen bond [thin black line, O⋯O = 2.4367 (1) Å] linking the hydrogen succinate cations into chains propagating parallel to the b-axis in I.

Structure II also includes N—H⋯O hydrogen bonds from the 4-amino group of its anion to the nitro oxygen atoms of its cation (Table 2[link]). The cation–anion inter­actions, along with the presence of the water mol­ecule, which acts as an O—H⋯O hydrogen-bond donor to join a pair of translation-related (1 + x, y, z) anions and as an acceptor for an N—H⋯O hydrogen bond, generates a double-layer network lying parallel to (011) (Fig. 7[link]). Of the four structures, II has the most complex hydrogen-bonding inter­actions.

[Figure 7]
Figure 7
A partial packing plot of II showing N—H⋯O and O—H⋯O hydrogen-bonded (dotted lines) double layers that extend parallel to (011). Hydrogen atoms not involved in hydrogen bonds are omitted.

The primary supra­molecular inter­action in III joins two pairs of inversion-related ammonium cations and carboxyl­ate anions, forming an R44(12) ring motif (Table 3[link], Fig. 8[link]). Structure III also includes the only ππ inter­actions of the four structures, which occurs between inversion-related (−x, 1 − y, −z) nitro­phenyl rings, giving an inter­planar spacing of 3.3352 (15) Å, though the offset (≃1.92 Å) is large, leading to a centroid–centroid distance of 3.8495 (15) Å (Fig. 8[link], dashed line).

[Figure 8]
Figure 8
A partial packing plot of III showing a hydrogen-bonded (dotted lines) R44(12) ring motif and a ππ inter­action (dashed line) between inversion-related cations. Hydrogen atoms not involved in hydrogen bonds are omitted.

Supra­molecular inter­actions within IV are the simplest of the four structures: N—H⋯O hydrogen bonds connect cations and anions into continuous chains that extend parallel to its a-axis. These inter­actions are qu­anti­fied in Table 4[link] and shown in Fig. 9[link].

[Figure 9]
Figure 9
A partial packing plot of IV, showing chains of hydrogen-bonded (dotted lines) cations and anions that extend parallel to the a-axis. Hydrogen atoms not involved in hydrogen bonds are omitted.

4. Database survey

A search of the Cambridge Structure Database (CSD v5.43 with updates through September 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for salts that include the 4-(4-nitro­phen­yl)piperazinium cation returned ten hits. Database entries with refcodes LIJNAU (Lu, 2007[Lu, Y.-X. (2007). Acta Cryst. E63, o3611.]) and LIJNAU01 (Rehman et al., 2009[Rehman, Z., Shah, A., Muhammad, N., Ali, S., Qureshi, R., Meetsma, A. & Butler, I. S. (2009). Eur. J. Med. Chem. 44, 3986-3993.]) are monohydrates of the chloride salt. The remaining eight structures, CSD entries NEBVOJ, NEBVUP, NEBWAW, NEBWEA, NEBWIE, NEBWOK (Mahesha et al., 2022[Mahesha, N., Kiran Kumar, H., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022). Acta Cryst. E78, 510-518.]) and BEFGIG and BEFGOM (Shankara Prasad et al., 2022[Shankara Prasad, H. J., Devaraju, Vinaya, Yathirajan, H. S., Parkin, S. R. & Glidewell, C. (2022). Acta Cryst. E78, 840-845.]) are all organic salts with a variety of anions, and all but NEBWOK and BEFGOM are hydrates.

Racemic perhydro­tri­phenyl­ene forms a polar inclusion compound with 1-(4-nitro­phen­yl)piperazine as a guest mol­ecule (NOVWOK; König et al., 1997[König, O., Bürgi, H.-B., Armbruster, T., Hulliger, J. & Weber, T. (1997). J. Am. Chem. Soc. 119, 10632-10640.]). The crystal structure of 4,6-di­meth­oxy­pyrimidin-2-amine-1-(4-nitro­phen­yl)piperazine (LUDMUU), was published by Wang et al. (2014[Wang, X.-Y., Wang, M.-Z., Guo, F.-J., Sun, J. & Qian, S.-S. (2014). Z. Kristallogr. Cryst. Mat. 229, 97-98.]). The synthesis and crystal structure of a Schiff base, 5-methyl-2-{[4-(4-nitro­phen­yl)piperazin-1-yl]meth­yl}phenol (WUWBIC) was published by Ayeni et al. (2019[Ayeni, A. O., Watkins, G. M. & Hosten, E. C. (2019). Bull. Chem. Soc. Ethiop. 33, 341-348.]). NMR-based investigations by Wodtke et al. (2018[Wodtke, R., Steinberg, J., Köckerling, M., Löser, R. & Mamat, C. (2018). RSC Adv. 8, 40921-40933.]) of acyl-functionalized piperazines concerning their conformational behavior in solution, included crystal structures of 1-(4-fluoro­benzo­yl)-4-(4-nitro­phen­yl)piperazine (BIQYIM), 1-(4-bromo­benzo­yl)-4-(4-nitro­phen­yl)piperazine (BIRHES), 1-(3-bromo­benzo­yl)-4-(4-nitro­phen­yl)piperazine (BIRHIW) and (piperazine-1,4-di­yl)bis­[(4-fluoro­phen­yl)methanone] (BIRGOB).

5. Synthesis, crystallization and spectroscopic details

A solution of commercially available (Sigma-Aldrich) 4-nitro­phenyl­piperazine (100 mg, 0.483 mol) in methanol (10 ml) was mixed with equimolar solutions of the appropriate acid in methanol (10 ml) and ethyl acetate (10 ml) viz., succinic acid (60 mg, 0.483 mol) for I, 4-amino­benzoic acid (69 mg, 0.483 mol) for II, 2-(4-chloro­phen­yl)acetic acid (85 mg, 0.483 mol) for III, and 2,3,4,5,6-penta­fluoro­benzoic acid (102 mg, 0.483 mol) for IV. The resulting solutions were stirred for 30 minutes at 333 K and allowed to stand at room temperature. X-ray quality crystals formed on slow evaporation of solutions in ethanol:aceto­nitrile (1:1) over the course of a week for all four compounds. The melting points are 398–400 K (I), 473–475 K (II), 431–435 K (III) and 411–415 K (IV).

6. Refinement

Crystal data, data collection, and structure refinement details are given in Table 5[link]. All hydrogen atoms were found in difference-Fourier maps, but those bound to carbon were subsequently included in the refinement using riding models, with constrained distances set to 0.95 Å (Csp2—H) and 0.99 Å (R2CH2), using Uiso(H) values constrained to 1.2Ueq of the attached carbon atom. All N—H and O—H hydrogen atoms were refined freely (both coordinates and Uiso).

Table 5
Experimental details

  I II III IV
Crystal data
Chemical formula C10H14N3O2+·C4H5O4 C10H14N3O2+·C7H6NO2·H2O C10H14N3O2+·C8H6ClO2 C10H14N3O2+·C7F5O2
Mr 325.32 362.38 377.82 419.31
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 90 90 90 90
a, b, c (Å) 25.2747 (12), 8.0434 (4), 15.6617 (5) 6.0453 (3), 7.3930 (3), 19.1439 (6) 6.8051 (2), 9.3927 (5), 14.3869 (7) 5.9779 (3), 11.3934 (8), 12.9312 (9)
α, β, γ (°) 90, 105.384 (2), 90 79.482 (2), 89.215 (1), 83.967 (1) 83.849 (2), 81.283 (2), 72.492 (2) 75.754 (2), 81.670 (2), 87.717 (2)
V3) 3069.9 (2) 836.55 (6) 865.01 (7) 844.63 (9)
Z 8 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.11 0.11 0.25 0.15
Crystal size (mm) 0.30 × 0.22 × 0.18 0.30 × 0.26 × 0.25 0.28 × 0.24 × 0.22 0.21 × 0.17 × 0.05
 
Data collection
Diffractometer Bruker D8 Venture dual source Bruker D8 Venture dual source Bruker D8 Venture dual source Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.890, 0.971 0.939, 0.971 0.931, 0.971 0.914, 0.959
No. of measured, independent and observed [I > 2σ(I)] reflections 25982, 3518, 3130 34250, 3810, 3567 28796, 3954, 3617 38650, 3882, 3456
Rint 0.036 0.033 0.034 0.034
(sin θ/λ)max−1) 0.650 0.650 0.650 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.089, 1.05 0.034, 0.098, 1.05 0.029, 0.074, 1.04 0.031, 0.082, 1.04
No. of reflections 3518 3810 3954 3882
No. of parameters 220 260 243 269
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.23 0.40, −0.21 0.32, −0.23 0.36, −0.22
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: APEX3 (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

4-(4-Nitrophenyl)piperazinium hydrogen succinate (I) top
Crystal data top
C10H14N3O2+·C4H5O4F(000) = 1376
Mr = 325.32Dx = 1.408 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.2747 (12) ÅCell parameters from 9366 reflections
b = 8.0434 (4) Åθ = 2.7–27.5°
c = 15.6617 (5) ŵ = 0.11 mm1
β = 105.384 (2)°T = 90 K
V = 3069.9 (2) Å3Cut block, pale yellow
Z = 80.30 × 0.22 × 0.18 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
3518 independent reflections
Radiation source: microsource3130 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.036
φ and ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 3232
Tmin = 0.890, Tmax = 0.971k = 1010
25982 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: mixed
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0401P)2 + 2.5912P]
where P = (Fo2 + 2Fc2)/3
3518 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14051 (3)0.80996 (12)0.52439 (6)0.0280 (2)
O20.19261 (4)0.91415 (12)0.64508 (5)0.0259 (2)
N10.41855 (4)1.00925 (12)0.33747 (6)0.01449 (19)
H1NA0.4443 (6)0.9234 (19)0.3448 (9)0.024 (4)*
H1NB0.4279 (6)1.087 (2)0.3023 (10)0.027 (4)*
N20.32266 (4)1.14743 (13)0.37425 (6)0.0195 (2)
N30.18160 (4)0.88788 (12)0.56439 (6)0.0193 (2)
C10.42042 (4)1.07833 (14)0.42694 (7)0.0162 (2)
H1A0.4572081.1255530.4541570.019*
H1B0.4135550.9884940.4658660.019*
C20.37707 (4)1.21296 (14)0.41778 (7)0.0184 (2)
H2A0.3773221.2557260.4771540.022*
H2B0.3857241.3065060.3826660.022*
C30.32172 (5)1.09046 (16)0.28539 (7)0.0221 (3)
H3A0.3310731.1840310.2509900.027*
H3B0.2843571.0515610.2546850.027*
C40.36260 (4)0.94930 (14)0.28984 (7)0.0185 (2)
H4A0.3523570.8531430.3215520.022*
H4B0.3622200.9131890.2292530.022*
C50.28969 (4)1.07550 (14)0.42138 (7)0.0170 (2)
C60.24190 (4)0.98517 (15)0.37851 (7)0.0197 (2)
H60.2338390.9669040.3164590.024*
C70.20687 (4)0.92328 (14)0.42470 (7)0.0187 (2)
H70.1752110.8620770.3948920.022*
C80.21826 (4)0.95117 (14)0.51539 (7)0.0168 (2)
C90.26495 (5)1.03778 (15)0.55941 (7)0.0196 (2)
H90.2722481.0566670.6213200.024*
C100.30066 (4)1.09637 (15)0.51408 (7)0.0191 (2)
H100.3332301.1517570.5454030.023*
O30.49072 (3)0.75060 (9)0.36438 (6)0.01950 (18)
O40.56900 (3)0.86516 (9)0.35258 (5)0.01772 (17)
O50.57855 (3)0.25137 (9)0.29079 (5)0.01729 (17)
O60.53144 (3)0.13451 (9)0.37722 (5)0.01695 (17)
H6O0.5484 (8)0.005 (3)0.3625 (13)0.065 (6)*
C110.53782 (4)0.74028 (12)0.35582 (6)0.0127 (2)
C120.56315 (4)0.57314 (12)0.34704 (7)0.0145 (2)
H12A0.6015090.5729100.3842820.017*
H12B0.5641890.5581970.2847570.017*
C130.53315 (4)0.42686 (12)0.37343 (7)0.0142 (2)
H13A0.5399980.4260520.4386660.017*
H13B0.4932290.4417290.3474890.017*
C140.55019 (4)0.26118 (12)0.34399 (7)0.0124 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0196 (4)0.0345 (5)0.0275 (4)0.0090 (4)0.0021 (3)0.0038 (4)
O20.0250 (4)0.0339 (5)0.0192 (4)0.0051 (4)0.0063 (3)0.0036 (3)
N10.0143 (4)0.0131 (4)0.0171 (4)0.0014 (3)0.0060 (3)0.0020 (3)
N20.0142 (4)0.0278 (5)0.0177 (4)0.0021 (4)0.0061 (3)0.0008 (4)
N30.0158 (4)0.0198 (5)0.0214 (5)0.0012 (4)0.0031 (4)0.0048 (4)
C10.0142 (5)0.0194 (5)0.0148 (5)0.0003 (4)0.0035 (4)0.0003 (4)
C20.0181 (5)0.0182 (5)0.0213 (5)0.0007 (4)0.0091 (4)0.0012 (4)
C30.0155 (5)0.0371 (7)0.0141 (5)0.0033 (5)0.0043 (4)0.0012 (5)
C40.0168 (5)0.0231 (6)0.0167 (5)0.0043 (4)0.0064 (4)0.0038 (4)
C50.0142 (5)0.0185 (5)0.0192 (5)0.0056 (4)0.0058 (4)0.0006 (4)
C60.0174 (5)0.0240 (6)0.0175 (5)0.0024 (4)0.0044 (4)0.0047 (4)
C70.0145 (5)0.0186 (5)0.0216 (5)0.0014 (4)0.0024 (4)0.0030 (4)
C80.0145 (5)0.0165 (5)0.0194 (5)0.0031 (4)0.0046 (4)0.0031 (4)
C90.0186 (5)0.0236 (6)0.0151 (5)0.0009 (4)0.0020 (4)0.0024 (4)
C100.0149 (5)0.0232 (6)0.0176 (5)0.0012 (4)0.0016 (4)0.0007 (4)
O30.0158 (4)0.0119 (4)0.0316 (4)0.0021 (3)0.0078 (3)0.0008 (3)
O40.0185 (4)0.0093 (4)0.0266 (4)0.0009 (3)0.0080 (3)0.0010 (3)
O50.0229 (4)0.0123 (4)0.0193 (4)0.0004 (3)0.0101 (3)0.0018 (3)
O60.0197 (4)0.0089 (3)0.0245 (4)0.0002 (3)0.0097 (3)0.0013 (3)
C110.0155 (5)0.0099 (5)0.0113 (4)0.0003 (4)0.0010 (4)0.0004 (4)
C120.0148 (5)0.0094 (5)0.0192 (5)0.0006 (4)0.0044 (4)0.0010 (4)
C130.0163 (5)0.0091 (5)0.0174 (5)0.0013 (4)0.0048 (4)0.0003 (4)
C140.0120 (4)0.0102 (5)0.0131 (4)0.0001 (4)0.0001 (4)0.0000 (4)
Geometric parameters (Å, º) top
O1—N31.2323 (13)C6—C71.3763 (16)
O2—N31.2380 (13)C6—H60.9500
N1—C41.4930 (13)C7—C81.3906 (15)
N1—C11.4964 (14)C7—H70.9500
N1—H1NA0.934 (15)C8—C91.3861 (16)
N1—H1NB0.903 (16)C9—C101.3714 (16)
N2—C51.3784 (14)C9—H90.9500
N2—C31.4594 (14)C10—H100.9500
N2—C21.4618 (14)O3—C111.2356 (13)
N3—C81.4437 (14)O4—C111.2860 (13)
C1—C21.5199 (15)O5—C141.2374 (13)
C1—H1A0.9900O6—H6O1.17 (2)
C1—H1B0.9900O6—C141.2901 (13)
C2—H2A0.9900O6—H6O1.17 (2)
C2—H2B0.9900C11—C121.5109 (14)
C3—C41.5241 (16)C12—C131.5154 (14)
C3—H3A0.9900C12—H12A0.9900
C3—H3B0.9900C12—H12B0.9900
C4—H4A0.9900C13—C141.5097 (14)
C4—H4B0.9900C13—H13A0.9900
C5—C101.4139 (15)C13—H13B0.9900
C5—C61.4170 (16)
C4—N1—C1112.23 (8)C10—C5—C6117.24 (10)
C4—N1—H1NA111.0 (9)C7—C6—C5121.52 (10)
C1—N1—H1NA108.1 (9)C7—C6—H6119.2
C4—N1—H1NB106.6 (9)C5—C6—H6119.2
C1—N1—H1NB111.6 (10)C6—C7—C8119.39 (10)
H1NA—N1—H1NB107.3 (12)C6—C7—H7120.3
C5—N2—C3121.32 (10)C8—C7—H7120.3
C5—N2—C2121.95 (9)C9—C8—C7120.48 (10)
C3—N2—C2109.46 (8)C9—C8—N3119.65 (10)
O1—N3—O2122.46 (10)C7—C8—N3119.87 (10)
O1—N3—C8118.84 (9)C10—C9—C8120.37 (10)
O2—N3—C8118.70 (9)C10—C9—H9119.8
N1—C1—C2109.46 (8)C8—C9—H9119.8
N1—C1—H1A109.8C9—C10—C5120.93 (10)
C2—C1—H1A109.8C9—C10—H10119.5
N1—C1—H1B109.8C5—C10—H10119.5
C2—C1—H1B109.8H6O—O6—C14115.4 (10)
H1A—C1—H1B108.2H6O—O6—H6O0 (3)
N2—C2—C1110.65 (9)C14—O6—H6O115.4 (10)
N2—C2—H2A109.5O3—C11—O4124.74 (9)
C1—C2—H2A109.5O3—C11—C12120.89 (9)
N2—C2—H2B109.5O4—C11—C12114.37 (9)
C1—C2—H2B109.5C11—C12—C13114.29 (8)
H2A—C2—H2B108.1C11—C12—H12A108.7
N2—C3—C4110.55 (9)C13—C12—H12A108.7
N2—C3—H3A109.5C11—C12—H12B108.7
C4—C3—H3A109.5C13—C12—H12B108.7
N2—C3—H3B109.5H12A—C12—H12B107.6
C4—C3—H3B109.5C14—C13—C12113.47 (8)
H3A—C3—H3B108.1C14—C13—H13A108.9
N1—C4—C3108.84 (9)C12—C13—H13A108.9
N1—C4—H4A109.9C14—C13—H13B108.9
C3—C4—H4A109.9C12—C13—H13B108.9
N1—C4—H4B109.9H13A—C13—H13B107.7
C3—C4—H4B109.9O5—C14—O6124.17 (9)
H4A—C4—H4B108.3O5—C14—C13121.67 (9)
N2—C5—C10121.22 (10)O6—C14—C13114.14 (9)
N2—C5—C6121.46 (10)
C4—N1—C1—C254.52 (12)O1—N3—C8—C9179.41 (10)
C5—N2—C2—C189.04 (12)O2—N3—C8—C90.67 (16)
C3—N2—C2—C161.41 (12)O1—N3—C8—C70.13 (15)
N1—C1—C2—N257.02 (11)O2—N3—C8—C7179.94 (10)
C5—N2—C3—C488.50 (12)C7—C8—C9—C100.33 (17)
C2—N2—C3—C462.17 (12)N3—C8—C9—C10178.94 (10)
C1—N1—C4—C354.94 (11)C8—C9—C10—C52.44 (18)
N2—C3—C4—N158.37 (12)N2—C5—C10—C9173.84 (11)
C3—N2—C5—C10162.34 (10)C6—C5—C10—C92.92 (17)
C2—N2—C5—C1015.32 (16)O3—C11—C12—C1315.24 (14)
C3—N2—C5—C621.04 (16)O4—C11—C12—C13165.46 (9)
C2—N2—C5—C6168.06 (10)C11—C12—C13—C14166.06 (8)
N2—C5—C6—C7175.36 (10)H6O—O6—C14—O59.0 (11)
C10—C5—C6—C71.39 (16)H6O—O6—C14—C13172.7 (11)
C5—C6—C7—C80.62 (17)C12—C13—C14—O511.74 (14)
C6—C7—C8—C91.19 (17)C12—C13—C14—O6169.97 (9)
C6—C7—C8—N3179.54 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O30.934 (15)1.793 (16)2.7250 (12)175.5 (13)
N1—H1NB···O5i0.903 (16)1.945 (16)2.8127 (12)160.5 (13)
O6—H6O···O4ii1.17 (2)1.27 (2)2.4367 (10)176 (2)
C1—H1A···O6iii0.992.493.1374 (13)123
C3—H3A···O5i0.992.593.3238 (15)130
C3—H3B···O2iv0.992.513.4168 (15)153
C4—H4A···O2v0.992.553.5053 (15)162
C4—H4B···O4vi0.992.453.2354 (13)136
C10—H10···O4vii0.952.573.4146 (13)149
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x, y1, z; (iii) x, y+1, z; (iv) x, y+2, z1/2; (v) x+1/2, y+3/2, z+1; (vi) x+1, y, z+1/2; (vii) x+1, y+2, z+1.
4-(4-Nitrophenyl)piperazinium 4-aminobenzoate monohydrate (II) top
Crystal data top
C10H14N3O2+·C7H6NO2·H2OZ = 2
Mr = 362.38F(000) = 384
Triclinic, P1Dx = 1.439 Mg m3
a = 6.0453 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.3930 (3) ÅCell parameters from 9362 reflections
c = 19.1439 (6) Åθ = 2.8–27.5°
α = 79.482 (2)°µ = 0.11 mm1
β = 89.215 (1)°T = 90 K
γ = 83.967 (1)°Cut block, pale yellow
V = 836.55 (6) Å30.30 × 0.26 × 0.25 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
3810 independent reflections
Radiation source: microsource3567 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.033
φ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 77
Tmin = 0.939, Tmax = 0.971k = 99
34250 measured reflectionsl = 2324
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.2799P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3810 reflectionsΔρmax = 0.40 e Å3
260 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL-2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.060 (12)
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53605 (15)0.20260 (13)1.00635 (4)0.0313 (2)
O20.23072 (15)0.38290 (13)0.99145 (5)0.0317 (2)
N10.76952 (13)0.71108 (11)0.54685 (4)0.01334 (18)
H1NA0.813 (3)0.774 (2)0.5028 (9)0.034 (4)*
H1NB0.732 (2)0.596 (2)0.5393 (7)0.023 (3)*
N20.68305 (13)0.65351 (11)0.69771 (4)0.01221 (18)
N30.41469 (16)0.32803 (12)0.97077 (5)0.0193 (2)
C10.57897 (16)0.81697 (13)0.57606 (5)0.0146 (2)
H1C0.4548450.8443830.5412780.018*
H1D0.6242180.9359140.5846890.018*
C20.50264 (15)0.70618 (13)0.64495 (5)0.0137 (2)
H2A0.3796880.7803290.6647980.016*
H2B0.4445400.5929860.6351180.016*
C30.88481 (15)0.56519 (13)0.66941 (5)0.0143 (2)
H3A0.8577620.4397180.6626580.017*
H3B1.0070800.5517970.7044500.017*
C40.95609 (16)0.67460 (13)0.59914 (5)0.0149 (2)
H4A1.0039280.7934960.6068560.018*
H4B1.0841410.6041890.5800910.018*
C50.61991 (16)0.57294 (13)0.76590 (5)0.01256 (19)
C60.76269 (16)0.43863 (14)0.81014 (5)0.0167 (2)
H60.9059170.4010740.7934980.020*
C70.69753 (17)0.36046 (14)0.87753 (5)0.0182 (2)
H70.7952300.2700860.9070190.022*
C80.48877 (17)0.41525 (13)0.90149 (5)0.0158 (2)
C90.34481 (17)0.54901 (14)0.86003 (5)0.0170 (2)
H90.2027920.5864330.8775730.020*
C100.41010 (16)0.62734 (13)0.79291 (5)0.0159 (2)
H100.3119580.7195300.7644020.019*
O30.91205 (12)0.87584 (10)0.41666 (4)0.01794 (17)
O40.63869 (13)0.73092 (11)0.38233 (4)0.02436 (19)
N40.99454 (17)1.07521 (13)0.07778 (5)0.0216 (2)
H4NA0.881 (3)1.094 (2)0.0482 (9)0.039 (4)*
H4NB1.098 (3)1.152 (2)0.0683 (9)0.036 (4)*
C110.79522 (16)0.82924 (13)0.36896 (5)0.0147 (2)
C120.84904 (15)0.89608 (12)0.29267 (5)0.0132 (2)
C131.04220 (16)0.98073 (13)0.27286 (5)0.0139 (2)
H131.1420980.9968560.3085680.017*
C141.09049 (16)1.04151 (13)0.20203 (5)0.0155 (2)
H141.2234761.0975090.1896910.019*
C150.94427 (17)1.02089 (13)0.14843 (5)0.0155 (2)
C160.74953 (17)0.93703 (14)0.16826 (5)0.0171 (2)
H160.6476350.9232740.1327210.020*
C170.70465 (16)0.87434 (13)0.23895 (5)0.0154 (2)
H170.5736360.8154740.2513250.019*
O1W0.29390 (13)0.65167 (10)0.46397 (4)0.01758 (17)
H1W10.183 (3)0.730 (2)0.4450 (9)0.037 (4)*
H2W10.410 (3)0.681 (2)0.4372 (9)0.041 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0317 (5)0.0350 (5)0.0201 (4)0.0004 (4)0.0010 (3)0.0114 (3)
O20.0324 (5)0.0330 (5)0.0247 (4)0.0021 (4)0.0150 (3)0.0036 (3)
N10.0154 (4)0.0138 (4)0.0104 (4)0.0018 (3)0.0009 (3)0.0012 (3)
N20.0114 (4)0.0134 (4)0.0108 (4)0.0001 (3)0.0004 (3)0.0004 (3)
N30.0251 (5)0.0189 (4)0.0139 (4)0.0055 (3)0.0030 (3)0.0014 (3)
C10.0158 (4)0.0143 (4)0.0125 (4)0.0010 (3)0.0001 (3)0.0009 (3)
C20.0121 (4)0.0163 (4)0.0117 (4)0.0005 (3)0.0001 (3)0.0008 (3)
C30.0124 (4)0.0168 (4)0.0122 (4)0.0009 (3)0.0014 (3)0.0001 (3)
C40.0130 (4)0.0182 (5)0.0128 (4)0.0020 (3)0.0010 (3)0.0009 (3)
C50.0148 (4)0.0114 (4)0.0118 (4)0.0027 (3)0.0005 (3)0.0021 (3)
C60.0148 (4)0.0189 (5)0.0147 (4)0.0007 (4)0.0013 (3)0.0001 (4)
C70.0195 (5)0.0190 (5)0.0141 (4)0.0002 (4)0.0010 (4)0.0013 (4)
C80.0214 (5)0.0152 (4)0.0110 (4)0.0049 (4)0.0026 (4)0.0014 (3)
C90.0176 (5)0.0160 (5)0.0169 (5)0.0009 (4)0.0046 (4)0.0029 (4)
C100.0168 (5)0.0142 (4)0.0151 (4)0.0015 (3)0.0017 (4)0.0003 (3)
O30.0217 (4)0.0183 (4)0.0128 (3)0.0012 (3)0.0020 (3)0.0006 (3)
O40.0247 (4)0.0269 (4)0.0211 (4)0.0106 (3)0.0074 (3)0.0006 (3)
N40.0260 (5)0.0244 (5)0.0130 (4)0.0024 (4)0.0022 (4)0.0000 (3)
C110.0151 (4)0.0116 (4)0.0155 (4)0.0021 (3)0.0036 (3)0.0001 (3)
C120.0145 (4)0.0107 (4)0.0131 (4)0.0007 (3)0.0023 (3)0.0005 (3)
C130.0145 (4)0.0131 (4)0.0141 (4)0.0010 (3)0.0005 (3)0.0027 (3)
C140.0151 (4)0.0147 (4)0.0163 (5)0.0030 (3)0.0036 (3)0.0017 (3)
C150.0196 (5)0.0125 (4)0.0134 (4)0.0013 (3)0.0025 (3)0.0013 (3)
C160.0190 (5)0.0158 (4)0.0163 (5)0.0012 (4)0.0031 (4)0.0027 (4)
C170.0136 (4)0.0130 (4)0.0191 (5)0.0019 (3)0.0007 (3)0.0012 (3)
O1W0.0171 (4)0.0180 (4)0.0176 (4)0.0034 (3)0.0037 (3)0.0023 (3)
Geometric parameters (Å, º) top
O1—N31.2256 (12)C7—C81.3827 (14)
O2—N31.2288 (12)C7—H70.9500
N1—C11.4850 (12)C8—C91.3845 (14)
N1—C41.4884 (12)C9—C101.3801 (13)
N1—H1NA0.936 (17)C9—H90.9500
N1—H1NB0.942 (15)C10—H100.9500
N2—C51.3980 (12)O3—C111.2787 (13)
N2—C31.4668 (12)O4—C111.2488 (13)
N2—C21.4694 (12)N4—C151.3781 (13)
N3—C81.4517 (12)N4—H4NA0.879 (18)
C1—C21.5137 (12)N4—H4NB0.886 (18)
C1—H1C0.9900C11—C121.4968 (12)
C1—H1D0.9900C12—C131.3978 (13)
C2—H2A0.9900C12—C171.3999 (13)
C2—H2B0.9900C13—C141.3856 (13)
C3—C41.5197 (12)C13—H130.9500
C3—H3A0.9900C14—C151.4028 (14)
C3—H3B0.9900C14—H140.9500
C4—H4A0.9900C15—C161.4034 (14)
C4—H4B0.9900C16—C171.3810 (14)
C5—C61.4076 (13)C16—H160.9500
C5—C101.4102 (13)C17—H170.9500
C6—C71.3838 (13)O1W—H1W10.877 (18)
C6—H60.9500O1W—H2W10.885 (18)
C1—N1—C4108.92 (7)C7—C6—H6119.5
C1—N1—H1NA111.3 (10)C5—C6—H6119.5
C4—N1—H1NA111.3 (10)C8—C7—C6119.32 (9)
C1—N1—H1NB111.3 (9)C8—C7—H7120.3
C4—N1—H1NB107.5 (8)C6—C7—H7120.3
H1NA—N1—H1NB106.4 (13)C7—C8—C9121.45 (9)
C5—N2—C3116.22 (7)C7—C8—N3119.79 (9)
C5—N2—C2115.77 (7)C9—C8—N3118.74 (9)
C3—N2—C2112.92 (7)C10—C9—C8119.20 (9)
O1—N3—O2122.35 (9)C10—C9—H9120.4
O1—N3—C8119.31 (9)C8—C9—H9120.4
O2—N3—C8118.34 (9)C9—C10—C5121.17 (9)
N1—C1—C2110.02 (7)C9—C10—H10119.4
N1—C1—H1C109.7C5—C10—H10119.4
C2—C1—H1C109.7C15—N4—H4NA115.6 (11)
N1—C1—H1D109.7C15—N4—H4NB116.4 (11)
C2—C1—H1D109.7H4NA—N4—H4NB116.6 (15)
H1C—C1—H1D108.2O4—C11—O3123.77 (9)
N2—C2—C1112.23 (8)O4—C11—C12118.01 (9)
N2—C2—H2A109.2O3—C11—C12118.21 (9)
C1—C2—H2A109.2C13—C12—C17118.22 (9)
N2—C2—H2B109.2C13—C12—C11121.69 (9)
C1—C2—H2B109.2C17—C12—C11120.10 (9)
H2A—C2—H2B107.9C14—C13—C12121.14 (9)
N2—C3—C4112.56 (8)C14—C13—H13119.4
N2—C3—H3A109.1C12—C13—H13119.4
C4—C3—H3A109.1C13—C14—C15120.42 (9)
N2—C3—H3B109.1C13—C14—H14119.8
C4—C3—H3B109.1C15—C14—H14119.8
H3A—C3—H3B107.8N4—C15—C14120.82 (9)
N1—C4—C3110.60 (8)N4—C15—C16120.62 (9)
N1—C4—H4A109.5C14—C15—C16118.51 (9)
C3—C4—H4A109.5C17—C16—C15120.61 (9)
N1—C4—H4B109.5C17—C16—H16119.7
C3—C4—H4B109.5C15—C16—H16119.7
H4A—C4—H4B108.1C16—C17—C12121.09 (9)
N2—C5—C6121.76 (9)C16—C17—H17119.5
N2—C5—C10120.38 (8)C12—C17—H17119.5
C6—C5—C10117.85 (9)H1W1—O1W—H2W1104.7 (15)
C7—C6—C5120.98 (9)
C4—N1—C1—C260.5 (1)O2—N3—C8—C93.55 (14)
C5—N2—C2—C1171.62 (8)C7—C8—C9—C100.95 (16)
C3—N2—C2—C150.91 (10)N3—C8—C9—C10177.35 (9)
N1—C1—C2—N256.6 (1)C8—C9—C10—C50.26 (15)
C5—N2—C3—C4173.16 (8)N2—C5—C10—C9179.86 (9)
C2—N2—C3—C449.57 (11)C6—C5—C10—C91.23 (15)
C1—N1—C4—C359.29 (10)O4—C11—C12—C13169.47 (9)
N2—C3—C4—N154.06 (10)O3—C11—C12—C1310.47 (13)
C3—N2—C5—C611.92 (13)O4—C11—C12—C1710.42 (14)
C2—N2—C5—C6147.97 (9)O3—C11—C12—C17169.64 (9)
C3—N2—C5—C10169.20 (8)C17—C12—C13—C140.09 (14)
C2—N2—C5—C1033.16 (12)C11—C12—C13—C14179.80 (8)
N2—C5—C6—C7179.93 (9)C12—C13—C14—C150.67 (14)
C10—C5—C6—C71.03 (15)C13—C14—C15—N4177.78 (9)
C5—C6—C7—C80.12 (16)C13—C14—C15—C160.24 (14)
C6—C7—C8—C91.14 (16)N4—C15—C16—C17176.78 (9)
C6—C7—C8—N3177.14 (9)C14—C15—C16—C170.77 (14)
O1—N3—C8—C72.18 (15)C15—C16—C17—C121.38 (15)
O2—N3—C8—C7178.12 (10)C13—C12—C17—C160.93 (14)
O1—N3—C8—C9176.15 (10)C11—C12—C17—C16179.18 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O30.936 (17)1.804 (17)2.737 (1)174.7 (15)
N1—H1NB···O1Wi0.942 (15)1.864 (15)2.7934 (11)168.4 (13)
N4—H4NA···O1ii0.879 (18)2.258 (18)3.0861 (13)156.9 (15)
N4—H4NB···O2iii0.886 (18)2.248 (17)3.0315 (13)147.3 (14)
O1W—H1W1···O3iv0.877 (18)1.890 (18)2.7569 (11)169.7 (16)
O1W—H2W1···O40.885 (18)1.755 (18)2.6388 (11)177.2 (17)
C1—H1C···O1W0.992.503.2511 (12)132
C2—H2B···O4i0.992.583.5572 (13)170
C4—H4A···O3v0.992.513.4578 (12)161
C4—H4B···O1Wvi0.992.533.2921 (12)134
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z1; (iii) x+1, y+1, z1; (iv) x1, y, z; (v) x+2, y+2, z+1; (vi) x+1, y, z.
4-(4-Nitrophenyl)piperazinium 2-(4-chlorophenyl)acetate (III) top
Crystal data top
C10H14N3O2+·C8H6ClO2Z = 2
Mr = 377.82F(000) = 396
Triclinic, P1Dx = 1.451 Mg m3
a = 6.8051 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3927 (5) ÅCell parameters from 9810 reflections
c = 14.3869 (7) Åθ = 2.6–27.5°
α = 83.849 (2)°µ = 0.25 mm1
β = 81.283 (2)°T = 90 K
γ = 72.492 (2)°Rounded block, pale yellow
V = 865.01 (7) Å30.28 × 0.24 × 0.22 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
3954 independent reflections
Radiation source: microsource3617 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.034
φ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 78
Tmin = 0.931, Tmax = 0.971k = 1212
28796 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: mixed
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0293P)2 + 0.3972P]
where P = (Fo2 + 2Fc2)/3
3954 reflections(Δ/σ)max = 0.001
243 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50792 (15)0.72253 (11)0.02713 (7)0.0316 (2)
O20.25948 (17)0.82570 (11)0.05317 (7)0.0356 (2)
N10.26456 (14)0.13828 (11)0.41177 (7)0.01585 (19)
H1NA0.325 (2)0.0464 (18)0.4359 (10)0.026 (4)*
H1NB0.269 (2)0.2061 (18)0.4542 (11)0.032 (4)*
N20.07010 (14)0.32686 (10)0.26302 (6)0.01586 (19)
N30.34059 (17)0.73363 (11)0.01097 (7)0.0227 (2)
C10.38614 (17)0.16486 (12)0.32016 (8)0.0176 (2)
H1A0.3957300.0860350.2777580.021*
H1B0.5287980.1596610.3304260.021*
C20.28355 (16)0.31715 (12)0.27444 (8)0.0172 (2)
H2A0.2838680.3966920.3142900.021*
H2B0.3621110.3317860.2121610.021*
C30.05253 (16)0.30313 (12)0.35323 (7)0.0156 (2)
H3A0.1953300.3096140.3424590.019*
H3B0.0613040.3822760.3952390.019*
C40.04638 (16)0.15129 (12)0.39986 (8)0.0156 (2)
H4A0.0333150.1385790.4621420.019*
H4B0.0440130.0716450.3605670.019*
C50.02922 (16)0.43171 (12)0.19619 (7)0.0151 (2)
C60.21686 (17)0.42157 (12)0.17151 (8)0.0176 (2)
H60.2738620.3451430.2015030.021*
C70.31899 (17)0.52046 (12)0.10471 (8)0.0183 (2)
H70.4463400.5134770.0890590.022*
C80.23292 (18)0.63078 (12)0.06044 (7)0.0177 (2)
C90.04689 (18)0.64229 (12)0.08123 (8)0.0185 (2)
H90.0112200.7168960.0491510.022*
C100.05405 (17)0.54344 (12)0.14959 (8)0.0168 (2)
H100.1810000.5516210.1649510.020*
Cl11.20054 (4)0.01622 (3)0.85294 (2)0.02223 (8)
O30.31330 (12)0.34221 (9)0.51721 (6)0.01836 (17)
O40.60380 (12)0.15406 (8)0.52384 (6)0.01855 (17)
C110.48457 (16)0.27847 (11)0.54780 (7)0.0141 (2)
C120.54892 (18)0.36457 (12)0.61677 (8)0.0187 (2)
H12A0.6004820.4445910.5804400.022*
H12B0.4240320.4135040.6595940.022*
C130.71304 (17)0.27174 (12)0.67559 (8)0.0160 (2)
C140.65746 (17)0.19582 (12)0.75951 (8)0.0176 (2)
H140.5149290.2045800.7794300.021*
C150.80586 (18)0.10768 (12)0.81460 (8)0.0179 (2)
H150.7657250.0574330.8718810.022*
C161.01349 (17)0.09451 (12)0.78437 (8)0.0166 (2)
C171.07373 (17)0.16949 (12)0.70198 (8)0.0176 (2)
H171.2164980.1601590.6822820.021*
C180.92272 (17)0.25871 (12)0.64834 (8)0.0171 (2)
H180.9632970.3115420.5922600.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0330 (5)0.0302 (5)0.0312 (5)0.0051 (4)0.0172 (4)0.0068 (4)
O20.0498 (6)0.0257 (5)0.0320 (5)0.0142 (4)0.0119 (4)0.0144 (4)
N10.0159 (4)0.0129 (4)0.0185 (5)0.0027 (4)0.0054 (4)0.0004 (4)
N20.0133 (4)0.0189 (5)0.0153 (4)0.0052 (3)0.0029 (3)0.0026 (3)
N30.0318 (6)0.0165 (5)0.0170 (5)0.0019 (4)0.0061 (4)0.0004 (4)
C10.0143 (5)0.0182 (5)0.0198 (5)0.0033 (4)0.0026 (4)0.0023 (4)
C20.0144 (5)0.0203 (5)0.0178 (5)0.0062 (4)0.0037 (4)0.0007 (4)
C30.0148 (5)0.0160 (5)0.0147 (5)0.0033 (4)0.0019 (4)0.0012 (4)
C40.0162 (5)0.0141 (5)0.0175 (5)0.0053 (4)0.0043 (4)0.0004 (4)
C50.0168 (5)0.0150 (5)0.0127 (5)0.0033 (4)0.0017 (4)0.0017 (4)
C60.0188 (5)0.0176 (5)0.0173 (5)0.0073 (4)0.0033 (4)0.0019 (4)
C70.0177 (5)0.0195 (5)0.0174 (5)0.0043 (4)0.0041 (4)0.0007 (4)
C80.0242 (6)0.0138 (5)0.0124 (5)0.0012 (4)0.0031 (4)0.0005 (4)
C90.0267 (6)0.0138 (5)0.0153 (5)0.0073 (4)0.0002 (4)0.0017 (4)
C100.0195 (5)0.0168 (5)0.0158 (5)0.0072 (4)0.0021 (4)0.0027 (4)
Cl10.02364 (15)0.02014 (14)0.02045 (14)0.00019 (11)0.00884 (10)0.00015 (10)
O30.0165 (4)0.0167 (4)0.0219 (4)0.0031 (3)0.0066 (3)0.0009 (3)
O40.0207 (4)0.0131 (4)0.0216 (4)0.0023 (3)0.0063 (3)0.0023 (3)
C110.0171 (5)0.0121 (5)0.0138 (5)0.0064 (4)0.0022 (4)0.0024 (4)
C120.0220 (5)0.0131 (5)0.0216 (6)0.0029 (4)0.0082 (4)0.0023 (4)
C130.0202 (5)0.0116 (5)0.0173 (5)0.0042 (4)0.0055 (4)0.0035 (4)
C140.0174 (5)0.0155 (5)0.0209 (5)0.0053 (4)0.0024 (4)0.0036 (4)
C150.0232 (5)0.0144 (5)0.0167 (5)0.0064 (4)0.0025 (4)0.0005 (4)
C160.0199 (5)0.0127 (5)0.0170 (5)0.0019 (4)0.0066 (4)0.0024 (4)
C170.0175 (5)0.0186 (5)0.0181 (5)0.0061 (4)0.0026 (4)0.0038 (4)
C180.0226 (5)0.0156 (5)0.0149 (5)0.0076 (4)0.0032 (4)0.0014 (4)
Geometric parameters (Å, º) top
O1—N31.2322 (14)C7—C81.3904 (16)
O2—N31.2224 (14)C7—H70.9500
N1—C11.4857 (14)C8—C91.3812 (16)
N1—C41.4873 (13)C9—C101.3880 (16)
N1—H1NA0.894 (16)C9—H90.9500
N1—H1NB0.937 (16)C10—H100.9500
N2—C51.3945 (14)Cl1—C161.7434 (11)
N2—C21.4610 (13)O3—C111.2609 (13)
N2—C31.4670 (13)O4—C111.2545 (13)
N3—C81.4544 (14)C11—C121.5319 (15)
C1—C21.5175 (15)C12—C131.5055 (15)
C1—H1A0.9900C12—H12A0.9900
C1—H1B0.9900C12—H12B0.9900
C2—H2A0.9900C13—C181.3930 (16)
C2—H2B0.9900C13—C141.3959 (16)
C3—C41.5137 (14)C14—C151.3901 (15)
C3—H3A0.9900C14—H140.9500
C3—H3B0.9900C15—C161.3860 (16)
C4—H4A0.9900C15—H150.9500
C4—H4B0.9900C16—C171.3844 (16)
C5—C101.4014 (15)C17—C181.3920 (15)
C5—C61.4084 (15)C17—H170.9500
C6—C71.3755 (15)C18—H180.9500
C6—H60.9500
C1—N1—C4111.22 (8)C5—C6—H6119.4
C1—N1—H1NA108.7 (10)C6—C7—C8118.96 (10)
C4—N1—H1NA109.3 (10)C6—C7—H7120.5
C1—N1—H1NB109.4 (10)C8—C7—H7120.5
C4—N1—H1NB110.8 (10)C9—C8—C7121.62 (10)
H1NA—N1—H1NB107.3 (13)C9—C8—N3119.78 (10)
C5—N2—C2118.82 (9)C7—C8—N3118.58 (10)
C5—N2—C3117.88 (9)C8—C9—C10119.14 (10)
C2—N2—C3112.05 (8)C8—C9—H9120.4
O2—N3—O1123.01 (10)C10—C9—H9120.4
O2—N3—C8118.49 (10)C9—C10—C5120.73 (10)
O1—N3—C8118.5 (1)C9—C10—H10119.6
N1—C1—C2110.44 (9)C5—C10—H10119.6
N1—C1—H1A109.6O4—C11—O3124.59 (10)
C2—C1—H1A109.6O4—C11—C12119.40 (9)
N1—C1—H1B109.6O3—C11—C12115.99 (9)
C2—C1—H1B109.6C13—C12—C11115.29 (9)
H1A—C1—H1B108.1C13—C12—H12A108.5
N2—C2—C1109.47 (9)C11—C12—H12A108.5
N2—C2—H2A109.8C13—C12—H12B108.5
C1—C2—H2A109.8C11—C12—H12B108.5
N2—C2—H2B109.8H12A—C12—H12B107.5
C1—C2—H2B109.8C18—C13—C14118.25 (10)
H2A—C2—H2B108.2C18—C13—C12121.49 (10)
N2—C3—C4110.37 (9)C14—C13—C12120.26 (10)
N2—C3—H3A109.6C15—C14—C13121.52 (10)
C4—C3—H3A109.6C15—C14—H14119.2
N2—C3—H3B109.6C13—C14—H14119.2
C4—C3—H3B109.6C16—C15—C14118.74 (10)
H3A—C3—H3B108.1C16—C15—H15120.6
N1—C4—C3109.74 (9)C14—C15—H15120.6
N1—C4—H4A109.7C17—C16—C15121.2 (1)
C3—C4—H4A109.7C17—C16—Cl1119.80 (9)
N1—C4—H4B109.7C15—C16—Cl1119.00 (9)
C3—C4—H4B109.7C16—C17—C18119.24 (10)
H4A—C4—H4B108.2C16—C17—H17120.4
N2—C5—C10122.74 (10)C18—C17—H17120.4
N2—C5—C6118.81 (10)C17—C18—C13121.03 (10)
C10—C5—C6118.39 (10)C17—C18—H18119.5
C7—C6—C5121.12 (10)C13—C18—H18119.5
C7—C6—H6119.4
C4—N1—C1—C256.92 (11)O1—N3—C8—C72.59 (15)
C5—N2—C2—C1158.61 (9)C7—C8—C9—C101.54 (17)
C3—N2—C2—C158.37 (11)N3—C8—C9—C10179.95 (10)
N1—C1—C2—N256.83 (11)C8—C9—C10—C50.95 (16)
C5—N2—C3—C4157.89 (9)N2—C5—C10—C9177.79 (10)
C2—N2—C3—C458.71 (11)C6—C5—C10—C90.44 (16)
C1—N1—C4—C356.34 (11)O4—C11—C12—C1320.24 (15)
N2—C3—C4—N156.40 (11)O3—C11—C12—C13161.46 (10)
C2—N2—C5—C1010.02 (15)C11—C12—C13—C1894.64 (12)
C3—N2—C5—C10130.87 (11)C11—C12—C13—C1485.23 (13)
C2—N2—C5—C6167.32 (10)C18—C13—C14—C150.76 (16)
C3—N2—C5—C651.78 (14)C12—C13—C14—C15179.12 (10)
N2—C5—C6—C7178.76 (10)C13—C14—C15—C160.64 (16)
C10—C5—C6—C71.30 (16)C14—C15—C16—C171.28 (16)
C5—C6—C7—C80.76 (17)C14—C15—C16—Cl1179.84 (8)
C6—C7—C8—C90.69 (17)C15—C16—C17—C180.50 (16)
C6—C7—C8—N3179.21 (10)Cl1—C16—C17—C18179.38 (8)
O2—N3—C8—C92.19 (16)C16—C17—C18—C130.95 (16)
O1—N3—C8—C9178.86 (10)C14—C13—C18—C171.56 (15)
O2—N3—C8—C7176.36 (11)C12—C13—C18—C17178.32 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O4i0.894 (16)1.848 (16)2.7252 (12)166.3 (14)
N1—H1NB···O30.937 (16)1.765 (17)2.6903 (12)169.0 (15)
C4—H4A···O4ii0.992.463.2539 (14)137
C7—H7···O1iii0.952.593.2256 (15)124
C12—H12A···O3iv0.992.493.4710 (14)173
C15—H15···O2v0.952.373.1944 (15)146
C18—H18···O3vi0.952.553.2644 (15)132
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x1, y+1, z; (iv) x+1, y+1, z+1; (v) x+1, y1, z+1; (vi) x+1, y, z.
4-(4-Nitrophenyl)piperazinium 2,3,4,5,6-pentafluorobenzoate (IV) top
Crystal data top
C10H14N3O2+·C7F5O2Z = 2
Mr = 419.31F(000) = 428
Triclinic, P1Dx = 1.649 Mg m3
a = 5.9779 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.3934 (8) ÅCell parameters from 9830 reflections
c = 12.9312 (9) Åθ = 2.8–27.5°
α = 75.754 (2)°µ = 0.15 mm1
β = 81.670 (2)°T = 90 K
γ = 87.717 (2)°Tablet, pale yellow
V = 844.63 (9) Å30.21 × 0.17 × 0.05 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
3882 independent reflections
Radiation source: microsource3456 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.034
φ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 77
Tmin = 0.914, Tmax = 0.959k = 1414
38650 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.419P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3882 reflectionsΔρmax = 0.36 e Å3
269 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL-2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2020) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43180 (17)0.17458 (10)0.07590 (8)0.0322 (2)
O20.41598 (17)0.36577 (10)0.07776 (8)0.0315 (2)
N11.18846 (17)0.19065 (9)0.40887 (8)0.0156 (2)
H1NA1.080 (3)0.1911 (13)0.4679 (12)0.019*
H1NB1.331 (3)0.1841 (13)0.4282 (12)0.019*
N21.23887 (16)0.20731 (9)0.18180 (8)0.0164 (2)
N30.49963 (18)0.26345 (11)0.05166 (8)0.0241 (2)
C11.16518 (19)0.30898 (10)0.32993 (9)0.0170 (2)
H1C1.2157210.3754640.3578610.020*
H1D1.0046640.3235010.3195070.020*
C21.30775 (19)0.30694 (11)0.22310 (9)0.0178 (2)
H2A1.2900930.3847880.1702380.021*
H2B1.4691620.2971740.2330080.021*
C31.2830 (2)0.09221 (11)0.25697 (9)0.0178 (2)
H3A1.4457770.0858800.2645690.021*
H3B1.2440240.0239630.2281460.021*
C41.1436 (2)0.08444 (10)0.36671 (9)0.0175 (2)
H4A0.9808360.0820920.3603580.021*
H4B1.1819380.0088180.4178560.021*
C51.04949 (19)0.22037 (11)0.12889 (9)0.0153 (2)
C60.9588 (2)0.12034 (11)0.10325 (9)0.0182 (2)
H61.0218490.0421040.1268840.022*
C70.7802 (2)0.13394 (12)0.04448 (10)0.0198 (2)
H70.7213860.0658660.0273850.024*
C80.68749 (19)0.24811 (12)0.01068 (9)0.0189 (2)
C90.7691 (2)0.34801 (11)0.03565 (9)0.0188 (2)
H90.7026870.4254760.0125540.023*
C100.9478 (2)0.33452 (11)0.09439 (9)0.0174 (2)
H101.0032240.4032130.1118540.021*
O30.86075 (13)0.21817 (8)0.56526 (7)0.01998 (19)
O40.61190 (14)0.17431 (8)0.46723 (7)0.01912 (19)
C110.66662 (18)0.21484 (10)0.54141 (9)0.0144 (2)
C120.48004 (18)0.26637 (10)0.61162 (9)0.0142 (2)
C130.29057 (19)0.2006 (1)0.66651 (9)0.0144 (2)
C140.12144 (19)0.2486 (1)0.72922 (9)0.0152 (2)
C150.13793 (19)0.36674 (11)0.73547 (9)0.0164 (2)
C160.3259 (2)0.43432 (10)0.68299 (10)0.0171 (2)
C170.49472 (19)0.38314 (10)0.62342 (9)0.0161 (2)
F10.26874 (12)0.08537 (6)0.66068 (6)0.01959 (16)
F20.05531 (12)0.18192 (6)0.78430 (6)0.02050 (16)
F30.02700 (12)0.41607 (7)0.79314 (6)0.02259 (17)
F40.34328 (13)0.54896 (7)0.69035 (6)0.02478 (18)
F50.67401 (12)0.45273 (6)0.57274 (6)0.02176 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0272 (5)0.0461 (6)0.0283 (5)0.0045 (4)0.0106 (4)0.0137 (4)
O20.0268 (5)0.0417 (6)0.0257 (5)0.0087 (4)0.0111 (4)0.0048 (4)
N10.0123 (4)0.0197 (5)0.0159 (5)0.0007 (4)0.0026 (4)0.0061 (4)
N20.0159 (5)0.0176 (5)0.0165 (5)0.0003 (4)0.0035 (4)0.0052 (4)
N30.0183 (5)0.0382 (7)0.0158 (5)0.0003 (4)0.0032 (4)0.0061 (5)
C10.0166 (5)0.0159 (5)0.0201 (6)0.0007 (4)0.0034 (4)0.0066 (4)
C20.0161 (5)0.0190 (6)0.0187 (6)0.0038 (4)0.0026 (4)0.0049 (4)
C30.0182 (5)0.0184 (6)0.0186 (6)0.0051 (4)0.0053 (4)0.0070 (4)
C40.0182 (5)0.0156 (5)0.0189 (6)0.0005 (4)0.0041 (4)0.0040 (4)
C50.0140 (5)0.0193 (6)0.0121 (5)0.0005 (4)0.0003 (4)0.0041 (4)
C60.0188 (6)0.0178 (6)0.0181 (5)0.0002 (4)0.0020 (4)0.0050 (4)
C70.0193 (6)0.0242 (6)0.0172 (5)0.0033 (5)0.0012 (4)0.0078 (5)
C80.0144 (5)0.0292 (6)0.0130 (5)0.0004 (5)0.0024 (4)0.0044 (5)
C90.0175 (5)0.0213 (6)0.0152 (5)0.0020 (4)0.0003 (4)0.0015 (4)
C100.0177 (5)0.0179 (6)0.0164 (5)0.0012 (4)0.0009 (4)0.0045 (4)
O30.0124 (4)0.0296 (5)0.0211 (4)0.0009 (3)0.0036 (3)0.0115 (4)
O40.0153 (4)0.0250 (4)0.0208 (4)0.0024 (3)0.0047 (3)0.0118 (3)
C110.0136 (5)0.0136 (5)0.0159 (5)0.0003 (4)0.0021 (4)0.0032 (4)
C120.0131 (5)0.0164 (5)0.0141 (5)0.0010 (4)0.0041 (4)0.0043 (4)
C130.0154 (5)0.0130 (5)0.0160 (5)0.0000 (4)0.0051 (4)0.0040 (4)
C140.0134 (5)0.0180 (6)0.0133 (5)0.0025 (4)0.0017 (4)0.0019 (4)
C150.0152 (5)0.0201 (6)0.0149 (5)0.0035 (4)0.0017 (4)0.0069 (4)
C160.0192 (6)0.0138 (5)0.0205 (6)0.0002 (4)0.0043 (4)0.0073 (4)
C170.0134 (5)0.0172 (5)0.0176 (5)0.0032 (4)0.0017 (4)0.0037 (4)
F10.0192 (3)0.0132 (3)0.0269 (4)0.0020 (3)0.0013 (3)0.0067 (3)
F20.0171 (3)0.0219 (4)0.0199 (4)0.0052 (3)0.0037 (3)0.0033 (3)
F30.0201 (4)0.0244 (4)0.0240 (4)0.0027 (3)0.0036 (3)0.0115 (3)
F40.0244 (4)0.0158 (4)0.0366 (4)0.0012 (3)0.0006 (3)0.0131 (3)
F50.0171 (3)0.0186 (4)0.0291 (4)0.0062 (3)0.0024 (3)0.0071 (3)
Geometric parameters (Å, º) top
O1—N31.2304 (15)C6—C71.3806 (17)
O2—N31.2376 (15)C6—H60.9500
N1—C41.4922 (15)C7—C81.3866 (18)
N1—C11.4926 (15)C7—H70.9500
N1—H1NA0.929 (15)C8—C91.3814 (18)
N1—H1NB0.915 (16)C9—C101.3810 (17)
N2—C51.3902 (14)C9—H90.9500
N2—C21.4638 (14)C10—H100.9500
N2—C31.4675 (15)O3—C111.2475 (14)
N3—C81.4556 (15)O4—C111.2496 (14)
C1—C21.5193 (16)C11—C121.5263 (15)
C1—H1C0.9900C12—C171.3836 (16)
C1—H1D0.9900C12—C131.3860 (16)
C2—H2A0.9900C13—F11.3459 (13)
C2—H2B0.9900C13—C141.3841 (16)
C3—C41.5225 (16)C14—F21.3343 (13)
C3—H3A0.9900C14—C151.3764 (16)
C3—H3B0.9900C15—F31.3391 (13)
C4—H4A0.9900C15—C161.3807 (17)
C4—H4B0.9900C16—F41.3418 (13)
C5—C101.4106 (16)C16—C171.3788 (16)
C5—C61.4107 (16)C17—F51.3473 (13)
C4—N1—C1113.04 (9)C10—C5—C6117.61 (10)
C4—N1—H1NA107.8 (9)C7—C6—C5121.27 (11)
C1—N1—H1NA106.1 (9)C7—C6—H6119.4
C4—N1—H1NB109.5 (9)C5—C6—H6119.4
C1—N1—H1NB109.6 (9)C6—C7—C8119.25 (11)
H1NA—N1—H1NB110.9 (13)C6—C7—H7120.4
C5—N2—C2119.8 (1)C8—C7—H7120.4
C5—N2—C3120.24 (10)C9—C8—C7121.24 (11)
C2—N2—C3108.81 (9)C9—C8—N3119.10 (11)
O1—N3—O2123.20 (11)C7—C8—N3119.66 (11)
O1—N3—C8118.67 (11)C10—C9—C8119.56 (11)
O2—N3—C8118.13 (11)C10—C9—H9120.2
N1—C1—C2109.46 (9)C8—C9—H9120.2
N1—C1—H1C109.8C9—C10—C5121.06 (11)
C2—C1—H1C109.8C9—C10—H10119.5
N1—C1—H1D109.8C5—C10—H10119.5
C2—C1—H1D109.8O3—C11—O4126.84 (11)
H1C—C1—H1D108.2O3—C11—C12115.21 (10)
N2—C2—C1110.54 (9)O4—C11—C12117.95 (10)
N2—C2—H2A109.5C17—C12—C13116.73 (10)
C1—C2—H2A109.5C17—C12—C11120.47 (10)
N2—C2—H2B109.5C13—C12—C11122.8 (1)
C1—C2—H2B109.5F1—C13—C14117.97 (10)
H2A—C2—H2B108.1F1—C13—C12119.72 (10)
N2—C3—C4110.32 (9)C14—C13—C12122.31 (10)
N2—C3—H3A109.6F2—C14—C15119.71 (10)
C4—C3—H3A109.6F2—C14—C13121.1 (1)
N2—C3—H3B109.6C15—C14—C13119.19 (10)
C4—C3—H3B109.6F3—C15—C14120.17 (10)
H3A—C3—H3B108.1F3—C15—C16119.85 (10)
N1—C4—C3110.66 (9)C14—C15—C16119.98 (10)
N1—C4—H4A109.5F4—C16—C17120.49 (10)
C3—C4—H4A109.5F4—C16—C15119.94 (10)
N1—C4—H4B109.5C17—C16—C15119.57 (11)
C3—C4—H4B109.5F5—C17—C16117.56 (10)
H4A—C4—H4B108.1F5—C17—C12120.25 (10)
N2—C5—C10121.43 (10)C16—C17—C12122.14 (11)
N2—C5—C6120.9 (1)
C4—N1—C1—C252.11 (12)O4—C11—C12—C17124.65 (12)
C5—N2—C2—C180.27 (13)O3—C11—C12—C13124.39 (12)
C3—N2—C2—C163.65 (12)O4—C11—C12—C1355.62 (15)
N1—C1—C2—N258.10 (12)C17—C12—C13—F1178.3 (1)
C5—N2—C3—C481.76 (12)C11—C12—C13—F11.44 (16)
C2—N2—C3—C461.97 (12)C17—C12—C13—C140.83 (16)
C1—N1—C4—C351.34 (12)C11—C12—C13—C14179.43 (10)
N2—C3—C4—N155.67 (12)F1—C13—C14—F21.56 (16)
C2—N2—C5—C1013.05 (16)C12—C13—C14—F2177.59 (10)
C3—N2—C5—C10152.87 (10)F1—C13—C14—C15179.14 (10)
C2—N2—C5—C6170.03 (10)C12—C13—C14—C151.72 (17)
C3—N2—C5—C630.21 (15)F2—C14—C15—F32.64 (16)
N2—C5—C6—C7175.64 (11)C13—C14—C15—F3178.05 (10)
C10—C5—C6—C71.39 (17)F2—C14—C15—C16176.77 (10)
C5—C6—C7—C80.41 (18)C13—C14—C15—C162.54 (17)
C6—C7—C8—C90.66 (18)F3—C15—C16—F40.33 (17)
C6—C7—C8—N3179.78 (10)C14—C15—C16—F4179.08 (10)
O1—N3—C8—C9178.16 (11)F3—C15—C16—C17179.76 (10)
O2—N3—C8—C91.79 (16)C14—C15—C16—C170.83 (17)
O1—N3—C8—C72.27 (17)F4—C16—C17—F50.70 (17)
O2—N3—C8—C7177.78 (11)C15—C16—C17—F5179.4 (1)
C7—C8—C9—C100.68 (17)F4—C16—C17—C12178.25 (10)
N3—C8—C9—C10179.75 (10)C15—C16—C17—C121.85 (18)
C8—C9—C10—C50.35 (17)C13—C12—C17—F5179.89 (10)
N2—C5—C10—C9175.65 (10)C11—C12—C17—F50.15 (16)
C6—C5—C10—C91.36 (17)C13—C12—C17—C162.62 (17)
O3—C11—C12—C1755.33 (15)C11—C12—C17—C16177.63 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O30.929 (15)1.754 (16)2.6723 (13)169.4 (14)
N1—H1NB···O4i0.915 (16)1.816 (16)2.7310 (13)178.8 (14)
C1—H1C···F5ii0.992.493.4813 (14)177
C1—H1D···F4iii0.992.493.3996 (14)153
C4—H4B···O3iv0.992.563.3421 (15)136
C6—H6···F2v0.952.543.4536 (15)161
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+2, y, z+1; (v) x+1, y, z+1.
 

Acknowledgements

One of the authors (V) is grateful to the DST–PURSE Project, Vijnana Bhavana, UOM for providing research facilities. HSY thanks UGC for a BSR Faculty fellowship for three years.

Funding information

Funding for this research was provided by: NSF (MRI CHE1625732) and the University of Kentucky (Bruker D8 Venture diffractometer).

References

First citationAyeni, A. O., Watkins, G. M. & Hosten, E. C. (2019). Bull. Chem. Soc. Ethiop. 33, 341–348.  CAS Google Scholar
First citationBerkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369–2371.  Web of Science CrossRef CAS Google Scholar
First citationBhardwaj, M., Ai, Q., Parkin, S. R. & Grossman, R. B. (2020). Acta Cryst. E76, 77–81.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819–1826.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFábry, J. (2018). Acta Cryst. E74, 1344–1357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, S., Pandey, D., Mandalapu, D., Bala, V., Sharma, V., Shukla, M., Yadav, S. K., Singh, N., Jaiswal, S., Maikhuri, J. P., Lal, J., Siddiqi, M. I., Gupta, G. & Sharma, V. L. (2016). Med. Chem. Commun. 7, 2111–2121.  Web of Science CrossRef CAS Google Scholar
First citationKaya, B., Ozkay, Y., Temel, H. E. & Kaplancikli, Z. A. (2016). J. Chem. 5878410.  Google Scholar
First citationKharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470–2488.  CAS Google Scholar
First citationKönig, O., Bürgi, H.-B., Armbruster, T., Hulliger, J. & Weber, T. (1997). J. Am. Chem. Soc. 119, 10632–10640.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLu, Y.-X. (2007). Acta Cryst. E63, o3611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahesha, N., Kiran Kumar, H., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022). Acta Cryst. E78, 510–518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRehman, Z., Shah, A., Muhammad, N., Ali, S., Qureshi, R., Meetsma, A. & Butler, I. S. (2009). Eur. J. Med. Chem. 44, 3986–3993.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationShankara Prasad, H. J., Devaraju, Vinaya, Yathirajan, H. S., Parkin, S. R. & Glidewell, C. (2022). Acta Cryst. E78, 840–845.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUpadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225–2238.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, X.-Y., Wang, M.-Z., Guo, F.-J., Sun, J. & Qian, S.-S. (2014). Z. Kristallogr. Cryst. Mat. 229, 97–98.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWodtke, R., Steinberg, J., Köckerling, M., Löser, R. & Mamat, C. (2018). RSC Adv. 8, 40921–40933.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, R.-H., Guo, H.-Y., Deng, H., Li, J. & Quan, Z.-S. (2021). J. Enzyme Inhib. Med. Chem. 36, 1165–1197.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds