research communications
and Hirshfeld surface analysis of isopropyl 4-[2-fluoro-5-(trifluoromethyl)phenyl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate
aDepartment of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus 26470 Eskisehir, Türkiye, bDepartment of Physics, Faculty of Science, Erciyes University, 38039 Kayseri, Türkiye, cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24100 Erzincan, Türkiye, dDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhiye-Ankara, Türkiye, eDepartment of Chemistry, Howard University, Washington DC 20059, USA, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
In the title compound, C23H25F4NO3, the 1,4-dihydropyridine ring adopts a distorted boat conformation, while the cyclohexene ring is almost showing a half-chair conformation. In the crystal, intermolecular N—H⋯O hydrogen bonds connect the molecules into chains with graph-set motif C(6) parallel to the a-axis. These chains are linked together by C—H⋯O and C—H⋯F interactions, forming a three-dimensional network. In addition, C—H⋯π interactions link the molecules into layers parallel to the (100) plane. A Hirshfeld surface analysis was performed to further investigate the intermolecular interactions.
Keywords: crystal structure; 1,4-dihydropyridine ring; cyclohexene ring; quinoline ring system; van der Waals interactions; Hirshfeld surface analysis.
CCDC reference: 2242647
1. Chemical context
5-Oxo-1,4,5,6,7,8-hexahydroquinoline (5-oxo-HHQ) is a condensed heterocycle, which is formed with dihydropyridine (DHP) and cyclohexanone. In recent years, compounds containing the 5-oxo-HHQ scaffold have been widely studied because of their diverse pharmacological and biological attributes (Ranjbar et al., 2019).
In this study, isopropyl 4-[2-fluoro-5-(trifluoromethyl)phenyl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate was synthesized and its molecular structure was confirmed by IR, 1H NMR, 13C NMR, HRMS and X-ray crystallography. The intermolecular interactions observed in the crystal packing were investigated by Hirshfeld surface analysis.
2. Structural commentary
As shown in Fig. 1, the 1,4-dihydropyridine ring (N1/C1/C6-C9) adopts a distorted boat conformation [puckering parameters (Cremer & Pople, 1975): QT = 0.3164 (16) Å, θ = 75.3 (3)°, φ = 180.0 (3)°], while the cyclohexene ring (C1–C6) shows a twisted boat conformation [puckering parameters: QT = 0.4602 (18) Å, θ = 122.0 (2)°, φ = 312.6 (3)°]. The 1-fluoro-4-(trifluoromethyl)benzene ring (C17–C22) makes a dihedral angle of 87.91 (8)° with the mean plane of the quinoline ring system [N1/C1–C9; maximum deviation = 0.975 (2) Å for C4]. The geometrical parameter values of the the title compound are in agreement with those reported for similar compounds in the Database survey section.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, N—H⋯O hydrogen bonds link the molecules into infinite chains with a a C(6) chain motif (Bernstein et al., 1995) along the a-axis direction (Table 1 and Fig. 2). These chains are linked together by C—H⋯O and C—H⋯F interactions (Table 1 and Fig. 3), forming a three-dimensional network. C—H⋯π interactions link the molecules into layers parallel to the (100) plane (Table 1 and Fig. 4).
The Hirshfeld surface analysis of molecular crystal structures is an attempt to go beyond crystal packing diagrams with molecules represented by different patterns and internuclear distances and angles. Crystal Explorer 17.5 (Turner et al., 2017) was used to construct Hirshfeld surfaces for the title compound. The dnorm mappings for the title compound were performed in the range of −0.4718 to +1.7749 a.u. On the dnorm surfaces, bright red spots show the locations of the N—H⋯O, C—H⋯O and C—H⋯F interactions (Tables 1 and 2; Fig. 5a,b).
|
The overall two-dimensional fingerprint plot for the title compound and those delineated into H⋯H (Fig. 6b; 42.3), F⋯H/H⋯F (Fig. 6c; 28.5%), C⋯H/H⋯C (Fig. 6d; 14.6%) and O⋯H/H⋯O (Fig. 6e; 10.8%) contacts are shown in Fig. 6. F⋯O/O⋯F (1.8%), F⋯F (1.3%), N⋯H/H⋯N (0.5%) and F⋯C/C⋯F (0.2%) contacts have little directional influence on the molecular packing.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for similar structures with the 1,4,5,6,7,8-hexahydroquinoline group showed that the eight most closely related to the title compound are refcodes ECUCUE [(I); Yıldırım et al., 2022], LOQCAX [(II); Steiger et al., 2014), NEQMON [(III); Öztürk Yıldırım et al., 2013], PECPUK [(IV); Gündüz et al., 2012] IMEJOA [(V); Linden et al., 2011], PUGCIE [(VI); Mookiah et al., 2009], UCOLOO [(VII); Linden et al., 2006] and DAYJET [(VIII); Linden et al., 2005]. Molecules of all these compounds are linked by N—H⋯O hydrogen bonds. Additionally, C—H⋯O hydrogen bonds in (I), (III), (V) and (VI) and C—H⋯π interactions in (I) were also observed.
5. Synthesis and crystallization
The compound was obtained by a modified one-pot Hantzsch synthesis, which consists of refluxing 4,4-dimethyl-1,3-cyclohexanedione (1 mmol), isopropyl acetoacetate (1 mmol) and 2-fluoro-5-(trifluoromethyl)benzaldehyde (1 mmol) in methanol in the presence of ammonium acetate (5 mmol). The reaction was monitored by TLC using ethyl acetate–n-hexane (1:1). The reaction mixture was cooled down to room temperature and then poured into ice–water. The precipitated solid was filtered and crystallized from methanol (Çetin et al., 2022).
Isopropyl 2,6,6-trimethyl-4-(3-fluoro-5-trifluoromethylphenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate. Yellowish solid, m.p: 469–471 K, yield: 60%. IR (cm−1) 3299 (N—H), 1697 (C=O, ester), 1646 (C=O, ketone), 1H NMR (400 MHz, DMSO-d6): δ 0.82 (3H, s, 6-CH3), 0.91 [3H, d, J = 6.4 Hz, CH(CH3)2a], 0.97 (3H, s, 6-CH3), 1.16 [3H, d, J = 6.4, CH(CH3)2b], 1.64–1.76 (2H, m, quinoline H7), 2.26 (3H, s, 2-CH3), 2.48–2.51 (2H, m, quinoline H8), 4.75–4.81 [H, m, CH(CH3)2], 5.02 (H, s, quinoline H4), 7.24 (H, dd, J = 9.2, 6.8 Hz, Ar-H3), 7.50–7.54 (2H, m, Ar-H), 9.21 (H, s, NH). 13C NMR (100 MHz, DMSO-d6): δ 18.2 (2-CH3), 21.2 [COOCH(CH3)2a], 21.7 [COOCH(CH3)2b], 22.9 (C-8), 24.2 (6-CH3), 24.7 (6-CH3), 33.1 (C-7), 34.0 (C-4), 39.4 (C-6), 66.0 [COOCH(CH3)2], 101.2 (C-3), 107.5 (C-4a), 116.4, 122.7, 125.4, 128.2, 135.5, 163.4 (phenyl carbons), 125.1 (CF3), 146.1 (C-2), 150.4 (C-8a), 165.9 [COOCH(CH3)2], 199.3 (C-5). HRMS (ESI/Q-TOF) m/z: [M + H]+ calculated for C23H25F4NO3: 440.1804; found: 440.1975.
6. Refinement
Crystal data, data collection and structure . All C-bound H atoms were placed in geometrically idealized positions (C—H = 0.95–1.00 Å) while the hydrogen atom attached to N1 was found in a difference map, and was subsequently refined freely [N1—H1N = 0.88 (2) Å]. All C-bound H atoms were included as riding contributions with isotropic displacement parameters 1.2 times those of the parent atoms (1.5 for methyl groups). All F atoms of the trifluoromethyl unit of the molecule are disordered over two sites [relative occupancies 0.763 (5):0.237 (5)]. DFIX, SIMU and DELU instructions were used to restrain the disordered F atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2242647
https://doi.org/10.1107/S205698902300141X/tx2062sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902300141X/tx2062Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902300141X/tx2062Isup3.cml
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C23H25F4NO3 | F(000) = 920 |
Mr = 439.44 | Dx = 1.383 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4918 (3) Å | Cell parameters from 8405 reflections |
b = 27.8140 (11) Å | θ = 2.5–28.2° |
c = 10.2023 (4) Å | µ = 0.11 mm−1 |
β = 97.053 (2)° | T = 100 K |
V = 2109.84 (14) Å3 | Prism, yellowish |
Z = 4 | 0.23 × 0.17 × 0.10 mm |
Bruker APEXII CCD diffractometer | 3801 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.056 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 28.3°, θmin = 2.5° |
Tmin = 0.663, Tmax = 0.746 | h = −9→9 |
21749 measured reflections | k = −36→36 |
5221 independent reflections | l = −13→13 |
Refinement on F2 | 48 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.046 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.129 | w = 1/[σ2(Fo2) + (0.044P)2 + 1.2617P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
5221 reflections | Δρmax = 0.35 e Å−3 |
318 parameters | Δρmin = −0.37 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
F1 | 0.83123 (14) | 0.59076 (4) | 0.35900 (11) | 0.0285 (3) | |
F2 | 0.0433 (2) | 0.58544 (9) | 0.09930 (16) | 0.0425 (7) | 0.763 (5) |
F3 | 0.1611 (9) | 0.62597 (14) | −0.0465 (4) | 0.0398 (9) | 0.763 (5) |
F4 | 0.1702 (3) | 0.54913 (6) | −0.04875 (18) | 0.0370 (5) | 0.763 (5) |
F2A | 0.0323 (7) | 0.6241 (3) | 0.0914 (6) | 0.056 (2) | 0.237 (5) |
F3A | 0.167 (3) | 0.6171 (5) | −0.0756 (14) | 0.049 (4) | 0.237 (5) |
F4A | 0.0756 (10) | 0.5551 (2) | 0.0171 (8) | 0.059 (3) | 0.237 (5) |
O1 | 0.81859 (16) | 0.71304 (4) | 0.41408 (13) | 0.0227 (3) | |
O2 | 0.38263 (18) | 0.57179 (5) | 0.71526 (13) | 0.0288 (3) | |
O3 | 0.60880 (16) | 0.56439 (4) | 0.58997 (12) | 0.0199 (3) | |
N1 | 0.20965 (19) | 0.69030 (5) | 0.46495 (15) | 0.0207 (3) | |
H1N | 0.099 (3) | 0.7016 (8) | 0.459 (2) | 0.031 (6)* | |
C1 | 0.3454 (2) | 0.71772 (6) | 0.42567 (16) | 0.0190 (3) | |
C2 | 0.2984 (2) | 0.76895 (6) | 0.3917 (2) | 0.0255 (4) | |
H2A | 0.285175 | 0.786980 | 0.473603 | 0.031* | |
H2B | 0.181746 | 0.770062 | 0.334509 | 0.031* | |
C3 | 0.4424 (2) | 0.79280 (6) | 0.32062 (18) | 0.0232 (4) | |
H3A | 0.419816 | 0.827862 | 0.315943 | 0.028* | |
H3B | 0.432982 | 0.780416 | 0.229056 | 0.028* | |
C4 | 0.6335 (2) | 0.78392 (6) | 0.38858 (17) | 0.0190 (3) | |
C5 | 0.6655 (2) | 0.72984 (6) | 0.40730 (16) | 0.0175 (3) | |
C6 | 0.5124 (2) | 0.69908 (5) | 0.42489 (15) | 0.0170 (3) | |
C7 | 0.5444 (2) | 0.64570 (5) | 0.45008 (16) | 0.0164 (3) | |
H7A | 0.668292 | 0.641386 | 0.497582 | 0.020* | |
C8 | 0.4092 (2) | 0.62727 (5) | 0.53860 (16) | 0.0170 (3) | |
C9 | 0.2458 (2) | 0.64791 (6) | 0.53611 (16) | 0.0185 (3) | |
C10 | 0.6615 (3) | 0.80687 (7) | 0.52669 (19) | 0.0293 (4) | |
H10A | 0.783401 | 0.799820 | 0.568766 | 0.044* | |
H10B | 0.573604 | 0.793666 | 0.580624 | 0.044* | |
H10C | 0.645383 | 0.841759 | 0.518702 | 0.044* | |
C11 | 0.7685 (2) | 0.80522 (6) | 0.30387 (19) | 0.0261 (4) | |
H11A | 0.756447 | 0.789038 | 0.217908 | 0.039* | |
H11B | 0.890814 | 0.800633 | 0.348417 | 0.039* | |
H11C | 0.744789 | 0.839655 | 0.290953 | 0.039* | |
C12 | 0.0930 (2) | 0.63118 (6) | 0.60675 (18) | 0.0223 (3) | |
H12A | 0.092211 | 0.595962 | 0.609755 | 0.033* | |
H12B | −0.020875 | 0.642682 | 0.559688 | 0.033* | |
H12C | 0.107879 | 0.643951 | 0.696950 | 0.033* | |
C13 | 0.4600 (2) | 0.58570 (6) | 0.62451 (17) | 0.0197 (3) | |
C14 | 0.6800 (2) | 0.52376 (6) | 0.67080 (18) | 0.0233 (4) | |
H14A | 0.579391 | 0.502405 | 0.690737 | 0.028* | |
C15 | 0.8005 (3) | 0.49721 (7) | 0.5873 (2) | 0.0320 (4) | |
H15A | 0.732182 | 0.488837 | 0.502190 | 0.048* | |
H15B | 0.845165 | 0.467797 | 0.632940 | 0.048* | |
H15C | 0.902333 | 0.517761 | 0.572403 | 0.048* | |
C16 | 0.7809 (3) | 0.54265 (7) | 0.79772 (19) | 0.0321 (4) | |
H16A | 0.698202 | 0.560747 | 0.846536 | 0.048* | |
H16B | 0.878266 | 0.563824 | 0.777245 | 0.048* | |
H16C | 0.831503 | 0.515642 | 0.851701 | 0.048* | |
C17 | 0.5305 (2) | 0.61730 (5) | 0.32111 (16) | 0.0180 (3) | |
C18 | 0.6711 (2) | 0.59070 (6) | 0.28216 (17) | 0.0221 (3) | |
C19 | 0.6575 (3) | 0.56336 (6) | 0.16787 (19) | 0.0297 (4) | |
H19A | 0.757188 | 0.545153 | 0.146365 | 0.036* | |
C20 | 0.4966 (3) | 0.56302 (7) | 0.08575 (18) | 0.0310 (4) | |
H20A | 0.484741 | 0.545016 | 0.006024 | 0.037* | |
C21 | 0.3531 (3) | 0.58922 (7) | 0.12102 (17) | 0.0261 (4) | |
C22 | 0.3689 (2) | 0.61593 (6) | 0.23693 (17) | 0.0216 (3) | |
H22A | 0.268204 | 0.633535 | 0.259244 | 0.026* | |
C23 | 0.1789 (3) | 0.58922 (8) | 0.03321 (19) | 0.0355 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0201 (5) | 0.0332 (6) | 0.0326 (6) | 0.0071 (4) | 0.0043 (4) | −0.0038 (5) |
F2 | 0.0219 (8) | 0.0783 (19) | 0.0270 (8) | −0.0104 (9) | 0.0018 (6) | −0.0014 (9) |
F3 | 0.0451 (19) | 0.0281 (10) | 0.0418 (19) | −0.0055 (10) | −0.0127 (16) | 0.0106 (11) |
F4 | 0.0431 (12) | 0.0323 (8) | 0.0324 (9) | −0.0078 (7) | −0.0088 (8) | −0.0090 (7) |
F2A | 0.025 (3) | 0.098 (6) | 0.041 (3) | 0.019 (3) | −0.011 (2) | −0.028 (4) |
F3A | 0.037 (5) | 0.073 (8) | 0.037 (6) | 0.002 (6) | 0.012 (5) | 0.026 (5) |
F4A | 0.051 (4) | 0.042 (3) | 0.073 (6) | −0.023 (3) | −0.033 (4) | 0.020 (4) |
O1 | 0.0149 (6) | 0.0213 (6) | 0.0324 (7) | 0.0021 (5) | 0.0044 (5) | 0.0027 (5) |
O2 | 0.0299 (7) | 0.0294 (6) | 0.0297 (7) | 0.0054 (5) | 0.0138 (6) | 0.0089 (5) |
O3 | 0.0180 (6) | 0.0186 (5) | 0.0236 (6) | 0.0031 (4) | 0.0045 (5) | 0.0039 (5) |
N1 | 0.0119 (7) | 0.0219 (7) | 0.0285 (8) | 0.0021 (5) | 0.0039 (6) | 0.0045 (6) |
C1 | 0.0152 (8) | 0.0202 (8) | 0.0216 (8) | 0.0017 (6) | 0.0031 (6) | 0.0013 (6) |
C2 | 0.0171 (8) | 0.0226 (8) | 0.0372 (10) | 0.0054 (6) | 0.0055 (7) | 0.0084 (7) |
C3 | 0.0187 (9) | 0.0198 (8) | 0.0312 (9) | 0.0051 (6) | 0.0041 (7) | 0.0068 (7) |
C4 | 0.0168 (8) | 0.0164 (7) | 0.0238 (8) | 0.0016 (6) | 0.0029 (6) | 0.0021 (6) |
C5 | 0.0167 (8) | 0.0187 (7) | 0.0172 (7) | 0.0013 (6) | 0.0023 (6) | 0.0000 (6) |
C6 | 0.0161 (8) | 0.0176 (7) | 0.0171 (7) | 0.0005 (6) | 0.0016 (6) | 0.0013 (6) |
C7 | 0.0135 (7) | 0.0177 (7) | 0.0179 (7) | 0.0012 (6) | 0.0014 (6) | −0.0006 (6) |
C8 | 0.0166 (8) | 0.0172 (7) | 0.0172 (7) | −0.0010 (6) | 0.0019 (6) | −0.0013 (6) |
C9 | 0.0182 (8) | 0.0191 (7) | 0.0181 (7) | −0.0018 (6) | 0.0015 (6) | −0.0015 (6) |
C10 | 0.0331 (11) | 0.0224 (8) | 0.0322 (10) | 0.0024 (7) | 0.0035 (8) | −0.0053 (7) |
C11 | 0.0208 (9) | 0.0215 (8) | 0.0369 (10) | −0.0006 (7) | 0.0071 (8) | 0.0058 (7) |
C12 | 0.0167 (8) | 0.0245 (8) | 0.0266 (9) | −0.0009 (6) | 0.0068 (7) | 0.0013 (7) |
C13 | 0.0177 (8) | 0.0198 (7) | 0.0217 (8) | 0.0008 (6) | 0.0029 (6) | −0.0015 (6) |
C14 | 0.0201 (9) | 0.0186 (8) | 0.0314 (9) | 0.0017 (6) | 0.0036 (7) | 0.0077 (7) |
C15 | 0.0261 (10) | 0.0225 (9) | 0.0485 (12) | 0.0055 (7) | 0.0082 (9) | 0.0031 (8) |
C16 | 0.0314 (11) | 0.0334 (10) | 0.0298 (10) | −0.0021 (8) | −0.0026 (8) | 0.0104 (8) |
C17 | 0.0205 (8) | 0.0161 (7) | 0.0178 (7) | −0.0029 (6) | 0.0044 (6) | 0.0013 (6) |
C18 | 0.0220 (9) | 0.0213 (8) | 0.0237 (8) | −0.0006 (6) | 0.0055 (7) | 0.0002 (6) |
C19 | 0.0375 (11) | 0.0234 (9) | 0.0311 (10) | −0.0030 (8) | 0.0157 (9) | −0.0056 (7) |
C20 | 0.0448 (12) | 0.0281 (9) | 0.0220 (9) | −0.0142 (8) | 0.0109 (8) | −0.0067 (7) |
C21 | 0.0305 (10) | 0.0294 (9) | 0.0181 (8) | −0.0139 (7) | 0.0012 (7) | 0.0030 (7) |
C22 | 0.0221 (9) | 0.0240 (8) | 0.0190 (8) | −0.0048 (7) | 0.0034 (7) | 0.0032 (6) |
C23 | 0.0409 (12) | 0.0448 (11) | 0.0196 (9) | −0.0198 (9) | −0.0006 (8) | 0.0048 (8) |
F1—C18 | 1.350 (2) | C8—C13 | 1.472 (2) |
F2—C23 | 1.291 (3) | C9—C12 | 1.500 (2) |
F3—C23 | 1.303 (4) | C10—H10A | 0.9800 |
F4—C23 | 1.390 (3) | C10—H10B | 0.9800 |
F2A—C23 | 1.632 (6) | C10—H10C | 0.9800 |
F3A—C23 | 1.348 (13) | C11—H11A | 0.9800 |
F4A—C23 | 1.223 (6) | C11—H11B | 0.9800 |
O1—C5 | 1.233 (2) | C11—H11C | 0.9800 |
O2—C13 | 1.215 (2) | C12—H12A | 0.9800 |
O3—C13 | 1.3470 (19) | C12—H12B | 0.9800 |
O3—C14 | 1.4607 (19) | C12—H12C | 0.9800 |
N1—C1 | 1.370 (2) | C14—C15 | 1.508 (3) |
N1—C9 | 1.394 (2) | C14—C16 | 1.511 (3) |
N1—H1N | 0.88 (2) | C14—H14A | 1.0000 |
C1—C6 | 1.355 (2) | C15—H15A | 0.9800 |
C1—C2 | 1.498 (2) | C15—H15B | 0.9800 |
C2—C3 | 1.523 (2) | C15—H15C | 0.9800 |
C2—H2A | 0.9900 | C16—H16A | 0.9800 |
C2—H2B | 0.9900 | C16—H16B | 0.9800 |
C3—C4 | 1.532 (2) | C16—H16C | 0.9800 |
C3—H3A | 0.9900 | C17—C18 | 1.385 (2) |
C3—H3B | 0.9900 | C17—C22 | 1.396 (2) |
C4—C11 | 1.528 (2) | C18—C19 | 1.385 (2) |
C4—C5 | 1.531 (2) | C19—C20 | 1.381 (3) |
C4—C10 | 1.538 (2) | C19—H19A | 0.9500 |
C5—C6 | 1.459 (2) | C20—C21 | 1.383 (3) |
C6—C7 | 1.521 (2) | C20—H20A | 0.9500 |
C7—C8 | 1.526 (2) | C21—C22 | 1.389 (2) |
C7—C17 | 1.527 (2) | C21—C23 | 1.489 (3) |
C7—H7A | 1.0000 | C22—H22A | 0.9500 |
C8—C9 | 1.350 (2) | ||
C13—O3—C14 | 116.69 (13) | C9—C12—H12B | 109.5 |
C1—N1—C9 | 121.29 (14) | H12A—C12—H12B | 109.5 |
C1—N1—H1N | 120.3 (14) | C9—C12—H12C | 109.5 |
C9—N1—H1N | 117.5 (14) | H12A—C12—H12C | 109.5 |
C6—C1—N1 | 120.53 (15) | H12B—C12—H12C | 109.5 |
C6—C1—C2 | 123.60 (15) | O2—C13—O3 | 123.17 (15) |
N1—C1—C2 | 115.80 (14) | O2—C13—C8 | 126.25 (15) |
C1—C2—C3 | 111.35 (14) | O3—C13—C8 | 110.58 (13) |
C1—C2—H2A | 109.4 | O3—C14—C15 | 105.20 (14) |
C3—C2—H2A | 109.4 | O3—C14—C16 | 108.92 (14) |
C1—C2—H2B | 109.4 | C15—C14—C16 | 112.55 (16) |
C3—C2—H2B | 109.4 | O3—C14—H14A | 110.0 |
H2A—C2—H2B | 108.0 | C15—C14—H14A | 110.0 |
C2—C3—C4 | 113.03 (14) | C16—C14—H14A | 110.0 |
C2—C3—H3A | 109.0 | C14—C15—H15A | 109.5 |
C4—C3—H3A | 109.0 | C14—C15—H15B | 109.5 |
C2—C3—H3B | 109.0 | H15A—C15—H15B | 109.5 |
C4—C3—H3B | 109.0 | C14—C15—H15C | 109.5 |
H3A—C3—H3B | 107.8 | H15A—C15—H15C | 109.5 |
C11—C4—C5 | 110.31 (13) | H15B—C15—H15C | 109.5 |
C11—C4—C3 | 109.16 (14) | C14—C16—H16A | 109.5 |
C5—C4—C3 | 109.75 (13) | C14—C16—H16B | 109.5 |
C11—C4—C10 | 109.38 (15) | H16A—C16—H16B | 109.5 |
C5—C4—C10 | 106.97 (14) | C14—C16—H16C | 109.5 |
C3—C4—C10 | 111.26 (14) | H16A—C16—H16C | 109.5 |
O1—C5—C6 | 120.70 (14) | H16B—C16—H16C | 109.5 |
O1—C5—C4 | 120.64 (14) | C18—C17—C22 | 116.21 (15) |
C6—C5—C4 | 118.56 (14) | C18—C17—C7 | 123.34 (15) |
C1—C6—C5 | 121.08 (14) | C22—C17—C7 | 120.43 (15) |
C1—C6—C7 | 119.93 (14) | F1—C18—C17 | 119.05 (15) |
C5—C6—C7 | 118.91 (14) | F1—C18—C19 | 117.23 (16) |
C6—C7—C8 | 109.00 (13) | C17—C18—C19 | 123.71 (18) |
C6—C7—C17 | 111.51 (13) | C20—C19—C18 | 118.87 (18) |
C8—C7—C17 | 110.85 (13) | C20—C19—H19A | 120.6 |
C6—C7—H7A | 108.5 | C18—C19—H19A | 120.6 |
C8—C7—H7A | 108.5 | C19—C20—C21 | 119.17 (17) |
C17—C7—H7A | 108.5 | C19—C20—H20A | 120.4 |
C9—C8—C13 | 120.85 (15) | C21—C20—H20A | 120.4 |
C9—C8—C7 | 120.83 (14) | C20—C21—C22 | 121.04 (18) |
C13—C8—C7 | 118.31 (14) | C20—C21—C23 | 119.70 (17) |
C8—C9—N1 | 119.18 (14) | C22—C21—C23 | 119.26 (18) |
C8—C9—C12 | 127.09 (15) | C21—C22—C17 | 120.99 (17) |
N1—C9—C12 | 113.69 (14) | C21—C22—H22A | 119.5 |
C4—C10—H10A | 109.5 | C17—C22—H22A | 119.5 |
C4—C10—H10B | 109.5 | F2—C23—F3 | 111.3 (3) |
H10A—C10—H10B | 109.5 | F4A—C23—F3A | 111.0 (8) |
C4—C10—H10C | 109.5 | F2—C23—F4 | 105.48 (18) |
H10A—C10—H10C | 109.5 | F3—C23—F4 | 105.1 (2) |
H10B—C10—H10C | 109.5 | F4A—C23—C21 | 125.0 (3) |
C4—C11—H11A | 109.5 | F2—C23—C21 | 111.93 (16) |
C4—C11—H11B | 109.5 | F3—C23—C21 | 113.0 (3) |
H11A—C11—H11B | 109.5 | F3A—C23—C21 | 117.5 (9) |
C4—C11—H11C | 109.5 | F4—C23—C21 | 109.55 (19) |
H11A—C11—H11C | 109.5 | F4A—C23—F2A | 93.9 (5) |
H11B—C11—H11C | 109.5 | F3A—C23—F2A | 88.7 (8) |
C9—C12—H12A | 109.5 | C21—C23—F2A | 111.1 (2) |
C9—N1—C1—C6 | 16.7 (2) | C14—O3—C13—C8 | 177.28 (13) |
C9—N1—C1—C2 | −160.28 (16) | C9—C8—C13—O2 | −14.5 (3) |
C6—C1—C2—C3 | 16.0 (3) | C7—C8—C13—O2 | 166.88 (17) |
N1—C1—C2—C3 | −167.16 (16) | C9—C8—C13—O3 | 166.01 (15) |
C1—C2—C3—C4 | −47.4 (2) | C7—C8—C13—O3 | −12.6 (2) |
C2—C3—C4—C11 | 174.92 (14) | C13—O3—C14—C15 | 161.43 (15) |
C2—C3—C4—C5 | 53.91 (19) | C13—O3—C14—C16 | −77.70 (18) |
C2—C3—C4—C10 | −64.28 (19) | C6—C7—C17—C18 | 119.37 (17) |
C11—C4—C5—O1 | 33.3 (2) | C8—C7—C17—C18 | −118.98 (17) |
C3—C4—C5—O1 | 153.65 (15) | C6—C7—C17—C22 | −62.54 (19) |
C10—C4—C5—O1 | −85.53 (19) | C8—C7—C17—C22 | 59.10 (19) |
C11—C4—C5—C6 | −150.30 (15) | C22—C17—C18—F1 | 179.63 (14) |
C3—C4—C5—C6 | −30.0 (2) | C7—C17—C18—F1 | −2.2 (2) |
C10—C4—C5—C6 | 90.83 (18) | C22—C17—C18—C19 | −0.7 (2) |
N1—C1—C6—C5 | −168.50 (15) | C7—C17—C18—C19 | 177.43 (16) |
C2—C1—C6—C5 | 8.2 (3) | F1—C18—C19—C20 | −178.98 (15) |
N1—C1—C6—C7 | 8.1 (2) | C17—C18—C19—C20 | 1.4 (3) |
C2—C1—C6—C7 | −175.12 (16) | C18—C19—C20—C21 | −1.2 (3) |
O1—C5—C6—C1 | 175.91 (16) | C19—C20—C21—C22 | 0.4 (3) |
C4—C5—C6—C1 | −0.4 (2) | C19—C20—C21—C23 | 179.90 (17) |
O1—C5—C6—C7 | −0.8 (2) | C20—C21—C22—C17 | 0.3 (3) |
C4—C5—C6—C7 | −177.12 (14) | C23—C21—C22—C17 | −179.26 (15) |
C1—C6—C7—C8 | −28.8 (2) | C18—C17—C22—C21 | −0.1 (2) |
C5—C6—C7—C8 | 147.86 (14) | C7—C17—C22—C21 | −178.31 (15) |
C1—C6—C7—C17 | 93.87 (18) | C20—C21—C23—F4A | 71.2 (7) |
C5—C6—C7—C17 | −89.42 (17) | C22—C21—C23—F4A | −109.2 (7) |
C6—C7—C8—C9 | 29.1 (2) | C20—C21—C23—F2 | 137.6 (2) |
C17—C7—C8—C9 | −93.96 (18) | C22—C21—C23—F2 | −42.9 (3) |
C6—C7—C8—C13 | −152.26 (14) | C20—C21—C23—F3 | −95.8 (3) |
C17—C7—C8—C13 | 84.64 (18) | C22—C21—C23—F3 | 83.7 (3) |
C13—C8—C9—N1 | 172.97 (15) | C20—C21—C23—F3A | −77.8 (8) |
C7—C8—C9—N1 | −8.5 (2) | C22—C21—C23—F3A | 101.8 (8) |
C13—C8—C9—C12 | −4.9 (3) | C20—C21—C23—F4 | 21.0 (2) |
C7—C8—C9—C12 | 173.69 (15) | C22—C21—C23—F4 | −159.50 (17) |
C1—N1—C9—C8 | −16.5 (2) | C20—C21—C23—F2A | −177.7 (4) |
C1—N1—C9—C12 | 161.63 (15) | C22—C21—C23—F2A | 1.8 (4) |
C14—O3—C13—O2 | −2.2 (2) |
Cg3 is the centroid of the C17–C22 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.88 (2) | 2.12 (2) | 2.9798 (19) | 165 (2) |
C2—H2A···F3ii | 0.99 | 2.59 | 3.187 (4) | 119 |
C12—H12B···F1i | 0.98 | 2.64 | 3.206 (2) | 117 |
C12—H12B···O1i | 0.98 | 2.65 | 3.505 (2) | 145 |
C12—H12C···F3Aiii | 0.98 | 2.43 | 3.243 (15) | 141 |
C16—H16A···O2 | 0.98 | 2.59 | 3.106 (2) | 113 |
C16—H16C···F4Aiv | 0.98 | 2.43 | 3.409 (6) | 174 |
C19—H19A···F2v | 0.95 | 2.52 | 3.117 (3) | 121 |
C10—H10C···Cg3ii | 0.98 | 2.93 | 3.631 (2) | 130 |
C14—H14A···Cg3iv | 1.00 | 2.91 | 3.7707 (18) | 145 |
Symmetry codes: (i) x−1, y, z; (ii) x, −y+3/2, z+1/2; (iii) x, y, z+1; (iv) −x+1, −y+1, −z+1; (v) x+1, y, z. |
O1···H1N | 2.12 (2) | 1 + x, y, z |
F3A···H12C | 2.43 | x, y, -1 + z |
F3···H2A | 2.59 | x, 1/2 - y, -3/2 + z |
F4A···H16C | 2.58 | -1 + x, y, -1 + z |
H16C···F4A | 2.43 | 1 - x, 1 - y, 1 - z |
F2A···H10A | 2.81 | -1 + x, 3/2 - y, -1/2 + z |
H15C···H15C | 2.41 | 2 - x, 1 - y, 1 - z |
H20A···H20A | 2.52 | 1 - x, 1 - y, -z |
Acknowledgements
Authors' contributions are as follows. Conceptualization, RS and SOY; methodology, RS and GC; investigation, RS and SOY; writing (original draft), GC and MA writing (review and editing of the manuscript), RS and SOY; crystal data production and validation, RJB and SOY; visualization, MA; funding acquisition, RJB; resources, AB, RJB and RS.
Funding information
RJB is grateful for funding from NSF (award 1205608) and to the Partnership for Reduced Dimensional Materials for partial funding of this research, to Howard University Nanoscience Facility for access to liquid nitrogen, and the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. This study was supported by the Hacettepe University Scientific Research Unit (project No. THD-2020–18806).
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Çetin, G., Çetin, B., Çolak, B., Aşan, M., Birlik Demirel, G., Cansaran-Duman, D., Akçelik, N. & Şimşek, R. (2022). J. Res. Pharm. 26, 219–230. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gündüz, M. G., Butcher, R. J., Öztürk Yildirim, S., El-Khouly, A., Şafak, C. & Şimşek, R. (2012). Acta Cryst. E68, o3404–o3405. CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Linden, A., Gündüz, M. G., Şimşek, R. & Şafak, C. (2006). Acta Cryst. C62, o227–o230. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Linden, A., Şafak, C., Şimşek, R. & Gündüz, M. G. (2011). Acta Cryst. C67, o80–o84. Web of Science CSD CrossRef IUCr Journals Google Scholar
Linden, A., Şimşek, R., Gündüz, M. & Şafak, C. (2005). Acta Cryst. C61, o731–o734. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mookiah, P., Rajesh, K., Narasimhamurthy, T., Vijayakumar, V. & Srinivasan, N. (2009). Acta Cryst. E65, o2664. Web of Science CSD CrossRef IUCr Journals Google Scholar
Öztürk Yildirim, S., Butcher, R. J., Gündüz, M. G., El-Khouly, A., Şimşek, R. & Şafak, C. (2013). Acta Cryst. E69, o40–o41. CSD CrossRef IUCr Journals Google Scholar
Ranjbar, S., Edraki, N., Firuzi, O., Khoshneviszadeh, M. & Miri, R. (2019). Mol. Divers. 23, 471–508. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Steiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014). Acta Cryst. C70, 790–795. Web of Science CSD CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net. Google Scholar
Yıldırım, S. Ö., Akkurt, M., Çetin, G., Şimşek, R., Butcher, R. J. & Bhattarai, A. (2022). Acta Cryst. E78, 798–803. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.