research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

ISSN: 2056-9890

The crystal structure of quaternary (Sn,Pb,Bi)Pt

crossmark logo

aFaculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Chemnitz University of Technology, 09107 Chemnitz, Germany, and bMax-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, 01187 Dresden, Germany
*Correspondence e-mail:

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 November 2022; accepted 2 February 2023; online 7 February 2023)

Quaternary (Sn,Pb,Bi)Pt was synthesized by melting of the elements in an evacuated silica glass ampoule. The crystal structure was established by single-crystal X-ray diffraction and adopts an atomic arrangement of the NiAs type with additional occupation of the voids. Decisive for the refinement was the composition of the crystals as determined by energy dispersive X-ray spectroscopy (EDXS), resulting in a formula of (Sn0.15Pb0.54Bi0.31)Pt.

1. Chemical context

Platinum-based inter­metallic compounds possess promising properties as electrocatalysts and provide necessary stability for the harsh application conditions in acidic electrolytes (Rössner & Armbrüster, 2019[Rössner, L. & Armbrüster, M. (2019). ACS Catal. 9, 2018-2062.]). SnPt, PbPt and BiPt are inter­esting electrocatalysts for the oxidation of small organic mol­ecules and have the NiAs type of crystal structure (Oftedal, 1928[Oftedal, I. (1928). Z. Phys. Chem. Stoechiom. Verwandtschaftsl. 132U, 208-216.]; Nowotny et al., 1946[Nowotny, H., Schubert, K. & Dettinger, U. (1946). Z. Metallkd. 37, 137-145.]; Zhuravlev et al., 1962[Zhuravlev, N. N., Zhdanov, G. S. & Smirnova, Y. M. (1962). Phys. Met. Metallogr. 13, 55-61.]). So far, the existence of a substitutional solid solution between PtPb and PtBi was confirmed by powder X-ray diffraction, with the site occupancy deduced from the nominal composition (Zhuravlev et al., 1962[Zhuravlev, N. N., Zhdanov, G. S. & Smirnova, Y. M. (1962). Phys. Met. Metallogr. 13, 55-61.]), which also holds for all three binary end members. To obtain material for electrocatalytic investigations, the synthesis of single-phase (Sn,Pb,Bi)Pt was attempted. Large hexa­gonal crystals were found on the top of an otherwise microgranular ingot. Preliminary EDXS analysis indicated the presence of all four elements in the crystal. Further structural investigations besides the original structure reports for PtSn (Harris et al., 1968[Harris, I. R., Norman, M. & Bryant, A. W. (1968). J. Less-Common Met. 16, 427-440.]; Shelton et al., 1981[Shelton, K. L., Merewether, P. A. & Skinner, B. J. (1981). Can. Mineral. 19, 599-605.]; Durussel et al., 1994[Durussel, P., Massara, R. & Feschotte, P. (1994). J. Alloys Compd, 215, 175-179.]), PtPb (Zhuravlev et al. 1962[Zhuravlev, N. N., Zhdanov, G. S. & Smirnova, Y. M. (1962). Phys. Met. Metallogr. 13, 55-61.]; Sidorov et al., 2021[Sidorov, E. G., Kutyrev, A. V., Zhitova, E. S., Agakhanov, A. A., Sandimirova, E. I., Vymazalova, A., Chubarov, V. M. & Zolotarev, A. A. (2021). MinMag, 85, 254-261.]) and PtBi (Zhuravlev & Stepanova, 1962a[Zhuravlev, N. N. & Stepanova, A. A. (1962a). Sov. Phys. Crystallogr. 7, 241-242.],b[Zhuravlev, N. N. & Stepanova, A. A. (1962b). Kristallografiya, 7, 310-311.]) provide no full structural characterization by means of single-crystal X-ray diffraction. Thus, structural data for binary, ternary or quaternary samples in the (Sn,Pb,Bi)Pt system are incomplete. To provide such data, one of the obtained crystals was studied by means of single-crystal X-ray diffraction.

2. Structural commentary

As a result of the very similar scattering power of three of the four atoms (Bi, Pb and Pt), the direct assignment of the atomic positions to the respective elements was not possible. Atoms were distributed based on crystal-chemical considerations as well as by achieving an agreement between the refined composition and the result of the EDXS analysis (Fig. 1[link]). The 2a site was assigned to Pt in agreement with structural studies of binary endmembers. A mixed occupancy of Sn, Pb and Bi was assumed for the 2c position. The statistical distribution of these elements at the same atomic site is based on the full miscibility of the elements in the molten state and on the missing site preference in the only known binary phase Pb0.7Bi0.3 (Mg type of crystal structure; Kurnakov & Ageeva, 1937[Kurnakov, N. S. & Ageeva, V. A. (1937). Izv. Akad. Nauk SSSR, Ser. Khim. pp. 735-742.]). Additional electron density was detected on the 2c ([\overline{6}]m2) and 4f (3m.) sites, for which two possible scenarios can be considered. Either those positions are occupied by the smaller Sn atoms as a result of the enlarged unit-cell volume of 84.84 Å3, which is 7.2% higher compared to 79.14 Å3 for SnPt (Oftedal, 1928[Oftedal, I. (1928). Z. Phys. Chem. Stoechiom. Verwandtschaftsl. 132U, 208-216.]), or the presence of stacking faults. Neither can be proven here.

[Figure 1]
Figure 1
Representation of the unit cell of quaternary (Sn,Pb,Bi)Pt. Color code: Grey – Pt1; red – Sn1, Pb1, Bi1; blue – Sn2; green – Sn3. Displacement ellipsoids are drawn at the 95% probability level..

As a result of the potential partial occupation of 2c ([\overline{6}]m2) and 4f (3m.) in the hexa­gonal lattice of the quaternary sample, we assign the crystal structure to the NiAs type. The refined composition of 7.5%at Sn, 27.0%at Pb, 15.5%at Bi and 50%at Pt is in broad agreement with the results of EDXS measurements (12.35%at Sn, 25.87%at Pb, 9.49%at Bi and 52.29%at Pt) considering the error of this method, which to our experience is up to 5%at for standardless qu­anti­fications of non-ideal samples, i.e. mirror-finished surfaces.

3. Synthesis and crystallization

Elements were weighed in an Ar-filled glove-box (O2 and H2O content < 0.1 ppm) according to the nominal composition of 20.83%at Sn (99.999%, granules, ChemPUR), 20.83%at Pb (99.999%, granules, AlutervFKI), 8.33%at Bi (99.997%, granules, AlfaAesar) and 50.00%at Pt (99.95%, foil, Goodfellow), then sealed in an evacuated silica glass ampoule. The ampoule was placed into a furnace at 1473 K for 24 h, then cooled down from 1473 K to 873 K at a rate of 0.2 K min−1. The temperature of 873 K was held for seven days and subsequently the ampoule was quenched in cold water. Single crystals with a hexa­gonal shape were selected from the top of an otherwise microgranular sample, which was composed of phases with the Cu3Au and NiAs type of crystal structure, based on powder X-ray diffraction data. As a result of the high X-ray absorption of the investigated material, hexa­gonal-shaped specimens were too large for single crystal X-ray data collection. For this experiment, a relatively small piece was mechanically separated from a hexa­gonally shaped block. The composition of the investigated single crystal was determined by EDXS (Quantax, Bruker).

4. Refinement

Crystallographic data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula (Sn·Pb·Bi)Pt
Mr 389.32
Crystal system, space group Hexagonal, P63/mmc
Temperature (K) 293
a, c (Å) 4.228 (1), 5.481 (2)
V3) 84.84 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 169.4
Crystal size (mm) 0.04 × 0.03 × 0.02
Data collection
Diffractometer Rigaku AFC7 four-circle
Absorption correction Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.037, 0.081
No. of measured, independent and observed [I > 2σ(I)] reflections 1549, 123, 120
Rint 0.043
(sin θ/λ)max−1) 0.900
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.041, 1.51
No. of reflections 123
No. of parameters 13
No. of restraints 1
Δρmax, Δρmin (e Å−3) 2.08, −1.43
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SIR-2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg & Putz, 2018[Brandenburg, K. & Putz, H. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

To decrease the number of parameters, the Pt site was constrained to full occupation at the 2a ([\overline{3}]m.) site. Even though the standardless qu­anti­fication by means of EDXS data is 52.3%at Pt, recent results of bulk samples from the quasi-ternary cut of the quaternary Sn–Pb–Bi–Pt system indicate a strict upper compositional limit of 50%at Pt (Rössner et al., 2023[Rössner, L., Patino Soriano, D. T., Tiryaki, O., Burkhardt, U. & Armbrüster, M. (2023). Inorg. Chem.. Submitted.]). An initial refinement was done for Pb and Bi, using EDXS values as a starting point, then the additional electron density was considered by adding Sn. After multiple cycles, it was decided that a compromise had to be made between excellent refinement results and compositions close to the ones from EDXS results. The final model is presented here.

Furthermore, it has to be noted that Sn3 was refined with isotropic displacement parameters, as the minor site occupancy (2.7%), does not justify to add additional parameters to enable a refinement with anisotropic displacement parameters. It has to be stressed that the ratio of 13 parameters for 123 independent reflections is already at the recommended upper limit (ratio parameters:reflections < 1:10).

Supporting information

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR-2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2018); software used to prepare material for publication: SHELXL (Sheldrick, 2015).

(Tin, lead, bismuth) platinum top
Crystal data top
(Sn·Pb·Bi)PtDx = 15.23 Mg m3
Mr = 389.32Mo Kα radiation, λ = 0.710730 Å
Hexagonal, P63/mmcCell parameters from 924 reflections
a = 4.228 (1) Åθ = 9.3–43.0°
c = 5.481 (2) ŵ = 169.4 mm1
V = 84.84 (5) Å3T = 293 K
Z = 2Irregular shaped, grey
F(000) = 3110.04 × 0.03 × 0.02 mm
Data collection top
Rigaku AFC7 four-circle
123 independent reflections
Radiation source: Sealed Tube120 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.043
Detector resolution: 28.5714 pixels mm-1θmax = 39.8°, θmin = 5.6°
profile data from φ–scansh = 75
Absorption correction: multi-scan
(Blessing, 1995)
k = 67
Tmin = 0.037, Tmax = 0.081l = 59
1549 measured reflections
Refinement top
Refinement on F213 parameters
Least-squares matrix: full1 restraint
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.012P)2 + 0.2655P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.041(Δ/σ)max = 0.013
S = 1.51Δρmax = 2.08 e Å3
123 reflectionsΔρmin = 1.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10000.0110 (2)
Bi10.33330.66670.25000.0077 (3)0.31 (5)
Pb10.33330.66670.25000.00770.54 (5)
Sn10.33330.66670.25000.00770.03 (4)
Sn20.33330.66670.75000.00770.064 (6)
Sn30.33330.66670.501 (5)0.012 (7)*0.027 (4)
Atomic displacement parameters (Å2) top
Pt10.0133 (3)0.01330.0063 (3)0.00667 (13)00
Bi10.0061 (3)0.00610.0108 (4)0.00307 (14)00
Geometric parameters (Å, º) top
Pt1—Sn3i2.4410 (6)Pb1—Sn3x2.797 (13)
Pt1—Sn3ii2.4410 (6)Pb1—Sn3xiii2.797 (13)
Pt1—Sn3iii2.4410 (6)Sn1—Sn31.37 (3)
Pt1—Sn3iv2.4410 (6)Sn1—Sn3i1.37 (3)
Pt1—Sn3v2.4411 (6)Sn1—Sn2ix2.4410 (6)
Pt1—Sn3vi2.4411 (6)Sn1—Sn2x2.4410 (6)
Pt1—Pt1vii2.7402 (9)Sn1—Sn2xi2.4410 (6)
Pt1—Pt1ii2.7402 (9)Sn1—Sn22.7403 (8)
Pt1—Bi1viii2.7993 (5)Sn1—Sn2xii2.7402 (9)
Pt1—Sn1viii2.7993 (5)Sn1—Sn3iv2.797 (13)
Pt1—Pb1viii2.7993 (5)Sn1—Sn3ix2.797 (13)
Pt1—Sn2ix2.7993 (5)Sn1—Sn3vi2.797 (13)
Bi1—Sn31.37 (3)Sn1—Sn3x2.797 (13)
Bi1—Sn3i1.37 (3)Sn1—Sn3xiii2.797 (13)
Bi1—Sn2ix2.4410 (6)Sn2—Sn3xiv1.37 (3)
Bi1—Sn2x2.4410 (6)Sn2—Sn31.37 (3)
Bi1—Sn2xi2.4410 (6)Sn2—Sn1ix2.4410 (6)
Bi1—Sn22.7403 (8)Sn2—Pb1ix2.4410 (6)
Bi1—Sn2xii2.7402 (9)Sn2—Bi1ix2.4410 (6)
Bi1—Sn3iv2.797 (13)Sn2—Sn1x2.4410 (6)
Bi1—Sn3ix2.797 (13)Sn2—Sn1xi2.4410 (6)
Bi1—Sn3vi2.797 (13)Sn2—Pb1x2.4410 (6)
Bi1—Sn3x2.797 (13)Sn2—Pb1xi2.4410 (6)
Bi1—Sn3xiii2.797 (13)Sn2—Bi1x2.4410 (6)
Pb1—Sn31.37 (3)Sn2—Bi1xi2.4410 (6)
Pb1—Sn3i1.37 (3)Sn3—Sn3ix2.4410 (6)
Pb1—Sn2ix2.4410 (6)Sn3—Pt1xv2.4410 (6)
Pb1—Sn2x2.4410 (6)Sn3—Pt1xvi2.4410 (6)
Pb1—Sn2xi2.4410 (6)Sn3—Pt1vii2.4410 (6)
Pb1—Sn22.7403 (8)Sn3—Sn3x2.4411 (6)
Pb1—Sn2xii2.7402 (9)Sn3—Sn3xi2.4411 (7)
Pb1—Sn3iv2.797 (13)Sn3—Sn3xiv2.73 (5)
Pb1—Sn3ix2.797 (13)Sn3—Sn3i2.75 (5)
Pb1—Sn3vi2.797 (13)
Sn3i—Pt1—Sn3ii180.0Sn3i—Sn1—Sn2x90.000 (4)
Sn3i—Pt1—Sn3v119.999 (5)Sn3—Sn1—Sn2xi90.000 (5)
Sn3iii—Pt1—Sn3v119.999 (4)Sn3i—Sn1—Sn2xi90.000 (4)
Sn3ii—Pt1—Sn3vi119.999 (5)Sn2ix—Sn1—Sn2xi120.0
Sn3iv—Pt1—Sn3vi119.999 (4)Sn2x—Sn1—Sn2xi120.0
Sn3v—Pt1—Sn3vi180.0Sn3—Sn1—Sn20.000 (6)
Sn3i—Pt1—Pt1vii90.1 (6)Sn3i—Sn1—Sn2180.0
Sn3ii—Pt1—Pt1vii89.9 (6)Sn2ix—Sn1—Sn290.0
Sn3iii—Pt1—Pt1vii90.1 (6)Sn2x—Sn1—Sn290.0
Sn3iv—Pt1—Pt1vii89.9 (6)Sn2xi—Sn1—Sn290.0
Sn3v—Pt1—Pt1vii90.1 (6)Sn3—Sn1—Sn2xii180.0
Sn3vi—Pt1—Pt1vii89.9 (6)Sn3i—Sn1—Sn2xii0.000 (1)
Sn3i—Pt1—Pt1ii89.9 (6)Sn2ix—Sn1—Sn2xii90.0
Sn3ii—Pt1—Pt1ii90.1 (6)Sn2x—Sn1—Sn2xii90.0
Sn3iii—Pt1—Pt1ii89.9 (6)Sn2xi—Sn1—Sn2xii90.0
Sn3iv—Pt1—Pt1ii90.1 (6)Sn2—Sn1—Sn2xii180.0
Sn3v—Pt1—Pt1ii89.9 (6)Sn3—Sn1—Sn3iv119.2 (5)
Sn3vi—Pt1—Pt1ii90.1 (6)Sn3i—Sn1—Sn3iv60.8 (5)
Pt1vii—Pt1—Pt1ii180.0Sn2ix—Sn1—Sn3iv29.2 (5)
Sn3i—Pt1—Bi1viii150.6 (6)Sn2x—Sn1—Sn3iv115.87 (13)
Sn3ii—Pt1—Bi1viii29.4 (6)Sn2xi—Sn1—Sn3iv115.87 (13)
Sn3iii—Pt1—Bi1viii64.1 (3)Sn2—Sn1—Sn3iv119.2 (5)
Sn3iv—Pt1—Bi1viii115.9 (3)Sn2xii—Sn1—Sn3iv60.8 (5)
Sn3v—Pt1—Bi1viii64.1 (3)Sn3—Sn1—Sn3ix60.8 (5)
Sn3vi—Pt1—Bi1viii115.9 (3)Sn3i—Sn1—Sn3ix119.2 (5)
Pt1vii—Pt1—Bi1viii119.305 (9)Sn2ix—Sn1—Sn3ix29.2 (5)
Pt1ii—Pt1—Bi1viii60.695 (9)Sn2x—Sn1—Sn3ix115.87 (13)
Sn3i—Pt1—Sn1viii150.6 (6)Sn2xi—Sn1—Sn3ix115.87 (13)
Sn3ii—Pt1—Sn1viii29.4 (6)Sn2—Sn1—Sn3ix60.8 (5)
Sn3iii—Pt1—Sn1viii64.1 (3)Sn2xii—Sn1—Sn3ix119.2 (5)
Sn3iv—Pt1—Sn1viii115.9 (3)Sn3iv—Sn1—Sn3ix58.5 (10)
Sn3v—Pt1—Sn1viii64.1 (3)Sn3—Sn1—Sn3vi119.2 (5)
Sn3vi—Pt1—Sn1viii115.9 (3)Sn3i—Sn1—Sn3vi60.8 (5)
Pt1vii—Pt1—Sn1viii119.305 (9)Sn2ix—Sn1—Sn3vi115.87 (13)
Pt1ii—Pt1—Sn1viii60.695 (9)Sn2x—Sn1—Sn3vi115.87 (13)
Bi1viii—Pt1—Sn1viii0.0Sn2xi—Sn1—Sn3vi29.2 (5)
Sn3i—Pt1—Pb1viii150.6 (6)Sn2—Sn1—Sn3vi119.2 (5)
Sn3ii—Pt1—Pb1viii29.4 (6)Sn2xii—Sn1—Sn3vi60.8 (5)
Sn3iii—Pt1—Pb1viii64.1 (3)Sn3iv—Sn1—Sn3vi98.2 (6)
Sn3iv—Pt1—Pb1viii115.9 (3)Sn3ix—Sn1—Sn3vi128.3 (3)
Sn3v—Pt1—Pb1viii64.1 (3)Sn3—Sn1—Sn3x60.8 (5)
Sn3vi—Pt1—Pb1viii115.9 (3)Sn3i—Sn1—Sn3x119.2 (5)
Pt1vii—Pt1—Pb1viii119.305 (9)Sn2ix—Sn1—Sn3x115.87 (13)
Pt1ii—Pt1—Pb1viii60.695 (9)Sn2x—Sn1—Sn3x29.2 (5)
Bi1viii—Pt1—Pb1viii0.0Sn2xi—Sn1—Sn3x115.87 (13)
Sn1viii—Pt1—Pb1viii0.0Sn2—Sn1—Sn3x60.8 (5)
Sn3i—Pt1—Sn2ix64.2 (3)Sn2xii—Sn1—Sn3x119.2 (5)
Sn3ii—Pt1—Sn2ix115.8 (3)Sn3iv—Sn1—Sn3x128.3 (3)
Sn3iii—Pt1—Sn2ix150.8 (6)Sn3ix—Sn1—Sn3x98.2 (6)
Sn3iv—Pt1—Sn2ix29.2 (6)Sn3vi—Sn1—Sn3x128.3 (3)
Sn3v—Pt1—Sn2ix64.2 (3)Sn3—Sn1—Sn3xiii119.2 (5)
Sn3vi—Pt1—Sn2ix115.8 (3)Sn3i—Sn1—Sn3xiii60.8 (5)
Pt1vii—Pt1—Sn2ix60.695 (9)Sn2ix—Sn1—Sn3xiii115.87 (13)
Pt1ii—Pt1—Sn2ix119.305 (10)Sn2x—Sn1—Sn3xiii29.2 (5)
Sn3—Bi1—Sn3i180.0Sn2xi—Sn1—Sn3xiii115.87 (13)
Sn3—Bi1—Sn2ix90.000 (1)Sn2—Sn1—Sn3xiii119.2 (5)
Sn3i—Bi1—Sn2ix89.999 (1)Sn2xii—Sn1—Sn3xiii60.8 (5)
Sn3—Bi1—Sn2x90.000 (4)Sn3iv—Sn1—Sn3xiii98.2 (6)
Sn3i—Bi1—Sn2x90.000 (4)Sn3ix—Sn1—Sn3xiii128.3 (3)
Sn2ix—Bi1—Sn2x120.0Sn3vi—Sn1—Sn3xiii98.2 (6)
Sn3—Bi1—Sn2xi90.000 (5)Sn3x—Sn1—Sn3xiii58.5 (10)
Sn3i—Bi1—Sn2xi90.000 (4)Sn3xiv—Sn2—Sn3180.0
Sn2ix—Bi1—Sn2xi120.0Sn3xiv—Sn2—Sn1ix89.999 (1)
Sn2x—Bi1—Sn2xi120.0Sn3—Sn2—Sn1ix90.000 (1)
Sn3—Bi1—Sn20.000 (6)Sn3xiv—Sn2—Pb1ix89.999 (1)
Sn3i—Bi1—Sn2180.0Sn3—Sn2—Pb1ix90.000 (1)
Sn2x—Bi1—Sn290.0Sn3xiv—Sn2—Bi1ix89.999 (1)
Sn2xi—Bi1—Sn290.0Sn3—Sn2—Bi1ix90.000 (1)
Sn3i—Bi1—Sn2xii0.000 (1)Pb1ix—Sn2—Bi1ix0.0
Sn2ix—Bi1—Sn2xii90.0Sn3xiv—Sn2—Sn1x90.000 (6)
Sn2x—Bi1—Sn2xii90.0Sn3—Sn2—Sn1x90.000 (6)
Sn3—Bi1—Sn3iv119.2 (5)Bi1ix—Sn2—Sn1x120.0
Sn3i—Bi1—Sn3iv60.8 (5)Sn3xiv—Sn2—Sn1xi90.000 (7)
Sn2ix—Bi1—Sn3iv29.2 (5)Sn3—Sn2—Sn1xi90.000 (7)
Sn2x—Bi1—Sn3iv115.87 (13)Sn1ix—Sn2—Sn1xi120.0
Sn2xi—Bi1—Sn3iv115.87 (13)Pb1ix—Sn2—Sn1xi120.0
Sn2—Bi1—Sn3iv119.2 (5)Bi1ix—Sn2—Sn1xi120.0
Sn2xii—Bi1—Sn3iv60.8 (5)Sn1x—Sn2—Sn1xi120.0
Sn3—Bi1—Sn3ix60.8 (5)Sn3xiv—Sn2—Pb1x90.000 (6)
Sn3i—Bi1—Sn3ix119.2 (5)Sn3—Sn2—Pb1x90.000 (6)
Sn2ix—Bi1—Sn3ix29.2 (5)Sn1ix—Sn2—Pb1x120.0
Sn2x—Bi1—Sn3ix115.87 (13)Pb1ix—Sn2—Pb1x120.0
Sn2xi—Bi1—Sn3ix115.87 (13)Bi1ix—Sn2—Pb1x120.0
Sn2—Bi1—Sn3ix60.8 (5)Sn1x—Sn2—Pb1x0.0
Sn2xii—Bi1—Sn3ix119.2 (5)Sn1xi—Sn2—Pb1x120.0
Sn3iv—Bi1—Sn3ix58.5 (10)Sn3xiv—Sn2—Pb1xi90.000 (7)
Sn3—Bi1—Sn3vi119.2 (5)Sn3—Sn2—Pb1xi90.000 (7)
Sn3i—Bi1—Sn3vi60.8 (5)Sn1ix—Sn2—Pb1xi120.0
Sn2ix—Bi1—Sn3vi115.87 (13)Pb1ix—Sn2—Pb1xi120.0
Sn2x—Bi1—Sn3vi115.87 (13)Bi1ix—Sn2—Pb1xi120.0
Sn2xi—Bi1—Sn3vi29.2 (5)Sn1x—Sn2—Pb1xi120.0
Sn2—Bi1—Sn3vi119.2 (5)Sn1xi—Sn2—Pb1xi0.0
Sn2xii—Bi1—Sn3vi60.8 (5)Pb1x—Sn2—Pb1xi120.0
Sn3iv—Bi1—Sn3vi98.2 (6)Sn3xiv—Sn2—Bi1x90.000 (6)
Sn3ix—Bi1—Sn3vi128.3 (3)Sn3—Sn2—Bi1x90.000 (6)
Sn3—Bi1—Sn3x60.8 (5)Sn1ix—Sn2—Bi1x120.0
Sn3i—Bi1—Sn3x119.2 (5)Pb1ix—Sn2—Bi1x120.0
Sn2ix—Bi1—Sn3x115.87 (13)Bi1ix—Sn2—Bi1x120.0
Sn2x—Bi1—Sn3x29.2 (5)Sn1x—Sn2—Bi1x0.0
Sn2xi—Bi1—Sn3x115.87 (13)Sn1xi—Sn2—Bi1x120.0
Sn2—Bi1—Sn3x60.8 (5)Pb1x—Sn2—Bi1x0.0
Sn2xii—Bi1—Sn3x119.2 (5)Pb1xi—Sn2—Bi1x120.0
Sn3iv—Bi1—Sn3x128.3 (3)Sn3xiv—Sn2—Bi1xi90.000 (7)
Sn3ix—Bi1—Sn3x98.2 (6)Sn3—Sn2—Bi1xi90.000 (7)
Sn3vi—Bi1—Sn3x128.3 (3)Sn1ix—Sn2—Bi1xi120.0
Sn3—Bi1—Sn3xiii119.2 (5)Pb1ix—Sn2—Bi1xi120.0
Sn3i—Bi1—Sn3xiii60.8 (5)Bi1ix—Sn2—Bi1xi120.0
Sn2ix—Bi1—Sn3xiii115.87 (13)Sn1x—Sn2—Bi1xi120.0
Sn2x—Bi1—Sn3xiii29.2 (5)Sn1xi—Sn2—Bi1xi0.0
Sn2xi—Bi1—Sn3xiii115.87 (13)Pb1x—Sn2—Bi1xi120.0
Sn2—Bi1—Sn3xiii119.2 (5)Pb1xi—Sn2—Bi1xi0.0
Sn2xii—Bi1—Sn3xiii60.8 (5)Bi1x—Sn2—Bi1xi120.0
Sn3iv—Bi1—Sn3xiii98.2 (6)Sn3xiv—Sn2—Bi1180.0
Sn3ix—Bi1—Sn3xiii128.3 (3)Sn3—Sn2—Bi10.000 (6)
Sn3vi—Bi1—Sn3xiii98.2 (6)Sn1ix—Sn2—Bi190.0
Sn3x—Bi1—Sn3xiii58.5 (10)Pb1ix—Sn2—Bi190.0
Sn3—Pb1—Sn2ix90.000 (1)Sn1x—Sn2—Bi190.0
Sn3i—Pb1—Sn2ix89.999 (1)Sn1xi—Sn2—Bi190.0
Sn3—Pb1—Sn2x90.000 (4)Pb1x—Sn2—Bi190.0
Sn3i—Pb1—Sn2x90.000 (4)Pb1xi—Sn2—Bi190.0
Sn3—Pb1—Sn2xi90.000 (5)Bi1xi—Sn2—Bi190.0
Sn3i—Pb1—Sn2xi90.000 (4)Sn2—Sn3—Bi1180.0
Sn3—Pb1—Sn20.000 (6)Sn2—Sn3—Sn1180.0
Sn2x—Pb1—Sn290.0Sn2—Sn3—Sn3ix90.2 (13)
Sn2xi—Pb1—Sn290.0Bi1—Sn3—Sn3ix89.8 (13)
Sn3—Pb1—Sn2xii180.0Pb1—Sn3—Sn3ix89.8 (13)
Sn3i—Pb1—Sn2xii0.000 (1)Sn1—Sn3—Sn3ix89.8 (13)
Sn2ix—Pb1—Sn2xii90.0Sn2—Sn3—Pt1xv90.1 (6)
Sn2x—Pb1—Sn2xii90.0Bi1—Sn3—Pt1xv89.9 (6)
Sn2xi—Pb1—Sn2xii90.0Pb1—Sn3—Pt1xv89.9 (6)
Sn2—Pb1—Sn2xii180.0Sn1—Sn3—Pt1xv89.9 (6)
Sn3—Pb1—Sn3iv119.2 (5)Sn3ix—Sn3—Pt1xv179.7 (19)
Sn3i—Pb1—Sn3iv60.8 (5)Sn2—Sn3—Pt1xvi90.1 (6)
Sn2ix—Pb1—Sn3iv29.2 (5)Bi1—Sn3—Pt1xvi89.9 (6)
Sn2x—Pb1—Sn3iv115.87 (13)Pb1—Sn3—Pt1xvi89.9 (6)
Sn2xi—Pb1—Sn3iv115.87 (13)Sn1—Sn3—Pt1xvi89.9 (6)
Sn2—Pb1—Sn3iv119.2 (5)Sn3ix—Sn3—Pt1xvi60.000 (1)
Sn2xii—Pb1—Sn3iv60.8 (5)Pt1xv—Sn3—Pt1xvi120.000 (4)
Sn3—Pb1—Sn3ix60.8 (5)Sn2—Sn3—Pt1vii90.1 (6)
Sn3i—Pb1—Sn3ix119.2 (5)Bi1—Sn3—Pt1vii89.9 (6)
Sn2ix—Pb1—Sn3ix29.2 (5)Pb1—Sn3—Pt1vii89.9 (6)
Sn2x—Pb1—Sn3ix115.87 (13)Sn1—Sn3—Pt1vii89.9 (6)
Sn2xi—Pb1—Sn3ix115.87 (13)Sn3ix—Sn3—Pt1vii60.000 (5)
Sn2—Pb1—Sn3ix60.8 (5)Pt1xv—Sn3—Pt1vii120.000 (4)
Sn2xii—Pb1—Sn3ix119.2 (5)Pt1xvi—Sn3—Pt1vii120.000 (4)
Sn3iv—Pb1—Sn3ix58.5 (10)Sn2—Sn3—Sn3x90.2 (13)
Sn3—Pb1—Sn3vi119.2 (5)Bi1—Sn3—Sn3x89.8 (13)
Sn3i—Pb1—Sn3vi60.8 (5)Pb1—Sn3—Sn3x89.8 (13)
Sn2ix—Pb1—Sn3vi115.87 (13)Sn1—Sn3—Sn3x89.8 (13)
Sn2x—Pb1—Sn3vi115.87 (13)Pt1xv—Sn3—Sn3x60.0
Sn2xi—Pb1—Sn3vi29.2 (5)Pt1xvi—Sn3—Sn3x60.000 (1)
Sn2—Pb1—Sn3vi119.2 (5)Pt1vii—Sn3—Sn3x179.7 (19)
Sn2xii—Pb1—Sn3vi60.8 (5)Sn2—Sn3—Sn3xi90.2 (13)
Sn3iv—Pb1—Sn3vi98.2 (6)Bi1—Sn3—Sn3xi89.8 (13)
Sn3ix—Pb1—Sn3vi128.3 (3)Pb1—Sn3—Sn3xi89.8 (13)
Sn3—Pb1—Sn3x60.8 (5)Sn1—Sn3—Sn3xi89.8 (13)
Sn3i—Pb1—Sn3x119.2 (5)Pt1xv—Sn3—Sn3xi59.999 (4)
Sn2ix—Pb1—Sn3x115.87 (13)Pt1xvi—Sn3—Sn3xi179.7 (19)
Sn2x—Pb1—Sn3x29.2 (5)Pt1vii—Sn3—Sn3xi60.000 (6)
Sn2xi—Pb1—Sn3x115.87 (13)Sn2—Sn3—Sn3xiv0.0
Sn2—Pb1—Sn3x60.8 (5)Bi1—Sn3—Sn3xiv180.0
Sn2xii—Pb1—Sn3x119.2 (5)Pb1—Sn3—Sn3xiv180.0
Sn3iv—Pb1—Sn3x128.3 (3)Sn1—Sn3—Sn3xiv180.0
Sn3ix—Pb1—Sn3x98.2 (6)Sn3ix—Sn3—Sn3xiv90.2 (13)
Sn3vi—Pb1—Sn3x128.3 (3)Pt1xv—Sn3—Sn3xiv90.1 (6)
Sn3—Pb1—Sn3xiii119.2 (5)Pt1xvi—Sn3—Sn3xiv90.1 (6)
Sn3i—Pb1—Sn3xiii60.8 (5)Pt1vii—Sn3—Sn3xiv90.1 (6)
Sn2ix—Pb1—Sn3xiii115.87 (13)Sn3x—Sn3—Sn3xiv90.2 (13)
Sn2x—Pb1—Sn3xiii29.2 (5)Sn3xi—Sn3—Sn3xiv90.2 (13)
Sn2xi—Pb1—Sn3xiii115.87 (13)Sn2—Sn3—Sn3i180.0
Sn2—Pb1—Sn3xiii119.2 (5)Bi1—Sn3—Sn3i0.0
Sn2xii—Pb1—Sn3xiii60.8 (5)Pb1—Sn3—Sn3i0.0
Sn3iv—Pb1—Sn3xiii98.2 (6)Sn1—Sn3—Sn3i0.0
Sn3ix—Pb1—Sn3xiii128.3 (3)Sn3ix—Sn3—Sn3i89.8 (13)
Sn3vi—Pb1—Sn3xiii98.2 (6)Pt1xv—Sn3—Sn3i89.9 (6)
Sn3x—Pb1—Sn3xiii58.5 (10)Pt1xvi—Sn3—Sn3i89.9 (6)
Sn3—Sn1—Sn3i180.0Pt1vii—Sn3—Sn3i89.9 (6)
Sn3—Sn1—Sn2ix90.000 (1)Sn3x—Sn3—Sn3i89.8 (13)
Sn3i—Sn1—Sn2ix89.999 (1)Sn3xi—Sn3—Sn3i89.8 (13)
Sn3—Sn1—Sn2x90.000 (4)Sn3xiv—Sn3—Sn3i180.0
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2; (iii) x1, y1, z+1/2; (iv) x+1, y+1, z1/2; (v) x, y1, z+1/2; (vi) x, y+1, z1/2; (vii) x, y, z+1/2; (viii) x, y, z; (ix) x+1, y+1, z+1; (x) x+1, y+2, z+1; (xi) x, y+1, z+1; (xii) x, y, z1; (xiii) x+1, y+2, z1/2; (xiv) x, y, z+3/2; (xv) x, y+1, z+1/2; (xvi) x+1, y+1, z+1/2.

Funding information

LR and MA gratefully acknowledge the financial support of the European Social Fund and the State of Saxony provided for the NeMaCell project (project No. 100382169). YG acknowledges the support of the Deutsche Forschungsgemeinschaft (grant: GR1793/19–1).


First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDurussel, P., Massara, R. & Feschotte, P. (1994). J. Alloys Compd, 215, 175–179.  CrossRef ICSD CAS Web of Science Google Scholar
First citationHarris, I. R., Norman, M. & Bryant, A. W. (1968). J. Less-Common Met. 16, 427–440.  CrossRef ICSD CAS Web of Science Google Scholar
First citationKurnakov, N. S. & Ageeva, V. A. (1937). Izv. Akad. Nauk SSSR, Ser. Khim. pp. 735–742.  Google Scholar
First citationNowotny, H., Schubert, K. & Dettinger, U. (1946). Z. Metallkd. 37, 137–145.  Google Scholar
First citationOftedal, I. (1928). Z. Phys. Chem. Stoechiom. Verwandtschaftsl. 132U, 208–216.  CrossRef Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRössner, L. & Armbrüster, M. (2019). ACS Catal. 9, 2018–2062.  Google Scholar
First citationRössner, L., Patino Soriano, D. T., Tiryaki, O., Burkhardt, U. & Armbrüster, M. (2023). Inorg. Chem.. Submitted.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShelton, K. L., Merewether, P. A. & Skinner, B. J. (1981). Can. Mineral. 19, 599–605.  CAS Google Scholar
First citationSidorov, E. G., Kutyrev, A. V., Zhitova, E. S., Agakhanov, A. A., Sandimirova, E. I., Vymazalova, A., Chubarov, V. M. & Zolotarev, A. A. (2021). MinMag, 85, 254–261.  Web of Science CrossRef ICSD CAS Google Scholar
First citationZhuravlev, N. N. & Stepanova, A. A. (1962a). Sov. Phys. Crystallogr. 7, 241–242.  Google Scholar
First citationZhuravlev, N. N. & Stepanova, A. A. (1962b). Kristallografiya, 7, 310–311.  CAS Google Scholar
First citationZhuravlev, N. N., Zhdanov, G. S. & Smirnova, Y. M. (1962). Phys. Met. Metallogr. 13, 55–61.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds