research communications
Crystal structures of 4-[(4-methylbenzyl)oxy]benzohydrazide and its N′-[(thiophen-2-yl)methylidene]- derivative
aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, bCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, cDepartment of Applied Science, Faculty of Science, Okayama University of Science, Japan, and dDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, Italy
*Correspondence e-mail: ansary_chem@ru.ac.bd
The molecular and crystal structures of a benzoylhydrazine bearing an ether group, 4-[(4-methylbenzyl)oxy]benzohydrazide, C15H16N2O2, (I), and of the corresponding N′-[(thiophen-2-yl)methylidene]- derivative, 4-[(4-methylbenzyl)oxy]-N′-[(thiophen-2-yl)methylidene]benzohydrazide, C20H18N2O2S, (II), are described. The supramolecular structures of both compounds are governed by N—H⋯N and N—H⋯O hydrogen-bonding interactions. The hydrazine compound (I) shows a crystal packing with a more complex hydrogen-bonding scheme because of the NH—NH2 entity, forming a di-periodic supramolecular structure extending parallel to (100). Hydrazone molecules in (II) are hydrogen-bonded through N—H⋯O interactions, giving rise to the formation of ribbons parallel to [010]. Molecules of (I) and (II) show a different orientation of the carbohydrazide moiety likely to favor the crystal packing and thus hydrogen-bonding interactions.
Keywords: crystal structure; hydrazine; hydrazone.
1. Chemical context
Hydrazine-based compounds occupy a prominent position in chemistry (Sandler & Karo, 1992) because of their pharmaceutical uses (Popiołek, 2021) and many other applications (Mali et al., 2021; Koz'minykh, 2006). Their increasing importance originates from anti-inflammatory (Todeschini et al., 1998), antibacterial–antifungal (Vicini et al., 2002), and antitubercular (Bedia et al., 2006) properties, as well as their utilization as pesticides (Pandey et al., 2020). However, it is worth noting that hydrazine-based compounds applied as rocket fuels pose significant health risks owing to their toxicity (Sinha & Mason, 2014). In addition, hydrazine-based compounds function as ligand precursors for the formation of bidentate Schiff base ligands applied in metal coordination (Banna et al., 2022; Zhou et al., 2006; Alagesan et al., 2013; Chen et al., 2022).
In the context given above, we report on syntheses and crystal-structure determinations of two related compounds, viz. a benzoylhydrazine bearing an ether group (I), C15H16N2O2, and the corresponding N′-[(thiophen-2-ylmethylidene) derivative (II), C20H18N2O2S.
2. Structural commentary
The molecular structure of hydrazine compound (I) is shown in Fig. 1. The N1—N2 and the O2=C15 bond lengths of 1.4200 (15) and 1.2388 (15) Å are indicative of a single and double bond, respectively. All other bond lengths are as expected when compared with molecules of similar hydrazine and hydrazone compounds (Wang, Zhou et al., 2014; Wang, He et al., 2014; Fun et al., 2012; Zong & Wu, 2013). The conformation of the molecule shows the central phenyl ring (C9–C14) of the benzoyl mean plane forming a dihedral angle of 66.39 (3)° with the 4-methylbenzyl group (C1–C8), and it is also rotated slightly [by 28.49 (6)°] with respect to the mean plane through the C=O—NH—NH2 moiety.
The molecular structure of hydrazone derivative (II) is shown in Fig. 2. The thienyl (C17–C20, S1) ring and the central phenyl ring (C9–C14) are linked by the acyl–hydrazone (–CH=N—N—CO–) group. An E-configuration is observed with respect to the double bond of the hydrazone bridge N2=C16. Compared to (I), the N1—N2 bond length of 1.397 (4) Å appears slightly shorter, most probably caused by a different intermolecular hydrogen-bonding interaction. On the other hand, the O2=C15 bond of 1.236 (4) Å, is nearly identical with that of (I) and is typical for a ketonic linkage in the solid state, while an equilibrium between the keto and enol form is present in solution. The molecule has the thienylmethylene and the benzohydrazone fragments almost co-planar, with maximum deviations of −0.234 (3) and +0.392 (2) Å exhibited by atoms C10 and O2, respectively. The terminal 4-methylbenzyl group is rotated by 55.87 (9)° with respect to the central phenyl ring, similar to the dihedral angle observed in (I).
A superimposition of the two molecules (shown in Fig. 3) highlights their conformational differences: while the 4-[(4-methylbenzyl)oxy] benzoyl groups almost overlap, it is worthy to note the different orientation of the carbohydrazide C=O—NH—N moieties, likely induced by crystal packing effects to favor hydrogen-bonding interactions.
3. Supramolecular features
Classical hydrogen-bonding interactions represent the main contributions to the packing of the molecules in the crystals of (I) and (II); numerical data are compiled in Tables 1 and 2, respectively.
|
In (I), these interactions are larger because of the higher number of donor hydrogen atoms in the NH—NH2 group. Fig. 4 shows the N1—H1⋯O2i and N2—H2B⋯N2iii interactions [symmetry codes: (i) x, y + 1, z; (iii) −x + 1, y − , −z − ] connecting rows of oppositely oriented molecules. In addition, N2—H2A⋯N2iii interactions connect the rows into a layer structure extending parallel to (100) (Fig. 5).
In (II), the number of conventional hydrogen bonds is considerably reduced. The corresponding N1—H1N⋯O2i [symmetry code: (i) −x + , y − , z] interactions create an undulating ribbon parallel to [010], as displayed in Fig. 6.
While π stacking interactions in (I) and (II) are insignificant, C—H⋯π-ring interactions contribute to the packing in both crystals. These involve the C3—H, C6—H, and C14—H groups with phenyl rings (C2–C7; Cg1) and (C9–C14; Cg2) in (I) and (II), and the thiophene ring (Cg3) in (II). All the H⋯centroid distances are between 2.77–2.90 Å, with C—H⋯π angles of 122–156° (Tables 1 and 2). In (II), additional C—H⋯O and C—H⋯S interactions are observed (Table 2).
4. Synthesis and crystallization
Synthesis of compound (I). A mixture of ethyl-4-[(4-methylbenzyl)oxy] benzoate (1.23 g, 4.55 mmol) and hydrazine hydrate (5.83 g, 22.69 mmol) in absolute ethanol (20 ml) was refluxed for 10 h. After cooling the solution to room temperature, colorless crystals, suitable for X-ray diffraction, were obtained. Yield: 0.82 g, 70%; melting point: 397–398 K;
FT–IR: 1644 ν (C=Oamide), 3374 ν (N—H); 1H NMR (CDCl3, 600 MHz): δ = 2.36 (s, 3H, –CH3), 4.05 (brs, 2H, –NH2), 5.07 (s, 2H, –CH2–), 6.99 (d, 2H, Ar-H 5,6, J = 13.2 Hz), 7.20 (d, 2H, Ar-H 10,11, J = 11.4 Hz), 7.30 (d, 2H, Ar-H 8,9, J = 12 Hz), 7.70 (d, 2H, Ar-H 3,4, J = 10.2 Hz), ppm; 13C NMR (CDCl3, 600 MHz): 21.3 (C7), 70.1 (C8), 114.8 (C-3,5), 125.08 (C1), 127.73 (C-2′,6′), 128.7 (C-2,6), 129.4 (C-3′,5′), 133.2 (C1), 138.13 (C4), 161.7 (C4), 168.4 (C9) ppm; LC–MS (ESI) m/z: [M + H]+. Calculated for C15H16N2O2; 257.1283; found 257.1284. The proton at the NH group was missing, likely due to the exchangeable nature of this proton.
Synthesis of compound (II). Thiophene-2-carbaldehyde (0.15 g, 1.21 mmol) was added to an absolute ethanolic (20 ml) solution of 4-[(4-methylbenzyl)oxy]benzoylhydrazine (0.312 g, 1.21 mmol). The resulting mixture was heated and refluxed for 2 h. A white precipitate was obtained, filtered off, and washed several times with hot ethanol, and finally dried over silica gel in a desiccator. A small amount of the compound was dissolved in 25 ml of absolute ethanol and allowed for slow evaporation. Suitable crystals for single-crystal X-ray diffraction were collected after 30 d of keeping the sample solution undisturbed. Yield: 0.86 g, 50%; melting point: 505–506 K.
FT–IR: 1634 ν (C=Oamide), 3204 ν (N—H), 1607 (C=Nazomethine); 1H NMR (CDCl3, 600 MHz): δ = 2.36 (s, 3H, –CH3), 5.07 (s, 2H, –CH2–), 7.03 (d, 2H, Ar-H 5,6, J = 13.2 Hz), 7.20 (d, 2H, Ar-H 10,11, J = 11.4 Hz), 7.32 (d, 2H, Ar-H 8,9, J = 12 Hz), 7.39–7.40 (m, 1H, CH=N), 8.9 (s, 1H, –CONH–) ppm; LC–MS (ESI) m/z: [M + H]+. Calculated for C20H18N2O2S; 351.1159; found 351.1162.
We failed to locate the 1H NMR signals of Ar-H 3,4 and of thiophene ring hydrogen atoms, likely due to the poor solubility of the compound in organic solvents.
5. Refinement
Crystal data, data collection and structure . Hydrogen atoms were calculated at geometrical positions and refined as riding [C—H = 0.95–0.99 Å, Uiso(H) = 1.2Ueq(C)], except those of the —NH—NH2 (I) and —NH—N= (II) groups, which were detected in difference-Fourier maps and freely refined.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989023001354/wm5671sup1.cif
contains datablocks I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023001354/wm5671Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989023001354/wm5671IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023001354/wm5671Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989023001354/wm5671IIsup5.cml
For both structures, data collection: RAPID-AUTO (Rigaku, 2018); cell
RAPID-AUTO (Rigaku, 2018); data reduction: RAPID-AUTO (Rigaku, 2018). Program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a) for (I); SHELXT (Sheldrick, 2015a) for (II). For both structures, program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).C15H16N2O2 | F(000) = 544 |
Mr = 256.30 | Dx = 1.326 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71075 Å |
a = 30.7086 (14) Å | Cell parameters from 8347 reflections |
b = 5.2471 (3) Å | θ = 2.0–27.4° |
c = 8.0359 (4) Å | µ = 0.09 mm−1 |
β = 97.471 (7)° | T = 173 K |
V = 1283.85 (11) Å3 | Prism, colorless |
Z = 4 | 0.17 × 0.16 × 0.13 mm |
Rigaku R-AXIS RAPID diffractometer | 2515 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.024 |
ω scans | θmax = 27.4°, θmin = 2.7° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −39→39 |
Tmin = 0.739, Tmax = 0.988 | k = −6→6 |
9727 measured reflections | l = −7→10 |
2889 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.044 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.126 | w = 1/[σ2(Fo2) + (0.0685P)2 + 0.437P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
2889 reflections | Δρmax = 0.36 e Å−3 |
182 parameters | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.76070 (3) | 0.52411 (17) | 0.25819 (12) | 0.0286 (2) | |
O2 | 0.56320 (3) | 0.27730 (17) | −0.03945 (13) | 0.0313 (2) | |
N1 | 0.56104 (3) | 0.7071 (2) | −0.06599 (15) | 0.0269 (3) | |
H1 | 0.5729 (5) | 0.857 (3) | −0.046 (2) | 0.032* | |
N2 | 0.51729 (4) | 0.7187 (2) | −0.14851 (18) | 0.0314 (3) | |
H2a | 0.4990 (6) | 0.724 (3) | −0.072 (3) | 0.038* | |
H2b | 0.5119 (6) | 0.568 (4) | −0.212 (2) | 0.038* | |
C1 | 0.95555 (5) | 0.6618 (4) | 0.6481 (2) | 0.0471 (4) | |
H1A | 0.970910 | 0.734626 | 0.559722 | 0.057* | |
H1B | 0.972202 | 0.515957 | 0.699105 | 0.057* | |
H1C | 0.952889 | 0.791252 | 0.734154 | 0.057* | |
C2 | 0.91027 (4) | 0.5748 (3) | 0.57322 (17) | 0.0316 (3) | |
C3 | 0.87328 (5) | 0.7144 (3) | 0.60247 (18) | 0.0317 (3) | |
H3 | 0.876869 | 0.864907 | 0.668564 | 0.038* | |
C4 | 0.83138 (4) | 0.6368 (3) | 0.53651 (18) | 0.0295 (3) | |
H4 | 0.806674 | 0.735051 | 0.557333 | 0.035* | |
C5 | 0.82520 (4) | 0.4160 (2) | 0.44003 (16) | 0.0253 (3) | |
C6 | 0.86196 (5) | 0.2773 (3) | 0.40966 (18) | 0.0311 (3) | |
H6 | 0.858381 | 0.127510 | 0.342843 | 0.037* | |
C7 | 0.90393 (4) | 0.3557 (3) | 0.47622 (19) | 0.0343 (3) | |
H7 | 0.928632 | 0.257732 | 0.454939 | 0.041* | |
C8 | 0.77962 (4) | 0.3300 (2) | 0.37186 (17) | 0.0271 (3) | |
H8A | 0.780838 | 0.165724 | 0.312103 | 0.032* | |
H8B | 0.761665 | 0.306844 | 0.464516 | 0.032* | |
C9 | 0.71691 (4) | 0.5041 (2) | 0.19621 (15) | 0.0225 (3) | |
C10 | 0.70076 (4) | 0.6971 (2) | 0.08495 (17) | 0.0249 (3) | |
H10 | 0.719868 | 0.827904 | 0.056518 | 0.030* | |
C11 | 0.65699 (4) | 0.6983 (2) | 0.01604 (16) | 0.0244 (3) | |
H11 | 0.646167 | 0.830898 | −0.058621 | 0.029* | |
C12 | 0.62868 (4) | 0.5054 (2) | 0.05582 (15) | 0.0216 (3) | |
C13 | 0.64525 (4) | 0.3131 (2) | 0.16527 (16) | 0.0234 (3) | |
H13 | 0.626219 | 0.180748 | 0.191960 | 0.028* | |
C14 | 0.68913 (4) | 0.3099 (2) | 0.23678 (16) | 0.0239 (3) | |
H14 | 0.699909 | 0.177669 | 0.311821 | 0.029* | |
C15 | 0.58137 (4) | 0.4879 (2) | −0.01986 (16) | 0.0232 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0213 (4) | 0.0294 (5) | 0.0335 (5) | −0.0023 (3) | −0.0020 (4) | 0.0092 (4) |
O2 | 0.0258 (5) | 0.0205 (5) | 0.0454 (6) | −0.0024 (3) | −0.0031 (4) | −0.0008 (4) |
N1 | 0.0224 (5) | 0.0201 (5) | 0.0363 (6) | −0.0013 (4) | −0.0040 (4) | 0.0005 (4) |
N2 | 0.0222 (5) | 0.0246 (6) | 0.0448 (7) | 0.0003 (4) | −0.0063 (5) | 0.0026 (5) |
C1 | 0.0287 (7) | 0.0612 (11) | 0.0487 (10) | −0.0065 (7) | −0.0055 (6) | 0.0012 (8) |
C2 | 0.0262 (6) | 0.0368 (7) | 0.0303 (7) | −0.0019 (5) | −0.0021 (5) | 0.0065 (6) |
C3 | 0.0335 (7) | 0.0293 (7) | 0.0314 (7) | −0.0032 (5) | 0.0005 (5) | −0.0024 (5) |
C4 | 0.0266 (6) | 0.0286 (6) | 0.0330 (7) | 0.0036 (5) | 0.0032 (5) | −0.0013 (5) |
C5 | 0.0240 (6) | 0.0260 (6) | 0.0250 (6) | 0.0006 (5) | 0.0002 (5) | 0.0045 (5) |
C6 | 0.0307 (7) | 0.0278 (6) | 0.0339 (7) | 0.0043 (5) | 0.0005 (5) | −0.0019 (5) |
C7 | 0.0249 (6) | 0.0393 (7) | 0.0384 (8) | 0.0078 (6) | 0.0028 (5) | 0.0020 (6) |
C8 | 0.0252 (6) | 0.0256 (6) | 0.0291 (6) | 0.0003 (5) | −0.0014 (5) | 0.0048 (5) |
C9 | 0.0216 (5) | 0.0228 (6) | 0.0228 (6) | 0.0004 (4) | 0.0016 (4) | −0.0014 (4) |
C10 | 0.0242 (6) | 0.0215 (6) | 0.0290 (7) | −0.0036 (4) | 0.0031 (5) | 0.0030 (5) |
C11 | 0.0259 (6) | 0.0200 (6) | 0.0268 (6) | 0.0011 (5) | 0.0019 (5) | 0.0035 (4) |
C12 | 0.0217 (6) | 0.0191 (5) | 0.0237 (6) | 0.0009 (4) | 0.0018 (4) | −0.0030 (4) |
C13 | 0.0239 (6) | 0.0196 (5) | 0.0266 (6) | −0.0025 (4) | 0.0030 (5) | 0.0006 (4) |
C14 | 0.0259 (6) | 0.0204 (6) | 0.0250 (6) | 0.0009 (4) | 0.0015 (5) | 0.0025 (4) |
C15 | 0.0235 (6) | 0.0215 (6) | 0.0242 (6) | −0.0002 (4) | 0.0017 (5) | −0.0007 (4) |
O1—C9 | 1.3758 (14) | C5—C6 | 1.3913 (18) |
O1—C8 | 1.4391 (15) | C5—C8 | 1.5043 (17) |
O2—C15 | 1.2388 (15) | C6—C7 | 1.3918 (19) |
N1—C15 | 1.3380 (15) | C6—H6 | 0.9500 |
N1—N2 | 1.4200 (15) | C7—H7 | 0.9500 |
N1—H1 | 0.872 (18) | C8—H8A | 0.9900 |
N2—H2A | 0.88 (2) | C8—H8B | 0.9900 |
N2—H2B | 0.94 (2) | C9—C14 | 1.3945 (17) |
C1—C2 | 1.5123 (19) | C9—C10 | 1.3986 (17) |
C1—H1A | 0.9800 | C10—C11 | 1.3853 (17) |
C1—H1B | 0.9800 | C10—H10 | 0.9500 |
C1—H1C | 0.9800 | C11—C12 | 1.3982 (16) |
C2—C7 | 1.388 (2) | C11—H11 | 0.9500 |
C2—C3 | 1.397 (2) | C12—C13 | 1.3908 (17) |
C3—C4 | 1.3876 (18) | C12—C15 | 1.5031 (16) |
C3—H3 | 0.9500 | C13—C14 | 1.3946 (16) |
C4—C5 | 1.3930 (18) | C13—H13 | 0.9500 |
C4—H4 | 0.9500 | C14—H14 | 0.9500 |
C9—O1—C8 | 118.08 (9) | C2—C7—H7 | 119.5 |
C15—N1—N2 | 123.03 (10) | C6—C7—H7 | 119.5 |
C15—N1—H1 | 123.6 (11) | O1—C8—C5 | 107.39 (10) |
N2—N1—H1 | 113.3 (11) | O1—C8—H8A | 110.2 |
N1—N2—H2A | 108.9 (12) | C5—C8—H8A | 110.2 |
N1—N2—H2B | 107.8 (10) | O1—C8—H8B | 110.2 |
H2A—N2—H2B | 108.7 (16) | C5—C8—H8B | 110.2 |
C2—C1—H1A | 109.5 | H8A—C8—H8B | 108.5 |
C2—C1—H1B | 109.5 | O1—C9—C14 | 124.75 (11) |
H1A—C1—H1B | 109.5 | O1—C9—C10 | 115.14 (10) |
C2—C1—H1C | 109.5 | C14—C9—C10 | 120.11 (11) |
H1A—C1—H1C | 109.5 | C11—C10—C9 | 120.26 (11) |
H1B—C1—H1C | 109.5 | C11—C10—H10 | 119.9 |
C7—C2—C3 | 118.10 (12) | C9—C10—H10 | 119.9 |
C7—C2—C1 | 121.88 (13) | C10—C11—C12 | 120.33 (11) |
C3—C2—C1 | 120.02 (14) | C10—C11—H11 | 119.8 |
C4—C3—C2 | 121.04 (13) | C12—C11—H11 | 119.8 |
C4—C3—H3 | 119.5 | C13—C12—C11 | 118.86 (11) |
C2—C3—H3 | 119.5 | C13—C12—C15 | 117.80 (10) |
C3—C4—C5 | 120.61 (12) | C11—C12—C15 | 123.28 (11) |
C3—C4—H4 | 119.7 | C12—C13—C14 | 121.59 (11) |
C5—C4—H4 | 119.7 | C12—C13—H13 | 119.2 |
C6—C5—C4 | 118.54 (12) | C14—C13—H13 | 119.2 |
C6—C5—C8 | 121.12 (12) | C13—C14—C9 | 118.85 (11) |
C4—C5—C8 | 120.33 (11) | C13—C14—H14 | 120.6 |
C5—C6—C7 | 120.65 (13) | C9—C14—H14 | 120.6 |
C5—C6—H6 | 119.7 | O2—C15—N1 | 123.06 (11) |
C7—C6—H6 | 119.7 | O2—C15—C12 | 120.11 (10) |
C2—C7—C6 | 121.05 (12) | N1—C15—C12 | 116.83 (10) |
C7—C2—C3—C4 | 0.0 (2) | C14—C9—C10—C11 | 0.79 (19) |
C1—C2—C3—C4 | −179.31 (14) | C9—C10—C11—C12 | −0.60 (19) |
C2—C3—C4—C5 | 0.4 (2) | C10—C11—C12—C13 | −0.06 (18) |
C3—C4—C5—C6 | −0.8 (2) | C10—C11—C12—C15 | −177.22 (11) |
C3—C4—C5—C8 | 178.74 (12) | C11—C12—C13—C14 | 0.55 (18) |
C4—C5—C6—C7 | 0.9 (2) | C15—C12—C13—C14 | 177.86 (11) |
C8—C5—C6—C7 | −178.67 (13) | C12—C13—C14—C9 | −0.36 (18) |
C3—C2—C7—C6 | 0.1 (2) | O1—C9—C14—C13 | 179.74 (11) |
C1—C2—C7—C6 | 179.37 (14) | C10—C9—C14—C13 | −0.31 (18) |
C5—C6—C7—C2 | −0.5 (2) | N2—N1—C15—O2 | −2.9 (2) |
C9—O1—C8—C5 | −171.75 (10) | N2—N1—C15—C12 | 175.97 (12) |
C6—C5—C8—O1 | −117.28 (13) | C13—C12—C15—O2 | −27.44 (17) |
C4—C5—C8—O1 | 63.20 (16) | C11—C12—C15—O2 | 149.75 (13) |
C8—O1—C9—C14 | 0.69 (18) | C13—C12—C15—N1 | 153.70 (12) |
C8—O1—C9—C10 | −179.27 (11) | C11—C12—C15—N1 | −29.12 (17) |
O1—C9—C10—C11 | −179.25 (11) |
Cg1 and Cg2 are the centroids of the C2–C7 and C9–C14 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.872 (18) | 2.228 (18) | 2.9994 (14) | 147.3 (14) |
N2—H2A···O2ii | 0.88 (2) | 2.21 (2) | 3.0598 (17) | 160 (2) |
N2—H2B···N2iii | 0.94 (2) | 2.27 (2) | 3.1970 (14) | 167 (1) |
C3—H3···Cg1iv | 0.95 | 2.86 | 3.6085 (16) | 136 |
C6—H6···Cg1v | 0.95 | 2.83 | 3.5688 (16) | 135 |
C11—H11···Cg2vi | 0.95 | 2.90 | 3.5918 (13) | 131 |
C14—H14···Cg2vii | 0.95 | 2.92 | 3.6262 (13) | 132 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z; (iii) −x+1, y−1/2, −z−1/2; (iv) x, −y+3/2, z+1/2; (v) x, −y+1/2, z−1/2; (vi) x, −y+3/2, z−1/2; (vii) x, −y+1/2, z+1/2. |
C20H18N2O2S | Dx = 1.327 Mg m−3 |
Mr = 350.42 | Mo Kα radiation, λ = 0.71075 Å |
Orthorhombic, Pbca | Cell parameters from 12507 reflections |
a = 11.3725 (8) Å | θ = 1.9–27.4° |
b = 7.8492 (5) Å | µ = 0.20 mm−1 |
c = 39.286 (2) Å | T = 173 K |
V = 3506.8 (4) Å3 | Plate, colorless |
Z = 8 | 0.26 × 0.08 × 0.01 mm |
F(000) = 1472 |
Rigaku R-AXIS RAPID diffractometer | 2203 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.162 |
ω scans | θmax = 27.5°, θmin = 2.1° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −14→14 |
Tmin = 0.646, Tmax = 0.998 | k = −10→10 |
31564 measured reflections | l = −50→50 |
4006 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.078 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.201 | w = 1/[σ2(Fo2) + (0.0867P)2 + 2.4194P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
4006 reflections | Δρmax = 0.28 e Å−3 |
230 parameters | Δρmin = −0.46 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.22046 (10) | 0.59338 (16) | 0.23512 (3) | 0.0543 (3) | |
O1 | 0.3869 (2) | 0.2842 (3) | 0.50032 (6) | 0.0403 (7) | |
O2 | 0.3905 (2) | 0.6420 (3) | 0.35634 (6) | 0.0364 (6) | |
N1 | 0.2605 (3) | 0.4326 (4) | 0.34359 (8) | 0.0384 (8) | |
H1N | 0.220 (4) | 0.343 (5) | 0.3497 (10) | 0.046* | |
N2 | 0.2419 (3) | 0.4962 (4) | 0.31082 (7) | 0.0361 (7) | |
C1 | 0.4445 (4) | −0.0531 (6) | 0.65013 (10) | 0.0586 (12) | |
H1A | 0.432854 | 0.036538 | 0.667172 | 0.070* | |
H1B | 0.527637 | −0.085807 | 0.649593 | 0.070* | |
H1C | 0.396550 | −0.152458 | 0.656079 | 0.070* | |
C2 | 0.4081 (3) | 0.0126 (5) | 0.61544 (9) | 0.0399 (9) | |
C3 | 0.4761 (3) | −0.0238 (5) | 0.58686 (9) | 0.0387 (9) | |
H3 | 0.546925 | −0.086739 | 0.589404 | 0.046* | |
C4 | 0.4420 (3) | 0.0303 (5) | 0.55480 (10) | 0.0380 (9) | |
H4 | 0.488311 | 0.001132 | 0.535548 | 0.046* | |
C5 | 0.3407 (3) | 0.1269 (5) | 0.55051 (9) | 0.0355 (9) | |
C6 | 0.2739 (3) | 0.1669 (5) | 0.57909 (9) | 0.0428 (10) | |
H6 | 0.204834 | 0.233913 | 0.576795 | 0.051* | |
C7 | 0.3084 (3) | 0.1088 (6) | 0.61105 (10) | 0.0482 (11) | |
H7 | 0.261670 | 0.136347 | 0.630331 | 0.058* | |
C8 | 0.2990 (3) | 0.1780 (5) | 0.51590 (9) | 0.0391 (9) | |
H8A | 0.285445 | 0.075437 | 0.501774 | 0.047* | |
H8B | 0.223934 | 0.241183 | 0.517765 | 0.047* | |
C9 | 0.3674 (3) | 0.3338 (5) | 0.46694 (9) | 0.0345 (8) | |
C10 | 0.4558 (3) | 0.4314 (5) | 0.45250 (9) | 0.0369 (9) | |
H10 | 0.523935 | 0.459873 | 0.465289 | 0.044* | |
C11 | 0.4438 (3) | 0.4872 (5) | 0.41914 (9) | 0.0351 (8) | |
H11 | 0.503537 | 0.555552 | 0.409199 | 0.042* | |
C12 | 0.3447 (3) | 0.4438 (4) | 0.40007 (9) | 0.0318 (8) | |
C13 | 0.2571 (3) | 0.3477 (5) | 0.41541 (9) | 0.0334 (8) | |
H13 | 0.188522 | 0.319851 | 0.402784 | 0.040* | |
C14 | 0.2673 (3) | 0.2915 (4) | 0.44869 (9) | 0.0337 (8) | |
H14 | 0.206828 | 0.225189 | 0.458814 | 0.040* | |
C15 | 0.3346 (3) | 0.5139 (5) | 0.36493 (9) | 0.0321 (8) | |
C16 | 0.1662 (3) | 0.4133 (5) | 0.29375 (9) | 0.0372 (9) | |
H16 | 0.128409 | 0.318128 | 0.303940 | 0.045* | |
C17 | 0.1361 (3) | 0.4599 (5) | 0.25919 (9) | 0.0380 (9) | |
C18 | 0.0398 (3) | 0.4010 (5) | 0.24049 (9) | 0.0402 (9) | |
H18 | −0.018133 | 0.325460 | 0.249223 | 0.048* | |
C19 | 0.0387 (4) | 0.4664 (6) | 0.20742 (11) | 0.0597 (13) | |
H19 | −0.019933 | 0.439397 | 0.191077 | 0.072* | |
C20 | 0.1296 (4) | 0.5718 (7) | 0.20114 (11) | 0.0602 (13) | |
H20 | 0.141558 | 0.627988 | 0.179994 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0499 (7) | 0.0616 (7) | 0.0514 (7) | −0.0076 (6) | 0.0008 (5) | 0.0057 (6) |
O1 | 0.0346 (15) | 0.0494 (16) | 0.0369 (14) | −0.0071 (12) | −0.0077 (11) | 0.0036 (13) |
O2 | 0.0283 (13) | 0.0410 (14) | 0.0400 (15) | −0.0030 (12) | 0.0020 (11) | 0.0010 (12) |
N1 | 0.0334 (18) | 0.0432 (19) | 0.0384 (18) | −0.0054 (15) | −0.0072 (14) | 0.0057 (16) |
N2 | 0.0288 (16) | 0.0430 (17) | 0.0365 (16) | 0.0033 (14) | −0.0040 (13) | 0.0031 (15) |
C1 | 0.046 (3) | 0.082 (3) | 0.048 (3) | −0.003 (2) | −0.009 (2) | 0.016 (2) |
C2 | 0.032 (2) | 0.046 (2) | 0.042 (2) | −0.0084 (18) | −0.0063 (16) | 0.0045 (19) |
C3 | 0.0222 (18) | 0.044 (2) | 0.050 (2) | −0.0003 (16) | −0.0057 (16) | 0.0036 (19) |
C4 | 0.0222 (18) | 0.047 (2) | 0.045 (2) | −0.0016 (17) | 0.0027 (16) | −0.0018 (18) |
C5 | 0.0261 (18) | 0.039 (2) | 0.041 (2) | −0.0020 (16) | −0.0036 (16) | 0.0047 (18) |
C6 | 0.026 (2) | 0.055 (2) | 0.047 (2) | 0.0075 (18) | −0.0027 (16) | −0.004 (2) |
C7 | 0.033 (2) | 0.069 (3) | 0.043 (2) | 0.005 (2) | 0.0003 (17) | −0.004 (2) |
C8 | 0.030 (2) | 0.044 (2) | 0.043 (2) | −0.0070 (17) | −0.0024 (16) | 0.0029 (19) |
C9 | 0.027 (2) | 0.039 (2) | 0.038 (2) | 0.0007 (15) | −0.0028 (15) | 0.0005 (17) |
C10 | 0.0260 (19) | 0.044 (2) | 0.041 (2) | −0.0024 (16) | −0.0056 (15) | −0.0027 (18) |
C11 | 0.0263 (19) | 0.037 (2) | 0.042 (2) | −0.0003 (16) | 0.0008 (15) | 0.0000 (17) |
C12 | 0.0254 (18) | 0.034 (2) | 0.036 (2) | 0.0053 (15) | 0.0001 (14) | −0.0019 (16) |
C13 | 0.0244 (18) | 0.0373 (19) | 0.039 (2) | 0.0027 (15) | −0.0039 (15) | −0.0037 (17) |
C14 | 0.0267 (19) | 0.038 (2) | 0.0365 (19) | −0.0033 (16) | 0.0010 (15) | 0.0003 (17) |
C15 | 0.0223 (18) | 0.038 (2) | 0.036 (2) | 0.0077 (16) | 0.0047 (14) | −0.0011 (17) |
C16 | 0.030 (2) | 0.039 (2) | 0.042 (2) | 0.0035 (17) | −0.0002 (16) | 0.0043 (18) |
C17 | 0.030 (2) | 0.045 (2) | 0.038 (2) | 0.0058 (17) | −0.0012 (15) | 0.0025 (18) |
C18 | 0.0267 (19) | 0.053 (2) | 0.041 (2) | −0.0067 (18) | −0.0040 (15) | 0.0010 (19) |
C19 | 0.044 (3) | 0.082 (3) | 0.054 (3) | 0.013 (3) | −0.020 (2) | −0.004 (3) |
C20 | 0.066 (3) | 0.074 (3) | 0.040 (2) | 0.014 (3) | −0.001 (2) | 0.010 (2) |
S1—C20 | 1.697 (5) | C7—H7 | 0.9500 |
S1—C17 | 1.707 (4) | C8—H8A | 0.9900 |
O1—C9 | 1.386 (4) | C8—H8B | 0.9900 |
O1—C8 | 1.438 (4) | C9—C14 | 1.386 (5) |
O2—C15 | 1.236 (4) | C9—C10 | 1.386 (5) |
N1—C15 | 1.349 (5) | C10—C11 | 1.389 (5) |
N1—N2 | 1.397 (4) | C10—H10 | 0.9500 |
N1—H1N | 0.87 (4) | C11—C12 | 1.395 (5) |
N2—C16 | 1.271 (5) | C11—H11 | 0.9500 |
C1—C2 | 1.515 (5) | C12—C13 | 1.387 (5) |
C1—H1A | 0.9800 | C12—C15 | 1.491 (5) |
C1—H1B | 0.9800 | C13—C14 | 1.385 (5) |
C1—H1C | 0.9800 | C13—H13 | 0.9500 |
C2—C7 | 1.373 (5) | C14—H14 | 0.9500 |
C2—C3 | 1.393 (5) | C16—C17 | 1.447 (5) |
C3—C4 | 1.385 (5) | C16—H16 | 0.9500 |
C3—H3 | 0.9500 | C17—C18 | 1.398 (5) |
C4—C5 | 1.389 (5) | C18—C19 | 1.397 (6) |
C4—H4 | 0.9500 | C18—H18 | 0.9500 |
C5—C6 | 1.391 (5) | C19—C20 | 1.347 (7) |
C5—C8 | 1.495 (5) | C19—H19 | 0.9500 |
C6—C7 | 1.392 (5) | C20—H20 | 0.9500 |
C6—H6 | 0.9500 | ||
C20—S1—C17 | 91.9 (2) | C14—C9—C10 | 121.1 (3) |
C9—O1—C8 | 117.0 (3) | C14—C9—O1 | 123.6 (3) |
C15—N1—N2 | 119.9 (3) | C10—C9—O1 | 115.3 (3) |
C15—N1—H1N | 122 (3) | C9—C10—C11 | 119.3 (3) |
N2—N1—H1N | 118 (3) | C9—C10—H10 | 120.4 |
C16—N2—N1 | 114.0 (3) | C11—C10—H10 | 120.4 |
C2—C1—H1A | 109.5 | C10—C11—C12 | 120.6 (3) |
C2—C1—H1B | 109.5 | C10—C11—H11 | 119.7 |
H1A—C1—H1B | 109.5 | C12—C11—H11 | 119.7 |
C2—C1—H1C | 109.5 | C13—C12—C11 | 118.7 (3) |
H1A—C1—H1C | 109.5 | C13—C12—C15 | 123.2 (3) |
H1B—C1—H1C | 109.5 | C11—C12—C15 | 118.0 (3) |
C7—C2—C3 | 118.1 (3) | C14—C13—C12 | 121.6 (3) |
C7—C2—C1 | 121.7 (4) | C14—C13—H13 | 119.2 |
C3—C2—C1 | 120.2 (4) | C12—C13—H13 | 119.2 |
C4—C3—C2 | 121.0 (3) | C13—C14—C9 | 118.8 (3) |
C4—C3—H3 | 119.5 | C13—C14—H14 | 120.6 |
C2—C3—H3 | 119.5 | C9—C14—H14 | 120.6 |
C3—C4—C5 | 120.7 (3) | O2—C15—N1 | 122.4 (3) |
C3—C4—H4 | 119.7 | O2—C15—C12 | 120.9 (3) |
C5—C4—H4 | 119.7 | N1—C15—C12 | 116.7 (3) |
C4—C5—C6 | 118.5 (3) | N2—C16—C17 | 121.7 (4) |
C4—C5—C8 | 121.3 (3) | N2—C16—H16 | 119.1 |
C6—C5—C8 | 120.0 (3) | C17—C16—H16 | 119.1 |
C5—C6—C7 | 120.0 (4) | C18—C17—C16 | 126.5 (4) |
C5—C6—H6 | 120.0 | C18—C17—S1 | 110.6 (3) |
C7—C6—H6 | 120.0 | C16—C17—S1 | 122.8 (3) |
C2—C7—C6 | 121.7 (4) | C19—C18—C17 | 111.9 (4) |
C2—C7—H7 | 119.1 | C19—C18—H18 | 124.0 |
C6—C7—H7 | 119.1 | C17—C18—H18 | 124.0 |
O1—C8—C5 | 108.8 (3) | C20—C19—C18 | 113.0 (4) |
O1—C8—H8A | 109.9 | C20—C19—H19 | 123.5 |
C5—C8—H8A | 109.9 | C18—C19—H19 | 123.5 |
O1—C8—H8B | 109.9 | C19—C20—S1 | 112.6 (3) |
C5—C8—H8B | 109.9 | C19—C20—H20 | 123.7 |
H8A—C8—H8B | 108.3 | S1—C20—H20 | 123.7 |
C15—N1—N2—C16 | −176.9 (3) | C11—C12—C13—C14 | −1.5 (5) |
C7—C2—C3—C4 | −2.2 (6) | C15—C12—C13—C14 | −176.9 (3) |
C1—C2—C3—C4 | 177.8 (4) | C12—C13—C14—C9 | 0.4 (5) |
C2—C3—C4—C5 | 1.9 (6) | C10—C9—C14—C13 | 0.5 (5) |
C3—C4—C5—C6 | −0.4 (5) | O1—C9—C14—C13 | −179.9 (3) |
C3—C4—C5—C8 | −176.5 (3) | N2—N1—C15—O2 | −2.1 (5) |
C4—C5—C6—C7 | −0.7 (6) | N2—N1—C15—C12 | 176.6 (3) |
C8—C5—C6—C7 | 175.4 (4) | C13—C12—C15—O2 | 154.6 (3) |
C3—C2—C7—C6 | 1.0 (6) | C11—C12—C15—O2 | −20.9 (5) |
C1—C2—C7—C6 | −179.0 (4) | C13—C12—C15—N1 | −24.2 (5) |
C5—C6—C7—C2 | 0.5 (6) | C11—C12—C15—N1 | 160.3 (3) |
C9—O1—C8—C5 | 175.3 (3) | N1—N2—C16—C17 | −179.5 (3) |
C4—C5—C8—O1 | −62.3 (5) | N2—C16—C17—C18 | −166.6 (4) |
C6—C5—C8—O1 | 121.7 (4) | N2—C16—C17—S1 | 15.7 (5) |
C8—O1—C9—C14 | 2.3 (5) | C20—S1—C17—C18 | 0.2 (3) |
C8—O1—C9—C10 | −178.1 (3) | C20—S1—C17—C16 | 178.2 (3) |
C14—C9—C10—C11 | −0.2 (5) | C16—C17—C18—C19 | −177.8 (4) |
O1—C9—C10—C11 | −179.9 (3) | S1—C17—C18—C19 | 0.1 (4) |
C9—C10—C11—C12 | −0.9 (5) | C17—C18—C19—C20 | −0.5 (6) |
C10—C11—C12—C13 | 1.7 (5) | C18—C19—C20—S1 | 0.6 (5) |
C10—C11—C12—C15 | 177.4 (3) | C17—S1—C20—C19 | −0.5 (4) |
Cg1, Cg2 and Cg3 are the centroids of the C2–C7, C9–C14 and thiophene rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.87 (4) | 2.04 (4) | 2.899 (4) | 170 (4) |
C10—H10···O1ii | 0.95 | 2.62 | 3.409 (4) | 140 |
C16—H16···O2i | 0.95 | 2.49 | 3.316 (5) | 146 |
C18—H18···S1iii | 0.95 | 3.00 | 3.938 (4) | 170 |
C19—H19···O2iv | 0.95 | 2.65 | 3.319 (5) | 128 |
C19—H19···O2iv | 0.95 | 2.65 | 3.319 (5) | 128 |
C3—H3···Cg2v | 0.95 | 2.77 | 3.540 (4) | 138 |
C6—H6···Cg1vi | 0.95 | 2.80 | 3.593 (4) | 141 |
C14—H14···Cg2i | 0.95 | 2.90 | 3.504 (4) | 122 |
C18—H18···Cg3iii | 0.95 | 2.92 | 3.803 (4) | 156 |
Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) −x+1, −y+1, −z+1; (iii) −x, y−1/2, −z+1/2; (iv) x−1/2, y, −z+1/2; (v) −x+1, −y, −z+1; (vi) −x+1/2, y+1/2, z. |
Acknowledgements
The authors are grateful to the Department of Chemistry, University of Rajshahi for laboratory facilities. MCS and RM acknowledge the Center for Environmental Conservation and Research Safety, University of Toyama for providing facilities for single-crystal X-ray analyses.
Funding information
Funding for this research was provided by: Faculty of Science, University of Rajshahi for the period 2021–2022.
References
Alagesan, M., Bhuvanesh, N. S. P. & Dharmaraj, N. (2013). Dalton Trans. 42, 7210–7223. CSD CrossRef CAS PubMed Google Scholar
Banna, M. H. A., Howlader, M. B. H., Miyatake, R., Sheikh, M. C. & Zangrando, E. (2022). Acta Cryst. E78, 1081–1083. CrossRef IUCr Journals Google Scholar
Bedia, K. K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261. Web of Science CrossRef PubMed CAS Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chen, M., Chen, X., Huang, G., Jiang, Y., Gou, Y. & Deng, J. (2022). J. Mol. Struct. 1268, 133730. CSD CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Promdet, P., Horkaew, J. & Chantrapromma, S. (2012). Acta Cryst. E68, o562–o563. CSD CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan Google Scholar
Koz'minykh, V. O. (2006). Pharm. Chem. J. 40, 8–17. CAS Google Scholar
Mali, S. N., Thorat, B. R., Gupta, D. R. & Pandey, A. (2021). Eng. Proc. 11, 21. Google Scholar
Pandey, A., Srivastava, S., Aggarwal, N., Srivastava, C., Adholeya, A. & Kochar, M. (2020). Chem. Biol. Technol. Agric. 7, 10. CrossRef Google Scholar
Popiołek, L. (2021). Biomed. Pharmacother. 141, 111851. PubMed Google Scholar
Rigaku (2018). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sandler, S. R. & Karo, W. (1992). Hydrazine Derivatives, Hydrazones, and Hydrazides. In Sourcebook of Advanced Organic Laboratory Preparations, pp. 136–146. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sinha, B. K. & Mason, R. P. (2014). J. Drug. Metab. Toxicol. 5, https://doi.org/10.4172/2157-7609.1000168. Google Scholar
Todeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189–199. Web of Science CrossRef CAS Google Scholar
Vicini, P., Zani, F., Cozzini, P. & Doytchinova, I. (2002). Eur. J. Med. Chem. 37, 553–564. Web of Science CrossRef PubMed CAS Google Scholar
Wang, J., He, R., Xin, Z., Shen, H. & Wang, C. (2014). Acta Cryst. E70, o99. CSD CrossRef IUCr Journals Google Scholar
Wang, Z., Zhou, C., Yan, L. & Wang, J. (2014). Acta Cryst. E70, o995. CSD CrossRef IUCr Journals Google Scholar
Zhou, Y.-Z., Chen, R.-J., Tu, S.-J. & Lu, X.-M. (2006). Chin. J. Chem. 24, 153–156. CSD CrossRef CAS Google Scholar
Zong, Q.-S. & Wu, J.-Y. (2013). J. Struct. Chem. 54, 1151–1156. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.