research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two 1,2,3,4-tetra­hydro­naphthalenes obtained during efforts towards the total synthesis of elisabethin A

crossmark logo

aInstitute of Applied Synthetic Chemistry, Research Group for Stereoselective and Sustainable Chemistry, TU Wien, Getreidemarkt 9/E163-03-03, A-1060 Vienna, Austria, and bInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/E164-05-01, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 30 January 2023; accepted 10 February 2023; online 17 February 2023)

The two substituted 1,2,3,4-tetra­hydro­naphthalenes, methyl (R)-3-{(1R,4S)-6-meth­oxy-4,7-dimethyl-5,8-bis­[(triiso­propyl­sil­yl)­oxy]-1,2,3,4-tetra­hydro­naph­th­al­en-1-yl}butano­ate, C36H66O5Si2, (2), and methyl (E)-3-{(1R,4S)-8-hy­droxy-6-meth­oxy-4,7-dimethyl-5-[(triiso­propyl­sil­yl)­oxy]-1,2,3,4-tetra­hydro­naphthalen-1-yl}acrylate, C26H42O5Si, (8), crystallize in the Sohncke space groups P212121 and P21, respectively, with the absolute structure determined on the basis of anomalous dispersion effects. The configurations of the stereo centres in the 1,2,3,4-tetra­hydro­naphthalene moiety of (2) and (8) are the same, and the conformation of the non-aromatic part of the ring system is nearly identical. In the crystal of (2), weak non-classical C—H⋯O inter­actions consolidate the packing, whereas in (8), inter­molecular O—H⋯O hydrogen-bonding inter­actions of medium-to-weak strength direct the mol­ecules into Z-shaped strands extending parallel to [010].

1. Chemical context

Elisabethin A is a marine diterpenoid that was isolated in small amounts from a Caribbean sea whip nearly 25 ago (Rodriguez et al., 1998[Rodríguez, A. D., González, E. & Huang, S. D. (1998). J. Org. Chem. 63, 7083-7091.]). Structure elucidation revealed a tricyclic cistrans-fused 5,6,6 ring system with six contiguous stereo centres and a fully substituted enedione functionality. The relative configuration of elisabethin A was determined on the basis of single-crystal X-ray diffraction data (Rodriguez et al., 1998[Rodríguez, A. D., González, E. & Huang, S. D. (1998). J. Org. Chem. 63, 7083-7091.]), but not the absolute configuration. As a result of the scarcity of the isolated material, an extensive biological and pharmacological testing of this promising compound was not possible, making a total synthesis indispensable. A corres­ponding study was published some years later by Heckrodt & Mulzer (2003[Heckrodt, T. J. & Mulzer, J. (2003). J. Am. Chem. Soc. 125, 4680-4681.]), but the allegedly successful results were questioned shortly afterwards (Zanoni & Franzini, 2004[Zanoni, G. & Franzini, M. (2004). Angew. Chem. Int. Ed. 43, 4837-4841.]). Some years later, a second approach to the total synthesis of elisabethin A was reported (Preindl et al., 2014[Preindl, J., Leitner, C., Baldauf, S. & Mulzer, J. (2014). Org. Lett. 16, 4276-4279.]). However, the assertions made in the previous study (Heckrodt & Mulzer, 2003[Heckrodt, T. J. & Mulzer, J. (2003). J. Am. Chem. Soc. 125, 4680-4681.]) could not be proven in the subsequent study (Preindl et al., 2014[Preindl, J., Leitner, C., Baldauf, S. & Mulzer, J. (2014). Org. Lett. 16, 4276-4279.]). As a result, the total synthesis of elisabethin A remained unsuccessful to date.

In our efforts towards the total synthesis of elisabethin A (Kaiser et al., 2022[Kaiser, M., Schönbauer, D., Schragl, E., Weil, M., Gärtner, P. & Enev, V. (2022). J. Org. Chem. 87, 15333-15349.]), many side and inter­mediate products were obtained (Kaiser, 2022[Kaiser, M. (2022). Doctoral thesis: Efforts towards the total synthesis of elisabethin A. TU Wien, Vienna, Austria. https://doi.org/10.34726/hss.2021.32462]). The syntheses and crystal structures of two of them, (2) and (8), are reported in this communication.

[Scheme 1]

2. Structural commentary

The two compounds crystallize in Sohncke space groups, viz. P212121 for (2) and P21 for (8). The (R/S)-configuration of the two chiral C atoms located within the 1,2,3,4-tetra­hydro­naphthalen moiety is the same in the two mol­ecules: The C6 atoms have an R and the C9 atoms have an S configuration in the two mol­ecules (Figs. 1[link] and 2[link]). In (2), an additional chiral C atom is present, C14, which exhibits an R configuration. The differences between the two mol­ecules pertain to the side arms attached to C6, viz. butano­ate in (2) and acrylate in (8), as well as the protection of the OH group in (8) with a triiso­propyl­silyl group in (2).

[Figure 1]
Figure 1
Mol­ecular structure of (2) with displacement ellipsoids drawn at the 50% probability level. Disorder is indicated by dashed lines (minor occupancy component).
[Figure 2]
Figure 2
Mol­ecular structure of (8) with displacement ellipsoids drawn at the 50% probability level.

A ring-puckering analysis (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) of the non-aromatic ring part of the 1,2,3,4-tetra­hydro­naphthalen moiety revealed a half-chair conformation in both structures. The puckering parameters are similar, with individual values of Q = 0.444 (3) Å, θ = 40.2 (4)°, φ = 218.2 (6)° for (2), and Q = 0.5009 (13) Å, θ = 46.70 (14)°, φ = 205.60 (19)° for (8). In general, the two fused ring systems in (2) and (8) exhibit nearly the same conformations, as shown by the overlap of the corresponding mol­ecular entities. Only the orientation of the methyl group (C12) at the phenyl ring differs in the two mol­ecules (Fig. 3[link]). All other bond lengths are in typical ranges, conforming with literature values (Allen et al., 2006[Allen, F. H., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (2006). International Tables for Crystallography, Volume C, edited by E. Prince, ch. 9.5, pp. 790-811. New York: Wiley.]).

[Figure 3]
Figure 3
Overlay plot of the 1,2,3,4-tetra­hydro­naphthalene moiety in (2) and (8). For better distinction, the methyl C12 atom in (2) is given in light green.

3. Supra­molecular features

By reason of missing polar donor groups, in (2) only non-classical hydrogen bonds are present, here in the form of weak C—H⋯O inter­actions (Table 1[link]). One intra­molecular contact exists between the methine CH group (C14) of the side arm attached to C6 and an O atom, which is part of the O3—Si2 bond. An inter­molecular inter­action is developed between the methine CH group (C25) of one isopropyl chain bonded to Si2 and the carbonyl O atom (O4B) of the ester function attached to the side arm at C6 (Table 1[link]). The latter hydrogen-bonding inter­action might be responsible for the positional disorder of the O4 atom. The mol­ecular packing of (2) is shown in Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O3 1.00 2.46 3.115 (3) 123
C25—H25⋯O4Bi 1.00 2.46 3.312 (13) 142
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
Mol­ecular packing of (2) in the crystal structure, shown in a view along [010]. Only the major occupancy component of the positionally disordered groups is shown; C—H⋯O hydrogen bonds are omitted for clarity.

In the crystal structure of (8), inter­molecular O—H⋯O hydrogen bonding of medium-to-weak strength is observed between the OH group (O3) and the carbonyl O atom (O4) of the ester function in the side arm attached to C6. This kind of inter­action connects neighbouring mol­ecules into Z-shaped strands extending parallel to [010] (Fig. 5[link], Table 2[link]). Another non-classical inter­molecular C—H⋯O inter­action between a methyl H atom of the ester OCH3 group and the carbonyl O4 atom consolidates the packing (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (8)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O4i 0.83 (2) 2.04 (2) 2.8658 (13) 171 (2)
C17—H17A⋯O4ii 0.98 2.57 3.471 (2) 154
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+2]; (ii) [-x, y+{\script{1\over 2}}, -z+2].
[Figure 5]
Figure 5
Mol­ecular packing of (8) in the crystal structure, shown in a view along [100]. O⋯H⋯O hydrogen bonds are shown as blue dashed lines; C—H⋯O hydrogen bonds are omitted for clarity.

4. Database survey

The crystal structures of elisabethin A and D were determined by Rodriguez et al. (1998[Rodríguez, A. D., González, E. & Huang, S. D. (1998). J. Org. Chem. 63, 7083-7091.]) and Rodriguez et al. (2000[Rodríguez, A. D., Ramírez, C., Rodríguez, I. I. & Barnes, C. L. (2000). J. Org. Chem. 65, 1390-1398.]), respectively. A search of the Cambridge Structural Database (version 5.43, November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for related compounds on basis of the mol­ecular moiety given in Fig. 3[link] revealed three matches: CAXHUF (Jarvo et al., 2005[Jarvo, E. R., Lawrence, B. M. & Jacobsen, E. N. (2005). Angew. Chem. Int. Ed. 44, 6043-6046.]), CAXJER (Boezio et al., 2005[Boezio, A. A., Jarvo, E. R., Lawrence, B. M. & Jacobsen, E. N. (2005). Angew. Chem. Int. Ed. 44, 6046-6050.]), and OKASUP (Ying et al., 2011[Ying, W., Barnes, C. L. & Harmata, M. (2011). Tetrahedron Lett. 52, 177-180.]). In comparison with the stereo centres related to C6 and C9 in (2) and (8), CAXJER and OKASUP have the same R and S configuration, whereas CAXHUF shows an S and S configuration of the respective C atoms.

5. Synthesis and crystallization

The synthesis of (2) is shown schematically in Fig. 6[link]. A 50 ml Schlenk flask was equipped with 111 mg (0.175 mmol, 1 equiv.) of compound (1) (Kaiser et al., 2022[Kaiser, M., Schönbauer, D., Schragl, E., Weil, M., Gärtner, P. & Enev, V. (2022). J. Org. Chem. 87, 15333-15349.]) dissolved in 15 ml of dry ethyl acetate. The colourless solution was Schlenked 10×, then Pd/C (21 mg, 19 µmol, 11 mol%) was added. The atmosphere was exchanged to H2 via vacuum/H2 backfill (5×) and the mixture was heated to 323 K overnight. The next day another portion of Pd/C (37 mg, 35 µmol, 20 mol%) was added and the flask was purged with fresh H2. Then the reaction was again heated overnight. This was repeated twice, and after 4 d, NMR quench confirmed full conversion. The atmosphere was exchanged to argon by vacuum/argon backfill (5×) and the black suspension was filtered over silica. Compound (2) was obtained as a pale-yellow oil that solidified on standing in 89% yield (99 mg, 0.156 mmol). Crystals of X-ray quality were obtained by slow evaporation from di­chloro­methane solution. 1H NMR (400 MHz, CDCl3): δ = 3.60 (s, 3H), 3.59 (s, 3H), 3.21–3.12 (m, 1H), 2.99–2.91 (m, 1H), 2.43–2.30 (m, 1H), 2.23–2.11 (m, 4H), 2.03 (dd, J = 14.9, 11.2 Hz, 1H), 1.96–1.85 (m, 1H), 1.83–1.73 (m, 2H), 1.49–1.41 (m, 1H), 1.40–1.23 (m, 6H), 1.14–1.01 (m, 39H), 0.86 (d, J = 6.8 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ = 174.5, 148.0, 147.8, 141.5, 132.5, 125.2, 119.6, 60.4, 51.4, 39.6, 37.1, 34.1, 27.8, 25.8, 23.1, 18.6, 18.3, 18.2, 18.1, 18.0, 14.6, 14.1, 11.6. [α]D20 = +52.47 (c 1.0, CH2Cl2). Experimental 1H NMR and 13C NMR spectra are available in the electronic supporting information (ESI). Crystals of (2) fragmented into small parts in the cold stream of nitro­gen used for crystal cooling at temperatures < 180 K.

[Figure 6]
Figure 6
Synthesis scheme to obtain compound (2).

The synthetic sequence starting from (3) (Kaiser et al., 2022[Kaiser, M., Schönbauer, D., Schragl, E., Weil, M., Gärtner, P. & Enev, V. (2022). J. Org. Chem. 87, 15333-15349.]) towards compound (8) is shown in Fig. 7[link]. A 25 ml round-bottom flask was equipped with ester (7) (143 mg, 0.231 mol, 1 equiv.) and acetic acid (66 µL, 1.16 mmol, 5 equiv.), to which 0.5 ml of dry THF were added. After 5 min, TBAF (1.0 M in THF, 289 µl, 289 µmol, 1.25 equiv.) was added dropwise. The yellow solution was stirred at room temperature for 6 h until TLC (petroleum ether:ethyl acetate, 10:1) confirmed full conversion. The reaction was quenched with saturated NaHCO3 solution and the aqueous layer was extracted three times with Et2O. The combined organic layer was dried over MgSO4 and concentrated in vacuo. The crude material was purified by column chromatography (3.4 g silica, petroleum ether:ethyl acetate, 20:1) and (8) was collected as an orange oil, which solidified upon standing in 60% yield (64 mg, 0.138 mmol). Colourless crystals of X-ray quality were obtained by slow evaporation of a di­chloro­methane solution. 1H NMR (400 MHz, CDCl3): δ = 7.07 (dd, J = 15.6, 6.1 Hz, 1H), 5.44 (dd, J = 15.6, 1.6 Hz, 1H), 3.78–3.73 (m, 1H), 3.69 (s, 3H), 3.66 (s, 3H), 3.20–3.09 (m, 1H), 2.16–2.05 (m, 4H), 1.82–1.69 (m, 2H), 1.50 (ddd, J = 15.2, 5.5, 3.3 Hz, 1H), 1.39–1.29 (m, 3H), 1.19 (d, J = 6.9 Hz, 3H), 1.08 (dd, J = 8.8, 7.5 Hz, 18H); 13C NMR (101 MHz, CDCl3): δ = 167.4, 152.3, 148.7, 146.0, 141.4, 132.8, 121.3, 117.9, 115.5, 60.9, 51.6, 35.5, 27.8, 24.7, 22.2, 21.5, 18.3, 18.2, 14.0, 9.2. Synthetic details to obtain (4)–(7) as well as experimental 1H NMR and 13C NMR spectra for (4)–(8) are available in the ESI.

[Figure 7]
Figure 7
Synthesis scheme to obtain compound (8).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Labelling of atoms for the 1,2,3,4-tetra­hydro­naphthalene moiety shown in Fig. 3[link] is the same in the two structures. In (2), one ethyl group (C22, C23) of one of the isopropyl chains bonded to Si1 is disordered over two sets of sites in a ratio of 0.541 (14):0.459 (14). The carbonyl O atom (O4) of the ester group is split over two sites in a 0.894 (11):0.106 (11) ratio. The corresponding O-atom sites were refined with the same anisotropic displacement parameters and soft restraints on the C=O bond length. In (8), the hydrogen atom (H1), which is part of the OH group, was located from a difference-Fourier map and was refined freely. All other H atoms in the two structures were refined using a riding model with C—H bonds fixed at calculated positions, with Uiso(H) atoms set at 1.2Ueq of the parent C atom for aromatic groups and at 1.5Ueq for methyl groups.

Table 3
Experimental details

  (2) (8)
Crystal data
Chemical formula C36H66O5Si2 C26H42O5Si
Mr 635.06 462.68
Crystal system, space group Orthorhombic, P212121 Monoclinic, P21
Temperature (K) 200 100
a, b, c (Å) 13.2385 (2), 14.5713 (3), 20.3505 (4) 12.0078 (7), 9.2620 (6), 12.1411 (8)
α, β, γ (°) 90, 90, 90 90, 104.0912 (14), 90
V3) 3925.66 (13) 1309.66 (14)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.13 0.12
Crystal size (mm) 0.4 × 0.3 × 0.2 0.6 × 0.5 × 0.4
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.499, 0.522 0.672, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 27977, 9566, 7848 39668, 11727, 10749
Rint 0.032 0.028
(sin θ/λ)max−1) 0.664 0.814
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.112, 1.03 0.035, 0.088, 1.04
No. of reflections 9566 11727
No. of parameters 427 303
No. of restraints 20 1
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.16 0.47, −0.18
Absolute structure Flack x determined using 3022 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 4647 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.07 (4) 0.02 (2)
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Methyl (R)-3-{(1R,4S)-6-methoxy-4,7-dimethyl-5,8-bis[(triisopropylsilyl)oxy]-1,2,3,4-tetrahydronaphthalen-1-yl}butanoate (2) top
Crystal data top
C36H66O5Si2Dx = 1.075 Mg m3
Mr = 635.06Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9258 reflections
a = 13.2385 (2) Åθ = 2.4–27.7°
b = 14.5713 (3) ŵ = 0.13 mm1
c = 20.3505 (4) ÅT = 200 K
V = 3925.66 (13) Å3Block, light-yellow
Z = 40.4 × 0.3 × 0.2 mm
F(000) = 1400
Data collection top
Bruker APEXII CCD
diffractometer
7848 reflections with I > 2σ(I)
ω–scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.1°, θmin = 2.1°
Tmin = 0.499, Tmax = 0.522h = 1712
27977 measured reflectionsk = 1919
9566 independent reflectionsl = 2616
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.4115P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.112(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.26 e Å3
9566 reflectionsΔρmin = 0.16 e Å3
427 parametersAbsolute structure: Flack x determined using 3022 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
20 restraintsAbsolute structure parameter: 0.07 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.41759 (5)0.37385 (5)0.38688 (4)0.03659 (17)
Si20.98363 (5)0.57045 (4)0.32279 (3)0.03070 (15)
O10.54185 (12)0.37112 (12)0.40106 (9)0.0385 (4)
O20.60218 (14)0.37111 (14)0.27186 (9)0.0457 (5)
O30.85958 (12)0.59081 (11)0.32245 (9)0.0344 (4)
O50.54898 (18)0.87228 (18)0.41882 (12)0.0684 (7)
O4A0.6665 (4)0.8485 (3)0.34338 (19)0.100 (2)0.894 (11)
O4B0.606 (3)0.817 (3)0.3343 (5)0.100 (2)0.106 (11)
C10.61802 (17)0.42865 (17)0.38090 (12)0.0329 (5)
C20.65177 (17)0.42682 (17)0.31672 (13)0.0343 (5)
C30.73125 (18)0.48180 (17)0.29553 (12)0.0327 (5)
C40.77807 (17)0.53820 (16)0.34189 (11)0.0309 (5)
C50.74161 (17)0.54547 (17)0.40669 (12)0.0322 (5)
C60.78634 (19)0.6189 (2)0.45193 (13)0.0402 (6)
H60.8613210.6134640.4473760.048*
C70.7631 (2)0.5993 (2)0.52442 (14)0.0513 (8)
H7A0.8104850.5517790.5405590.062*
H7B0.7752310.6558320.5501910.062*
C80.6557 (2)0.5670 (2)0.53677 (13)0.0502 (7)
H8A0.6080000.6161800.5239900.060*
H8B0.6466700.5549350.5842800.060*
C90.6312 (2)0.4802 (2)0.49818 (13)0.0410 (6)
H90.5563690.4711280.4990580.049*
C100.66427 (17)0.48768 (17)0.42665 (12)0.0324 (5)
C110.6809 (3)0.3948 (2)0.52833 (16)0.0556 (8)
H11A0.7545350.4011540.5263760.083*
H11B0.6602490.3402020.5036310.083*
H11C0.6596300.3885470.5742390.083*
C120.7640 (2)0.4804 (2)0.22454 (12)0.0439 (6)
H12A0.8152360.4326920.2182480.066*
H12B0.7925080.5402880.2127530.066*
H12C0.7055520.4674530.1964910.066*
C130.6480 (3)0.2835 (2)0.2653 (2)0.0798 (13)
H13A0.7158020.2905360.2466620.120*
H13B0.6069500.2450520.2362150.120*
H13C0.6529240.2543850.3086370.120*
C140.7594 (2)0.7160 (2)0.42805 (15)0.0458 (7)
H140.7785900.7190600.3805830.055*
C150.8214 (3)0.7899 (2)0.46357 (19)0.0665 (10)
H15A0.8112370.8491920.4418640.100*
H15B0.8931300.7735010.4620810.100*
H15C0.7993230.7940800.5094410.100*
C160.6475 (2)0.7401 (2)0.43193 (16)0.0515 (7)
H16A0.6070570.6874970.4158510.062*
H16B0.6288120.7512770.4783480.062*
C170.6229 (3)0.8237 (2)0.39178 (15)0.0583 (8)
C180.5192 (3)0.9536 (3)0.3823 (2)0.0800 (12)
H18A0.5773310.9947470.3778250.120*
H18B0.4648860.9853100.4058910.120*
H18C0.4952390.9355820.3386130.120*
C190.37593 (19)0.48929 (17)0.35488 (13)0.0378 (6)
H190.3005500.4896740.3580160.045*
C200.4007 (2)0.5064 (2)0.28252 (15)0.0502 (7)
H20A0.3712800.5650030.2686820.075*
H20B0.3726270.4566790.2557440.075*
H20C0.4741950.5085010.2767590.075*
C210.4124 (2)0.5699 (2)0.39687 (18)0.0573 (8)
H21A0.4858760.5757890.3928530.086*
H21B0.3945390.5590010.4429450.086*
H21C0.3800940.6266070.3816880.086*
C22A0.3707 (9)0.3658 (10)0.4775 (7)0.044 (2)0.459 (14)
H22A0.4310210.4003510.4937880.053*0.459 (14)
C23A0.3110 (11)0.4223 (9)0.5042 (5)0.087 (4)0.459 (14)
H23A0.2985310.4736380.4741360.105*0.459 (14)
H23B0.2469530.3916250.5142590.105*0.459 (14)
H23C0.3411210.4455470.5449300.105*0.459 (14)
C22B0.3470 (10)0.3427 (10)0.4627 (6)0.054 (2)0.541 (14)
H22B0.3179420.2880030.4397510.065*0.541 (14)
C23B0.2536 (6)0.3706 (9)0.4789 (5)0.084 (4)0.541 (14)
H23D0.2269640.4104740.4441670.101*0.541 (14)
H23E0.2094360.3170400.4838960.101*0.541 (14)
H23F0.2560830.4046210.5203750.101*0.541 (14)
C240.4068 (3)0.2783 (3)0.50958 (18)0.0696 (10)
H24A0.3774120.2732480.5536430.104*
H24B0.4806130.2792090.5129160.104*
H24C0.3856740.2255690.4830050.104*
C250.3855 (2)0.28148 (18)0.32635 (17)0.0477 (7)
H250.4211020.2981260.2846650.057*
C260.4238 (3)0.1855 (2)0.3451 (2)0.0679 (10)
H26A0.3844780.1621770.3823460.102*
H26B0.4952510.1891510.3574800.102*
H26C0.4161260.1440340.3075700.102*
C270.2726 (2)0.2770 (2)0.3093 (2)0.0634 (9)
H27A0.2621050.2329100.2735200.095*
H27B0.2492180.3377590.2953770.095*
H27C0.2343140.2573150.3480310.095*
C281.0213 (2)0.46736 (18)0.37291 (13)0.0431 (6)
H281.0962710.4625250.3676910.052*
C290.9796 (3)0.3773 (2)0.34638 (17)0.0625 (9)
H29A1.0092270.3259010.3707760.094*
H29B0.9966670.3715150.2997080.094*
H29C0.9060040.3764010.3516060.094*
C391.0037 (3)0.4737 (2)0.44632 (14)0.0531 (7)
H39A0.9311060.4706730.4553640.080*
H39B1.0307560.5319830.4627540.080*
H39C1.0379630.4226290.4683460.080*
C311.02275 (19)0.54792 (19)0.23532 (13)0.0393 (6)
H310.9801970.4952660.2202460.047*
C321.0000 (2)0.6263 (2)0.18789 (15)0.0576 (8)
H32A1.0476290.6766440.1955280.086*
H32B0.9308850.6481540.1950890.086*
H32C1.0068820.6043690.1425820.086*
C331.1322 (2)0.5166 (3)0.22644 (17)0.0675 (10)
H33A1.1431510.4982670.1806610.101*
H33B1.1457750.4643940.2554460.101*
H33C1.1779220.5672610.2375110.101*
C341.1550 (2)0.6732 (3)0.36574 (19)0.0631 (9)
H34A1.1843730.6682050.3216840.095*
H34B1.1748780.6197420.3919820.095*
H34C1.1794950.7292660.3869720.095*
C351.03968 (19)0.67669 (18)0.36040 (13)0.0382 (6)
H351.0138770.6789720.4065540.046*
C361.0060 (3)0.76661 (19)0.32810 (18)0.0617 (9)
H36A1.0259260.8184680.3558770.092*
H36B0.9323660.7663830.3228780.092*
H36C1.0380050.7724790.2848990.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0305 (3)0.0352 (3)0.0441 (4)0.0015 (3)0.0059 (3)0.0081 (3)
Si20.0299 (3)0.0317 (3)0.0306 (3)0.0017 (3)0.0030 (3)0.0008 (3)
O10.0324 (9)0.0361 (9)0.0470 (11)0.0018 (8)0.0040 (7)0.0044 (8)
O20.0411 (10)0.0489 (11)0.0471 (11)0.0092 (9)0.0042 (8)0.0207 (9)
O30.0296 (8)0.0374 (9)0.0361 (9)0.0021 (6)0.0003 (7)0.0035 (7)
O50.0767 (15)0.0706 (15)0.0580 (14)0.0324 (13)0.0183 (11)0.0134 (12)
O4A0.106 (4)0.113 (3)0.082 (2)0.058 (3)0.048 (2)0.035 (2)
O4B0.106 (4)0.113 (3)0.082 (2)0.058 (3)0.048 (2)0.035 (2)
C10.0266 (11)0.0323 (11)0.0397 (13)0.0050 (9)0.0019 (9)0.0005 (11)
C20.0297 (11)0.0350 (12)0.0382 (13)0.0021 (10)0.0021 (10)0.0110 (11)
C30.0279 (11)0.0400 (13)0.0302 (12)0.0020 (10)0.0004 (9)0.0083 (10)
C40.0266 (11)0.0324 (11)0.0338 (13)0.0027 (9)0.0008 (9)0.0033 (9)
C50.0283 (12)0.0369 (12)0.0315 (12)0.0066 (10)0.0035 (9)0.0059 (10)
C60.0340 (13)0.0525 (15)0.0342 (13)0.0024 (12)0.0041 (10)0.0147 (12)
C70.0545 (18)0.0652 (19)0.0343 (15)0.0059 (14)0.0070 (12)0.0147 (13)
C80.0549 (17)0.0677 (19)0.0281 (13)0.0141 (15)0.0041 (12)0.0028 (13)
C90.0372 (14)0.0545 (16)0.0312 (13)0.0093 (12)0.0025 (10)0.0036 (12)
C100.0291 (11)0.0383 (13)0.0299 (12)0.0113 (10)0.0007 (9)0.0002 (10)
C110.0575 (18)0.066 (2)0.0438 (17)0.0130 (15)0.0016 (13)0.0151 (15)
C120.0390 (14)0.0621 (17)0.0305 (13)0.0110 (13)0.0019 (10)0.0132 (12)
C130.065 (2)0.057 (2)0.117 (3)0.0083 (17)0.019 (2)0.048 (2)
C140.0499 (16)0.0443 (15)0.0432 (16)0.0013 (13)0.0015 (12)0.0145 (12)
C150.074 (2)0.0555 (19)0.070 (2)0.0086 (17)0.0030 (18)0.0289 (18)
C160.0546 (18)0.0468 (16)0.0529 (18)0.0061 (14)0.0010 (14)0.0069 (14)
C170.065 (2)0.0602 (19)0.0492 (19)0.0174 (16)0.0070 (15)0.0057 (16)
C180.094 (3)0.082 (2)0.064 (2)0.043 (2)0.020 (2)0.018 (2)
C190.0326 (13)0.0353 (13)0.0455 (15)0.0043 (10)0.0001 (10)0.0017 (11)
C200.0500 (17)0.0435 (15)0.0571 (18)0.0035 (13)0.0064 (13)0.0143 (13)
C210.0540 (18)0.0390 (14)0.079 (2)0.0129 (14)0.0166 (16)0.0118 (15)
C22A0.027 (5)0.068 (7)0.037 (6)0.009 (4)0.000 (3)0.007 (5)
C23A0.092 (9)0.110 (8)0.060 (6)0.011 (7)0.044 (5)0.004 (6)
C22B0.049 (7)0.075 (7)0.039 (5)0.007 (4)0.001 (4)0.008 (4)
C23B0.043 (4)0.139 (8)0.071 (5)0.006 (5)0.028 (4)0.041 (6)
C240.064 (2)0.087 (3)0.057 (2)0.013 (2)0.0065 (17)0.0274 (19)
C250.0415 (14)0.0334 (13)0.068 (2)0.0068 (11)0.0038 (14)0.0027 (13)
C260.066 (2)0.0347 (15)0.103 (3)0.0021 (15)0.005 (2)0.0005 (17)
C270.0453 (17)0.0563 (18)0.089 (3)0.0126 (15)0.0059 (17)0.0042 (18)
C280.0494 (15)0.0377 (13)0.0424 (15)0.0023 (12)0.0056 (12)0.0025 (11)
C290.097 (3)0.0343 (13)0.0561 (19)0.0033 (17)0.0090 (17)0.0018 (14)
C390.070 (2)0.0478 (15)0.0417 (16)0.0058 (15)0.0047 (14)0.0052 (13)
C310.0330 (13)0.0482 (14)0.0367 (14)0.0009 (12)0.0000 (10)0.0029 (11)
C320.065 (2)0.071 (2)0.0370 (15)0.0091 (17)0.0065 (13)0.0109 (15)
C330.0461 (18)0.103 (3)0.053 (2)0.0208 (18)0.0082 (14)0.0075 (19)
C340.0441 (17)0.065 (2)0.080 (3)0.0193 (15)0.0043 (16)0.0158 (18)
C350.0390 (14)0.0372 (13)0.0384 (14)0.0075 (11)0.0053 (10)0.0041 (11)
C360.084 (2)0.0353 (14)0.065 (2)0.0111 (14)0.0190 (19)0.0013 (14)
Geometric parameters (Å, º) top
Si1—O11.6706 (17)C19—C211.531 (4)
Si1—C22B1.860 (13)C19—H191.0000
Si1—C251.873 (3)C20—H20A0.9800
Si1—C191.886 (3)C20—H20B0.9800
Si1—C22A1.949 (14)C20—H20C0.9800
Si2—O31.6689 (17)C21—H21A0.9800
Si2—C351.880 (3)C21—H21B0.9800
Si2—C311.883 (3)C21—H21C0.9800
Si2—C281.883 (3)C22A—C23A1.265 (18)
O1—C11.374 (3)C22A—C241.511 (15)
O2—C21.387 (3)C22A—H22A1.0000
O2—C131.420 (4)C23A—H23A0.9800
O3—C41.381 (3)C23A—H23B0.9800
O5—C171.326 (4)C23A—H23C0.9800
O5—C181.453 (4)C22B—C23B1.344 (15)
O4A—O4B0.94 (4)C22B—C241.555 (13)
O4A—C171.1977 (13)C22B—H22B1.0000
O4B—C171.1960 (14)C23B—H23D0.9800
C1—C21.381 (3)C23B—H23E0.9800
C1—C101.408 (3)C23B—H23F0.9800
C2—C31.391 (3)C24—H24A0.9800
C3—C41.396 (3)C24—H24B0.9800
C3—C121.509 (3)C24—H24C0.9800
C4—C51.408 (3)C25—C261.535 (4)
C5—C101.387 (3)C25—C271.537 (4)
C5—C61.530 (3)C25—H251.0000
C6—C71.534 (4)C26—H26A0.9800
C6—C141.538 (4)C26—H26B0.9800
C6—H61.0000C26—H26C0.9800
C7—C81.518 (4)C27—H27A0.9800
C7—H7A0.9900C27—H27B0.9800
C7—H7B0.9900C27—H27C0.9800
C8—C91.524 (4)C28—C391.515 (4)
C8—H8A0.9900C28—C291.523 (4)
C8—H8B0.9900C28—H281.0000
C9—C101.524 (3)C29—H29A0.9800
C9—C111.535 (4)C29—H29B0.9800
C9—H91.0000C29—H29C0.9800
C11—H11A0.9800C39—H39A0.9800
C11—H11B0.9800C39—H39B0.9800
C11—H11C0.9800C39—H39C0.9800
C12—H12A0.9800C31—C321.525 (4)
C12—H12B0.9800C31—C331.530 (4)
C12—H12C0.9800C31—H311.0000
C13—H13A0.9800C32—H32A0.9800
C13—H13B0.9800C32—H32B0.9800
C13—H13C0.9800C32—H32C0.9800
C14—C161.524 (4)C33—H33A0.9800
C14—C151.535 (4)C33—H33B0.9800
C14—H141.0000C33—H33C0.9800
C15—H15A0.9800C34—C351.531 (4)
C15—H15B0.9800C34—H34A0.9800
C15—H15C0.9800C34—H34B0.9800
C16—C171.504 (4)C34—H34C0.9800
C16—H16A0.9900C35—C361.532 (4)
C16—H16B0.9900C35—H351.0000
C18—H18A0.9800C36—H36A0.9800
C18—H18B0.9800C36—H36B0.9800
C18—H18C0.9800C36—H36C0.9800
C19—C201.529 (4)
O1—Si1—C22B110.2 (4)Si1—C19—H19105.9
O1—Si1—C25108.63 (12)C19—C20—H20A109.5
C22B—Si1—C25104.8 (4)C19—C20—H20B109.5
O1—Si1—C19111.64 (11)H20A—C20—H20B109.5
C22B—Si1—C19110.9 (4)C19—C20—H20C109.5
C25—Si1—C19110.34 (13)H20A—C20—H20C109.5
O1—Si1—C22A98.5 (4)H20B—C20—H20C109.5
C25—Si1—C22A120.5 (4)C19—C21—H21A109.5
C19—Si1—C22A106.7 (5)C19—C21—H21B109.5
O3—Si2—C35104.10 (10)H21A—C21—H21B109.5
O3—Si2—C31107.32 (11)C19—C21—H21C109.5
C35—Si2—C31114.84 (12)H21A—C21—H21C109.5
O3—Si2—C28113.89 (12)H21B—C21—H21C109.5
C35—Si2—C28109.38 (12)C23A—C22A—C24124.2 (11)
C31—Si2—C28107.46 (12)C23A—C22A—Si1124.5 (10)
C1—O1—Si1131.04 (16)C24—C22A—Si1111.0 (8)
C2—O2—C13112.7 (2)C23A—C22A—H22A91.7
C4—O3—Si2131.97 (15)C24—C22A—H22A91.7
C17—O5—C18115.0 (3)Si1—C22A—H22A91.7
O4B—O4A—C1766.7 (10)C22A—C23A—H23A109.5
O4A—O4B—C1766.9 (10)C22A—C23A—H23B109.5
O1—C1—C2120.5 (2)H23A—C23A—H23B109.5
O1—C1—C10119.6 (2)C22A—C23A—H23C109.5
C2—C1—C10119.8 (2)H23A—C23A—H23C109.5
C1—C2—O2118.7 (2)H23B—C23A—H23C109.5
C1—C2—C3121.8 (2)C23B—C22B—C24120.0 (9)
O2—C2—C3119.4 (2)C23B—C22B—Si1126.3 (9)
C2—C3—C4117.7 (2)C24—C22B—Si1113.6 (8)
C2—C3—C12120.4 (2)C23B—C22B—H22B90.1
C4—C3—C12121.8 (2)C24—C22B—H22B90.1
O3—C4—C3118.7 (2)Si1—C22B—H22B90.1
O3—C4—C5119.6 (2)C22B—C23B—H23D109.5
C3—C4—C5121.7 (2)C22B—C23B—H23E109.5
C10—C5—C4118.8 (2)H23D—C23B—H23E109.5
C10—C5—C6122.3 (2)C22B—C23B—H23F109.5
C4—C5—C6118.9 (2)H23D—C23B—H23F109.5
C5—C6—C7111.8 (2)H23E—C23B—H23F109.5
C5—C6—C14111.3 (2)C22A—C24—H24A109.5
C7—C6—C14115.4 (2)C22A—C24—H24B109.5
C5—C6—H6105.9H24A—C24—H24B109.5
C7—C6—H6105.9C22A—C24—H24C109.5
C14—C6—H6105.9H24A—C24—H24C109.5
C8—C7—C6113.9 (2)H24B—C24—H24C109.5
C8—C7—H7A108.8C26—C25—C27109.8 (2)
C6—C7—H7A108.8C26—C25—Si1114.6 (2)
C8—C7—H7B108.8C27—C25—Si1113.6 (2)
C6—C7—H7B108.8C26—C25—H25106.1
H7A—C7—H7B107.7C27—C25—H25106.1
C7—C8—C9111.8 (2)Si1—C25—H25106.1
C7—C8—H8A109.3C25—C26—H26A109.5
C9—C8—H8A109.3C25—C26—H26B109.5
C7—C8—H8B109.3H26A—C26—H26B109.5
C9—C8—H8B109.3C25—C26—H26C109.5
H8A—C8—H8B107.9H26A—C26—H26C109.5
C10—C9—C8111.8 (2)H26B—C26—H26C109.5
C10—C9—C11108.5 (2)C25—C27—H27A109.5
C8—C9—C11112.1 (2)C25—C27—H27B109.5
C10—C9—H9108.1H27A—C27—H27B109.5
C8—C9—H9108.1C25—C27—H27C109.5
C11—C9—H9108.1H27A—C27—H27C109.5
C5—C10—C1119.9 (2)H27B—C27—H27C109.5
C5—C10—C9122.4 (2)C39—C28—C29110.3 (3)
C1—C10—C9117.6 (2)C39—C28—Si2116.4 (2)
C9—C11—H11A109.5C29—C28—Si2113.5 (2)
C9—C11—H11B109.5C39—C28—H28105.2
H11A—C11—H11B109.5C29—C28—H28105.2
C9—C11—H11C109.5Si2—C28—H28105.2
H11A—C11—H11C109.5C28—C29—H29A109.5
H11B—C11—H11C109.5C28—C29—H29B109.5
C3—C12—H12A109.5H29A—C29—H29B109.5
C3—C12—H12B109.5C28—C29—H29C109.5
H12A—C12—H12B109.5H29A—C29—H29C109.5
C3—C12—H12C109.5H29B—C29—H29C109.5
H12A—C12—H12C109.5C28—C39—H39A109.5
H12B—C12—H12C109.5C28—C39—H39B109.5
O2—C13—H13A109.5H39A—C39—H39B109.5
O2—C13—H13B109.5C28—C39—H39C109.5
H13A—C13—H13B109.5H39A—C39—H39C109.5
O2—C13—H13C109.5H39B—C39—H39C109.5
H13A—C13—H13C109.5C32—C31—C33109.6 (3)
H13B—C13—H13C109.5C32—C31—Si2114.43 (19)
C16—C14—C15109.5 (3)C33—C31—Si2115.1 (2)
C16—C14—C6114.9 (2)C32—C31—H31105.6
C15—C14—C6111.9 (3)C33—C31—H31105.6
C16—C14—H14106.7Si2—C31—H31105.6
C15—C14—H14106.7C31—C32—H32A109.5
C6—C14—H14106.7C31—C32—H32B109.5
C14—C15—H15A109.5H32A—C32—H32B109.5
C14—C15—H15B109.5C31—C32—H32C109.5
H15A—C15—H15B109.5H32A—C32—H32C109.5
C14—C15—H15C109.5H32B—C32—H32C109.5
H15A—C15—H15C109.5C31—C33—H33A109.5
H15B—C15—H15C109.5C31—C33—H33B109.5
C17—C16—C14111.7 (3)H33A—C33—H33B109.5
C17—C16—H16A109.3C31—C33—H33C109.5
C14—C16—H16A109.3H33A—C33—H33C109.5
C17—C16—H16B109.3H33B—C33—H33C109.5
C14—C16—H16B109.3C35—C34—H34A109.5
H16A—C16—H16B107.9C35—C34—H34B109.5
O4B—C17—O4A46 (2)H34A—C34—H34B109.5
O4B—C17—O5108.1 (17)C35—C34—H34C109.5
O4A—C17—O5122.4 (3)H34A—C34—H34C109.5
O4B—C17—C16120.4 (18)H34B—C34—H34C109.5
O4A—C17—C16125.9 (3)C34—C35—C36110.5 (3)
O5—C17—C16111.5 (2)C34—C35—Si2113.2 (2)
O5—C18—H18A109.5C36—C35—Si2114.49 (19)
O5—C18—H18B109.5C34—C35—H35106.0
H18A—C18—H18B109.5C36—C35—H35106.0
O5—C18—H18C109.5Si2—C35—H35106.0
H18A—C18—H18C109.5C35—C36—H36A109.5
H18B—C18—H18C109.5C35—C36—H36B109.5
C20—C19—C21110.2 (2)H36A—C36—H36B109.5
C20—C19—Si1114.52 (19)C35—C36—H36C109.5
C21—C19—Si1113.55 (19)H36A—C36—H36C109.5
C20—C19—H19105.9H36B—C36—H36C109.5
C21—C19—H19105.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O31.002.463.115 (3)123
C25—H25···O4Bi1.002.463.312 (13)142
Symmetry code: (i) x+1, y1/2, z+1/2.
Methyl (E)-3-{(1R,4S)-8-hydroxy-6-methoxy-4,7-dimethyl-5-[(triisopropylsilyl)oxy]-1,2,3,4-tetrahydronaphthalen-1-yl}acrylate (8) top
Crystal data top
C26H42O5SiF(000) = 504
Mr = 462.68Dx = 1.173 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 12.0078 (7) ÅCell parameters from 9955 reflections
b = 9.2620 (6) Åθ = 2.7–35.2°
c = 12.1411 (8) ŵ = 0.12 mm1
β = 104.0912 (14)°T = 100 K
V = 1309.66 (14) Å3Fragment, colourless
Z = 20.6 × 0.5 × 0.4 mm
Data collection top
Bruker APEXII CCD
diffractometer
10749 reflections with I > 2σ(I)
ω–scansRint = 0.028
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 35.4°, θmin = 1.7°
Tmin = 0.672, Tmax = 0.747h = 1919
39668 measured reflectionsk = 1514
11727 independent reflectionsl = 1919
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.0894P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.47 e Å3
11727 reflectionsΔρmin = 0.18 e Å3
303 parametersAbsolute structure: Flack x determined using 4647 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.02 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.48053 (3)0.48209 (4)0.75923 (3)0.01557 (7)
O10.36877 (7)0.39726 (10)0.67418 (7)0.01631 (15)
O20.34040 (8)0.16094 (10)0.80383 (8)0.01990 (17)
O30.05396 (7)0.29748 (11)0.76559 (8)0.01824 (16)
O40.02497 (9)0.76919 (12)0.99403 (8)0.0249 (2)
O50.12137 (8)0.83904 (11)0.85055 (8)0.02317 (19)
C10.26232 (9)0.36874 (12)0.69351 (9)0.01257 (17)
C20.24784 (9)0.25016 (12)0.75946 (9)0.01384 (18)
C30.14194 (10)0.22030 (12)0.78344 (9)0.01415 (18)
C40.05190 (9)0.31694 (12)0.74235 (9)0.01276 (17)
C50.06246 (9)0.43187 (11)0.67032 (8)0.01160 (17)
C60.04152 (9)0.52688 (12)0.62464 (9)0.01299 (17)
H60.1098420.4619320.6023720.016*
C70.03128 (10)0.60915 (14)0.51721 (10)0.0177 (2)
H7A0.0405470.5410300.4527730.021*
H7B0.0928190.6825930.4973810.021*
C80.08556 (10)0.68242 (13)0.53806 (10)0.0185 (2)
H8A0.0957310.7471900.6046420.022*
H8B0.0888180.7421230.4712820.022*
C90.18316 (10)0.57161 (13)0.55933 (10)0.01534 (18)
H90.2564730.6238140.5928550.018*
C100.16797 (9)0.45609 (11)0.64295 (8)0.01165 (17)
C110.19429 (12)0.50138 (16)0.44744 (10)0.0236 (2)
H11A0.1234490.4490890.4128950.035*
H11B0.2590980.4338940.4631070.035*
H11C0.2074070.5765060.3951670.035*
C120.12435 (12)0.08650 (15)0.84750 (12)0.0225 (2)
H12A0.0462660.0499680.8173830.034*
H12B0.1353940.1098030.9281810.034*
H12C0.1799410.0126060.8386580.034*
C130.36061 (15)0.06106 (18)0.72106 (14)0.0319 (3)
H13A0.3703010.1140560.6541500.048*
H13B0.2950710.0047720.6988760.048*
H13C0.4303190.0054080.7533950.048*
C140.06518 (10)0.63272 (12)0.71045 (10)0.01513 (18)
H140.1332580.6886880.6881280.018*
C150.00034 (10)0.65543 (14)0.81490 (10)0.0168 (2)
H150.0695980.6019950.8384310.020*
C160.02911 (10)0.75888 (13)0.89544 (10)0.0170 (2)
C170.15650 (15)0.93869 (17)0.92681 (14)0.0300 (3)
H17A0.0966211.0117320.9517830.045*
H17B0.1685880.8861150.9929800.045*
H17C0.2281830.9859920.8875210.045*
C180.44412 (11)0.56553 (15)0.88786 (11)0.0201 (2)
H180.5118010.6265350.9242460.024*
C190.42985 (14)0.45753 (19)0.97945 (12)0.0293 (3)
H19A0.3641370.3944310.9486360.044*
H19B0.4166890.5102261.0451340.044*
H19C0.4996090.3990381.0030300.044*
C200.34128 (13)0.66911 (19)0.85885 (15)0.0312 (3)
H20A0.3332520.7179620.9281040.047*
H20B0.2711950.6144130.8260380.047*
H20C0.3537580.7410750.8039050.047*
C210.60109 (15)0.7456 (2)0.73612 (16)0.0340 (3)
H21A0.6077040.8265460.6861330.051*
H21B0.6766850.7011720.7647750.051*
H21C0.5723200.7808520.8001160.051*
C220.51751 (12)0.63325 (18)0.66939 (12)0.0271 (3)
H220.4441120.6856910.6366600.032*
C230.5620 (2)0.5802 (3)0.56774 (16)0.0545 (6)
H23A0.6383600.5374350.5953340.082*
H23B0.5666870.6618620.5177660.082*
H23C0.5092200.5074660.5254340.082*
C240.59760 (11)0.34486 (17)0.80858 (11)0.0235 (2)
H240.5670610.2748920.8566900.028*
C250.62999 (17)0.2544 (3)0.71550 (17)0.0449 (5)
H25A0.6777010.1727120.7500810.067*
H25B0.6729410.3143930.6736270.067*
H25C0.5600630.2183410.6632020.067*
C260.70560 (12)0.4103 (2)0.88641 (15)0.0354 (4)
H26A0.7434520.4735430.8419630.053*
H26B0.7582580.3327480.9206020.053*
H26C0.6841810.4665120.9464890.053*
H10.0445 (18)0.280 (3)0.8345 (18)0.032 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.01057 (12)0.02079 (15)0.01515 (13)0.00063 (11)0.00275 (9)0.00242 (12)
O10.0112 (3)0.0211 (4)0.0165 (3)0.0007 (3)0.0031 (3)0.0012 (3)
O20.0174 (4)0.0202 (4)0.0206 (4)0.0071 (3)0.0018 (3)0.0056 (3)
O30.0139 (3)0.0254 (4)0.0160 (4)0.0009 (3)0.0048 (3)0.0039 (3)
O40.0253 (4)0.0334 (5)0.0154 (4)0.0011 (4)0.0037 (3)0.0063 (4)
O50.0221 (4)0.0229 (4)0.0235 (4)0.0050 (4)0.0037 (3)0.0082 (4)
C10.0107 (4)0.0139 (4)0.0125 (4)0.0004 (3)0.0016 (3)0.0007 (3)
C20.0132 (4)0.0141 (4)0.0132 (4)0.0024 (3)0.0012 (3)0.0025 (3)
C30.0154 (4)0.0132 (4)0.0133 (4)0.0004 (3)0.0024 (3)0.0029 (3)
C40.0131 (4)0.0134 (4)0.0114 (4)0.0008 (3)0.0021 (3)0.0009 (3)
C50.0111 (4)0.0124 (4)0.0102 (4)0.0002 (3)0.0004 (3)0.0003 (3)
C60.0123 (4)0.0140 (4)0.0113 (4)0.0013 (3)0.0002 (3)0.0006 (3)
C70.0170 (5)0.0199 (5)0.0140 (4)0.0038 (4)0.0003 (3)0.0032 (4)
C80.0199 (5)0.0146 (5)0.0198 (5)0.0016 (4)0.0029 (4)0.0055 (4)
C90.0151 (4)0.0149 (4)0.0153 (4)0.0008 (4)0.0023 (3)0.0043 (4)
C100.0119 (4)0.0113 (4)0.0108 (4)0.0006 (3)0.0010 (3)0.0008 (3)
C110.0284 (6)0.0276 (6)0.0170 (5)0.0030 (5)0.0099 (4)0.0049 (4)
C120.0238 (6)0.0195 (5)0.0254 (6)0.0014 (4)0.0084 (5)0.0107 (4)
C130.0372 (8)0.0264 (7)0.0338 (7)0.0162 (6)0.0120 (6)0.0029 (6)
C140.0142 (4)0.0151 (5)0.0152 (4)0.0015 (4)0.0018 (3)0.0005 (4)
C150.0148 (4)0.0195 (5)0.0155 (4)0.0018 (4)0.0022 (4)0.0029 (4)
C160.0156 (4)0.0192 (5)0.0169 (4)0.0027 (4)0.0056 (4)0.0031 (4)
C170.0348 (7)0.0251 (6)0.0334 (7)0.0057 (5)0.0145 (6)0.0088 (5)
C180.0162 (5)0.0231 (5)0.0212 (5)0.0030 (4)0.0046 (4)0.0028 (4)
C190.0346 (7)0.0359 (8)0.0207 (5)0.0062 (6)0.0130 (5)0.0034 (5)
C200.0242 (6)0.0309 (7)0.0368 (7)0.0032 (5)0.0045 (5)0.0135 (6)
C210.0305 (7)0.0325 (8)0.0400 (8)0.0133 (6)0.0105 (6)0.0024 (6)
C220.0190 (5)0.0347 (7)0.0262 (6)0.0081 (5)0.0029 (4)0.0102 (5)
C230.0761 (15)0.0658 (14)0.0279 (8)0.0325 (12)0.0252 (9)0.0012 (9)
C240.0143 (5)0.0329 (7)0.0223 (5)0.0058 (5)0.0024 (4)0.0028 (5)
C250.0346 (8)0.0584 (12)0.0415 (9)0.0232 (8)0.0090 (7)0.0081 (9)
C260.0147 (5)0.0514 (10)0.0351 (8)0.0021 (6)0.0035 (5)0.0069 (7)
Geometric parameters (Å, º) top
Si1—O11.6763 (9)C13—H13A0.9800
Si1—C241.8816 (14)C13—H13B0.9800
Si1—C181.8867 (13)C13—H13C0.9800
Si1—C221.8928 (14)C14—C151.3363 (16)
O1—C11.3802 (13)C14—H140.9500
O2—C21.3845 (14)C15—C161.4723 (16)
O2—C131.4295 (18)C15—H150.9500
O3—C41.3793 (13)C17—H17A0.9800
O3—H10.83 (2)C17—H17B0.9800
O4—C161.2186 (15)C17—H17C0.9800
O5—C161.3348 (15)C18—C201.535 (2)
O5—C171.4413 (16)C18—C191.536 (2)
C1—C21.3947 (15)C18—H181.0000
C1—C101.4058 (14)C19—H19A0.9800
C2—C31.3994 (15)C19—H19B0.9800
C3—C41.3987 (15)C19—H19C0.9800
C3—C121.5051 (17)C20—H20A0.9800
C4—C51.4029 (15)C20—H20B0.9800
C5—C101.4039 (15)C20—H20C0.9800
C5—C61.5177 (15)C21—C221.533 (2)
C6—C141.5070 (15)C21—H21A0.9800
C6—C71.5411 (16)C21—H21B0.9800
C6—H61.0000C21—H21C0.9800
C7—C81.5233 (18)C22—C231.540 (3)
C7—H7A0.9900C22—H221.0000
C7—H7B0.9900C23—H23A0.9800
C8—C91.5317 (16)C23—H23B0.9800
C8—H8A0.9900C23—H23C0.9800
C8—H8B0.9900C24—C251.531 (2)
C9—C101.5162 (15)C24—C261.531 (2)
C9—C111.5410 (17)C24—H241.0000
C9—H91.0000C25—H25A0.9800
C11—H11A0.9800C25—H25B0.9800
C11—H11B0.9800C25—H25C0.9800
C11—H11C0.9800C26—H26A0.9800
C12—H12A0.9800C26—H26B0.9800
C12—H12B0.9800C26—H26C0.9800
C12—H12C0.9800
O1—Si1—C24107.67 (6)C15—C14—C6126.29 (10)
O1—Si1—C18112.94 (5)C15—C14—H14116.9
C24—Si1—C18108.59 (6)C6—C14—H14116.9
O1—Si1—C22104.87 (5)C14—C15—C16123.48 (11)
C24—Si1—C22114.91 (7)C14—C15—H15118.3
C18—Si1—C22107.95 (7)C16—C15—H15118.3
C1—O1—Si1128.37 (7)O4—C16—O5123.25 (11)
C2—O2—C13111.74 (10)O4—C16—C15123.14 (11)
C4—O3—H1108.9 (14)O5—C16—C15113.60 (10)
C16—O5—C17115.95 (11)O5—C17—H17A109.5
O1—C1—C2119.89 (9)O5—C17—H17B109.5
O1—C1—C10119.79 (9)H17A—C17—H17B109.5
C2—C1—C10120.27 (9)O5—C17—H17C109.5
O2—C2—C1119.53 (10)H17A—C17—H17C109.5
O2—C2—C3119.02 (10)H17B—C17—H17C109.5
C1—C2—C3121.44 (10)C20—C18—C19110.34 (12)
C4—C3—C2117.51 (10)C20—C18—Si1113.68 (10)
C4—C3—C12121.17 (10)C19—C18—Si1114.94 (10)
C2—C3—C12121.28 (10)C20—C18—H18105.7
O3—C4—C3120.95 (10)C19—C18—H18105.7
O3—C4—C5117.02 (9)Si1—C18—H18105.7
C3—C4—C5121.91 (10)C18—C19—H19A109.5
C4—C5—C10119.51 (9)C18—C19—H19B109.5
C4—C5—C6118.46 (9)H19A—C19—H19B109.5
C10—C5—C6122.03 (9)C18—C19—H19C109.5
C14—C6—C5113.66 (9)H19A—C19—H19C109.5
C14—C6—C7109.32 (9)H19B—C19—H19C109.5
C5—C6—C7111.58 (9)C18—C20—H20A109.5
C14—C6—H6107.3C18—C20—H20B109.5
C5—C6—H6107.3H20A—C20—H20B109.5
C7—C6—H6107.3C18—C20—H20C109.5
C8—C7—C6109.86 (9)H20A—C20—H20C109.5
C8—C7—H7A109.7H20B—C20—H20C109.5
C6—C7—H7A109.7C22—C21—H21A109.5
C8—C7—H7B109.7C22—C21—H21B109.5
C6—C7—H7B109.7H21A—C21—H21B109.5
H7A—C7—H7B108.2C22—C21—H21C109.5
C7—C8—C9111.43 (10)H21A—C21—H21C109.5
C7—C8—H8A109.3H21B—C21—H21C109.5
C9—C8—H8A109.3C21—C22—C23109.27 (14)
C7—C8—H8B109.3C21—C22—Si1114.38 (10)
C9—C8—H8B109.3C23—C22—Si1113.67 (13)
H8A—C8—H8B108.0C21—C22—H22106.3
C10—C9—C8111.96 (9)C23—C22—H22106.3
C10—C9—C11110.05 (10)Si1—C22—H22106.3
C8—C9—C11111.18 (10)C22—C23—H23A109.5
C10—C9—H9107.8C22—C23—H23B109.5
C8—C9—H9107.8H23A—C23—H23B109.5
C11—C9—H9107.8C22—C23—H23C109.5
C5—C10—C1118.84 (9)H23A—C23—H23C109.5
C5—C10—C9122.27 (9)H23B—C23—H23C109.5
C1—C10—C9118.88 (9)C25—C24—C26110.06 (13)
C9—C11—H11A109.5C25—C24—Si1116.03 (10)
C9—C11—H11B109.5C26—C24—Si1112.57 (12)
H11A—C11—H11B109.5C25—C24—H24105.8
C9—C11—H11C109.5C26—C24—H24105.8
H11A—C11—H11C109.5Si1—C24—H24105.8
H11B—C11—H11C109.5C24—C25—H25A109.5
C3—C12—H12A109.5C24—C25—H25B109.5
C3—C12—H12B109.5H25A—C25—H25B109.5
H12A—C12—H12B109.5C24—C25—H25C109.5
C3—C12—H12C109.5H25A—C25—H25C109.5
H12A—C12—H12C109.5H25B—C25—H25C109.5
H12B—C12—H12C109.5C24—C26—H26A109.5
O2—C13—H13A109.5C24—C26—H26B109.5
O2—C13—H13B109.5H26A—C26—H26B109.5
H13A—C13—H13B109.5C24—C26—H26C109.5
O2—C13—H13C109.5H26A—C26—H26C109.5
H13A—C13—H13C109.5H26B—C26—H26C109.5
H13B—C13—H13C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O4i0.83 (2)2.04 (2)2.8658 (13)171 (2)
C17—H17A···O4ii0.982.573.471 (2)154
Symmetry codes: (i) x, y1/2, z+2; (ii) x, y+1/2, z+2.
 

Acknowledgements

The X-ray centre of the TU Wien is acknowledged for providing access to the single-crystal X-ray diffraction instrument. The authors thank TU Wien Bibliothek for financial support through its Open Access Funding Programme.

Funding information

Funding for this research was provided by: Austrian Science Fund (FWF) (project No. P25556-N28).

References

First citationAllen, F. H., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (2006). International Tables for Crystallography, Volume C, edited by E. Prince, ch. 9.5, pp. 790–811. New York: Wiley.  Google Scholar
First citationBoezio, A. A., Jarvo, E. R., Lawrence, B. M. & Jacobsen, E. N. (2005). Angew. Chem. Int. Ed. 44, 6046–6050.  CSD CrossRef CAS Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHeckrodt, T. J. & Mulzer, J. (2003). J. Am. Chem. Soc. 125, 4680–4681.  CrossRef PubMed CAS Google Scholar
First citationJarvo, E. R., Lawrence, B. M. & Jacobsen, E. N. (2005). Angew. Chem. Int. Ed. 44, 6043–6046.  CSD CrossRef CAS Google Scholar
First citationKaiser, M. (2022). Doctoral thesis: Efforts towards the total synthesis of elisabethin A. TU Wien, Vienna, Austria. https://doi.org/10.34726/hss.2021.32462  Google Scholar
First citationKaiser, M., Schönbauer, D., Schragl, E., Weil, M., Gärtner, P. & Enev, V. (2022). J. Org. Chem. 87, 15333–15349.  CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPreindl, J., Leitner, C., Baldauf, S. & Mulzer, J. (2014). Org. Lett. 16, 4276–4279.  CSD CrossRef CAS PubMed Google Scholar
First citationRodríguez, A. D., González, E. & Huang, S. D. (1998). J. Org. Chem. 63, 7083–7091.  PubMed Google Scholar
First citationRodríguez, A. D., Ramírez, C., Rodríguez, I. I. & Barnes, C. L. (2000). J. Org. Chem. 65, 1390–1398.  PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYing, W., Barnes, C. L. & Harmata, M. (2011). Tetrahedron Lett. 52, 177–180.  CSD CrossRef CAS PubMed Google Scholar
First citationZanoni, G. & Franzini, M. (2004). Angew. Chem. Int. Ed. 43, 4837–4841.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds