research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1,2-bis­­(4-tert-butyl­phen­yl)ethyl­ene-1,2-di­thiol­ato(1−)]nickel(II) pentane 0.25-solvate

crossmark logo

aDepartment of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, USA
*Correspondence e-mail: donahue@tulane.edu

Edited by J. Reibenspies, Texas A & M University, USA (Received 18 January 2023; accepted 2 February 2023; online 17 February 2023)

The title compound, [Ni(C22H26S2)2], 1, is a square-planar D2h-symmetric compound that occurs on a general position in non-centrosymmetric tetra­gonal P41212 (No. 92) with ¼ eq of n-pentane (C5H12) as co-crystallite. Intra­ligand bond lengths show the di­thiol­ene ligands to be in their half-oxidized radical monoanionic form. Inter­molecular tBu-C—H⋯arenecentroid and tBu-C—H⋯NiS2C2 centroid close contacts guide the packing arrangement for 1.

1. Chemical context

Group 10 metallodi­thiol­ene complexes have elicited considerable and sustained inter­est because their optical and solid-state properties are well suited for such important applications as reversibly bleaching dyes in neodymium YAG lasers (Mueller-Westerhoff et al., 1991[Mueller-Westerhoff, U. T., Vance, B. & Ihl Yoon, D. (1991). Tetrahedron, 47, 909-932.]), as robust dyes for optical data storage (Nakazumi et al., 1992[Nakazumi, H., Takamura, R., Kitao, T. & Adachi, T. (1992). Dyes Pigments, 18, 1-9.]), as non-linear optical devices (Deplano et al., 2010[Deplano, P., Pilia, L., Espa, D., Mercuri, M. L. & Serpe, A. (2010). Coord. Chem. Rev. 254, 1434-1447.]) and as conducting (Robertson & Cronin, 2002[Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 97-127.]; Kato, 2004[Kato, R. (2004). Chem. Rev. 104, 5319-5346.]; Ouahab, 1998[Ouahab, L. (1998). Coord. Chem. Rev. 178-180, 1501-1531.]) or magnetic materials (Robertson & Cronin, 2002[Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 97-127.]; Ouahab, 1998[Ouahab, L. (1998). Coord. Chem. Rev. 178-180, 1501-1531.]; Faulmann & Cassoux, 2003[Faulmann, C. & Cassoux, P. (2003). Prog. Inorg. Chem. 52, 399-489.]). Among the ligand type generally, those with aryl (Ar) substituents enjoy the advantages of straightforward synthesis from readily accessible benzoin or benzil precursors and of qualitatively predictable effect upon redox potentials and absorption spectra. Our own inter­est in complexes featuring such ligands has been motivated by their potential to host, by means of appropriately set di­thiol­ene radicals, coherent quantum states for application in quantum computing and data storage (McGuire et al., 2018[McGuire, J., Miras, H. H., Donahue, J. P., Richards, E. & Sproules, S. (2018). Chem. Eur. J. 24, 17598-17605.]). With the aim of broadening the window of redox potentials for the [Ar2C2S22–] − e → [Ar2C2S.S] oxidation, thereby creating the possibility for completely resolving and separately observ­ing these oxidation processes in mixed di­thiol­ene complexes of the form [(Ar2C2S2)M(tpbz)M(S2C2Ar'2)] (tpbz = 1,2,4,5-tetra­kis­(di­phenyl­phosphino)benzene; Ar ≠ Ar'), we have undertaken the synthesis and electrochemical characterization of a variety of [Ni(S2C2Ar2)2] complexes with either electron-withdrawing or electron-donating ring sub­stituents. In the course of this effort, crystalline samples of [Ni(S2C2(C6H4-4-tBu)2)2] that were suited for crystallography were obtained. Herein, the details of this structure are described.

The 4,4′-di-tert-butyl­benzoin that serves as a di­thiol­ene ligand precursor is prepared from the corresponding benz­alde­hyde by a 1,4-dimethyl-1,2,4-triazolium iodide-mediated coupling reaction (Myles et al., 2013[Myles, L., Gathergood, N. & Connon, S. J. (2013). Chem. Commun. 49, 5316-5318.]). Following a procedure originally disclosed by Schrauzer (Schrauzer & Mayweg, 1965a[Schrauzer, G. N. & Mayweg, V. P. (1965a). J. Am. Chem. Soc. 87, 1483-1489.]) and well vetted by others, benzoins and benzils are subject equally well to transformation to di­thiol­ene thio­phosphoryl sulfides (Schrauzer & Mayweg, 1965b[Schrauzer, G. N., Mayweg, V. P. & Heinrich, W. (1965b). Inorg. Chem. 4, 1615-1617.]; Arumugam et al., 2007[Arumugam, K., Bollinger, J. E., Fink, M. & Donahue, J. P. (2007). Inorg. Chem. 46, 3283-3288.]) upon treatment with P4S10 in refluxing dioxane. Without the necessity of their being isolated and purified, the introduction of a Ni2+ salt to these di­thiol­ene thio­phosphoryl inter­mediates leads to the metal bis­(di­thiol­ene) complex as a charge-neutral species that precipitates from the reaction mixture. Execution of Schrauzer's protocol using 4,4′-di-tert-butyl­benzoin produces [Ni(S2C2(C6H4-4-tBu)2)2], 1, in a yield of 32%. The bis­(4-tert-butyl­phen­yl)-substituted di­thiol­ene ligand has been used in the preparation and structural characterization of homoleptic Au3+ (Kokatam et al., 2007[Kokatam, S., Ray, K., Pap, J., Bill, E., Geiger, W. E., LeSuer, R. J., Rieger, P. H., Weyhermüller, T., Neese, F. & Wieghardt, K. (2007). Inorg. Chem. 46, 1100-1111.]), Pd2+ (Kokatam et al., 2007[Kokatam, S., Ray, K., Pap, J., Bill, E., Geiger, W. E., LeSuer, R. J., Rieger, P. H., Weyhermüller, T., Neese, F. & Wieghardt, K. (2007). Inorg. Chem. 46, 1100-1111.]), and Pt2+ complexes (Pap, et al., 2007[Pap, J. S., Benedito, F. L., Bothe, E., Bill, E., DeBeer George, S., Weyhermüller, T. & Wieghardt, K. (2007). Inorg. Chem. 46, 4187-4196.]), but its Ni2+ compound, although investigated spectroscopically (Men et al., 2008[Men, J.-F., Cheng, H.-F., Chen, Z.-H., Chu, Z.-Y., Zheng, W.-W. & Wang, Q. (2008). Guofang Keji Daxue Xuebao, 30, 29-33.]), has not been the subject of a crystallographic study.

[Scheme 1]

2. Structural commentary

Compound 1 (Fig. 1[link]) crystallizes in the non-centrosymmetric tetra­gonal space group P41212 (No. 92) with ¼ eq of n-pentane (C5H12) and features a c axis much longer [65.014 (4) Å] than its other cell dimensions [11.7187 (4) Å]. The intra­ligand bond lengths (S—C ≃ 1.71 Å, C—Cchelate ≃ 1.37 Å) are indicative of the radical monoanionic redox state for the di­thiol­ene ligand [Fig. 2[link](b)]. The bond lengths presented in Fig. 2[link] are taken from well-defined nickel bis­(di­thiol­ene) complexes in which both ligands are fully reduced (Lim et al., 2001[Lim, B. S., Fomitchev, D. V. & Holm, R. H. (2001). Inorg. Chem. 40, 4257-4262.]), half-oxidized (Lim et al., 2001[Lim, B. S., Fomitchev, D. V. & Holm, R. H. (2001). Inorg. Chem. 40, 4257-4262.]), and fully oxidized (Bigoli et al., 2001[Bigoli, F., Chen, C.-T., Wu, W.-C., Deplano, P., Mercuri, M. L., Pellinghelli, M. A., Pilia, L., Pintus, G., Serpe, A. & Trogu, E. F. (2001). Chem. Commun. pp. 2246-2247.]). The angles at which the arene rings meet the central NiS4C4 mean plane range quite narrowly [41.7 (1)–53.5 (1)°].

[Figure 1]
Figure 1
Atom labeling for 1. Displacement ellipsoids are shown at the 50% probability level. For clarity, the disordered tBu groups (C11→C14A and C41→C44A) are edited to show only one of the two orientations.
[Figure 2]
Figure 2
Redox levels of the di­thiol­ene ligand with typical intra­ligand bond lengths.

3. Supra­molecular features

For 1, the appreciably longer mol­ecular axis that bis­ects the di­thiol­ene C—Cchelate bonds and the non-planarity/non-orthogonality of the arene rings relative to the NiS4C4 core are features that support the occurrence of P41212, as seen with similarly elongated mol­ecules bearing a twisted character [cf., for example, ACAGAN (Dowd & Stevens, 2004[Dowd, M. K. & Stevens, E. D. (2004). J. Chem. Crystallogr. 34, 559-564.]); BALWAO (Trzeciak-Karlikowska et al., 2011[Trzeciak-Karlikowska, K., Bujacz, A., Ciesielski, W., Bujacz, G. D. & Potrzebowski, M. J. (2011). J. Phys. Chem. B, 115, 9910-9919.]); CANCIH (Lin et al., 2021[Lin, H., Huang, L., Ding, H.-H., Zhang, Y., Dong, W.-J., Xia, B.-Y., Ren, W.-S. & Zhao, D. (2021). Org. Chem. Front. 8, 6657-6662.])]. Simple translations relate one mol­ecule of 1 to another along the a- and b-axis directions (Fig. 3[link], left), while in the direction of the c axis, replication of 1 arises by movement along 21 axes that are coincident with the c edges of the cell (Fig. 3[link], right) and by 41 axes positioned parallel to the c axis at the middle of the ac and bc faces. Multiple inter­molecular tBu-C—H⋯arenecentroid and tBu-C—H⋯NiS2C2centroid close contacts appear to play a decisive role in determining the packing symmetry patterns (Fig. 4[link]). The most important of these inter­actions, as gauged by physical proximity, is the C22—H22A⋯Ni2S3S4C3C4centroid contact (2.78 Å).

[Figure 3]
Figure 3
Mol­ecules of 1 related by translations along the a axis (left side). Mol­ecules of 1 related by the 21 screw axis operation along c (right side). Displacement ellipsoids are drawn at the 50% level, and all H atoms are omitted for clarity.
[Figure 4]
Figure 4
Inter­molecular arenecentroid⋯H–C tBu inter­actions, shown as dashed lines, that guide the packing arrangement for 1. The H23B⋯C5→C10centroid and H32B⋯C5→C10centroid contacts are 3.00 and 2.90 Å, respectively. Symmetry transformation used to generate equivalent mol­ecules: [{3\over 2}] − x, −[{1\over 2}] + y, [{5\over 4}] − z; −[{1\over 2}] − x, [{1\over 2}] + y, [{5\over 4}] − z.

4. Database survey

Table 1[link] summarizes selected data pertinent to a set of structurally characterized Group 10 and 11 bis­(di­thiol­ene) complexes that are symmetrically substituted with the same arene rings, which now includes three complete series for Group 10 (Ar = Ph, MeO-4-C6H4, tBu-4-C6H4). The database entries included in this tabular survey are NIDPDS01 (Megnamisi-Belombe & Nuber, 1989[Megnamisi-Belombe, M. & Nuber, B. (1989). Bull. Chem. Soc. Jpn, 62, 4092-4094.]), NIDPDS03 (Miao et al., 2011[Miao, Q., Gao, J., Wang, Z., Yu, H., Luo, Y. & Ma, T. (2011). Inorg. Chim. Acta, 376, 619-627.]), GOLRAA (Sheu & Lee, 1999[Sheu, C.-F. & Lee, J.-S. (1999). Acta Cryst. C55, 1069-1072.]), BUGDUC (Dessy et al., 1982[Dessy, G., Fares, V., Bellitto, C. & Flamini, A. (1982). Cryst. Struct. Commun. 11, 1743-1745.]), SICWOR (Arumugam et al., 2007[Arumugam, K., Bollinger, J. E., Fink, M. & Donahue, J. P. (2007). Inorg. Chem. 46, 3283-3288.]), SONPUI (Chandrasekaran et al., 2014[Chandrasekaran, P., Greene, A. F., Lillich, K., Capone, S., Mague, J. T., DeBeer, S. & Donahue, J. P. (2014). Inorg. Chem. 53, 9192-9205.]), SOPMOB (Chandrasekaran et al., 2014[Chandrasekaran, P., Greene, A. F., Lillich, K., Capone, S., Mague, J. T., DeBeer, S. & Donahue, J. P. (2014). Inorg. Chem. 53, 9192-9205.]), ECEKAA (Miao et al., 2011[Miao, Q., Gao, J., Wang, Z., Yu, H., Luo, Y. & Ma, T. (2011). Inorg. Chim. Acta, 376, 619-627.]), DATTUR (Koehne et al., 2022[Koehne, S., Mirmelli, B., Mague, J. T. & Donahue, J. P. (2022). IUCrData, 7, x220148.]), JUHJUR (Nakazumi et al., 1992[Nakazumi, H., Takamura, R., Kitao, T. & Adachi, T. (1992). Dyes Pigments, 18, 1-9.]), TEYSEW (Kokatam et al., 2007[Kokatam, S., Ray, K., Pap, J., Bill, E., Geiger, W. E., LeSuer, R. J., Rieger, P. H., Weyhermüller, T., Neese, F. & Wieghardt, K. (2007). Inorg. Chem. 46, 1100-1111.]), TIDBEO (Pap et al., 2007[Pap, J. S., Benedito, F. L., Bothe, E., Bill, E., DeBeer George, S., Weyhermüller, T. & Wieghardt, K. (2007). Inorg. Chem. 46, 4187-4196.]), and TEYSAS (Kokatam et al., 2007[Kokatam, S., Ray, K., Pap, J., Bill, E., Geiger, W. E., LeSuer, R. J., Rieger, P. H., Weyhermüller, T., Neese, F. & Wieghardt, K. (2007). Inorg. Chem. 46, 1100-1111.]). Constancy of crystal system, space group, and unit-cell dimensions is found only for the Ar = Ph series, primarily owing to the absence versus presence of co-crystallized solvent in the other series. However, [Au(S2C2(C6H4-4-tBu)2)2]·CH2Cl2 crystallizes in P41212 with unit cell parameters nearly identical to those of 1·0.25(C5H12). Nickel–sulfur bond lengths generally assemble tightly at 2.12 Å. Although the resolution for its structure is somewhat more coarse, [Au(S2C2(C6H4-4-tBu)2)2] differs from the Group 10 metal complexes in having, effectively, its di­thiol­ene ligand set halfway between redox states a and b in Fig. 2[link] such that the Au3+ ion is paired with three anionic ligand charges arising from one fully reduced dithiolate ligand and one half-oxidized monoanionic ligand. Consequently, its S—C and C—Cchelate bond lengths are longer and shorter, respectively, than those in its Group 10 counterparts. Conspicuous among the φ values for these compounds is the relatively large ≃ 66° angle observed for one unique Ph group in the [M(S2C2Ph2)2] (M = Ni, Pd, Pt) series, which has its origin in specific inter­molecular phenyl C—H⋯arenecentroid inter­actions that are not pertinent to 1.

Table 1
Structural parameters (Å, °) for selected [M(S2C2Ar2)2] complexes (M = Ni2+, Pd2+, Pt2+, Au3+; Ar = aryl group)

φ represents the angles between the MS4C4 mean plane and the aryl C6 planes. Values of φ that were refined in SHELXL carry an uncertainty. All other values of φ were evaluated using Mercury 3.7.

Ar, M Space group M—S S—C C—Cchelate φ Refcode
Ph, Ni2+ P[\overline{1}] 2.120, 2.127 1.701 (4), 1.695 (4) 1.424 50.64, 44.79 NIDPDS01a
    2.125, 2.125 1.718 (4), 1.702 (4) 1.404 53.06, 34.75  
Ph, Ni2+ P21/n 2.1209 (6) 1.7152 (17) 1.388 (2) 34.20 NIDPDS03b
    2.1226 (7) 1.7035 (17)   65.77  
Ph, Pd2+ P21/n 2.2502, 2.2496 1.696 (2), 1.712 (2) 1.399 (3) 35.83, 66.40 GOLRAAc
Ph, Pt2+ P21/n 2.2443, 2.2460 1.6978, 1.7161 1.3965 35.87, 66.68 BUGDUCd
MeO-p-C6H4, Ni2+ P[\overline{1}] 2.1221 (6) 1.7169 (19)   29.40 SICWORe
    2.1218 (6) 1.7029 (19) 1.393 (3) 53.00  
    2.1341 (5) 1.7171 (19) 1.391 (3) 41.61  
    2.1182 (6) 1.7100 (19)   39.91  
MeO-p-C6H4, Pd2+ P[\overline{1}] 2.2535 (18) 1.699 (6)   40.24 SONPUIf
    2.2566 (18) 1.715 (6) 1.417 (9) 43.57  
    2.2706 (18) 1.711 (6) 1.411 (9) 30.22  
    2.2505 (18) 1.708 (6)   51.76  
MeO-p-C6H4, Pt2+ P[\overline{1}] 2.240 (2), 2.243 (2) 1.696 (9), 1.710 (7) 1.402 (12) 40.83, 42.04 SOPMOBf
    2.245 (3), 2.249 (3) 1.712 (8), 1.709 (9) 1.391 (12) 45.82, 38.35  
MeO-p-C6H4, Ni2+ P[\overline{1}] 2.104 (3), 2.108 (3) 1.689 (5), 1.699 (5) 1.394 (6) 40.41, 43.96 ECEKAAb
    2.103 (3), 2.106 (3) 1.682 (5), 1.698 (5) 1.386 (6) 54.91, 35.28  
Cl-p-C6H4, Ni2+ P[\overline{1}] 2.1277 (7) 1.706 (2)   35.39 (9) DATTURg
    2.1192 (6) 1.704 (2) 1.399 (3) 54.34 (5)  
    2.1207 (7) 1.706 (2) 1.391 (3) 40.05 (6)  
    2.1261 (6) 1.713 (2)   42.99 (7)  
3,5-(MeO)2-4-BuO-C6H2, Ni2+ P21/n 2.112 1.67 (1)   45.55 JUHJURh
tBu-p-C6H4, Ni2+, 1 P41212 2.1175 (11) 1.717 (4)   41.7 (1) This work
    2.1206 (12) 1.705 (4) 1.393 (6) 53.5 (1)  
    2.1280 (11) 1.705 (4) 1.403 (6) 53.4 (1)  
    2.1185 (11) 1.709 (4)   44.5 (2)  
tBu-p-C6H4, Pd2+ Pna21 2.2503 (10)     44.16 TEYSEWi
    2.2443 (10) 1.707 (4) 1.393 (5) 49.40  
    2.2667 (10) 1.712 (4)   51.77  
    2.2440 (10)     51.38  
tBu-p-C6H4, Pt2+ Pna21 2.243 (2), 2.242 (2) 1.728 (9), 1.729 (8) 1.381 (12) 48.37, 44.80 TIDBEOj
    2.259 (2), 2.243 (2) 1.709 (10), 1.685 (9) 1.404 (13) 52.30, 52.63  
tBu-p-C6H4, Au3+ P41212 2.284 (5), 2.288 (5) 1.74 (2), 1.745 (18) 1.38 (2) 41.16, 56.21 TEYSASi
    2.290 (5), 2.303 (5) 1.751 (19). 1.76 (2) 1.33 (2) 47.30, 54.24  
Notes: (a) Megnamisi-Belombe & Nuber (1989[Megnamisi-Belombe, M. & Nuber, B. (1989). Bull. Chem. Soc. Jpn, 62, 4092-4094.]); (b) Miao et al. (2011[Miao, Q., Gao, J., Wang, Z., Yu, H., Luo, Y. & Ma, T. (2011). Inorg. Chim. Acta, 376, 619-627.]); (c) Sheu & Lee (1999[Sheu, C.-F. & Lee, J.-S. (1999). Acta Cryst. C55, 1069-1072.]); (d) Dessy et al. (1982[Dessy, G., Fares, V., Bellitto, C. & Flamini, A. (1982). Cryst. Struct. Commun. 11, 1743-1745.]); (e) Arumugam et al. (2007[Arumugam, K., Bollinger, J. E., Fink, M. & Donahue, J. P. (2007). Inorg. Chem. 46, 3283-3288.]); (f) Chandrasekaran et al. (2014[Chandrasekaran, P., Greene, A. F., Lillich, K., Capone, S., Mague, J. T., DeBeer, S. & Donahue, J. P. (2014). Inorg. Chem. 53, 9192-9205.]); (g) Koehne et al. (2022[Koehne, S., Mirmelli, B., Mague, J. T. & Donahue, J. P. (2022). IUCrData, 7, x220148.]); (h) Nakazumi et al. (1992[Nakazumi, H., Takamura, R., Kitao, T. & Adachi, T. (1992). Dyes Pigments, 18, 1-9.]); (i) Kokatam et al. (2007[Kokatam, S., Ray, K., Pap, J., Bill, E., Geiger, W. E., LeSuer, R. J., Rieger, P. H., Weyhermüller, T., Neese, F. & Wieghardt, K. (2007). Inorg. Chem. 46, 1100-1111.]); (j) Pap et al. (2007[Pap, J. S., Benedito, F. L., Bothe, E., Bill, E., DeBeer George, S., Weyhermüller, T. & Wieghardt, K. (2007). Inorg. Chem. 46, 4187-4196.]).

5. Synthesis and crystallization

[Ni(S2C2(C6H4-4-tBu)2)2], 1. A mixture of 4,4′-di-tert-butyl­benzoin (0.350 g, 1.1 mmol) and P4S10 (0.355 g, 0.8 mmol) and dioxane (30 ml) in an oven-dried 100 ml three-neck flask was refluxed at 378 K for 12 h under N2 with continuous stirring. The reaction mixture was cooled to ambient temperature and then gravity filtered through paper in the open air into a 100 ml Schlenk flask. Nickel(II) dichloride hexa­hydrate (0.120 g, 0.5 mmol) dissolved in 1 ml of H2O was added to the filtrate, and reflux under N2 was recommenced and continued for 12 h with constant stirring. After being cooled to ambient temperature, the solid precipitate that formed was collected by vacuum filtration and then washed with CH3OH followed by Et2O. Yield: 0.135 g, 0.176 mmol, 32%. 1H NMR (δ, CDCl3): 7.33 (pseudo quartet, 16 H, aromatic C–H), 1.32 (s, 36 H, tBu). Analysis calculated for C44H52S4Ni: C, 68.83; H, 6.83; S, 16.70. Found: C, 68.71; H, 6.80; S, 16.63. This analysis was performed upon crystalline 1 grown by vapor diffusion of MeOH into a toluene solution, which produced crystals without inter­stitial solvent.

Vapor-diffusion methods were effective in generating crystals of diffraction quality. Crystals grown without inter­stitial solvent were complicated by significant non-merohedral twinning. However, introduction of n-pentane vapor into a THF solution of 1 produced crystalline 1·0.25(C5H12) that was not subject to this problem or otherwise necessitating special treatment.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The tert-butyl groups defined by C11–C14 and C41–C44 were disordered and treated with independent, floating site occupancy variables that identified 54:46 and 52:48 optimal partitioning, respectively, for the two groups. Hydrogen atoms were added in calculated positions and refined with isotropic displacement parameters that were approximately 1.2 times (for aromatic C—H) or 1.5 times (for –CH3) those of the carbon atoms to which they were attached. The C—H distances assumed were 0.95 and 0.98 Å for the aromatic C—H and –CH3 types of hydrogen atoms, respectively.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C22H26S2)2]·0.25C5H12
Mr 785.84
Crystal system, space group Tetragonal, P41212
Temperature (K) 150
a, c (Å) 11.7187 (4), 65.014 (4)
V3) 8928.2 (8)
Z 8
Radiation type Cu Kα
μ (mm−1) 2.58
Crystal size (mm) 0.21 × 0.11 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 3 CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.77, 0.88
No. of measured, independent and observed [I > 2σ(I)] reflections 203444, 8886, 8592
Rint 0.072
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.138, 1.06
No. of reflections 8886
No. of parameters 497
No. of restraints 27
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.57, −0.40
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.03 (2)
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX4 (Bruker, 2021); cell refinement: SAINT (Bruker, 2021); data reduction: SAINT (Bruker, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis[1,2-bis(4-tert-butylphenyl)ethylene-1,2-dithiolato(1-)]nickel(II) pentane 0.25-solvate top
Crystal data top
[Ni(C22H26S2)2]·0.25C5H12Dx = 1.169 Mg m3
Mr = 785.84Cu Kα radiation, λ = 1.54178 Å
Tetragonal, P41212Cell parameters from 9381 reflections
a = 11.7187 (4) Åθ = 4.0–72.6°
c = 65.014 (4) ŵ = 2.58 mm1
V = 8928.2 (8) Å3T = 150 K
Z = 8Column, black
F(000) = 33480.21 × 0.11 × 0.05 mm
Data collection top
Bruker D8 VENTURE PHOTON 3 CPAD
diffractometer
8886 independent reflections
Radiation source: INCOATEC IµS micro—-focus source8592 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.072
Detector resolution: 7.3910 pixels mm-1θmax = 72.7°, θmin = 4.0°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1414
Tmin = 0.77, Tmax = 0.88l = 8080
203444 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0951P)2 + 5.7915P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.003
8886 reflectionsΔρmax = 1.57 e Å3
497 parametersΔρmin = 0.40 e Å3
27 restraintsAbsolute structure: Refined as an inversion twin.
Primary atom site location: dualAbsolute structure parameter: 0.03 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.11325 (6)0.50471 (6)0.66096 (2)0.02572 (18)
S10.16585 (8)0.54152 (9)0.63052 (2)0.0270 (2)
S20.26404 (8)0.40913 (9)0.66631 (2)0.0284 (2)
S30.03961 (8)0.59838 (8)0.65575 (2)0.0264 (2)
S40.06448 (9)0.46883 (9)0.69166 (2)0.0318 (2)
C10.2970 (3)0.4783 (3)0.62760 (6)0.0252 (7)
C20.3415 (3)0.4174 (3)0.64413 (6)0.0253 (7)
C30.1135 (3)0.5915 (3)0.67829 (6)0.0269 (8)
C40.0659 (3)0.5317 (3)0.69492 (6)0.0295 (8)
C50.3489 (3)0.4871 (3)0.60685 (6)0.0244 (7)
C60.3989 (3)0.3928 (4)0.59745 (6)0.0277 (8)
H60.4083700.3239340.6049600.033*
C70.4348 (3)0.3990 (4)0.57716 (6)0.0300 (8)
H70.4675900.3333220.5709710.036*
C80.4244 (3)0.4987 (4)0.56554 (6)0.0303 (8)
C90.3773 (4)0.5935 (4)0.57528 (6)0.0308 (8)
H90.3701560.6629950.5678720.037*
C100.3406 (3)0.5888 (4)0.59557 (6)0.0271 (8)
H100.3095380.6550850.6018690.032*
C110.4587 (4)0.5019 (5)0.54280 (7)0.0394 (10)
C12A0.3892 (19)0.4182 (18)0.5312 (2)0.074 (7)0.461 (19)
H12A0.4216100.4079500.5174240.111*0.461 (19)
H12B0.3106970.4463740.5300040.111*0.461 (19)
H12C0.3891980.3449800.5384700.111*0.461 (19)
C13A0.4460 (16)0.6250 (14)0.53373 (19)0.058 (4)0.461 (19)
H13A0.4877090.6299580.5206950.087*0.461 (19)
H13B0.4773000.6805600.5434810.087*0.461 (19)
H13C0.3651150.6414930.5313390.087*0.461 (19)
C14A0.5838 (13)0.4692 (18)0.54094 (19)0.068 (6)0.461 (19)
H14A0.5931290.4140420.5297420.102*0.461 (19)
H14B0.6096660.4350550.5538810.102*0.461 (19)
H14C0.6291330.5375540.5379980.102*0.461 (19)
C12B0.3464 (13)0.500 (2)0.5301 (2)0.086 (6)0.539 (19)
H12D0.3117420.5763120.5302910.129*0.539 (19)
H12E0.2932950.4449650.5361510.129*0.539 (19)
H12F0.3632940.4783020.5158870.129*0.539 (19)
C13B0.530 (2)0.6003 (19)0.5382 (2)0.106 (10)0.539 (19)
H13D0.4921020.6697880.5431040.158*0.539 (19)
H13E0.5415390.6055130.5232980.158*0.539 (19)
H13F0.6037560.5919200.5450730.158*0.539 (19)
C14B0.510 (2)0.3851 (15)0.5356 (2)0.097 (8)0.539 (19)
H14D0.5366020.3917570.5213790.146*0.539 (19)
H14E0.4514610.3256670.5364950.146*0.539 (19)
H14F0.5745180.3647140.5445190.146*0.539 (19)
C150.4557 (3)0.3629 (3)0.64462 (6)0.0247 (7)
C160.4669 (3)0.2503 (3)0.65136 (6)0.0257 (7)
H160.4009580.2079670.6550830.031*
C170.5738 (3)0.1998 (3)0.65265 (6)0.0267 (7)
H170.5793970.1222660.6567740.032*
C180.6728 (3)0.2598 (3)0.64807 (6)0.0254 (7)
C190.6602 (3)0.3733 (4)0.64133 (7)0.0329 (9)
H190.7260890.4164470.6378990.039*
C200.5537 (3)0.4231 (4)0.63961 (7)0.0331 (9)
H200.5476000.4996690.6349280.040*
C210.7914 (3)0.2093 (3)0.65087 (6)0.0289 (8)
C220.8510 (4)0.2736 (4)0.66836 (8)0.0411 (10)
H22A0.8567360.3546530.6648130.062*
H22B0.9277320.2421730.6703900.062*
H22C0.8067940.2650180.6810560.062*
C230.7887 (4)0.0820 (4)0.65608 (8)0.0383 (10)
H23A0.7532350.0711290.6695890.057*
H23B0.8668020.0520530.6563590.057*
H23C0.7443850.0411420.6456280.057*
C240.8616 (4)0.2242 (5)0.63087 (9)0.0492 (13)
H24A0.8162190.1985260.6190890.074*
H24B0.9315820.1786160.6317630.074*
H24C0.8815030.3048100.6291100.074*
C250.2282 (3)0.6431 (3)0.67841 (6)0.0267 (8)
C260.3229 (4)0.5781 (4)0.68385 (9)0.0425 (11)
H260.3130310.5011660.6880970.051*
C270.4317 (4)0.6248 (4)0.68311 (9)0.0453 (12)
H270.4950560.5787040.6868950.054*
C280.4510 (3)0.7372 (4)0.67700 (6)0.0291 (8)
C290.3557 (4)0.8014 (4)0.67168 (7)0.0319 (8)
H290.3653260.8785690.6675770.038*
C300.2463 (4)0.7548 (4)0.67226 (7)0.0319 (9)
H300.1829680.8005350.6683600.038*
C310.5721 (4)0.7830 (4)0.67471 (7)0.0347 (9)
C320.5777 (5)0.9115 (5)0.67685 (13)0.0668 (19)
H32A0.5428300.9342670.6899220.100*
H32B0.6575410.9361620.6765700.100*
H32C0.5362160.9471150.6654440.100*
C330.6538 (5)0.7297 (6)0.69042 (11)0.0655 (18)
H33A0.6209520.7362440.7042260.098*
H33B0.6656240.6490500.6870780.098*
H33C0.7271360.7699020.6899860.098*
C340.6154 (5)0.7513 (6)0.65312 (9)0.0584 (15)
H34A0.6981810.7629070.6524570.088*
H34B0.5978010.6711040.6502840.088*
H34C0.5779550.7997880.6428610.088*
C350.1179 (4)0.5215 (4)0.71562 (6)0.0331 (8)
C360.1179 (5)0.4183 (4)0.72576 (7)0.0448 (11)
H360.0888920.3523560.7190520.054*
C370.1602 (5)0.4093 (5)0.74586 (7)0.0480 (12)
H370.1592350.3372650.7525490.058*
C380.2035 (5)0.5031 (5)0.75617 (7)0.0464 (12)
C390.2077 (6)0.6049 (5)0.74547 (8)0.0572 (15)
H390.2394960.6699830.7520280.069*
C400.1672 (5)0.6156 (4)0.72546 (8)0.0494 (13)
H400.1730160.6866030.7184810.059*
C410.2483 (5)0.4953 (5)0.77823 (7)0.0585 (16)
C42A0.1891 (16)0.3937 (11)0.78986 (19)0.051 (4)*0.48 (3)
H42A0.2186190.3892130.8039410.077*0.48 (3)
H42B0.1064390.4063610.7902490.077*0.48 (3)
H42C0.2052290.3220320.7826470.077*0.48 (3)
C43A0.227 (2)0.6045 (12)0.7902 (2)0.059 (4)*0.48 (3)
H43A0.2679240.6676020.7836730.089*0.48 (3)
H43B0.1446260.6212260.7901620.089*0.48 (3)
H43C0.2530820.5950770.8043580.089*0.48 (3)
C44A0.3728 (12)0.465 (3)0.7777 (3)0.083 (6)*0.48 (3)
H44A0.4023600.4619000.7918370.124*0.48 (3)
H44B0.3826560.3906920.7711350.124*0.48 (3)
H44C0.4145950.5233070.7699610.124*0.48 (3)
C42B0.2387 (19)0.3819 (9)0.7882 (2)0.061 (4)*0.52 (3)
H42D0.2849560.3264120.7806060.092*0.52 (3)
H42E0.2660990.3869550.8024070.092*0.52 (3)
H42F0.1587370.3574870.7881520.092*0.52 (3)
C43B0.1921 (14)0.5929 (10)0.79087 (17)0.044 (3)*0.52 (3)
H43D0.2105810.5832210.8054700.066*0.52 (3)
H43E0.2212000.6666400.7860750.066*0.52 (3)
H43F0.1091500.5903260.7890380.066*0.52 (3)
C44B0.3796 (9)0.5117 (18)0.7777 (2)0.064 (4)*0.52 (3)
H44D0.4144060.4494830.7698020.096*0.52 (3)
H44E0.3976580.5848170.7711210.096*0.52 (3)
H44F0.4095720.5112070.7917430.096*0.52 (3)
C450.6695 (19)0.6695 (19)0.7500000.104 (9)*0.5
H45A0.6256130.6409610.7380400.125*0.25
H45B0.6409540.6256070.7619580.125*0.25
C460.621 (2)0.796 (2)0.7537 (4)0.126 (8)*0.5
H46A0.6658180.8494480.7451770.152*0.5
H46B0.6333580.8163500.7682450.152*0.5
C470.497 (2)0.814 (2)0.7489 (4)0.138 (9)*0.5
H47A0.4768190.8936350.7516440.208*0.5
H47B0.4506670.7635620.7574740.208*0.5
H47C0.4832330.7967700.7343310.208*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0209 (3)0.0316 (4)0.0247 (3)0.0036 (2)0.0032 (2)0.0019 (3)
S10.0211 (4)0.0343 (5)0.0257 (4)0.0055 (3)0.0021 (3)0.0047 (4)
S20.0234 (4)0.0357 (5)0.0263 (4)0.0056 (4)0.0023 (3)0.0051 (4)
S30.0229 (4)0.0314 (5)0.0249 (4)0.0042 (3)0.0037 (3)0.0034 (3)
S40.0290 (5)0.0412 (5)0.0252 (4)0.0091 (4)0.0026 (3)0.0044 (4)
C10.0194 (16)0.0253 (17)0.0309 (18)0.0014 (14)0.0005 (14)0.0002 (15)
C20.0218 (17)0.0276 (18)0.0266 (17)0.0019 (14)0.0007 (14)0.0009 (15)
C30.0256 (18)0.0277 (19)0.0275 (18)0.0003 (15)0.0060 (15)0.0006 (15)
C40.0286 (18)0.0312 (19)0.0287 (18)0.0025 (16)0.0030 (15)0.0009 (15)
C50.0164 (15)0.0282 (19)0.0286 (17)0.0003 (13)0.0017 (13)0.0029 (15)
C60.0214 (17)0.0296 (19)0.0320 (19)0.0018 (15)0.0000 (15)0.0013 (15)
C70.0244 (18)0.034 (2)0.032 (2)0.0011 (15)0.0011 (15)0.0030 (16)
C80.0217 (18)0.042 (2)0.0275 (19)0.0056 (16)0.0012 (15)0.0005 (17)
C90.0264 (19)0.035 (2)0.031 (2)0.0045 (16)0.0010 (15)0.0049 (16)
C100.0215 (17)0.0301 (19)0.0295 (19)0.0002 (15)0.0007 (14)0.0033 (16)
C110.041 (2)0.052 (3)0.0252 (19)0.005 (2)0.0031 (18)0.0001 (19)
C12A0.095 (15)0.097 (14)0.029 (6)0.052 (12)0.006 (7)0.005 (7)
C13A0.072 (10)0.074 (9)0.028 (5)0.007 (8)0.012 (6)0.019 (5)
C14A0.061 (8)0.111 (15)0.032 (6)0.024 (9)0.031 (6)0.017 (7)
C12B0.064 (8)0.16 (2)0.037 (6)0.010 (10)0.011 (5)0.001 (9)
C13B0.133 (19)0.132 (17)0.052 (8)0.075 (16)0.049 (11)0.023 (9)
C14B0.16 (2)0.083 (11)0.052 (7)0.056 (13)0.039 (10)0.007 (7)
C150.0208 (17)0.0276 (18)0.0257 (17)0.0022 (14)0.0011 (14)0.0024 (14)
C160.0232 (17)0.0265 (18)0.0274 (17)0.0030 (14)0.0003 (14)0.0008 (15)
C170.0266 (18)0.0231 (17)0.0304 (18)0.0003 (14)0.0009 (15)0.0011 (15)
C180.0214 (17)0.0282 (19)0.0266 (17)0.0034 (15)0.0009 (14)0.0000 (14)
C190.0205 (18)0.031 (2)0.048 (2)0.0012 (15)0.0031 (17)0.0103 (18)
C200.0236 (19)0.0287 (19)0.047 (2)0.0016 (16)0.0011 (17)0.0137 (18)
C210.0240 (18)0.030 (2)0.033 (2)0.0049 (15)0.0013 (15)0.0011 (16)
C220.026 (2)0.042 (2)0.055 (3)0.0059 (18)0.0105 (19)0.004 (2)
C230.030 (2)0.030 (2)0.055 (3)0.0086 (17)0.0027 (19)0.0017 (19)
C240.035 (2)0.060 (3)0.053 (3)0.017 (2)0.017 (2)0.011 (2)
C250.0255 (19)0.0282 (19)0.0264 (17)0.0009 (15)0.0043 (14)0.0009 (15)
C260.030 (2)0.032 (2)0.066 (3)0.0067 (18)0.016 (2)0.013 (2)
C270.028 (2)0.030 (2)0.078 (4)0.0019 (17)0.019 (2)0.013 (2)
C280.0240 (18)0.030 (2)0.0337 (19)0.0036 (15)0.0044 (15)0.0020 (16)
C290.027 (2)0.0261 (19)0.042 (2)0.0004 (15)0.0012 (17)0.0051 (17)
C300.027 (2)0.030 (2)0.039 (2)0.0010 (16)0.0019 (16)0.0042 (17)
C310.029 (2)0.031 (2)0.045 (2)0.0054 (16)0.0057 (17)0.0025 (17)
C320.034 (3)0.034 (3)0.133 (6)0.013 (2)0.009 (3)0.015 (3)
C330.033 (3)0.078 (4)0.086 (4)0.019 (3)0.025 (3)0.022 (4)
C340.036 (3)0.077 (4)0.062 (3)0.023 (3)0.009 (2)0.018 (3)
C350.032 (2)0.039 (2)0.0279 (19)0.0029 (17)0.0062 (16)0.0016 (16)
C360.062 (3)0.039 (2)0.034 (2)0.009 (2)0.014 (2)0.0048 (19)
C370.070 (4)0.042 (3)0.031 (2)0.003 (2)0.013 (2)0.007 (2)
C380.063 (3)0.047 (3)0.029 (2)0.006 (2)0.013 (2)0.000 (2)
C390.085 (4)0.046 (3)0.041 (3)0.006 (3)0.024 (3)0.008 (2)
C400.075 (4)0.038 (2)0.036 (2)0.008 (2)0.019 (2)0.006 (2)
C410.087 (4)0.056 (3)0.032 (2)0.011 (3)0.023 (3)0.002 (2)
Geometric parameters (Å, º) top
Ni1—S12.1174 (11)C24—H24B0.9800
Ni1—S42.1185 (11)C24—H24C0.9800
Ni1—S22.1207 (11)C25—C301.386 (6)
Ni1—S32.1281 (11)C25—C261.392 (6)
S1—C11.716 (4)C26—C271.389 (6)
S2—C21.707 (4)C26—H260.9500
S3—C31.704 (4)C27—C281.394 (6)
S4—C41.710 (4)C27—H270.9500
C1—C21.392 (5)C28—C291.390 (6)
C1—C51.484 (5)C28—C311.525 (6)
C2—C151.483 (5)C29—C301.394 (6)
C3—C41.404 (6)C29—H290.9500
C3—C251.473 (5)C30—H300.9500
C4—C351.482 (5)C31—C321.513 (7)
C5—C61.392 (6)C31—C331.533 (7)
C5—C101.402 (5)C31—C341.538 (7)
C6—C71.386 (6)C32—H32A0.9800
C6—H60.9500C32—H32B0.9800
C7—C81.396 (6)C32—H32C0.9800
C7—H70.9500C33—H33A0.9800
C8—C91.393 (6)C33—H33B0.9800
C8—C111.532 (5)C33—H33C0.9800
C9—C101.389 (6)C34—H34A0.9800
C9—H90.9500C34—H34B0.9800
C10—H100.9500C34—H34C0.9800
C11—C13B1.455 (16)C35—C361.378 (7)
C11—C12A1.481 (15)C35—C401.400 (7)
C11—C14A1.520 (14)C36—C371.402 (6)
C11—C12B1.553 (14)C36—H360.9500
C11—C13A1.566 (15)C37—C381.384 (8)
C11—C14B1.567 (14)C37—H370.9500
C12A—H12A0.9800C38—C391.382 (8)
C12A—H12B0.9800C38—C411.530 (6)
C12A—H12C0.9800C39—C401.391 (7)
C13A—H13A0.9800C39—H390.9500
C13A—H13B0.9800C40—H400.9500
C13A—H13C0.9800C41—C42B1.482 (10)
C14A—H14A0.9800C41—C44A1.501 (12)
C14A—H14B0.9800C41—C43A1.518 (11)
C14A—H14C0.9800C41—C44B1.551 (11)
C12B—H12D0.9800C41—C43B1.554 (10)
C12B—H12E0.9800C41—C42A1.572 (10)
C12B—H12F0.9800C42A—H42A0.9800
C13B—H13D0.9800C42A—H42B0.9800
C13B—H13E0.9800C42A—H42C0.9800
C13B—H13F0.9800C43A—H43A0.9800
C14B—H14D0.9800C43A—H43B0.9800
C14B—H14E0.9800C43A—H43C0.9800
C14B—H14F0.9800C44A—H44A0.9800
C15—C201.387 (6)C44A—H44B0.9800
C15—C161.397 (5)C44A—H44C0.9800
C16—C171.388 (6)C42B—H42D0.9800
C16—H160.9500C42B—H42E0.9800
C17—C181.389 (6)C42B—H42F0.9800
C17—H170.9500C43B—H43D0.9800
C18—C191.409 (6)C43B—H43E0.9800
C18—C211.521 (5)C43B—H43F0.9800
C19—C201.382 (6)C44B—H44D0.9800
C19—H190.9500C44B—H44E0.9800
C20—H200.9500C44B—H44F0.9800
C21—C231.530 (6)C45—C46i1.61 (3)
C21—C221.533 (6)C45—C461.61 (3)
C21—C241.548 (6)C45—H45A0.9900
C22—H22A0.9800C45—H45B0.9900
C22—H22B0.9800C46—C471.49 (3)
C22—H22C0.9800C46—H46A0.9900
C23—H23A0.9800C46—H46B0.9900
C23—H23B0.9800C47—H47A0.9800
C23—H23C0.9800C47—H47B0.9800
C24—H24A0.9800C47—H47C0.9800
S1—Ni1—S4178.67 (5)H24A—C24—H24C109.5
S1—Ni1—S291.05 (4)H24B—C24—H24C109.5
S4—Ni1—S288.02 (4)C30—C25—C26117.9 (4)
S1—Ni1—S389.49 (4)C30—C25—C3121.7 (4)
S4—Ni1—S391.45 (4)C26—C25—C3120.3 (4)
S2—Ni1—S3179.10 (6)C27—C26—C25120.6 (4)
C1—S1—Ni1106.01 (14)C27—C26—H26119.7
C2—S2—Ni1105.95 (14)C25—C26—H26119.7
C3—S3—Ni1105.44 (14)C26—C27—C28122.1 (4)
C4—S4—Ni1105.80 (14)C26—C27—H27119.0
C2—C1—C5125.8 (3)C28—C27—H27119.0
C2—C1—S1118.2 (3)C29—C28—C27116.9 (4)
C5—C1—S1115.9 (3)C29—C28—C31122.2 (4)
C1—C2—C15125.2 (3)C27—C28—C31120.7 (4)
C1—C2—S2118.8 (3)C28—C29—C30121.4 (4)
C15—C2—S2115.9 (3)C28—C29—H29119.3
C4—C3—C25124.3 (4)C30—C29—H29119.3
C4—C3—S3119.0 (3)C25—C30—C29121.3 (4)
C25—C3—S3116.6 (3)C25—C30—H30119.4
C3—C4—C35125.2 (4)C29—C30—H30119.4
C3—C4—S4118.3 (3)C32—C31—C28112.4 (4)
C35—C4—S4116.4 (3)C32—C31—C33108.5 (5)
C6—C5—C10118.3 (4)C28—C31—C33111.9 (4)
C6—C5—C1121.1 (4)C32—C31—C34108.0 (5)
C10—C5—C1120.4 (4)C28—C31—C34108.2 (4)
C7—C6—C5120.2 (4)C33—C31—C34107.7 (5)
C7—C6—H6119.9C31—C32—H32A109.5
C5—C6—H6119.9C31—C32—H32B109.5
C6—C7—C8122.2 (4)H32A—C32—H32B109.5
C6—C7—H7118.9C31—C32—H32C109.5
C8—C7—H7118.9H32A—C32—H32C109.5
C9—C8—C7117.1 (4)H32B—C32—H32C109.5
C9—C8—C11121.5 (4)C31—C33—H33A109.5
C7—C8—C11121.3 (4)C31—C33—H33B109.5
C10—C9—C8121.6 (4)H33A—C33—H33B109.5
C10—C9—H9119.2C31—C33—H33C109.5
C8—C9—H9119.2H33A—C33—H33C109.5
C9—C10—C5120.6 (4)H33B—C33—H33C109.5
C9—C10—H10119.7C31—C34—H34A109.5
C5—C10—H10119.7C31—C34—H34B109.5
C12A—C11—C14A108.9 (12)H34A—C34—H34B109.5
C13B—C11—C8111.6 (7)C31—C34—H34C109.5
C12A—C11—C8109.3 (6)H34A—C34—H34C109.5
C14A—C11—C8108.9 (6)H34B—C34—H34C109.5
C13B—C11—C12B112.7 (13)C36—C35—C40118.2 (4)
C8—C11—C12B106.9 (6)C36—C35—C4120.3 (4)
C12A—C11—C13A111.5 (11)C40—C35—C4121.4 (4)
C14A—C11—C13A107.1 (10)C35—C36—C37120.8 (5)
C8—C11—C13A111.2 (6)C35—C36—H36119.6
C13B—C11—C14B114.3 (12)C37—C36—H36119.6
C8—C11—C14B111.5 (6)C38—C37—C36121.5 (5)
C12B—C11—C14B99.0 (12)C38—C37—H37119.3
C11—C12A—H12A109.5C36—C37—H37119.3
C11—C12A—H12B109.5C39—C38—C37117.0 (4)
H12A—C12A—H12B109.5C39—C38—C41120.8 (5)
C11—C12A—H12C109.5C37—C38—C41122.2 (5)
H12A—C12A—H12C109.5C38—C39—C40122.5 (5)
H12B—C12A—H12C109.5C38—C39—H39118.8
C11—C13A—H13A109.5C40—C39—H39118.8
C11—C13A—H13B109.5C39—C40—C35119.8 (5)
H13A—C13A—H13B109.5C39—C40—H40120.1
C11—C13A—H13C109.5C35—C40—H40120.1
H13A—C13A—H13C109.5C44A—C41—C43A111.8 (12)
H13B—C13A—H13C109.5C42B—C41—C38115.9 (7)
C11—C14A—H14A109.5C44A—C41—C38109.1 (9)
C11—C14A—H14B109.5C43A—C41—C38111.8 (8)
H14A—C14A—H14B109.5C42B—C41—C44B101.3 (9)
C11—C14A—H14C109.5C38—C41—C44B108.1 (7)
H14A—C14A—H14C109.5C42B—C41—C43B113.4 (8)
H14B—C14A—H14C109.5C38—C41—C43B107.8 (6)
C11—C12B—H12D109.5C44B—C41—C43B110.0 (9)
C11—C12B—H12E109.5C44A—C41—C42A105.1 (11)
H12D—C12B—H12E109.5C43A—C41—C42A108.6 (9)
C11—C12B—H12F109.5C38—C41—C42A110.2 (7)
H12D—C12B—H12F109.5C41—C42A—H42A109.5
H12E—C12B—H12F109.5C41—C42A—H42B109.5
C11—C13B—H13D109.5H42A—C42A—H42B109.5
C11—C13B—H13E109.5C41—C42A—H42C109.5
H13D—C13B—H13E109.5H42A—C42A—H42C109.5
C11—C13B—H13F109.5H42B—C42A—H42C109.5
H13D—C13B—H13F109.5C41—C43A—H43A109.5
H13E—C13B—H13F109.5C41—C43A—H43B109.5
C11—C14B—H14D109.5H43A—C43A—H43B109.5
C11—C14B—H14E109.5C41—C43A—H43C109.5
H14D—C14B—H14E109.5H43A—C43A—H43C109.5
C11—C14B—H14F109.5H43B—C43A—H43C109.5
H14D—C14B—H14F109.5C41—C44A—H44A109.5
H14E—C14B—H14F109.5C41—C44A—H44B109.5
C20—C15—C16118.5 (4)H44A—C44A—H44B109.5
C20—C15—C2121.5 (3)C41—C44A—H44C109.5
C16—C15—C2119.9 (4)H44A—C44A—H44C109.5
C17—C16—C15120.4 (4)H44B—C44A—H44C109.5
C17—C16—H16119.8C41—C42B—H42D109.5
C15—C16—H16119.8C41—C42B—H42E109.5
C16—C17—C18121.7 (4)H42D—C42B—H42E109.5
C16—C17—H17119.1C41—C42B—H42F109.5
C18—C17—H17119.1H42D—C42B—H42F109.5
C17—C18—C19117.1 (4)H42E—C42B—H42F109.5
C17—C18—C21122.7 (4)C41—C43B—H43D109.5
C19—C18—C21120.1 (4)C41—C43B—H43E109.5
C20—C19—C18121.3 (4)H43D—C43B—H43E109.5
C20—C19—H19119.3C41—C43B—H43F109.5
C18—C19—H19119.3H43D—C43B—H43F109.5
C19—C20—C15120.9 (4)H43E—C43B—H43F109.5
C19—C20—H20119.6C41—C44B—H44D109.5
C15—C20—H20119.6C41—C44B—H44E109.5
C18—C21—C23112.8 (3)H44D—C44B—H44E109.5
C18—C21—C22108.3 (3)C41—C44B—H44F109.5
C23—C21—C22109.0 (4)H44D—C44B—H44F109.5
C18—C21—C24109.9 (3)H44E—C44B—H44F109.5
C23—C21—C24107.9 (4)C46i—C45—C46133 (3)
C22—C21—C24109.0 (4)C46i—C45—H45A104.0
C21—C22—H22A109.5C46—C45—H45A104.0
C21—C22—H22B109.5C46i—C45—H45B104.0
H22A—C22—H22B109.5C46—C45—H45B104.0
C21—C22—H22C109.5H45A—C45—H45B105.5
H22A—C22—H22C109.5C47—C46—C45116 (2)
H22B—C22—H22C109.5C47—C46—H46A108.2
C21—C23—H23A109.5C45—C46—H46A108.2
C21—C23—H23B109.5C47—C46—H46B108.2
H23A—C23—H23B109.5C45—C46—H46B108.2
C21—C23—H23C109.5H46A—C46—H46B107.3
H23A—C23—H23C109.5C46—C47—H47A109.5
H23B—C23—H23C109.5C46—C47—H47B109.5
C21—C24—H24A109.5H47A—C47—H47B109.5
C21—C24—H24B109.5C46—C47—H47C109.5
H24A—C24—H24B109.5H47A—C47—H47C109.5
C21—C24—H24C109.5H47B—C47—H47C109.5
Symmetry code: (i) y, x, z+3/2.
Structural parameters (Å, °) for selected [M(S2C2Ar2)2] complexes (M = Ni2+, Pd2+, Pt2+, Au3+; Ar = aryl group) top
φ represents the angles between the MS4C4 MS4C4 mean plane and the aryl C6 planes. Values of φ that were refined in SHELXL carry an uncertainty. All other values of φ were evaluated using Mercury 3.7.
Ar, MSpace groupM—SS—CC—CchelateφRefcode
Ph, Ni2+P12.120, 2.1271.701 (4), 1.695 (4)1.42450.64, 44.79NIDPDS01a
2.125, 2.1251.718 (4), 1.702 (4)1.40453.06, 34.75
Ph, Ni2+P21/n2.1209 (6)1.7152 (17)1.388 (2)34.20NIDPDS03b
2.1226 (7)1.7035 (17)65.77
Ph, Pd2+P21/n2.2502, 2.24961.696 (2), 1.712 (2)1.399 (3)35.83, 66.40GOLRAAc
Ph, Pt2+P21/n2.2443, 2.24601.6978, 1.71611.396535.87, 66.68BUGDUCd
MeO-p-C6H4, Ni2+P12.1221 (6)1.7169 (19)29.40SICWORe
2.1218 (6)1.7029 (19)1.393 (3)53.00
2.1341 (5)1.7171 (19)1.391 (3)41.61
2.1182 (6)1.7100 (19)39.91
MeO-p-C6H4, Pd2+P12.2535 (18)1.699 (6)40.24SONPUIf
2.2566 (18)1.715 (6)1.417 (9)43.57
2.2706 (18)1.711 (6)1.411 (9)30.22
2.2505 (18)1.708 (6)51.76
MeO-p-C6H4, Pt2+P12.240 (2), 2.243 (2)1.696 (9), 1.710 (7)1.402 (12)40.83, 42.04SOPMOBf
2.245 (3), 2.249 (3)1.712 (8), 1.709 (9)1.391 (12)45.82, 38.35
MeO-p-C6H4, Ni2+P12.104 (3), 2.108 (3)1.689 (5), 1.699 (5)1.394 (6)40.41, 43.96ECEKAAb
2.103 (3), 2.106 (3)1.682 (5), 1.698 (5)1.386 (6)54.91, 35.28
Cl-p-C6H4, Ni2+P12.1277 (7)1.706 (2)35.39 (9)DATTURg
2.1192 (6)1.704 (2)1.399 (3)54.34 (5)
2.1207 (7)1.706 (2)1.391 (3)40.05 (6)
2.1261 (6)1.713 (2)42.99 (7)
3,5-(MeO)2-4-BuO-C6H2, Ni2+P21/n2.1121.67 (1)45.55JUHJURh
2.1231.69 (2)1.39 (2)48.73
tBu-p-C6H4, Ni2+, 1P412122.1175 (11)1.717 (4)41.7 (1)This work
2.1206 (12)1.705 (4)1.393 (6)53.5 (1)
2.1280 (11)1.705 (4)1.403 (6)53.4 (1)
2.1185 (11)1.709 (4)44.5 (2)
tBu-p-C6H4, Pd2+Pna212.2503 (10)44.16TEYSEWi
2.2443 (10)1.707 (4)1.393 (5)49.40
2.2667 (10)1.712 (4)51.77
2.2440 (10)51.38
tBu-p-C6H4, Pt2+Pna212.243 (2), 2.242 (2)1.728 (9), 1.729 (8)1.381 (12)48.37, 44.80TIDBEOj
2.259 (2), 2.243 (2)1.709 (10), 1.685 (9)1.404 (13)52.30, 52.63
tBu-p-C6H4, Au3+P412122.284 (5), 2.288 (5)1.74 (2), 1.745 (18)1.38 (2)41.16, 56.21TEYSASi
2.290 (5), 2.303 (5)1.751 (19). 1.76 (2)1.33 (2)47.30, 54.24
Notes: (a) Megnamisi-Belombe & Nuber (1989); (b) Miao et al. (2011); (c) Sheu & Lee (1999); (d) Dessy et al. (1982); (e) Arumugam et al. (2007); (f) Chandrasekaran et al. (2014); (g) Koehne et al. (2022); (h) Nakazumi et al. (1992); (i) Kotakam et al. (2007); (j) Pap et al. (2007).
 

Acknowledgements

Tulane University is acknowledged for its ongoing assistance with operational costs for the X-ray diffraction facility.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. MRI: 1228232; grant No. CHE: 1836589).

References

First citationArumugam, K., Bollinger, J. E., Fink, M. & Donahue, J. P. (2007). Inorg. Chem. 46, 3283–3288.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBigoli, F., Chen, C.-T., Wu, W.-C., Deplano, P., Mercuri, M. L., Pellinghelli, M. A., Pilia, L., Pintus, G., Serpe, A. & Trogu, E. F. (2001). Chem. Commun. pp. 2246–2247.  CSD CrossRef Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.  Google Scholar
First citationChandrasekaran, P., Greene, A. F., Lillich, K., Capone, S., Mague, J. T., DeBeer, S. & Donahue, J. P. (2014). Inorg. Chem. 53, 9192–9205.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDeplano, P., Pilia, L., Espa, D., Mercuri, M. L. & Serpe, A. (2010). Coord. Chem. Rev. 254, 1434–1447.  CrossRef CAS Google Scholar
First citationDessy, G., Fares, V., Bellitto, C. & Flamini, A. (1982). Cryst. Struct. Commun. 11, 1743–1745.  CAS Google Scholar
First citationDowd, M. K. & Stevens, E. D. (2004). J. Chem. Crystallogr. 34, 559–564.  CSD CrossRef CAS Google Scholar
First citationFaulmann, C. & Cassoux, P. (2003). Prog. Inorg. Chem. 52, 399–489.  CAS Google Scholar
First citationKato, R. (2004). Chem. Rev. 104, 5319–5346.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoehne, S., Mirmelli, B., Mague, J. T. & Donahue, J. P. (2022). IUCrData, 7, x220148.  Google Scholar
First citationKokatam, S., Ray, K., Pap, J., Bill, E., Geiger, W. E., LeSuer, R. J., Rieger, P. H., Weyhermüller, T., Neese, F. & Wieghardt, K. (2007). Inorg. Chem. 46, 1100–1111.  CSD CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLim, B. S., Fomitchev, D. V. & Holm, R. H. (2001). Inorg. Chem. 40, 4257–4262.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLin, H., Huang, L., Ding, H.-H., Zhang, Y., Dong, W.-J., Xia, B.-Y., Ren, W.-S. & Zhao, D. (2021). Org. Chem. Front. 8, 6657–6662.  CSD CrossRef CAS Google Scholar
First citationMcGuire, J., Miras, H. H., Donahue, J. P., Richards, E. & Sproules, S. (2018). Chem. Eur. J. 24, 17598–17605.  CSD CrossRef CAS PubMed Google Scholar
First citationMegnamisi-Belombe, M. & Nuber, B. (1989). Bull. Chem. Soc. Jpn, 62, 4092–4094.  CAS Google Scholar
First citationMen, J.-F., Cheng, H.-F., Chen, Z.-H., Chu, Z.-Y., Zheng, W.-W. & Wang, Q. (2008). Guofang Keji Daxue Xuebao, 30, 29-33.  CAS Google Scholar
First citationMiao, Q., Gao, J., Wang, Z., Yu, H., Luo, Y. & Ma, T. (2011). Inorg. Chim. Acta, 376, 619–627.  Web of Science CSD CrossRef CAS Google Scholar
First citationMueller-Westerhoff, U. T., Vance, B. & Ihl Yoon, D. (1991). Tetrahedron, 47, 909–932.  CAS Google Scholar
First citationMyles, L., Gathergood, N. & Connon, S. J. (2013). Chem. Commun. 49, 5316–5318.  CrossRef CAS Google Scholar
First citationNakazumi, H., Takamura, R., Kitao, T. & Adachi, T. (1992). Dyes Pigments, 18, 1–9.  CSD CrossRef CAS Web of Science Google Scholar
First citationOuahab, L. (1998). Coord. Chem. Rev. 178–180, 1501–1531.  CrossRef CAS Google Scholar
First citationPap, J. S., Benedito, F. L., Bothe, E., Bill, E., DeBeer George, S., Weyhermüller, T. & Wieghardt, K. (2007). Inorg. Chem. 46, 4187–4196.  CSD CrossRef PubMed CAS Google Scholar
First citationRobertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 97–127.  CrossRef Google Scholar
First citationSchrauzer, G. N. & Mayweg, V. P. (1965a). J. Am. Chem. Soc. 87, 1483–1489.  CrossRef CAS Google Scholar
First citationSchrauzer, G. N., Mayweg, V. P. & Heinrich, W. (1965b). Inorg. Chem. 4, 1615–1617.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheu, C.-F. & Lee, J.-S. (1999). Acta Cryst. C55, 1069–1072.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationTrzeciak-Karlikowska, K., Bujacz, A., Ciesielski, W., Bujacz, G. D. & Potrzebowski, M. J. (2011). J. Phys. Chem. B, 115, 9910–9919.  CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds