research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structure of a (2,6-diiso­propyldi­naphtho­[2,1-d:1′,2′-f][1,3]dithiepin-4-yl)(phen­yl)methanol atropisomer

crossmark logo

aBDG Synthesis, PO Box 38627, Wellington Mail Centre 5045, Wellington, New Zealand, bFerrier Research Institute, Victoria University of Wellington, PO Box 33436, Lower Hutt 5046, New Zealand, and cDepartment of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
*Correspondence e-mail: john.mcadam@otago.ac.nz

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 20 February 2023; accepted 23 February 2023; online 28 February 2023)

The racemic title compound, C34H32OS2, comprises an atropisomeric binaphthyl di­thio­acetal substituted at the methyl­ene carbon atom with a chiral benzyl alcohol. The two naphthalene ring systems are additionally substituted at the 3,3′-position with isopropyl groups. The overall stereochemistry is defined as aS,R and aR,S. The hydroxyl group forms an intra­molecular O—H⋯S hydrogen bond to one of the sulfur atoms. The crystal structure contains weak C—H⋯π inter­actions that link the mol­ecules into extended arrays.

1. Chemical context

In the continuing pursuit of stereoselective synthetic methodology, steric considerations play an important role. Indeed, defined by steric limitations are the atropisomers of biaryl compounds formed as a result of restricted rotation about the connecting single bonds (Cen et al., 2022[Cen, S., Huang, N., Lian, D., Shen, A., Zhao, M.-X. & Zhang, Z. (2022). Nat. Commun. 13, 4735.]; Wencel-Delord et al., 2015[Wencel-Delord, J., Panossian, A., Leroux, F. R. & Colobert, F. (2015). Chem. Soc. Rev. 44, 3418-3430.]; Cheng et al., 2021[Cheng, J. K., Xiang, S.-H., Li, S., Ye, L. & Tan, B. (2021). Chem. Rev. 121, 4805-4902.]). For 1,1′-bi­naphthalenes, functionalization of the 2,2′ positions with a di­thia­pine ring helps to lock the atropisomers against inversion and facilitates studies of diastereoselective reactions. An example of such reactions is the attack of the sulfur-stabilized di­naphtho­dithiepine carb­anion on a prochiral electrophile Delogu et al., 1991[Delogu, G., De Lucchi, O., Maglioli, P. & Valle, G. (1991). J. Org. Chem. 56, 4467-4473.]; Beare et al., 2023[Beare, N., Painter, G. F. & McAdam, C. J. (2023). Acta Cryst. E79, 101-107.]). Reaction of the organolithium of di­naphtho­[2,1-d:1′,2′-f][1,3]dithiepine, and various substituted derivatives with benzaldehyde (and other prochiral ketones) proceeded in high chemical yield and gave readily separable alcohol products, allowing the diastereomeric excess to be qu­anti­fied (Pa­inter, 1995[Painter, G. F. (1995). PhD Thesis, University of Otago, New Zealand.]; Beare, 1999[Beare, N. (1999). Ph. D. Thesis, University of Otago, New Zealand.]). The results suggested the structure of the organolithium species is significant in determining the stereoselectivity, and that in all cases the same diastereoisomer (aS,R/aR,S) forms the major product (Delogu et al., 1991[Delogu, G., De Lucchi, O., Maglioli, P. & Valle, G. (1991). J. Org. Chem. 56, 4467-4473.]; Beare et al., 2023[Beare, N., Painter, G. F. & McAdam, C. J. (2023). Acta Cryst. E79, 101-107.]).

This work reports the synthesis and single-crystal X-ray structure of the major diastereoisomer of (2,6-diiso­propyldi­naphtho­[2,1-d:1′,2′-f][1,3]dithiepin-4-yl)(phen­yl)methanol, C34H32OS2, 1, formed from the reaction of the carbanion of 2,6-diiso­propyldi­naphtho­[2,1-d:1′,2′-f][1,3]dithiepine (2) with benzaldehyde. The stereochemistry is confirmed as aS,R/aR,S. We postulate that the preference for this geometry is a transition state that minimizes steric inter­actions between the incoming ketone and proximal 3,3′ bi­naphthalene substituents, isopropyl groups in the case of 1. Intra­molecular O—H⋯S hydrogen bonds (described below) also provide a model for predicted lithium–sulfur inter­actions that stabilize the transition state and li­thio salt, prior to the quenching of the reaction. A reaction mechanism showing carbanion (3) attack of the R atropisomer at the Re face of benzaldehyde to form the major aR,S diastereoisomer is illustrated in Fig. 1[link].

[Scheme 1]
[Figure 1]
Figure 1
Proposed reaction and transition state for the carbanion attack of the R atropisomer at the Re face of benzaldehyde.

2. Structural commentary

In 1 (Fig. 2[link]), a 1,1′-linked bi­naphthalene is functionalized at the 2,2′ positions with disulfaneyl­methane. The seven-membered ring formed locks the bi­naphthalene ring system into R and S atropisomers of pseudo-C2 symmetry. The individual naphthalene ring systems are predictably flat, with r.m.s. deviations from the ten-atom mean plane of 0.017 and 0.026 Å for C101–C110 and C201–C210, respectively. The C102—C101—C201—C202 torsion angle is −68.8 (4)°, and the dihedral angle between the naphthalene ring mean planes is 70.4 (1)°. The structure is extended with a chiral benzyl alcohol substituent on the methyl­ene bridge carbon atom, giving aS,R and aR,S enanti­omer pairs. The alcohol group of the mol­ecule is positioned such that an intra­molecular hydrogen bond forms to one of the bridge sulfur atoms (Table 1[link], Fig. 3[link]). The same feature has been observed in the closely related structure with Cambridge Structural Database refcode NEWVOE (Beare et al., 2023[Beare, N., Painter, G. F. & McAdam, C. J. (2023). Acta Cryst. E79, 101-107.]). Completing the structural description are isopropyl residues on the 3- and 3′-positions of the bi­naphthalene unit that are arranged so as to minimize steric inter­action with the thio­acetal core, but result in short contacts between the methane­triyl hydrogen atoms and adjacent sulfur atoms of the seven-membered ring (H⋯S = 2.72–2.73 Å, Fig. 3[link]).

Table 1
Hydrogen-bond and C—H⋯π geometry (Å, °)

Cg1 and Cg5 are the centroids of the C3–C8 and C205–C210 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯S1 0.84 2.53 3.069 (3) 123
C111—H111⋯S1 1.00 2.73 3.197 (3) 109
C211—H211⋯S2 1.00 2.72 3.163 (3) 107
C206—H206⋯O2i 0.95 2.58 3.284 (4) 132
C205—H205⋯Cg1i 0.95 3.01 3.886 (4) 154
C5—H5⋯Cg5ii 0.95 3.03 3.759 (4) 135
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
The mol­ecular structure of 1 with displacement ellipsoids drawn at the 50% probability level. Carbon atoms C107–C109 follow the logical progression but their labels are omitted for clarity.
[Figure 3]
Figure 3
The intra­molecular O—H⋯S hydrogen bond and short C—H⋯S contacts of 1.

3. Supra­molecular features

In the crystal of 1, a weak C—H⋯O hydrogen bond (Veljković et al., 2011[Veljković, D. Ž., Janjić, G. V. & Zarić, S. D. (2011). CrystEngComm, 13, 5005-5010.]) between naphthalene atom H206 and the adjacent alcohol oxygen atom generates chains propagating in the a-axis direction (Table 1[link], Fig. 4[link]). The motif is supported by a weak Malone Type II C—H⋯π contact (Malone et al., 1997[Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). Faraday Trans. 93, 3429-3436.]) between a naphthalene hydrogen atom and the benzyl aromatic ring (H205⋯Cg1 = 3.01 Å; Cg1 is the centroid of the C3–C8 ring). A further Malone Type III C—H⋯π inter­action (H5⋯Cg5 = 3.03 Å; Cg5 is the centroid of the C205–C210 ring) forms inversion-related dimers (Table 1[link], Fig. 5[link]).

[Figure 4]
Figure 4
C206—H206⋯O2 (red dashed lines) supported by weak C205—H205⋯π(Cg1i) inter­actions (dashed blue lines), which generate chains of 1 propagating in the a-axis direction. Cg1 is the C3–C8 ring centroid; symmetry code: (i) 1 + x, y, z.
[Figure 5]
Figure 5
Pairwise C5—H5⋯π(Cg5ii) inter­actions in 1, which generate inversion dimers Cg5 is the C205–C210 ring centroid; symmetry code: (ii) 1 − x, 1 − y, 1 − z.

4. Database survey

A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gives only four hits for the di­naphtho­dithiepine fragment, including a di­naphtho­dithiepine S-oxide (refcode JITTEL; Delogu et al., 1991[Delogu, G., De Lucchi, O., Maglioli, P. & Valle, G. (1991). J. Org. Chem. 56, 4467-4473.]) and TEVQUK and closely related NEWVIY and NEWVOE from this research group (Beare & McAdam, 2023[Beare, N. & McAdam, C. J. (2023). CSD communication (refcode TEVQUK; CCDC 2238685). CCDC, Cambridge, England.]; Beare et al., 2023[Beare, N., Painter, G. F. & McAdam, C. J. (2023). Acta Cryst. E79, 101-107.]). The 1,1′-bi­naphthalene framework with 3,3′ isopropyl groups is unprecedented.

5. Synthesis and crystallization

The synthesis of 1 is a multistep process (Fig. 6[link]), but can be summarized as follows: preparation of the isopropyl-substituted bi­naphthalene diol (6); conversion to the di­thiol (9) exploiting the Newman–Kwart thermorearrangement of the bis-O-thio­carbamate ester (Kwart & Evans, 1966[Kwart, H. & Evans, E. R. (1966). J. Org. Chem. 31, 410-413.]; Newman & Karnes, 1966[Newman, M. S. & Karnes, H. A. (1966). J. Org. Chem. 31, 3980-3984.]); Lewis acid-catalysed thio­acyl­ation to form the seven-membered 1,3-dithiepine ring (2); and finally reaction of the sulfur-stabilized carbanion with the prochiral electrophile benzaldehyde.

[Figure 6]
Figure 6
Preparation of 1.

3,3′-Diisopropyl-[1,1′-bi­naphthalene]-2,2′-diol (6): a previously reported synthesis of precursor diol 5 was in low overall yield due to an inefficient oxidative dimerization of 3-hy­droxy-2-naphthoic acid (Cram et al., 1978[Cram, D. J., Helgeson, R. C., Peacock, S. C., Kaplan, L. J., Domeier, L. A., Moreau, P., Koga, K., Mayer, J. M., Chao, Y., Siegel, M. G., Hoffman, D. H. & Sogah, G. D. Y. (1978). J. Org. Chem. 43, 1930-1946.]). In this work we utilized the effective catalytic oxidation of methyl 3-hy­droxy-2-naphtho­ate to prepare diesterdiol 4 (Noji et al., 1994[Noji, M., Nakajima, M. & Koga, K. (1994). Tetrahedron Lett. 35, 7983-7984.]). Returning to Cram's procedure, treatment of 4 with MeLi produced 5. Hydrogeno­lysis of this using tri­ethyl­silane and gaseous boron trifluoride (Fry et al., 1978[Fry, J. L., Orfanopoulos, M., Adlington, M. G., Dittman, W. R. Jr & Silverman, S. B. (1978). J. Org. Chem. 43, 374-375.]) gave the diiso­propyl­diol 6 as a white solid, m.p. 453–454 K (81%): 1H NMR (500 MHz) δ (ppm): 1.40 and 1.41 [2 × (6H, d, Me)], 3.49 (2H, sept, CHMe2), 5.18 (2H, OH), 7.07 (2H, d, binap H5,5′), 7.24 (2H, ddd, binap H7,7′), 7.35 (2H, ddd, binap H6,6′), 7.85 (2H, s, binap H4,4′), 7.86 (2H, d, binap H8,8′). 13C NMR (50 MHz) δ (ppm): 22.7 (Me), 28.0 (CHMe2), 110.9 (2C, binap C), 123.9, 124.0, 126.5, 126.7 & 128.0 (5 × 2C, binap CH), 129.6, 131.9, 137.4 & 151.5 (4 × 2C, binap C).

3,3′-Diisopropyl-[1,1′-bi­naphthalene]-2,2′-di­thiol (9): 6 was converted via the bis-O-(N,N-di­methyl­thio­carbamate) 7 to the bis-S-(N,N-di­methyl­thio­carbamate) 8. NaH (2.5 equiv.) was added to a solution of 6 in DMF at 273 K. After 1 h, N,N-di­methyl­thio­carbamoyl chloride was added and the mix stirred at 358 K for 3 h. After cooling again to 273 K, the product was precipitated by addition of 5% KOH solution. Flash chromatography (SiO2/CH2Cl2) and recrystallization from toluene solution gave 7 as a white solid (82%). This was heated under N2 at 544 K for 30 min. Chromatography (SiO2/hexa­ne/CH2Cl2) and recrystallization from toluene solution gave the bis-S-thio­carbamate ester as a white solid, m.p. 486-487 K (83%). [8: 1H NMR (200 MHz) δ (ppm): 1.34 and 1.46 [2 × (6H, d, CHMe)], 2.51 (12H, s, NMe), 3.66 (2H, sept, CHMe2), 7.04 (2H, d, binap H5,5′), 7.11 (2H, ddd, binap H7,7′), 7.39 (2H, ddd, binap H6,6′), 7.84 (2H, d, binap H8,8′), 7.90 (2H, s, binap H4,4′). 13C NMR (50 MHz) δ (ppm): 23.4 and 24.8 (2 × CHMe), 31.5 CHMe2, 36.7 (NMe), 124.1, 125.1, 126.7, 127.2 and 127.8 (5 × 2C, binap CH), 128.0, 131.8, 134.2, 145.2 & 150.1 (5 × 2C, binap C), 166.1 (C=O)]. LiAlH4 (10 equiv.) was added to a suspension of 8 in THF at 273 K. The reaction mix was refluxed for 4 h, then cooled to 273 K, quenched (H2O) and acidified (conc. H2SO4). Extraction with Et2O was performed under an Ar atmosphere to avoid oxidation. Washing, drying (Na2SO4) and solvent removal in vacuo gave a yellow solid, which was purified by flash chroma­tography (SiO2/CH2Cl2) to give di­thiol 9, m.p. 523–524 K (91%): 1H NMR (200 MHz) δ (ppm): 1.44 (12H, d, CHMe), 3.26 (2H, s, SH), 3.40 (2H, sept, CHMe2), 6.86 (2H, d, binap H5,5′), 7.16 (2H, ddd, binap H7,7′), 7.35 (2H, ddd, binap H6,6′), 7.82 (2H, d, binap H8,8′), 7.84 (2H, s, binap H4,4′). 13C NMR (50 MHz) δ (ppm): 23.3 and 23.4 (2 × CHMe), 31.9 CHMe2, 124.3, 125.1, 125.5, 126.6 & 127.9 (5 × 2C, binap CH), 131.0, 132.1, 132.6, 133.1 & 144.4 (5 × 2C, binap C).

2,6-Diiso­propyldi­naphtho­[2,1-d:1′,2′-f][1,3]dithiepine (2): to a solution of di­thiol 9 and di­meth­oxy­methane (1.05 equiv.) in CH2Cl2 under Ar at 273 K was added BF3·OEt2 (2.1 equiv.) dropwise. The reaction mix was allowed to warm to room temp. over 3 h, then stirred a further 12 h and quenched (H2O). The product was extracted with CH2Cl2, washed (5% KOH then water), dried and concentrated in vacuo. Chroma­tography on SiO2 (1:2 CH2Cl2:hexa­ne) and recrystallization from toluene solution gave 2 as a white solid, m.p. 536–537 K (95%): 1H NMR (300 MHz) δ (ppm): 1.40 and 1.46 [2 × (6H, d, CHMe)], 3.89 (2H, sept, CHMe2), 4.17 (2H, s, SCH2S), 6.93 (2H, d, binap H5,5′), 7.12 (2H, ddd, binap H7,7′), 7.42 (2H, ddd, binap H6,6′), 7.89 (2H, d, binap H8,8′), 7.90 (2H, s, binap H4,4′). 13C NMR (75 MHz) d (ppm): 23.8 and 24.7 (2 × CHMe), 31.6 CHMe2, 48.4 (SCH2S), 124.6, 125.5, 126.6, 127.4 and 127.9 (5 × 2C, binap CH), 129.2, 130.8, 134.1, 144.3 & 148.0 (5 × 2C, binap C).

(2,6-Diiso­propyldi­naphtho­[2,1-d:1′,2′-f][1,3]dithiepin-4-yl)(phen­yl)methanol (1): to a solution of di­thio­acetal 2 in THF under Ar at 173 K was added BuLi (1.4 M in hexa­nes, 1.3 equiv.) dropwise. The resultant deep-red solution stirred for 30 min confirms formation of the carbanion (3). Benzaldehyde (1.3 equiv.) was added dropwise and the mix stirred for a further 1 h at 173 K. The reaction was quenched (sat. NH4Cl), extracted with Et2O, washed (H2O), dried (MgSO4) and concentrated in vacuo gave the predicted mix of diastereo­isomers (78%, 69% d.e.). Chromatography on SiO2 (1:3 CH2Cl2:hexa­ne) eluted the major product first. Slow evaporation of an EtOH/H2O mix gave pale-yellow plates of 1 suitable for X-ray diffraction, m.p. 525–526 K: 1H NMR (200 MHz) δ (ppm): 1.26, 1.34, 1.35 and 1.61 [4 × (3H, d, CHMe)], 3.26 (1H, s, OH), 3.61 and 3.97 [2 × (1H, sept, CHMe2)], 4.27 (1H, d, CHOH), 4.82 (1H, d, SCHS), 6.88 and 6.94 [2 × (1H, d, Ar)], 7.08–7.17 (2H, m, Ar), 7.25–7.34 (5H, m, Ar), 7.37–7.50 (2H, m, Ar), 7.84 (1H, s, Ar), 7.86 and 7.93 [2 × (1H, d, Ar)], 7.97 (1H, s, Ar). 13C NMR (50 MHz) δ (ppm): 22.9, 24.0, 24.2 and 26.5 (4 × CHMe), 31.3 and 31.6 (2 × CHMe2), 75.2 (CH), 75.5 (CH), 124.6, 124.7, 125.5 and 125.7 (4 × Ar CH), 126.6 (Ar C), 126.7, 126.9, 127.1, 127.3, 127.5, 127.9, 128.4 and 128.7 (11 × Ar CH), 130.8, 131.0, 131.1, 134.1, 134.2, 139.4, 143.9, 144.7, 148.2 & 148.7 (10 × Ar C). Further elution gave the minor diastereoisomer pair 1m, m.p. 527–528 K: 1H NMR (200 MHz) δ (ppm): 1.20, 1.34, 1.39 and 1.58 [4 × (3H, d, CHMe)], 3.28 (1H, s, OH), 3.80 and 3.96 [2 × (1H, sept, CHMe2)], 5.00 (1H, d, CHOH), 5.09 (1H, d, SCHS), 6.85 and 6.95 [2 × (1H, d, Ar)], 7.06–7.18 (2H, m, Ar), 7.26–7.49 (7H, m, Ar), 7.84–7.93 (4H, m, Ar). 13C NMR (50 MHz) δ (ppm): 22.3, 23.8, 24.7 and 26.8 (4 × CHMe), 31.3 and 31.4 (2 × CHMe2), 73.4 (CH), 78.6 (CH), 124.3, 124.7, 125.5, 125.6, 126.4, 126.6, 126.7, 127.4, 127.5, 127.9, 128.3 & 128.6 (15 × Ar CH), 129.3, 129.5, 130.7, 130.8, 130.9, 134.1, 141.5, 144.1, 144.2, 148.3 & 148.9 (11 × Ar C).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic H, 1.00 Å, Uiso = 1.2Ueq(C) for CH, 0.98 Å, Uiso = 1.5Ueq(C) for methyl H atoms and d(O—H) = 0.84 Å, Uiso = 1.5Ueq(O) for OH.

Table 2
Experimental details

Crystal data
Chemical formula C34H32OS2
Mr 520.71
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 168
a, b, c (Å) 11.874 (4), 19.579 (7), 24.374 (9)
V3) 5666 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.68 × 0.40 × 0.13
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.835, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 68261, 5679, 3354
Rint 0.134
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.127, 1.06
No. of reflections 5679
No. of parameters 339
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.28
Computer programs: SMART and SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip 2010).

(2,6-Diisopropyldinaphtho[2,1-d:1',2'-f][1,3]dithiepin-4-yl)(phenyl)methanol atropisomer top
Crystal data top
C34H32OS2Dx = 1.221 Mg m3
Mr = 520.71Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 5483 reflections
a = 11.874 (4) Åθ = 2.2–26.3°
b = 19.579 (7) ŵ = 0.21 mm1
c = 24.374 (9) ÅT = 168 K
V = 5666 (3) Å3Plate, pale yellow
Z = 80.68 × 0.40 × 0.13 mm
F(000) = 2208
Data collection top
Bruker SMART CCD
diffractometer
3354 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.134
ω scansθmax = 26.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1414
Tmin = 0.835, Tmax = 1.000k = 1124
68261 measured reflectionsl = 3030
5679 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0365P)2 + 6.2206P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
5679 reflectionsΔρmax = 0.33 e Å3
339 parametersΔρmin = 0.28 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.44124 (7)0.28091 (4)0.43352 (3)0.03261 (19)
S20.43855 (7)0.41835 (4)0.49632 (3)0.03191 (19)
O20.19441 (19)0.27784 (11)0.47083 (10)0.0472 (6)
H2O0.2398910.2503470.4563740.071*
C1010.5406 (3)0.38957 (15)0.38412 (12)0.0314 (7)
C1020.4540 (2)0.34209 (14)0.37906 (11)0.0304 (7)
C1030.3799 (3)0.34092 (15)0.33207 (12)0.0316 (7)
C1110.2886 (3)0.28677 (16)0.32557 (12)0.0366 (7)
H1110.2623950.2737790.3631370.044*
C1120.3394 (3)0.22282 (18)0.29887 (17)0.0614 (11)
H11D0.2809680.1878480.2948930.092*
H11E0.4003220.2051800.3220250.092*
H11F0.3694970.2346020.2626370.092*
C1130.1849 (3)0.3108 (2)0.29280 (15)0.0574 (10)
H11A0.1254110.2762580.2952010.086*
H11B0.2058960.3175520.2542960.086*
H11C0.1573380.3540350.3080780.086*
C1040.3978 (3)0.38892 (15)0.29172 (12)0.0363 (8)
H1040.3508630.3884570.2601410.044*
C1050.4996 (3)0.48813 (17)0.25314 (14)0.0503 (10)
H1050.4525170.4873050.2216550.060*
C1060.5824 (4)0.53643 (19)0.25746 (15)0.0609 (11)
H1060.5930050.5684100.2286080.073*
C1070.6523 (3)0.53936 (18)0.30425 (14)0.0528 (10)
H1070.7084490.5737680.3069290.063*
C1080.6396 (3)0.49259 (16)0.34607 (13)0.0414 (8)
H1080.6867230.4951940.3774980.050*
C1090.5563 (3)0.44036 (15)0.34254 (12)0.0336 (7)
C1100.4837 (3)0.43908 (16)0.29560 (12)0.0370 (8)
C2010.6210 (3)0.38596 (14)0.43239 (12)0.0300 (7)
C2020.5861 (2)0.40046 (14)0.48581 (12)0.0303 (7)
C2030.6628 (3)0.40156 (14)0.53151 (12)0.0306 (7)
C2110.6236 (3)0.42082 (15)0.58962 (12)0.0354 (7)
H2110.5611210.4547160.5857430.042*
C2120.5756 (3)0.35802 (17)0.61924 (13)0.0485 (9)
H21A0.5512020.3710530.6561980.073*
H21B0.6337870.3226830.6218080.073*
H21C0.5110810.3402490.5986070.073*
C2130.7165 (3)0.45444 (18)0.62422 (14)0.0519 (9)
H21D0.7460400.4944160.6047600.078*
H21E0.7775380.4216010.6303410.078*
H21F0.6852640.4687330.6596120.078*
C2040.7736 (3)0.38353 (14)0.52109 (12)0.0324 (7)
H2040.8260860.3844800.5505140.039*
C2050.9258 (3)0.34162 (15)0.45912 (13)0.0362 (7)
H2050.9769110.3401430.4890930.043*
C2060.9616 (3)0.32265 (16)0.40766 (14)0.0435 (8)
H2061.0371990.3083290.4022030.052*
C2070.8859 (3)0.32443 (18)0.36282 (14)0.0464 (9)
H2070.9112250.3110340.3274450.056*
C2080.7764 (3)0.34529 (16)0.36978 (13)0.0411 (8)
H2080.7269150.3463070.3391670.049*
C2090.7360 (3)0.36552 (14)0.42274 (12)0.0314 (7)
C2100.8123 (3)0.36355 (14)0.46790 (12)0.0323 (7)
C10.3767 (3)0.33266 (15)0.48761 (12)0.0325 (7)
H10.3876270.3076260.5229780.039*
C20.2491 (3)0.34195 (15)0.47961 (12)0.0344 (7)
H20.2364190.3714530.4466970.041*
C30.1923 (3)0.37540 (16)0.52906 (13)0.0373 (8)
C40.1482 (3)0.44076 (17)0.52523 (16)0.0495 (9)
H40.1594530.4665720.4926830.059*
C50.0874 (3)0.4691 (2)0.5686 (2)0.0727 (14)
H50.0581650.5141270.5657370.087*
C60.0700 (4)0.4318 (3)0.6153 (2)0.0806 (16)
H60.0264710.4502630.6444530.097*
C70.1160 (4)0.3668 (3)0.62003 (17)0.0747 (14)
H70.1057930.3415710.6529390.090*
C80.1771 (3)0.3385 (2)0.57685 (14)0.0536 (10)
H80.2080800.2939230.5802180.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0432 (5)0.0266 (4)0.0280 (4)0.0020 (4)0.0017 (4)0.0016 (3)
S20.0340 (4)0.0287 (4)0.0330 (4)0.0016 (3)0.0011 (4)0.0015 (3)
O20.0445 (14)0.0360 (12)0.0610 (16)0.0023 (11)0.0005 (12)0.0121 (12)
C1010.0372 (18)0.0312 (16)0.0258 (16)0.0047 (14)0.0016 (13)0.0002 (12)
C1020.0374 (18)0.0290 (15)0.0248 (16)0.0053 (14)0.0024 (14)0.0006 (12)
C1030.0364 (18)0.0324 (16)0.0259 (16)0.0013 (14)0.0006 (14)0.0007 (13)
C1110.0411 (19)0.0415 (18)0.0272 (16)0.0055 (15)0.0023 (14)0.0005 (14)
C1120.066 (3)0.047 (2)0.071 (3)0.013 (2)0.008 (2)0.018 (2)
C1130.046 (2)0.072 (3)0.054 (2)0.014 (2)0.0098 (19)0.009 (2)
C1040.0447 (19)0.0411 (18)0.0230 (16)0.0018 (15)0.0044 (14)0.0012 (14)
C1050.069 (3)0.051 (2)0.0312 (18)0.015 (2)0.0113 (18)0.0129 (16)
C1060.085 (3)0.058 (2)0.040 (2)0.023 (2)0.004 (2)0.0179 (18)
C1070.061 (2)0.053 (2)0.045 (2)0.0199 (19)0.0012 (19)0.0107 (18)
C1080.046 (2)0.0446 (19)0.0338 (18)0.0063 (16)0.0009 (16)0.0003 (15)
C1090.0391 (18)0.0336 (16)0.0281 (16)0.0001 (15)0.0027 (15)0.0000 (13)
C1100.0453 (19)0.0389 (18)0.0268 (17)0.0035 (15)0.0006 (15)0.0024 (14)
C2010.0350 (17)0.0278 (15)0.0271 (16)0.0034 (13)0.0043 (14)0.0041 (13)
C2020.0347 (18)0.0243 (15)0.0318 (17)0.0003 (12)0.0004 (13)0.0017 (12)
C2030.0399 (19)0.0225 (14)0.0295 (16)0.0013 (13)0.0045 (14)0.0007 (12)
C2110.0448 (19)0.0318 (16)0.0295 (17)0.0034 (15)0.0044 (15)0.0026 (13)
C2120.066 (2)0.046 (2)0.0333 (19)0.0007 (18)0.0034 (18)0.0020 (15)
C2130.059 (2)0.058 (2)0.038 (2)0.0046 (19)0.0031 (18)0.0152 (17)
C2040.0395 (19)0.0291 (16)0.0287 (16)0.0030 (14)0.0087 (14)0.0020 (13)
C2050.0345 (18)0.0357 (17)0.0386 (18)0.0013 (15)0.0025 (15)0.0046 (14)
C2060.036 (2)0.0420 (19)0.052 (2)0.0065 (15)0.0046 (17)0.0021 (16)
C2070.044 (2)0.058 (2)0.0363 (19)0.0071 (18)0.0030 (17)0.0044 (17)
C2080.041 (2)0.049 (2)0.0329 (18)0.0042 (16)0.0042 (15)0.0043 (15)
C2090.0342 (18)0.0299 (16)0.0301 (17)0.0004 (13)0.0011 (14)0.0009 (13)
C2100.0349 (18)0.0262 (16)0.0358 (18)0.0011 (13)0.0020 (14)0.0012 (13)
C10.0381 (18)0.0311 (16)0.0282 (16)0.0001 (14)0.0030 (14)0.0022 (13)
C20.0397 (18)0.0275 (16)0.0361 (18)0.0000 (14)0.0024 (14)0.0016 (13)
C30.0303 (17)0.0368 (18)0.045 (2)0.0073 (14)0.0023 (15)0.0087 (15)
C40.041 (2)0.0393 (19)0.068 (3)0.0021 (16)0.0074 (18)0.0106 (18)
C50.047 (3)0.057 (3)0.114 (4)0.009 (2)0.023 (3)0.046 (3)
C60.063 (3)0.099 (4)0.080 (3)0.041 (3)0.036 (3)0.059 (3)
C70.080 (3)0.096 (4)0.049 (2)0.049 (3)0.016 (2)0.017 (2)
C80.058 (2)0.059 (2)0.044 (2)0.018 (2)0.0047 (19)0.0076 (18)
Geometric parameters (Å, º) top
S1—C1021.794 (3)C203—C2111.538 (4)
S1—C11.831 (3)C211—C2121.536 (4)
S2—C2021.805 (3)C211—C2131.537 (4)
S2—C11.844 (3)C211—H2111.0000
O2—C21.429 (3)C212—H21A0.9800
O2—H2O0.8400C212—H21B0.9800
C101—C1021.391 (4)C212—H21C0.9800
C101—C1091.432 (4)C213—H21D0.9800
C101—C2011.517 (4)C213—H21E0.9800
C102—C1031.444 (4)C213—H21F0.9800
C103—C1041.377 (4)C204—C2101.430 (4)
C103—C1111.525 (4)C204—H2040.9500
C111—C1121.535 (4)C205—C2061.375 (4)
C111—C1131.542 (4)C205—C2101.430 (4)
C111—H1111.0000C205—H2050.9500
C112—H11D0.9800C206—C2071.415 (5)
C112—H11E0.9800C206—H2060.9500
C112—H11F0.9800C207—C2081.374 (4)
C113—H11A0.9800C207—H2070.9500
C113—H11B0.9800C208—C2091.433 (4)
C113—H11C0.9800C208—H2080.9500
C104—C1101.420 (4)C209—C2101.426 (4)
C104—H1040.9500C1—C21.538 (4)
C105—C1061.368 (5)C1—H11.0000
C105—C1101.425 (4)C2—C31.529 (4)
C105—H1050.9500C2—H21.0000
C106—C1071.411 (5)C3—C81.383 (5)
C106—H1060.9500C3—C41.386 (4)
C107—C1081.379 (4)C4—C51.395 (5)
C107—H1070.9500C4—H40.9500
C108—C1091.425 (4)C5—C61.368 (6)
C108—H1080.9500C5—H50.9500
C109—C1101.432 (4)C6—C71.389 (7)
C201—C2021.396 (4)C6—H60.9500
C201—C2091.442 (4)C7—C81.394 (5)
C202—C2031.439 (4)C7—H70.9500
C203—C2041.386 (4)C8—H80.9500
C102—S1—C1101.47 (13)C203—C211—H211107.5
C202—S2—C1101.17 (13)C211—C212—H21A109.5
C2—O2—H2O109.5C211—C212—H21B109.5
C102—C101—C109119.8 (3)H21A—C212—H21B109.5
C102—C101—C201120.2 (3)C211—C212—H21C109.5
C109—C101—C201119.9 (3)H21A—C212—H21C109.5
C101—C102—C103122.1 (3)H21B—C212—H21C109.5
C101—C102—S1116.3 (2)C211—C213—H21D109.5
C103—C102—S1121.6 (2)C211—C213—H21E109.5
C104—C103—C102117.5 (3)H21D—C213—H21E109.5
C104—C103—C111120.6 (3)C211—C213—H21F109.5
C102—C103—C111121.8 (3)H21D—C213—H21F109.5
C103—C111—C112109.4 (3)H21E—C213—H21F109.5
C103—C111—C113114.2 (3)C203—C204—C210122.7 (3)
C112—C111—C113110.1 (3)C203—C204—H204118.6
C103—C111—H111107.6C210—C204—H204118.6
C112—C111—H111107.6C206—C205—C210120.6 (3)
C113—C111—H111107.6C206—C205—H205119.7
C111—C112—H11D109.5C210—C205—H205119.7
C111—C112—H11E109.5C205—C206—C207120.1 (3)
H11D—C112—H11E109.5C205—C206—H206119.9
C111—C112—H11F109.5C207—C206—H206119.9
H11D—C112—H11F109.5C208—C207—C206120.9 (3)
H11E—C112—H11F109.5C208—C207—H207119.6
C111—C113—H11A109.5C206—C207—H207119.6
C111—C113—H11B109.5C207—C208—C209120.7 (3)
H11A—C113—H11B109.5C207—C208—H208119.7
C111—C113—H11C109.5C209—C208—H208119.7
H11A—C113—H11C109.5C210—C209—C208118.4 (3)
H11B—C113—H11C109.5C210—C209—C201118.9 (3)
C103—C104—C110122.3 (3)C208—C209—C201122.7 (3)
C103—C104—H104118.8C209—C210—C204119.2 (3)
C110—C104—H104118.8C209—C210—C205119.4 (3)
C106—C105—C110120.4 (3)C204—C210—C205121.4 (3)
C106—C105—H105119.8C2—C1—S1112.7 (2)
C110—C105—H105119.8C2—C1—S2107.4 (2)
C105—C106—C107120.8 (3)S1—C1—S2114.81 (16)
C105—C106—H106119.6C2—C1—H1107.2
C107—C106—H106119.6S1—C1—H1107.2
C108—C107—C106120.4 (3)S2—C1—H1107.2
C108—C107—H107119.8O2—C2—C3107.1 (2)
C106—C107—H107119.8O2—C2—C1111.3 (2)
C107—C108—C109120.5 (3)C3—C2—C1112.7 (3)
C107—C108—H108119.7O2—C2—H2108.6
C109—C108—H108119.7C3—C2—H2108.6
C108—C109—C101123.1 (3)C1—C2—H2108.6
C108—C109—C110118.6 (3)C8—C3—C4119.4 (3)
C101—C109—C110118.3 (3)C8—C3—C2119.8 (3)
C104—C110—C105120.9 (3)C4—C3—C2120.6 (3)
C104—C110—C109119.9 (3)C3—C4—C5120.8 (4)
C105—C110—C109119.2 (3)C3—C4—H4119.6
C202—C201—C209119.3 (3)C5—C4—H4119.6
C202—C201—C101121.8 (3)C6—C5—C4119.7 (4)
C209—C201—C101118.9 (3)C6—C5—H5120.1
C201—C202—C203122.5 (3)C4—C5—H5120.1
C201—C202—S2117.4 (2)C5—C6—C7119.9 (4)
C203—C202—S2120.1 (2)C5—C6—H6120.0
C204—C203—C202117.1 (3)C7—C6—H6120.0
C204—C203—C211121.2 (3)C6—C7—C8120.5 (4)
C202—C203—C211121.6 (3)C6—C7—H7119.8
C212—C211—C213110.6 (3)C8—C7—H7119.8
C212—C211—C203110.4 (2)C3—C8—C7119.7 (4)
C213—C211—C203113.1 (3)C3—C8—H8120.1
C212—C211—H211107.5C7—C8—H8120.1
C213—C211—H211107.5
C109—C101—C102—C1031.6 (4)C201—C202—C203—C211177.2 (3)
C201—C101—C102—C103176.0 (3)S2—C202—C203—C2112.7 (4)
C109—C101—C102—S1179.7 (2)C204—C203—C211—C21293.8 (3)
C201—C101—C102—S12.6 (4)C202—C203—C211—C21285.2 (3)
C1—S1—C102—C10176.0 (2)C204—C203—C211—C21330.7 (4)
C1—S1—C102—C103105.3 (2)C202—C203—C211—C213150.2 (3)
C101—C102—C103—C1040.1 (4)C202—C203—C204—C2100.9 (4)
S1—C102—C103—C104178.5 (2)C211—C203—C204—C210178.2 (3)
C101—C102—C103—C111177.2 (3)C210—C205—C206—C2070.2 (5)
S1—C102—C103—C1111.4 (4)C205—C206—C207—C2080.3 (5)
C104—C103—C111—C11291.7 (4)C206—C207—C208—C2090.2 (5)
C102—C103—C111—C11285.3 (4)C207—C208—C209—C2100.1 (5)
C104—C103—C111—C11332.2 (4)C207—C208—C209—C201178.2 (3)
C102—C103—C111—C113150.8 (3)C202—C201—C209—C2102.7 (4)
C102—C103—C104—C1101.2 (4)C101—C201—C209—C210178.6 (3)
C111—C103—C104—C110178.4 (3)C202—C201—C209—C208175.6 (3)
C110—C105—C106—C1071.0 (6)C101—C201—C209—C2083.0 (4)
C105—C106—C107—C1081.2 (6)C208—C209—C210—C204180.0 (3)
C106—C107—C108—C1090.4 (5)C201—C209—C210—C2041.6 (4)
C107—C108—C109—C101178.7 (3)C208—C209—C210—C2050.0 (4)
C107—C108—C109—C1102.2 (5)C201—C209—C210—C205178.4 (3)
C102—C101—C109—C108177.0 (3)C203—C204—C210—C2093.4 (4)
C201—C101—C109—C1085.4 (4)C203—C204—C210—C205176.5 (3)
C102—C101—C109—C1102.1 (4)C206—C205—C210—C2090.1 (4)
C201—C101—C109—C110175.5 (3)C206—C205—C210—C204179.9 (3)
C103—C104—C110—C105179.8 (3)C102—S1—C1—C279.4 (2)
C103—C104—C110—C1090.7 (5)C102—S1—C1—S244.0 (2)
C106—C105—C110—C104179.7 (3)C202—S2—C1—C2164.7 (2)
C106—C105—C110—C1090.8 (5)C202—S2—C1—S138.5 (2)
C108—C109—C110—C104178.1 (3)S1—C1—C2—O250.8 (3)
C101—C109—C110—C1041.0 (4)S2—C1—C2—O2178.23 (19)
C108—C109—C110—C1052.4 (5)S1—C1—C2—C3171.0 (2)
C101—C109—C110—C105178.5 (3)S2—C1—C2—C361.5 (3)
C102—C101—C201—C20268.8 (4)O2—C2—C3—C849.5 (4)
C109—C101—C201—C202113.6 (3)C1—C2—C3—C873.2 (4)
C102—C101—C201—C209109.8 (3)O2—C2—C3—C4125.6 (3)
C109—C101—C201—C20967.8 (4)C1—C2—C3—C4111.7 (3)
C209—C201—C202—C2035.5 (4)C8—C3—C4—C51.0 (5)
C101—C201—C202—C203175.9 (3)C2—C3—C4—C5174.2 (3)
C209—C201—C202—S2174.6 (2)C3—C4—C5—C60.7 (6)
C101—C201—C202—S24.0 (4)C4—C5—C6—C72.1 (6)
C1—S2—C202—C20172.4 (2)C5—C6—C7—C82.0 (6)
C1—S2—C202—C203107.7 (2)C4—C3—C8—C71.1 (5)
C201—C202—C203—C2043.7 (4)C2—C3—C8—C7174.0 (3)
S2—C202—C203—C204176.4 (2)C6—C7—C8—C30.3 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg5 are the centroids of the C3–C8 and C205–C210 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2O···S10.842.533.069 (3)123
C111—H111···S11.002.733.197 (3)109
C211—H211···S21.002.723.163 (3)107
C206—H206···O2i0.952.583.284 (4)132
C205—H205···Cg1i0.953.013.886 (4)154
C5—H5···Cg5ii0.953.033.759 (4)135
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

This paper and Beare et al. (2023[Beare, N. & McAdam, C. J. (2023). CSD communication (refcode TEVQUK; CCDC 2238685). CCDC, Cambridge, England.]) are dedicated to Emeritus Professors Jim Simpson and Rob A. J. Smith, University of Otago, who (wishing to enjoy their retirement) have abdicated co-authorial responsibilities. We also thank Emeritus Professor W. T. Robinson, University of Canterbury, for the X-ray data collection. These true gentlemen between them mentored dozens of young scientists, and without them this work would never have occurred.

References

First citationBeare, N. (1999). Ph. D. Thesis, University of Otago, New Zealand.  Google Scholar
First citationBeare, N. & McAdam, C. J. (2023). CSD communication (refcode TEVQUK; CCDC 2238685). CCDC, Cambridge, England.  Google Scholar
First citationBeare, N., Painter, G. F. & McAdam, C. J. (2023). Acta Cryst. E79, 101–107.  CrossRef Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCen, S., Huang, N., Lian, D., Shen, A., Zhao, M.-X. & Zhang, Z. (2022). Nat. Commun. 13, 4735.  Web of Science CSD CrossRef PubMed Google Scholar
First citationCheng, J. K., Xiang, S.-H., Li, S., Ye, L. & Tan, B. (2021). Chem. Rev. 121, 4805–4902.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCram, D. J., Helgeson, R. C., Peacock, S. C., Kaplan, L. J., Domeier, L. A., Moreau, P., Koga, K., Mayer, J. M., Chao, Y., Siegel, M. G., Hoffman, D. H. & Sogah, G. D. Y. (1978). J. Org. Chem. 43, 1930–1946.  CrossRef CAS Google Scholar
First citationDelogu, G., De Lucchi, O., Maglioli, P. & Valle, G. (1991). J. Org. Chem. 56, 4467–4473.  CSD CrossRef CAS Web of Science Google Scholar
First citationFry, J. L., Orfanopoulos, M., Adlington, M. G., Dittman, W. R. Jr & Silverman, S. B. (1978). J. Org. Chem. 43, 374–375.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKwart, H. & Evans, E. R. (1966). J. Org. Chem. 31, 410–413.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMalone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). Faraday Trans. 93, 3429–3436.  CrossRef CAS Web of Science Google Scholar
First citationNewman, M. S. & Karnes, H. A. (1966). J. Org. Chem. 31, 3980–3984.  CrossRef CAS Web of Science Google Scholar
First citationNoji, M., Nakajima, M. & Koga, K. (1994). Tetrahedron Lett. 35, 7983–7984.  CrossRef CAS Google Scholar
First citationPainter, G. F. (1995). PhD Thesis, University of Otago, New Zealand.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVeljković, D. Ž., Janjić, G. V. & Zarić, S. D. (2011). CrystEngComm, 13, 5005–5010.  Google Scholar
First citationWencel-Delord, J., Panossian, A., Leroux, F. R. & Colobert, F. (2015). Chem. Soc. Rev. 44, 3418–3430.  Web of Science CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds