research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of iso­propyl 4-[2-fluoro-5-(tri­fluoro­meth­yl)phen­yl]-2,6,6-tri­methyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate

crossmark logo

aDepartment of Physics, Faculty of Science, Eskisehir Technical University, Yunus Emre Campus 26470 Eskisehir, Türkiye, bDepartment of Physics, Faculty of Science, Erciyes University, 38039 Kayseri, Türkiye, cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24100 Erzincan, Türkiye, dDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhiye-Ankara, Türkiye, eDepartment of Chemistry, Howard University, Washington DC 20059, USA, and fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 25 January 2023; accepted 16 February 2023; online 21 February 2023)

In the title compound, C23H25F4NO3, the 1,4-di­hydro­pyridine ring adopts a distorted boat conformation, while the cyclo­hexene ring is almost showing a half-chair conformation. In the crystal, inter­molecular N—H⋯O hydrogen bonds connect the mol­ecules into chains with graph-set motif C(6) parallel to the a-axis. These chains are linked together by C—H⋯O and C—H⋯F inter­actions, forming a three-dimensional network. In addition, C—H⋯π inter­actions link the mol­ecules into layers parallel to the (100) plane. A Hirshfeld surface analysis was performed to further investigate the inter­molecular inter­actions.

1. Chemical context

5-Oxo-1,4,5,6,7,8-hexa­hydro­quinoline (5-oxo-HHQ) is a condensed heterocycle, which is formed with di­hydro­pyridine (DHP) and cyclo­hexa­none. In recent years, compounds containing the 5-oxo-HHQ scaffold have been widely studied because of their diverse pharmacological and biological attributes (Ranjbar et al., 2019[Ranjbar, S., Edraki, N., Firuzi, O., Khoshneviszadeh, M. & Miri, R. (2019). Mol. Divers. 23, 471-508.]).

[Scheme 1]

In this study, isopropyl 4-[2-fluoro-5-(tri­fluoro­meth­yl)phen­yl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate was synthesized and its mol­ecular structure was confirmed by IR, 1H NMR, 13C NMR, HRMS and X-ray crystallography. The inter­molecular inter­actions observed in the crystal packing were investigated by Hirshfeld surface analysis.

2. Structural commentary

As shown in Fig. 1[link], the 1,4-di­hydro­pyridine ring (N1/C1/C6-C9) adopts a distorted boat conformation [puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]): QT = 0.3164 (16) Å, θ = 75.3 (3)°, φ = 180.0 (3)°], while the cyclo­hexene ring (C1–C6) shows a twisted boat conformation [puckering parameters: QT = 0.4602 (18) Å, θ = 122.0 (2)°, φ = 312.6 (3)°]. The 1-fluoro-4-(tri­fluoro­meth­yl)benzene ring (C17–C22) makes a dihedral angle of 87.91 (8)° with the mean plane of the quinoline ring system [N1/C1–C9; maximum deviation = 0.975 (2) Å for C4]. The geometrical parameter values of the the title compound are in agreement with those reported for similar compounds in the Database survey section.

[Figure 1]
Figure 1
View of the title mol­ecule. Displacement ellipsoids are drawn at the 30% probability level. For clarity, only the major disorder components are included.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into infinite chains with a a C(6) chain motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) along the a-axis direction (Table 1[link] and Fig. 2[link]). These chains are linked together by C—H⋯O and C—H⋯F inter­actions (Table 1[link] and Fig. 3[link]), forming a three-dimensional network. C—H⋯π inter­actions link the mol­ecules into layers parallel to the (100) plane (Table 1[link] and Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.88 (2) 2.12 (2) 2.9798 (19) 165 (2)
C2—H2A⋯F3ii 0.99 2.59 3.187 (4) 119
C12—H12B⋯F1i 0.98 2.64 3.206 (2) 117
C12—H12B⋯O1i 0.98 2.65 3.505 (2) 145
C12—H12C⋯F3Aiii 0.98 2.43 3.243 (15) 141
C16—H16A⋯O2 0.98 2.59 3.106 (2) 113
C16—H16C⋯F4Aiv 0.98 2.43 3.409 (6) 174
C19—H19A⋯F2v 0.95 2.52 3.117 (3) 121
C10—H10CCg3ii 0.98 2.93 3.631 (2) 130
C14—H14ACg3iv 1.00 2.91 3.7707 (18) 145
Symmetry codes: (i) [x-1, y, z]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x, y, z+1; (iv) [-x+1, -y+1, -z+1]; (v) x+1, y, z.
[Figure 2]
Figure 2
A view of the mol­ecular packing of the title compound, showing the N—H⋯O hydrogen bonds. Only the major components of the disordered atoms are shown.
[Figure 3]
Figure 3
A view of the mol­ecular packing of the title compound, showing the N—H⋯O, C—H⋯O and C—H⋯F hydrogen bonds.
[Figure 4]
Figure 4
A view of the mol­ecular packing of the title compound, showing the C—H⋯π inter­actions. Only the major components of the disordered atoms are shown.

The Hirshfeld surface analysis of mol­ecular crystal structures is an attempt to go beyond crystal packing diagrams with mol­ecules represented by different patterns and inter­nuclear distances and angles. Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net.]) was used to construct Hirshfeld surfaces for the title compound. The dnorm mappings for the title compound were performed in the range of −0.4718 to +1.7749 a.u. On the dnorm surfaces, bright red spots show the locations of the N—H⋯O, C—H⋯O and C—H⋯F inter­actions (Tables 1[link] and 2[link]; Fig. 5[link]a,b).

Table 2
Summary of short inter­atomic contacts (Å)

O1⋯H1N 2.12 (2) 1 + x, y, z
F3A⋯H12C 2.43 x, y, −1 + z
F3⋯H2A 2.59 x, [{1\over 2}] − y, −[{3\over 2}] + z
F4A⋯H16C 2.58 −1 + x, y, −1 + z
H16C⋯F4A 2.43 1 − x, 1 − y, 1 − z
F2A⋯H10A 2.81 −1 + x, [{3\over 2}] − y, −[{1\over 2}] + z
H15C⋯H15C 2.41 2 − x, 1 − y, 1 − z
H20A⋯H20A 2.52 1 − x, 1 − y, −z
[Figure 5]
Figure 5
(a) Front and (b) back views of the three-dimensional Hirshfeld surface for the title compound. Some N—H⋯O, C—H⋯O and C—H⋯F inter­actions are shown as dashed lines.

The overall two-dimensional fingerprint plot for the title compound and those delineated into H⋯H (Fig. 6[link]b; 42.3), F⋯H/H⋯F (Fig. 6[link]c; 28.5%), C⋯H/H⋯C (Fig. 6[link]d; 14.6%) and O⋯H/H⋯O (Fig. 6[link]e; 10.8%) contacts are shown in Fig. 6[link]. F⋯O/O⋯F (1.8%), F⋯F (1.3%), N⋯H/H⋯N (0.5%) and F⋯C/C⋯F (0.2%) contacts have little directional influence on the mol­ecular packing.

[Figure 6]
Figure 6
The two-dimensional fingerprint plots for the title compound showing (a) all inter­actions, and delineated into (b) H⋯H, (c) F⋯H/H⋯F, (d) C⋯H/H⋯C and (e) O⋯H/H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar structures with the 1,4,5,6,7,8-hexa­hydro­quinoline group showed that the eight most closely related to the title compound are refcodes ECUCUE [(I); Yıldırım et al., 2022[Yıldırım, S. Ö., Akkurt, M., Çetin, G., Şimşek, R., Butcher, R. J. & Bhattarai, A. (2022). Acta Cryst. E78, 798-803.]], LOQCAX [(II); Steiger et al., 2014[Steiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014). Acta Cryst. C70, 790-795.]), NEQMON [(III); Öztürk Yıldırım et al., 2013[Öztürk Yildirim, S., Butcher, R. J., Gündüz, M. G., El-Khouly, A., Şimşek, R. & Şafak, C. (2013). Acta Cryst. E69, o40-o41.]], PECPUK [(IV); Gündüz et al., 2012[Gündüz, M. G., Butcher, R. J., Öztürk Yildirim, S., El-Khouly, A., Şafak, C. & Şimşek, R. (2012). Acta Cryst. E68, o3404-o3405.]] IMEJOA [(V); Linden et al., 2011[Linden, A., Şafak, C., Şimşek, R. & Gündüz, M. G. (2011). Acta Cryst. C67, o80-o84.]], PUGCIE [(VI); Mookiah et al., 2009[Mookiah, P., Rajesh, K., Narasimhamurthy, T., Vijayakumar, V. & Srinivasan, N. (2009). Acta Cryst. E65, o2664.]], UCOLOO [(VII); Linden et al., 2006[Linden, A., Gündüz, M. G., Şimşek, R. & Şafak, C. (2006). Acta Cryst. C62, o227-o230.]] and DAYJET [(VIII); Linden et al., 2005[Linden, A., Şimşek, R., Gündüz, M. & Şafak, C. (2005). Acta Cryst. C61, o731-o734.]]. Mol­ecules of all these compounds are linked by N—H⋯O hydrogen bonds. Additionally, C—H⋯O hydrogen bonds in (I), (III), (V) and (VI) and C—H⋯π inter­actions in (I) were also observed.

5. Synthesis and crystallization

The compound was obtained by a modified one-pot Hantzsch synthesis, which consists of refluxing 4,4-dimethyl-1,3-cyclo­hexa­nedione (1 mmol), isopropyl aceto­acetate (1 mmol) and 2-fluoro-5-(tri­fluoro­meth­yl)benzaldehyde (1 mmol) in methanol in the presence of ammonium acetate (5 mmol). The reaction was monitored by TLC using ethyl acetate–n-hexane (1:1). The reaction mixture was cooled down to room temperature and then poured into ice–water. The precipitated solid was filtered and crystallized from methanol (Çetin et al., 2022[Çetin, G., Çetin, B., Çolak, B., Aşan, M., Birlik Demirel, G., Cansaran-Duman, D., Akçelik, N. & Şimşek, R. (2022). J. Res. Pharm. 26, 219-230.]).

Isopropyl 2,6,6-trimethyl-4-(3-fluoro-5-tri­fluoro­methyl­phen­yl)-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate. Yellowish solid, m.p: 469–471 K, yield: 60%. IR (cm−1) 3299 (N—H), 1697 (C=O, ester), 1646 (C=O, ketone), 1H NMR (400 MHz, DMSO-d6): δ 0.82 (3H, s, 6-CH3), 0.91 [3H, d, J = 6.4 Hz, CH(CH3)2a], 0.97 (3H, s, 6-CH3), 1.16 [3H, d, J = 6.4, CH(CH3)2b], 1.64–1.76 (2H, m, quinoline H7), 2.26 (3H, s, 2-CH3), 2.48–2.51 (2H, m, quinoline H8), 4.75–4.81 [H, m, CH(CH3)2], 5.02 (H, s, quinoline H4), 7.24 (H, dd, J = 9.2, 6.8 Hz, Ar-H3), 7.50–7.54 (2H, m, Ar-H), 9.21 (H, s, NH). 13C NMR (100 MHz, DMSO-d6): δ 18.2 (2-CH3), 21.2 [COOCH(CH3)2a], 21.7 [COOCH(CH3)2b], 22.9 (C-8), 24.2 (6-CH3), 24.7 (6-CH3), 33.1 (C-7), 34.0 (C-4), 39.4 (C-6), 66.0 [COOCH(CH3)2], 101.2 (C-3), 107.5 (C-4a), 116.4, 122.7, 125.4, 128.2, 135.5, 163.4 (phenyl carbons), 125.1 (CF3), 146.1 (C-2), 150.4 (C-8a), 165.9 [COOCH(CH3)2], 199.3 (C-5). HRMS (ESI/Q-TOF) m/z: [M + H]+ calculated for C23H25F4NO3: 440.1804; found: 440.1975.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were placed in geometrically idealized positions (C—H = 0.95–1.00 Å) while the hydrogen atom attached to N1 was found in a difference map, and was subsequently refined freely [N1—H1N = 0.88 (2) Å]. All C-bound H atoms were included as riding contributions with isotropic displacement parameters 1.2 times those of the parent atoms (1.5 for methyl groups). All F atoms of the tri­fluoro­methyl unit of the mol­ecule are disordered over two sites [relative occupancies 0.763 (5):0.237 (5)]. DFIX, SIMU and DELU instructions were used to restrain the disordered F atoms.

Table 3
Experimental details

Crystal data
Chemical formula C23H25F4NO3
Mr 439.44
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.4918 (3), 27.8140 (11), 10.2023 (4)
β (°) 97.053 (2)
V3) 2109.84 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.23 × 0.17 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.663, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 21749, 5221, 3801
Rint 0.056
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.129, 1.08
No. of reflections 5221
No. of parameters 318
No. of restraints 48
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.37
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

Propan-2-yl 4-[2-fluoro-5-(trifluoromethyl)phenyl]-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate top
Crystal data top
C23H25F4NO3F(000) = 920
Mr = 439.44Dx = 1.383 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.4918 (3) ÅCell parameters from 8405 reflections
b = 27.8140 (11) Åθ = 2.5–28.2°
c = 10.2023 (4) ŵ = 0.11 mm1
β = 97.053 (2)°T = 100 K
V = 2109.84 (14) Å3Prism, yellowish
Z = 40.23 × 0.17 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
3801 reflections with I > 2σ(I)
φ and ω scansRint = 0.056
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 2.5°
Tmin = 0.663, Tmax = 0.746h = 99
21749 measured reflectionsk = 3636
5221 independent reflectionsl = 1313
Refinement top
Refinement on F248 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.044P)2 + 1.2617P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
5221 reflectionsΔρmax = 0.35 e Å3
318 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.83123 (14)0.59076 (4)0.35900 (11)0.0285 (3)
F20.0433 (2)0.58544 (9)0.09930 (16)0.0425 (7)0.763 (5)
F30.1611 (9)0.62597 (14)0.0465 (4)0.0398 (9)0.763 (5)
F40.1702 (3)0.54913 (6)0.04875 (18)0.0370 (5)0.763 (5)
F2A0.0323 (7)0.6241 (3)0.0914 (6)0.056 (2)0.237 (5)
F3A0.167 (3)0.6171 (5)0.0756 (14)0.049 (4)0.237 (5)
F4A0.0756 (10)0.5551 (2)0.0171 (8)0.059 (3)0.237 (5)
O10.81859 (16)0.71304 (4)0.41408 (13)0.0227 (3)
O20.38263 (18)0.57179 (5)0.71526 (13)0.0288 (3)
O30.60880 (16)0.56439 (4)0.58997 (12)0.0199 (3)
N10.20965 (19)0.69030 (5)0.46495 (15)0.0207 (3)
H1N0.099 (3)0.7016 (8)0.459 (2)0.031 (6)*
C10.3454 (2)0.71772 (6)0.42567 (16)0.0190 (3)
C20.2984 (2)0.76895 (6)0.3917 (2)0.0255 (4)
H2A0.2851750.7869800.4736030.031*
H2B0.1817460.7700620.3345090.031*
C30.4424 (2)0.79280 (6)0.32062 (18)0.0232 (4)
H3A0.4198160.8278620.3159430.028*
H3B0.4329820.7804160.2290560.028*
C40.6335 (2)0.78392 (6)0.38858 (17)0.0190 (3)
C50.6655 (2)0.72984 (6)0.40730 (16)0.0175 (3)
C60.5124 (2)0.69908 (5)0.42489 (15)0.0170 (3)
C70.5444 (2)0.64570 (5)0.45008 (16)0.0164 (3)
H7A0.6682920.6413860.4975820.020*
C80.4092 (2)0.62727 (5)0.53860 (16)0.0170 (3)
C90.2458 (2)0.64791 (6)0.53611 (16)0.0185 (3)
C100.6615 (3)0.80687 (7)0.52669 (19)0.0293 (4)
H10A0.7834010.7998200.5687660.044*
H10B0.5736040.7936660.5806240.044*
H10C0.6453830.8417590.5187020.044*
C110.7685 (2)0.80522 (6)0.30387 (19)0.0261 (4)
H11A0.7564470.7890380.2179080.039*
H11B0.8908140.8006330.3484170.039*
H11C0.7447890.8396550.2909530.039*
C120.0930 (2)0.63118 (6)0.60675 (18)0.0223 (3)
H12A0.0922110.5959620.6097550.033*
H12B0.0208750.6426820.5596880.033*
H12C0.1078790.6439510.6969500.033*
C130.4600 (2)0.58570 (6)0.62451 (17)0.0197 (3)
C140.6800 (2)0.52376 (6)0.67080 (18)0.0233 (4)
H14A0.5793910.5024050.6907370.028*
C150.8005 (3)0.49721 (7)0.5873 (2)0.0320 (4)
H15A0.7321820.4888370.5021900.048*
H15B0.8451650.4677970.6329400.048*
H15C0.9023330.5177610.5724030.048*
C160.7809 (3)0.54265 (7)0.79772 (19)0.0321 (4)
H16A0.6982020.5607470.8465360.048*
H16B0.8782660.5638240.7772450.048*
H16C0.8315030.5156420.8517010.048*
C170.5305 (2)0.61730 (5)0.32111 (16)0.0180 (3)
C180.6711 (2)0.59070 (6)0.28216 (17)0.0221 (3)
C190.6575 (3)0.56336 (6)0.16787 (19)0.0297 (4)
H19A0.7571880.5451530.1463650.036*
C200.4966 (3)0.56302 (7)0.08575 (18)0.0310 (4)
H20A0.4847410.5450160.0060240.037*
C210.3531 (3)0.58922 (7)0.12102 (17)0.0261 (4)
C220.3689 (2)0.61593 (6)0.23693 (17)0.0216 (3)
H22A0.2682040.6335350.2592440.026*
C230.1789 (3)0.58922 (8)0.03321 (19)0.0355 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0201 (5)0.0332 (6)0.0326 (6)0.0071 (4)0.0043 (4)0.0038 (5)
F20.0219 (8)0.0783 (19)0.0270 (8)0.0104 (9)0.0018 (6)0.0014 (9)
F30.0451 (19)0.0281 (10)0.0418 (19)0.0055 (10)0.0127 (16)0.0106 (11)
F40.0431 (12)0.0323 (8)0.0324 (9)0.0078 (7)0.0088 (8)0.0090 (7)
F2A0.025 (3)0.098 (6)0.041 (3)0.019 (3)0.011 (2)0.028 (4)
F3A0.037 (5)0.073 (8)0.037 (6)0.002 (6)0.012 (5)0.026 (5)
F4A0.051 (4)0.042 (3)0.073 (6)0.023 (3)0.033 (4)0.020 (4)
O10.0149 (6)0.0213 (6)0.0324 (7)0.0021 (5)0.0044 (5)0.0027 (5)
O20.0299 (7)0.0294 (6)0.0297 (7)0.0054 (5)0.0138 (6)0.0089 (5)
O30.0180 (6)0.0186 (5)0.0236 (6)0.0031 (4)0.0045 (5)0.0039 (5)
N10.0119 (7)0.0219 (7)0.0285 (8)0.0021 (5)0.0039 (6)0.0045 (6)
C10.0152 (8)0.0202 (8)0.0216 (8)0.0017 (6)0.0031 (6)0.0013 (6)
C20.0171 (8)0.0226 (8)0.0372 (10)0.0054 (6)0.0055 (7)0.0084 (7)
C30.0187 (9)0.0198 (8)0.0312 (9)0.0051 (6)0.0041 (7)0.0068 (7)
C40.0168 (8)0.0164 (7)0.0238 (8)0.0016 (6)0.0029 (6)0.0021 (6)
C50.0167 (8)0.0187 (7)0.0172 (7)0.0013 (6)0.0023 (6)0.0000 (6)
C60.0161 (8)0.0176 (7)0.0171 (7)0.0005 (6)0.0016 (6)0.0013 (6)
C70.0135 (7)0.0177 (7)0.0179 (7)0.0012 (6)0.0014 (6)0.0006 (6)
C80.0166 (8)0.0172 (7)0.0172 (7)0.0010 (6)0.0019 (6)0.0013 (6)
C90.0182 (8)0.0191 (7)0.0181 (7)0.0018 (6)0.0015 (6)0.0015 (6)
C100.0331 (11)0.0224 (8)0.0322 (10)0.0024 (7)0.0035 (8)0.0053 (7)
C110.0208 (9)0.0215 (8)0.0369 (10)0.0006 (7)0.0071 (8)0.0058 (7)
C120.0167 (8)0.0245 (8)0.0266 (9)0.0009 (6)0.0068 (7)0.0013 (7)
C130.0177 (8)0.0198 (7)0.0217 (8)0.0008 (6)0.0029 (6)0.0015 (6)
C140.0201 (9)0.0186 (8)0.0314 (9)0.0017 (6)0.0036 (7)0.0077 (7)
C150.0261 (10)0.0225 (9)0.0485 (12)0.0055 (7)0.0082 (9)0.0031 (8)
C160.0314 (11)0.0334 (10)0.0298 (10)0.0021 (8)0.0026 (8)0.0104 (8)
C170.0205 (8)0.0161 (7)0.0178 (7)0.0029 (6)0.0044 (6)0.0013 (6)
C180.0220 (9)0.0213 (8)0.0237 (8)0.0006 (6)0.0055 (7)0.0002 (6)
C190.0375 (11)0.0234 (9)0.0311 (10)0.0030 (8)0.0157 (9)0.0056 (7)
C200.0448 (12)0.0281 (9)0.0220 (9)0.0142 (8)0.0109 (8)0.0067 (7)
C210.0305 (10)0.0294 (9)0.0181 (8)0.0139 (7)0.0012 (7)0.0030 (7)
C220.0221 (9)0.0240 (8)0.0190 (8)0.0048 (7)0.0034 (7)0.0032 (6)
C230.0409 (12)0.0448 (11)0.0196 (9)0.0198 (9)0.0006 (8)0.0048 (8)
Geometric parameters (Å, º) top
F1—C181.350 (2)C8—C131.472 (2)
F2—C231.291 (3)C9—C121.500 (2)
F3—C231.303 (4)C10—H10A0.9800
F4—C231.390 (3)C10—H10B0.9800
F2A—C231.632 (6)C10—H10C0.9800
F3A—C231.348 (13)C11—H11A0.9800
F4A—C231.223 (6)C11—H11B0.9800
O1—C51.233 (2)C11—H11C0.9800
O2—C131.215 (2)C12—H12A0.9800
O3—C131.3470 (19)C12—H12B0.9800
O3—C141.4607 (19)C12—H12C0.9800
N1—C11.370 (2)C14—C151.508 (3)
N1—C91.394 (2)C14—C161.511 (3)
N1—H1N0.88 (2)C14—H14A1.0000
C1—C61.355 (2)C15—H15A0.9800
C1—C21.498 (2)C15—H15B0.9800
C2—C31.523 (2)C15—H15C0.9800
C2—H2A0.9900C16—H16A0.9800
C2—H2B0.9900C16—H16B0.9800
C3—C41.532 (2)C16—H16C0.9800
C3—H3A0.9900C17—C181.385 (2)
C3—H3B0.9900C17—C221.396 (2)
C4—C111.528 (2)C18—C191.385 (2)
C4—C51.531 (2)C19—C201.381 (3)
C4—C101.538 (2)C19—H19A0.9500
C5—C61.459 (2)C20—C211.383 (3)
C6—C71.521 (2)C20—H20A0.9500
C7—C81.526 (2)C21—C221.389 (2)
C7—C171.527 (2)C21—C231.489 (3)
C7—H7A1.0000C22—H22A0.9500
C8—C91.350 (2)
C13—O3—C14116.69 (13)C9—C12—H12B109.5
C1—N1—C9121.29 (14)H12A—C12—H12B109.5
C1—N1—H1N120.3 (14)C9—C12—H12C109.5
C9—N1—H1N117.5 (14)H12A—C12—H12C109.5
C6—C1—N1120.53 (15)H12B—C12—H12C109.5
C6—C1—C2123.60 (15)O2—C13—O3123.17 (15)
N1—C1—C2115.80 (14)O2—C13—C8126.25 (15)
C1—C2—C3111.35 (14)O3—C13—C8110.58 (13)
C1—C2—H2A109.4O3—C14—C15105.20 (14)
C3—C2—H2A109.4O3—C14—C16108.92 (14)
C1—C2—H2B109.4C15—C14—C16112.55 (16)
C3—C2—H2B109.4O3—C14—H14A110.0
H2A—C2—H2B108.0C15—C14—H14A110.0
C2—C3—C4113.03 (14)C16—C14—H14A110.0
C2—C3—H3A109.0C14—C15—H15A109.5
C4—C3—H3A109.0C14—C15—H15B109.5
C2—C3—H3B109.0H15A—C15—H15B109.5
C4—C3—H3B109.0C14—C15—H15C109.5
H3A—C3—H3B107.8H15A—C15—H15C109.5
C11—C4—C5110.31 (13)H15B—C15—H15C109.5
C11—C4—C3109.16 (14)C14—C16—H16A109.5
C5—C4—C3109.75 (13)C14—C16—H16B109.5
C11—C4—C10109.38 (15)H16A—C16—H16B109.5
C5—C4—C10106.97 (14)C14—C16—H16C109.5
C3—C4—C10111.26 (14)H16A—C16—H16C109.5
O1—C5—C6120.70 (14)H16B—C16—H16C109.5
O1—C5—C4120.64 (14)C18—C17—C22116.21 (15)
C6—C5—C4118.56 (14)C18—C17—C7123.34 (15)
C1—C6—C5121.08 (14)C22—C17—C7120.43 (15)
C1—C6—C7119.93 (14)F1—C18—C17119.05 (15)
C5—C6—C7118.91 (14)F1—C18—C19117.23 (16)
C6—C7—C8109.00 (13)C17—C18—C19123.71 (18)
C6—C7—C17111.51 (13)C20—C19—C18118.87 (18)
C8—C7—C17110.85 (13)C20—C19—H19A120.6
C6—C7—H7A108.5C18—C19—H19A120.6
C8—C7—H7A108.5C19—C20—C21119.17 (17)
C17—C7—H7A108.5C19—C20—H20A120.4
C9—C8—C13120.85 (15)C21—C20—H20A120.4
C9—C8—C7120.83 (14)C20—C21—C22121.04 (18)
C13—C8—C7118.31 (14)C20—C21—C23119.70 (17)
C8—C9—N1119.18 (14)C22—C21—C23119.26 (18)
C8—C9—C12127.09 (15)C21—C22—C17120.99 (17)
N1—C9—C12113.69 (14)C21—C22—H22A119.5
C4—C10—H10A109.5C17—C22—H22A119.5
C4—C10—H10B109.5F2—C23—F3111.3 (3)
H10A—C10—H10B109.5F4A—C23—F3A111.0 (8)
C4—C10—H10C109.5F2—C23—F4105.48 (18)
H10A—C10—H10C109.5F3—C23—F4105.1 (2)
H10B—C10—H10C109.5F4A—C23—C21125.0 (3)
C4—C11—H11A109.5F2—C23—C21111.93 (16)
C4—C11—H11B109.5F3—C23—C21113.0 (3)
H11A—C11—H11B109.5F3A—C23—C21117.5 (9)
C4—C11—H11C109.5F4—C23—C21109.55 (19)
H11A—C11—H11C109.5F4A—C23—F2A93.9 (5)
H11B—C11—H11C109.5F3A—C23—F2A88.7 (8)
C9—C12—H12A109.5C21—C23—F2A111.1 (2)
C9—N1—C1—C616.7 (2)C14—O3—C13—C8177.28 (13)
C9—N1—C1—C2160.28 (16)C9—C8—C13—O214.5 (3)
C6—C1—C2—C316.0 (3)C7—C8—C13—O2166.88 (17)
N1—C1—C2—C3167.16 (16)C9—C8—C13—O3166.01 (15)
C1—C2—C3—C447.4 (2)C7—C8—C13—O312.6 (2)
C2—C3—C4—C11174.92 (14)C13—O3—C14—C15161.43 (15)
C2—C3—C4—C553.91 (19)C13—O3—C14—C1677.70 (18)
C2—C3—C4—C1064.28 (19)C6—C7—C17—C18119.37 (17)
C11—C4—C5—O133.3 (2)C8—C7—C17—C18118.98 (17)
C3—C4—C5—O1153.65 (15)C6—C7—C17—C2262.54 (19)
C10—C4—C5—O185.53 (19)C8—C7—C17—C2259.10 (19)
C11—C4—C5—C6150.30 (15)C22—C17—C18—F1179.63 (14)
C3—C4—C5—C630.0 (2)C7—C17—C18—F12.2 (2)
C10—C4—C5—C690.83 (18)C22—C17—C18—C190.7 (2)
N1—C1—C6—C5168.50 (15)C7—C17—C18—C19177.43 (16)
C2—C1—C6—C58.2 (3)F1—C18—C19—C20178.98 (15)
N1—C1—C6—C78.1 (2)C17—C18—C19—C201.4 (3)
C2—C1—C6—C7175.12 (16)C18—C19—C20—C211.2 (3)
O1—C5—C6—C1175.91 (16)C19—C20—C21—C220.4 (3)
C4—C5—C6—C10.4 (2)C19—C20—C21—C23179.90 (17)
O1—C5—C6—C70.8 (2)C20—C21—C22—C170.3 (3)
C4—C5—C6—C7177.12 (14)C23—C21—C22—C17179.26 (15)
C1—C6—C7—C828.8 (2)C18—C17—C22—C210.1 (2)
C5—C6—C7—C8147.86 (14)C7—C17—C22—C21178.31 (15)
C1—C6—C7—C1793.87 (18)C20—C21—C23—F4A71.2 (7)
C5—C6—C7—C1789.42 (17)C22—C21—C23—F4A109.2 (7)
C6—C7—C8—C929.1 (2)C20—C21—C23—F2137.6 (2)
C17—C7—C8—C993.96 (18)C22—C21—C23—F242.9 (3)
C6—C7—C8—C13152.26 (14)C20—C21—C23—F395.8 (3)
C17—C7—C8—C1384.64 (18)C22—C21—C23—F383.7 (3)
C13—C8—C9—N1172.97 (15)C20—C21—C23—F3A77.8 (8)
C7—C8—C9—N18.5 (2)C22—C21—C23—F3A101.8 (8)
C13—C8—C9—C124.9 (3)C20—C21—C23—F421.0 (2)
C7—C8—C9—C12173.69 (15)C22—C21—C23—F4159.50 (17)
C1—N1—C9—C816.5 (2)C20—C21—C23—F2A177.7 (4)
C1—N1—C9—C12161.63 (15)C22—C21—C23—F2A1.8 (4)
C14—O3—C13—O22.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C17–C22 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.88 (2)2.12 (2)2.9798 (19)165 (2)
C2—H2A···F3ii0.992.593.187 (4)119
C12—H12B···F1i0.982.643.206 (2)117
C12—H12B···O1i0.982.653.505 (2)145
C12—H12C···F3Aiii0.982.433.243 (15)141
C16—H16A···O20.982.593.106 (2)113
C16—H16C···F4Aiv0.982.433.409 (6)174
C19—H19A···F2v0.952.523.117 (3)121
C10—H10C···Cg3ii0.982.933.631 (2)130
C14—H14A···Cg3iv1.002.913.7707 (18)145
Symmetry codes: (i) x1, y, z; (ii) x, y+3/2, z+1/2; (iii) x, y, z+1; (iv) x+1, y+1, z+1; (v) x+1, y, z.
Summary of short interatomic contacts (Å) top
O1···H1N2.12 (2)1 + x, y, z
F3A···H12C2.43x, y, -1 + z
F3···H2A2.59x, 1/2 - y, -3/2 + z
F4A···H16C2.58-1 + x, y, -1 + z
H16C···F4A2.431 - x, 1 - y, 1 - z
F2A···H10A2.81-1 + x, 3/2 - y, -1/2 + z
H15C···H15C2.412 - x, 1 - y, 1 - z
H20A···H20A2.521 - x, 1 - y, -z
 

Acknowledgements

Authors' contributions are as follows. Conceptualization, RS and SOY; methodology, RS and GC; investigation, RS and SOY; writing (original draft), GC and MA writing (review and editing of the manuscript), RS and SOY; crystal data production and validation, RJB and SOY; visualization, MA; funding acquisition, RJB; resources, AB, RJB and RS.

Funding information

RJB is grateful for funding from NSF (award 1205608) and to the Partnership for Reduced Dimensional Materials for partial funding of this research, to Howard University Nanoscience Facility for access to liquid nitro­gen, and the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. This study was supported by the Hacettepe University Scientific Research Unit (project No. THD-2020–18806).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇetin, G., Çetin, B., Çolak, B., Aşan, M., Birlik Demirel, G., Cansaran-Duman, D., Akçelik, N. & Şimşek, R. (2022). J. Res. Pharm. 26, 219–230.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGündüz, M. G., Butcher, R. J., Öztürk Yildirim, S., El-Khouly, A., Şafak, C. & Şimşek, R. (2012). Acta Cryst. E68, o3404–o3405.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLinden, A., Gündüz, M. G., Şimşek, R. & Şafak, C. (2006). Acta Cryst. C62, o227–o230.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLinden, A., Şafak, C., Şimşek, R. & Gündüz, M. G. (2011). Acta Cryst. C67, o80–o84.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLinden, A., Şimşek, R., Gündüz, M. & Şafak, C. (2005). Acta Cryst. C61, o731–o734.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMookiah, P., Rajesh, K., Narasimhamurthy, T., Vijayakumar, V. & Srinivasan, N. (2009). Acta Cryst. E65, o2664.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖztürk Yildirim, S., Butcher, R. J., Gündüz, M. G., El-Khouly, A., Şimşek, R. & Şafak, C. (2013). Acta Cryst. E69, o40–o41.  CSD CrossRef IUCr Journals Google Scholar
First citationRanjbar, S., Edraki, N., Firuzi, O., Khoshneviszadeh, M. & Miri, R. (2019). Mol. Divers. 23, 471–508.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014). Acta Cryst. C70, 790–795.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net.  Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Çetin, G., Şimşek, R., Butcher, R. J. & Bhattarai, A. (2022). Acta Cryst. E78, 798–803.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds