research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 4-[(4-methyl­benz­yl)­­oxy]benzohydrazide and its N′-[(thio­phen-2-yl)­methyl­­idene]- derivative

crossmark logo

aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, bCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, cDepartment of Applied Science, Faculty of Science, Okayama University of Science, Japan, and dDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, Italy
*Correspondence e-mail: ansary_chem@ru.ac.bd

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 January 2023; accepted 14 February 2023; online 21 February 2023)

The mol­ecular and crystal structures of a benzoyl­hydrazine bearing an ether group, 4-[(4-methyl­benz­yl)­oxy]benzohydrazide, C15H16N2O2, (I), and of the corresponding N′-[(thio­phen-2-yl)­methyl­idene]- derivative, 4-[(4-methyl­benz­yl)­oxy]-N′-[(thio­phen-2-yl)­methyl­idene]benzohydrazide, C20H18N2O2S, (II), are described. The supra­molecular structures of both compounds are governed by N—H⋯N and N—H⋯O hydrogen-bonding inter­actions. The hydrazine compound (I) shows a crystal packing with a more complex hydrogen-bonding scheme because of the NH—NH2 entity, forming a di-periodic supra­molecular structure extending parallel to (100). Hydrazone mol­ecules in (II) are hydrogen-bonded through N—H⋯O inter­actions, giving rise to the formation of ribbons parallel to [010]. Mol­ecules of (I) and (II) show a different orientation of the carbohydrazide moiety likely to favor the crystal packing and thus hydrogen-bonding inter­actions.

1. Chemical context

Hydrazine-based compounds occupy a prominent position in chemistry (Sandler & Karo, 1992[Sandler, S. R. & Karo, W. (1992). Hydrazine Derivatives, Hydrazones, and Hydrazides. In Sourcebook of Advanced Organic Laboratory Preparations, pp. 136-146. New York: Academic Press.]) because of their pharmaceutical uses (Popiołek, 2021[Popiołek, L. (2021). Biomed. Pharmacother. 141, 111851.]) and many other applications (Mali et al., 2021[Mali, S. N., Thorat, B. R., Gupta, D. R. & Pandey, A. (2021). Eng. Proc. 11, 21.]; Koz'minykh, 2006[Koz'minykh, V. O. (2006). Pharm. Chem. J. 40, 8-17.]). Their increasing importance originates from anti-inflammatory (Todeschini et al., 1998[Todeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189-199.]), anti­bacterial–anti­fungal (Vicini et al., 2002[Vicini, P., Zani, F., Cozzini, P. & Doytchinova, I. (2002). Eur. J. Med. Chem. 37, 553-564.]), and anti­tubercular (Bedia et al., 2006[Bedia, K. K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]) properties, as well as their utilization as pesticides (Pandey et al., 2020[Pandey, A., Srivastava, S., Aggarwal, N., Srivastava, C., Adholeya, A. & Kochar, M. (2020). Chem. Biol. Technol. Agric. 7, 10.]). However, it is worth noting that hydrazine-based compounds applied as rocket fuels pose significant health risks owing to their toxicity (Sinha & Mason, 2014[Sinha, B. K. & Mason, R. P. (2014). J. Drug. Metab. Toxicol. 5, https://doi.org/10.4172/2157-7609.1000168.]). In addition, hydrazine-based compounds function as ligand precursors for the formation of bidentate Schiff base ligands applied in metal coordination (Banna et al., 2022[Banna, M. H. A., Howlader, M. B. H., Miyatake, R., Sheikh, M. C. & Zangrando, E. (2022). Acta Cryst. E78, 1081-1083.]; Zhou et al., 2006[Zhou, Y.-Z., Chen, R.-J., Tu, S.-J. & Lu, X.-M. (2006). Chin. J. Chem. 24, 153-156.]; Alagesan et al., 2013[Alagesan, M., Bhuvanesh, N. S. P. & Dharmaraj, N. (2013). Dalton Trans. 42, 7210-7223.]; Chen et al., 2022[Chen, M., Chen, X., Huang, G., Jiang, Y., Gou, Y. & Deng, J. (2022). J. Mol. Struct. 1268, 133730.]).

In the context given above, we report on syntheses and crystal-structure determinations of two related compounds, viz. a benzoyl­hydrazine bearing an ether group (I)[link], C15H16N2O2, and the corresponding N′-[(thio­phen-2-yl­meth­yl­idene) derivative (II)[link], C20H18N2O2S.

2. Structural commentary

The mol­ecular structure of hydrazine compound (I)[link] is shown in Fig. 1[link]. The N1—N2 and the O2=C15 bond lengths of 1.4200 (15) and 1.2388 (15) Å are indicative of a single and double bond, respectively. All other bond lengths are as expected when compared with mol­ecules of similar hydrazine and hydrazone compounds (Wang, Zhou et al., 2014[Wang, Z., Zhou, C., Yan, L. & Wang, J. (2014). Acta Cryst. E70, o995.]; Wang, He et al., 2014[Wang, J., He, R., Xin, Z., Shen, H. & Wang, C. (2014). Acta Cryst. E70, o99.]; Fun et al., 2012[Fun, H.-K., Promdet, P., Horkaew, J. & Chantrapromma, S. (2012). Acta Cryst. E68, o562-o563.]; Zong & Wu, 2013[Zong, Q.-S. & Wu, J.-Y. (2013). J. Struct. Chem. 54, 1151-1156.]). The conformation of the mol­ecule shows the central phenyl ring (C9–C14) of the benzoyl mean plane forming a dihedral angle of 66.39 (3)° with the 4-methyl­benzyl group (C1–C8), and it is also rotated slightly [by 28.49 (6)°] with respect to the mean plane through the C=O—NH—NH2 moiety.

[Scheme 1]
[Figure 1]
Figure 1
Mol­ecular structure of (I)[link], with displacement ellipsoids drawn at the 50% probability level.

The mol­ecular structure of hydrazone derivative (II)[link] is shown in Fig. 2[link]. The thienyl (C17–C20, S1) ring and the central phenyl ring (C9–C14) are linked by the ac­yl–hydrazone (–CH=N—N—CO–) group. An E-configuration is observed with respect to the double bond of the hydrazone bridge N2=C16. Compared to (I)[link], the N1—N2 bond length of 1.397 (4) Å appears slightly shorter, most probably caused by a different inter­molecular hydrogen-bonding inter­action. On the other hand, the O2=C15 bond of 1.236 (4) Å, is nearly identical with that of (I)[link] and is typical for a ketonic linkage in the solid state, while an equilibrium between the keto and enol form is present in solution. The mol­ecule has the thienyl­methyl­ene and the benzohydrazone fragments almost co-planar, with maximum deviations of −0.234 (3) and +0.392 (2) Å exhibited by atoms C10 and O2, respectively. The terminal 4-methyl­benzyl group is rotated by 55.87 (9)° with respect to the central phenyl ring, similar to the dihedral angle observed in (I)[link].

[Figure 2]
Figure 2
Mol­ecular structure of (II)[link], with displacement ellipsoids drawn at the 50% probability level.

A superimposition of the two mol­ecules (shown in Fig. 3[link]) highlights their conformational differences: while the 4-[(4-methyl­benz­yl)­oxy] benzoyl groups almost overlap, it is worthy to note the different orientation of the carbohydrazide C=O—NH—N moieties, likely induced by crystal packing effects to favor hydrogen-bonding inter­actions.

[Figure 3]
Figure 3
Overlay plot of mol­ecules (I)[link] and (II)[link] to show the conformational difference.

3. Supra­molecular features

Classical hydrogen-bonding inter­actions represent the main contributions to the packing of the mol­ecules in the crystals of (I)[link] and (II)[link]; numerical data are compiled in Tables 1[link] and 2[link], respectively.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg2 are the centroids of the C2–C7 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.872 (18) 2.228 (18) 2.9994 (14) 147.3 (14)
N2—H2A⋯O2ii 0.88 (2) 2.21 (2) 3.0598 (17) 160 (2)
N2—H2B⋯N2iii 0.94 (2) 2.27 (2) 3.1970 (14) 167 (1)
C3—H3⋯Cg1iv 0.95 2.86 3.6085 (16) 136
C6—H6⋯Cg1v 0.95 2.83 3.5688 (16) 135
C11—H11⋯Cg2vi 0.95 2.90 3.5918 (13) 131
C14—H14⋯Cg2vii 0.95 2.92 3.6262 (13) 132
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, -y+1, -z]; (iii) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1, Cg2 and Cg3 are the centroids of the C2–C7, C9–C14 and thio­phene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.87 (4) 2.04 (4) 2.899 (4) 170 (4)
C10—H10⋯O1ii 0.95 2.62 3.409 (4) 140
C16—H16⋯O2i 0.95 2.49 3.316 (5) 146
C18—H18⋯S1iii 0.95 3.00 3.938 (4) 170
C19—H19⋯O2iv 0.95 2.65 3.319 (5) 128
C19—H19⋯O2iv 0.95 2.65 3.319 (5) 128
C3—H3⋯Cg2v 0.95 2.77 3.540 (4) 138
C6—H6⋯Cg1vi 0.95 2.80 3.593 (4) 141
C14—H14⋯Cg2i 0.95 2.90 3.504 (4) 122
C18—H18⋯Cg3iii 0.95 2.92 3.803 (4) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (v) [-x+1, -y, -z+1]; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

In (I)[link], these inter­actions are larger because of the higher number of donor hydrogen atoms in the NH—NH2 group. Fig. 4[link] shows the N1—H1⋯O2i and N2—H2B⋯N2iii inter­actions [symmetry codes: (i) x, y + 1, z; (iii) −x + 1, y − [{1\over 2}], −z − [{1\over 2}]] connecting rows of oppositely oriented mol­ecules. In addition, N2—H2A⋯N2iii inter­actions connect the rows into a layer structure extending parallel to (100) (Fig. 5[link]).

[Figure 4]
Figure 4
The rows built by N—H⋯N and N—H⋯O inter­actions (orange dashed lines) in the crystal structure of (I)[link].
[Figure 5]
Figure 5
The layered arrangement in the crystal packing of (I)[link] caused by additional N—H⋯O inter­actions.

In (II)[link], the number of conventional hydrogen bonds is considerably reduced. The corresponding N1—H1N⋯O2i [symmetry code: (i) −x + [{1\over 2}], y − [{1\over 2}], z] inter­actions create an undulating ribbon parallel to [010], as displayed in Fig. 6[link].

[Figure 6]
Figure 6
The chain structure in the crystal packing of (II)[link] with indication of N—H⋯O hydrogen bonds (orange dashed lines).

While π stacking inter­actions in (I)[link] and (II)[link] are insignificant, C—H⋯π-ring inter­actions contribute to the packing in both crystals. These involve the C3—H, C6—H, and C14—H groups with phenyl rings (C2–C7; Cg1) and (C9–C14; Cg2) in (I)[link] and (II)[link], and the thio­phene ring (Cg3) in (II)[link]. All the H⋯centroid distances are between 2.77–2.90 Å, with C—H⋯π angles of 122–156° (Tables 1[link] and 2[link]). In (II)[link], additional C—H⋯O and C—H⋯S inter­actions are observed (Table 2[link]).

4. Synthesis and crystallization

Synthesis of compound (I)[link]. A mixture of ethyl-4-[(4-methyl­benz­yl)­oxy] benzoate (1.23 g, 4.55 mmol) and hydrazine hydrate (5.83 g, 22.69 mmol) in absolute ethanol (20 ml) was refluxed for 10 h. After cooling the solution to room temperature, colorless crystals, suitable for X-ray diffraction, were obtained. Yield: 0.82 g, 70%; melting point: 397–398 K;

FT–IR: 1644 ν (C=Oamide), 3374 ν (N—H); 1H NMR (CDCl3, 600 MHz): δ = 2.36 (s, 3H, –CH3), 4.05 (brs, 2H, –NH2), 5.07 (s, 2H, –CH2–), 6.99 (d, 2H, Ar-H 5,6, J = 13.2 Hz), 7.20 (d, 2H, Ar-H 10,11, J = 11.4 Hz), 7.30 (d, 2H, Ar-H 8,9, J = 12 Hz), 7.70 (d, 2H, Ar-H 3,4, J = 10.2 Hz), ppm; 13C NMR (CDCl3, 600 MHz): 21.3 (C7), 70.1 (C8), 114.8 (C-3,5), 125.08 (C1), 127.73 (C-2′,6′), 128.7 (C-2,6), 129.4 (C-3′,5′), 133.2 (C1), 138.13 (C4), 161.7 (C4), 168.4 (C9) ppm; LC–MS (ESI) m/z: [M + H]+. Calculated for C15H16N2O2; 257.1283; found 257.1284. The proton at the NH group was missing, likely due to the exchangeable nature of this proton.

Synthesis of compound (II)[link]. Thio­phene-2-carbaldehyde (0.15 g, 1.21 mmol) was added to an absolute ethano­lic (20 ml) solution of 4-[(4-methyl­benz­yl)­oxy]benzoyl­hydrazine (0.312 g, 1.21 mmol). The resulting mixture was heated and refluxed for 2 h. A white precipitate was obtained, filtered off, and washed several times with hot ethanol, and finally dried over silica gel in a desiccator. A small amount of the compound was dissolved in 25 ml of absolute ethanol and allowed for slow evaporation. Suitable crystals for single-crystal X-ray diffraction were collected after 30 d of keeping the sample solution undisturbed. Yield: 0.86 g, 50%; melting point: 505–506 K.

FT–IR: 1634 ν (C=Oamide), 3204 ν (N—H), 1607 (C=Nazomethine); 1H NMR (CDCl3, 600 MHz): δ = 2.36 (s, 3H, –CH3), 5.07 (s, 2H, –CH2–), 7.03 (d, 2H, Ar-H 5,6, J = 13.2 Hz), 7.20 (d, 2H, Ar-H 10,11, J = 11.4 Hz), 7.32 (d, 2H, Ar-H 8,9, J = 12 Hz), 7.39–7.40 (m, 1H, CH=N), 8.9 (s, 1H, –CONH–) ppm; LC–MS (ESI) m/z: [M + H]+. Calculated for C20H18N2O2S; 351.1159; found 351.1162.

We failed to locate the 1H NMR signals of Ar-H 3,4 and of thio­phene ring hydrogen atoms, likely due to the poor solubility of the compound in organic solvents.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were calculated at geometrical positions and refined as riding [C—H = 0.95–0.99 Å, Uiso(H) = 1.2Ueq(C)], except those of the —NH—NH2 (I)[link] and —NH—N= (II) groups, which were detected in difference-Fourier maps and freely refined.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C15H16N2O2 C20H18N2O2S
Mr 256.30 350.42
Crystal system, space group Monoclinic, P21/c Orthorhombic, Pbca
Temperature (K) 173 173
a, b, c (Å) 30.7086 (14), 5.2471 (3), 8.0359 (4) 11.3725 (8), 7.8492 (5), 39.286 (2)
α, β, γ (°) 90, 97.471 (7), 90 90, 90, 90
V3) 1283.85 (11) 3506.8 (4)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.20
Crystal size (mm) 0.17 × 0.16 × 0.13 0.26 × 0.08 × 0.01
 
Data collection
Diffractometer Rigaku R-AXIS RAPID Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan]) Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan])
Tmin, Tmax 0.739, 0.988 0.646, 0.998
No. of measured, independent and observed [I > 2σ(I)] reflections 9727, 2889, 2515 31564, 4006, 2203
Rint 0.024 0.162
(sin θ/λ)max−1) 0.648 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.126, 1.04 0.078, 0.201, 1.02
No. of reflections 2889 4006
No. of parameters 182 230
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.25 0.28, −0.46
Computer programs: RAPID-AUTO (Rigaku, 2018[Rigaku (2018). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

For both structures, data collection: RAPID-AUTO (Rigaku, 2018); cell refinement: RAPID-AUTO (Rigaku, 2018); data reduction: RAPID-AUTO (Rigaku, 2018). Program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a) for (I); SHELXT (Sheldrick, 2015a) for (II). For both structures, program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

4-[(4-Methylbenzyl)oxy]benzohydrazide (I) top
Crystal data top
C15H16N2O2F(000) = 544
Mr = 256.30Dx = 1.326 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 30.7086 (14) ÅCell parameters from 8347 reflections
b = 5.2471 (3) Åθ = 2.0–27.4°
c = 8.0359 (4) ŵ = 0.09 mm1
β = 97.471 (7)°T = 173 K
V = 1283.85 (11) Å3Prism, colorless
Z = 40.17 × 0.16 × 0.13 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2515 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.024
ω scansθmax = 27.4°, θmin = 2.7°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 3939
Tmin = 0.739, Tmax = 0.988k = 66
9727 measured reflectionsl = 710
2889 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.437P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2889 reflectionsΔρmax = 0.36 e Å3
182 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.76070 (3)0.52411 (17)0.25819 (12)0.0286 (2)
O20.56320 (3)0.27730 (17)0.03945 (13)0.0313 (2)
N10.56104 (3)0.7071 (2)0.06599 (15)0.0269 (3)
H10.5729 (5)0.857 (3)0.046 (2)0.032*
N20.51729 (4)0.7187 (2)0.14851 (18)0.0314 (3)
H2a0.4990 (6)0.724 (3)0.072 (3)0.038*
H2b0.5119 (6)0.568 (4)0.212 (2)0.038*
C10.95555 (5)0.6618 (4)0.6481 (2)0.0471 (4)
H1A0.9709100.7346260.5597220.057*
H1B0.9722020.5159570.6991050.057*
H1C0.9528890.7912520.7341540.057*
C20.91027 (4)0.5748 (3)0.57322 (17)0.0316 (3)
C30.87328 (5)0.7144 (3)0.60247 (18)0.0317 (3)
H30.8768690.8649070.6685640.038*
C40.83138 (4)0.6368 (3)0.53651 (18)0.0295 (3)
H40.8066740.7350510.5573330.035*
C50.82520 (4)0.4160 (2)0.44003 (16)0.0253 (3)
C60.86196 (5)0.2773 (3)0.40966 (18)0.0311 (3)
H60.8583810.1275100.3428430.037*
C70.90393 (4)0.3557 (3)0.47622 (19)0.0343 (3)
H70.9286320.2577320.4549390.041*
C80.77962 (4)0.3300 (2)0.37186 (17)0.0271 (3)
H8A0.7808380.1657240.3121030.032*
H8B0.7616650.3068440.4645160.032*
C90.71691 (4)0.5041 (2)0.19621 (15)0.0225 (3)
C100.70076 (4)0.6971 (2)0.08495 (17)0.0249 (3)
H100.7198680.8279040.0565180.030*
C110.65699 (4)0.6983 (2)0.01604 (16)0.0244 (3)
H110.6461670.8308980.0586210.029*
C120.62868 (4)0.5054 (2)0.05582 (15)0.0216 (3)
C130.64525 (4)0.3131 (2)0.16527 (16)0.0234 (3)
H130.6262190.1807480.1919600.028*
C140.68913 (4)0.3099 (2)0.23678 (16)0.0239 (3)
H140.6999090.1776690.3118210.029*
C150.58137 (4)0.4879 (2)0.01986 (16)0.0232 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0213 (4)0.0294 (5)0.0335 (5)0.0023 (3)0.0020 (4)0.0092 (4)
O20.0258 (5)0.0205 (5)0.0454 (6)0.0024 (3)0.0031 (4)0.0008 (4)
N10.0224 (5)0.0201 (5)0.0363 (6)0.0013 (4)0.0040 (4)0.0005 (4)
N20.0222 (5)0.0246 (6)0.0448 (7)0.0003 (4)0.0063 (5)0.0026 (5)
C10.0287 (7)0.0612 (11)0.0487 (10)0.0065 (7)0.0055 (6)0.0012 (8)
C20.0262 (6)0.0368 (7)0.0303 (7)0.0019 (5)0.0021 (5)0.0065 (6)
C30.0335 (7)0.0293 (7)0.0314 (7)0.0032 (5)0.0005 (5)0.0024 (5)
C40.0266 (6)0.0286 (6)0.0330 (7)0.0036 (5)0.0032 (5)0.0013 (5)
C50.0240 (6)0.0260 (6)0.0250 (6)0.0006 (5)0.0002 (5)0.0045 (5)
C60.0307 (7)0.0278 (6)0.0339 (7)0.0043 (5)0.0005 (5)0.0019 (5)
C70.0249 (6)0.0393 (7)0.0384 (8)0.0078 (6)0.0028 (5)0.0020 (6)
C80.0252 (6)0.0256 (6)0.0291 (6)0.0003 (5)0.0014 (5)0.0048 (5)
C90.0216 (5)0.0228 (6)0.0228 (6)0.0004 (4)0.0016 (4)0.0014 (4)
C100.0242 (6)0.0215 (6)0.0290 (7)0.0036 (4)0.0031 (5)0.0030 (5)
C110.0259 (6)0.0200 (6)0.0268 (6)0.0011 (5)0.0019 (5)0.0035 (4)
C120.0217 (6)0.0191 (5)0.0237 (6)0.0009 (4)0.0018 (4)0.0030 (4)
C130.0239 (6)0.0196 (5)0.0266 (6)0.0025 (4)0.0030 (5)0.0006 (4)
C140.0259 (6)0.0204 (6)0.0250 (6)0.0009 (4)0.0015 (5)0.0025 (4)
C150.0235 (6)0.0215 (6)0.0242 (6)0.0002 (4)0.0017 (5)0.0007 (4)
Geometric parameters (Å, º) top
O1—C91.3758 (14)C5—C61.3913 (18)
O1—C81.4391 (15)C5—C81.5043 (17)
O2—C151.2388 (15)C6—C71.3918 (19)
N1—C151.3380 (15)C6—H60.9500
N1—N21.4200 (15)C7—H70.9500
N1—H10.872 (18)C8—H8A0.9900
N2—H2A0.88 (2)C8—H8B0.9900
N2—H2B0.94 (2)C9—C141.3945 (17)
C1—C21.5123 (19)C9—C101.3986 (17)
C1—H1A0.9800C10—C111.3853 (17)
C1—H1B0.9800C10—H100.9500
C1—H1C0.9800C11—C121.3982 (16)
C2—C71.388 (2)C11—H110.9500
C2—C31.397 (2)C12—C131.3908 (17)
C3—C41.3876 (18)C12—C151.5031 (16)
C3—H30.9500C13—C141.3946 (16)
C4—C51.3930 (18)C13—H130.9500
C4—H40.9500C14—H140.9500
C9—O1—C8118.08 (9)C2—C7—H7119.5
C15—N1—N2123.03 (10)C6—C7—H7119.5
C15—N1—H1123.6 (11)O1—C8—C5107.39 (10)
N2—N1—H1113.3 (11)O1—C8—H8A110.2
N1—N2—H2A108.9 (12)C5—C8—H8A110.2
N1—N2—H2B107.8 (10)O1—C8—H8B110.2
H2A—N2—H2B108.7 (16)C5—C8—H8B110.2
C2—C1—H1A109.5H8A—C8—H8B108.5
C2—C1—H1B109.5O1—C9—C14124.75 (11)
H1A—C1—H1B109.5O1—C9—C10115.14 (10)
C2—C1—H1C109.5C14—C9—C10120.11 (11)
H1A—C1—H1C109.5C11—C10—C9120.26 (11)
H1B—C1—H1C109.5C11—C10—H10119.9
C7—C2—C3118.10 (12)C9—C10—H10119.9
C7—C2—C1121.88 (13)C10—C11—C12120.33 (11)
C3—C2—C1120.02 (14)C10—C11—H11119.8
C4—C3—C2121.04 (13)C12—C11—H11119.8
C4—C3—H3119.5C13—C12—C11118.86 (11)
C2—C3—H3119.5C13—C12—C15117.80 (10)
C3—C4—C5120.61 (12)C11—C12—C15123.28 (11)
C3—C4—H4119.7C12—C13—C14121.59 (11)
C5—C4—H4119.7C12—C13—H13119.2
C6—C5—C4118.54 (12)C14—C13—H13119.2
C6—C5—C8121.12 (12)C13—C14—C9118.85 (11)
C4—C5—C8120.33 (11)C13—C14—H14120.6
C5—C6—C7120.65 (13)C9—C14—H14120.6
C5—C6—H6119.7O2—C15—N1123.06 (11)
C7—C6—H6119.7O2—C15—C12120.11 (10)
C2—C7—C6121.05 (12)N1—C15—C12116.83 (10)
C7—C2—C3—C40.0 (2)C14—C9—C10—C110.79 (19)
C1—C2—C3—C4179.31 (14)C9—C10—C11—C120.60 (19)
C2—C3—C4—C50.4 (2)C10—C11—C12—C130.06 (18)
C3—C4—C5—C60.8 (2)C10—C11—C12—C15177.22 (11)
C3—C4—C5—C8178.74 (12)C11—C12—C13—C140.55 (18)
C4—C5—C6—C70.9 (2)C15—C12—C13—C14177.86 (11)
C8—C5—C6—C7178.67 (13)C12—C13—C14—C90.36 (18)
C3—C2—C7—C60.1 (2)O1—C9—C14—C13179.74 (11)
C1—C2—C7—C6179.37 (14)C10—C9—C14—C130.31 (18)
C5—C6—C7—C20.5 (2)N2—N1—C15—O22.9 (2)
C9—O1—C8—C5171.75 (10)N2—N1—C15—C12175.97 (12)
C6—C5—C8—O1117.28 (13)C13—C12—C15—O227.44 (17)
C4—C5—C8—O163.20 (16)C11—C12—C15—O2149.75 (13)
C8—O1—C9—C140.69 (18)C13—C12—C15—N1153.70 (12)
C8—O1—C9—C10179.27 (11)C11—C12—C15—N129.12 (17)
O1—C9—C10—C11179.25 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.872 (18)2.228 (18)2.9994 (14)147.3 (14)
N2—H2A···O2ii0.88 (2)2.21 (2)3.0598 (17)160 (2)
N2—H2B···N2iii0.94 (2)2.27 (2)3.1970 (14)167 (1)
C3—H3···Cg1iv0.952.863.6085 (16)136
C6—H6···Cg1v0.952.833.5688 (16)135
C11—H11···Cg2vi0.952.903.5918 (13)131
C14—H14···Cg2vii0.952.923.6262 (13)132
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y1/2, z1/2; (iv) x, y+3/2, z+1/2; (v) x, y+1/2, z1/2; (vi) x, y+3/2, z1/2; (vii) x, y+1/2, z+1/2.
4-[(4-Methylbenzyl)oxy]-N'-[(thiophen-2-yl)methylidene]benzohydrazide (II) top
Crystal data top
C20H18N2O2SDx = 1.327 Mg m3
Mr = 350.42Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, PbcaCell parameters from 12507 reflections
a = 11.3725 (8) Åθ = 1.9–27.4°
b = 7.8492 (5) ŵ = 0.20 mm1
c = 39.286 (2) ÅT = 173 K
V = 3506.8 (4) Å3Plate, colorless
Z = 80.26 × 0.08 × 0.01 mm
F(000) = 1472
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2203 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.162
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.646, Tmax = 0.998k = 1010
31564 measured reflectionsl = 5050
4006 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.078H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.201 w = 1/[σ2(Fo2) + (0.0867P)2 + 2.4194P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4006 reflectionsΔρmax = 0.28 e Å3
230 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22046 (10)0.59338 (16)0.23512 (3)0.0543 (3)
O10.3869 (2)0.2842 (3)0.50032 (6)0.0403 (7)
O20.3905 (2)0.6420 (3)0.35634 (6)0.0364 (6)
N10.2605 (3)0.4326 (4)0.34359 (8)0.0384 (8)
H1N0.220 (4)0.343 (5)0.3497 (10)0.046*
N20.2419 (3)0.4962 (4)0.31082 (7)0.0361 (7)
C10.4445 (4)0.0531 (6)0.65013 (10)0.0586 (12)
H1A0.4328540.0365380.6671720.070*
H1B0.5276370.0858070.6495930.070*
H1C0.3965500.1524580.6560790.070*
C20.4081 (3)0.0126 (5)0.61544 (9)0.0399 (9)
C30.4761 (3)0.0238 (5)0.58686 (9)0.0387 (9)
H30.5469250.0867390.5894040.046*
C40.4420 (3)0.0303 (5)0.55480 (10)0.0380 (9)
H40.4883110.0011320.5355480.046*
C50.3407 (3)0.1269 (5)0.55051 (9)0.0355 (9)
C60.2739 (3)0.1669 (5)0.57909 (9)0.0428 (10)
H60.2048340.2339130.5767950.051*
C70.3084 (3)0.1088 (6)0.61105 (10)0.0482 (11)
H70.2616700.1363470.6303310.058*
C80.2990 (3)0.1780 (5)0.51590 (9)0.0391 (9)
H8A0.2854450.0754370.5017740.047*
H8B0.2239340.2411830.5177650.047*
C90.3674 (3)0.3338 (5)0.46694 (9)0.0345 (8)
C100.4558 (3)0.4314 (5)0.45250 (9)0.0369 (9)
H100.5239350.4598730.4652890.044*
C110.4438 (3)0.4872 (5)0.41914 (9)0.0351 (8)
H110.5035370.5555520.4091990.042*
C120.3447 (3)0.4438 (4)0.40007 (9)0.0318 (8)
C130.2571 (3)0.3477 (5)0.41541 (9)0.0334 (8)
H130.1885220.3198510.4027840.040*
C140.2673 (3)0.2915 (4)0.44869 (9)0.0337 (8)
H140.2068280.2251890.4588140.040*
C150.3346 (3)0.5139 (5)0.36493 (9)0.0321 (8)
C160.1662 (3)0.4133 (5)0.29375 (9)0.0372 (9)
H160.1284090.3181280.3039400.045*
C170.1361 (3)0.4599 (5)0.25919 (9)0.0380 (9)
C180.0398 (3)0.4010 (5)0.24049 (9)0.0402 (9)
H180.0181330.3254600.2492230.048*
C190.0387 (4)0.4664 (6)0.20742 (11)0.0597 (13)
H190.0199330.4393970.1910770.072*
C200.1296 (4)0.5718 (7)0.20114 (11)0.0602 (13)
H200.1415580.6279880.1799940.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0499 (7)0.0616 (7)0.0514 (7)0.0076 (6)0.0008 (5)0.0057 (6)
O10.0346 (15)0.0494 (16)0.0369 (14)0.0071 (12)0.0077 (11)0.0036 (13)
O20.0283 (13)0.0410 (14)0.0400 (15)0.0030 (12)0.0020 (11)0.0010 (12)
N10.0334 (18)0.0432 (19)0.0384 (18)0.0054 (15)0.0072 (14)0.0057 (16)
N20.0288 (16)0.0430 (17)0.0365 (16)0.0033 (14)0.0040 (13)0.0031 (15)
C10.046 (3)0.082 (3)0.048 (3)0.003 (2)0.009 (2)0.016 (2)
C20.032 (2)0.046 (2)0.042 (2)0.0084 (18)0.0063 (16)0.0045 (19)
C30.0222 (18)0.044 (2)0.050 (2)0.0003 (16)0.0057 (16)0.0036 (19)
C40.0222 (18)0.047 (2)0.045 (2)0.0016 (17)0.0027 (16)0.0018 (18)
C50.0261 (18)0.039 (2)0.041 (2)0.0020 (16)0.0036 (16)0.0047 (18)
C60.026 (2)0.055 (2)0.047 (2)0.0075 (18)0.0027 (16)0.004 (2)
C70.033 (2)0.069 (3)0.043 (2)0.005 (2)0.0003 (17)0.004 (2)
C80.030 (2)0.044 (2)0.043 (2)0.0070 (17)0.0024 (16)0.0029 (19)
C90.027 (2)0.039 (2)0.038 (2)0.0007 (15)0.0028 (15)0.0005 (17)
C100.0260 (19)0.044 (2)0.041 (2)0.0024 (16)0.0056 (15)0.0027 (18)
C110.0263 (19)0.037 (2)0.042 (2)0.0003 (16)0.0008 (15)0.0000 (17)
C120.0254 (18)0.034 (2)0.036 (2)0.0053 (15)0.0001 (14)0.0019 (16)
C130.0244 (18)0.0373 (19)0.039 (2)0.0027 (15)0.0039 (15)0.0037 (17)
C140.0267 (19)0.038 (2)0.0365 (19)0.0033 (16)0.0010 (15)0.0003 (17)
C150.0223 (18)0.038 (2)0.036 (2)0.0077 (16)0.0047 (14)0.0011 (17)
C160.030 (2)0.039 (2)0.042 (2)0.0035 (17)0.0002 (16)0.0043 (18)
C170.030 (2)0.045 (2)0.038 (2)0.0058 (17)0.0012 (15)0.0025 (18)
C180.0267 (19)0.053 (2)0.041 (2)0.0067 (18)0.0040 (15)0.0010 (19)
C190.044 (3)0.082 (3)0.054 (3)0.013 (3)0.020 (2)0.004 (3)
C200.066 (3)0.074 (3)0.040 (2)0.014 (3)0.001 (2)0.010 (2)
Geometric parameters (Å, º) top
S1—C201.697 (5)C7—H70.9500
S1—C171.707 (4)C8—H8A0.9900
O1—C91.386 (4)C8—H8B0.9900
O1—C81.438 (4)C9—C141.386 (5)
O2—C151.236 (4)C9—C101.386 (5)
N1—C151.349 (5)C10—C111.389 (5)
N1—N21.397 (4)C10—H100.9500
N1—H1N0.87 (4)C11—C121.395 (5)
N2—C161.271 (5)C11—H110.9500
C1—C21.515 (5)C12—C131.387 (5)
C1—H1A0.9800C12—C151.491 (5)
C1—H1B0.9800C13—C141.385 (5)
C1—H1C0.9800C13—H130.9500
C2—C71.373 (5)C14—H140.9500
C2—C31.393 (5)C16—C171.447 (5)
C3—C41.385 (5)C16—H160.9500
C3—H30.9500C17—C181.398 (5)
C4—C51.389 (5)C18—C191.397 (6)
C4—H40.9500C18—H180.9500
C5—C61.391 (5)C19—C201.347 (7)
C5—C81.495 (5)C19—H190.9500
C6—C71.392 (5)C20—H200.9500
C6—H60.9500
C20—S1—C1791.9 (2)C14—C9—C10121.1 (3)
C9—O1—C8117.0 (3)C14—C9—O1123.6 (3)
C15—N1—N2119.9 (3)C10—C9—O1115.3 (3)
C15—N1—H1N122 (3)C9—C10—C11119.3 (3)
N2—N1—H1N118 (3)C9—C10—H10120.4
C16—N2—N1114.0 (3)C11—C10—H10120.4
C2—C1—H1A109.5C10—C11—C12120.6 (3)
C2—C1—H1B109.5C10—C11—H11119.7
H1A—C1—H1B109.5C12—C11—H11119.7
C2—C1—H1C109.5C13—C12—C11118.7 (3)
H1A—C1—H1C109.5C13—C12—C15123.2 (3)
H1B—C1—H1C109.5C11—C12—C15118.0 (3)
C7—C2—C3118.1 (3)C14—C13—C12121.6 (3)
C7—C2—C1121.7 (4)C14—C13—H13119.2
C3—C2—C1120.2 (4)C12—C13—H13119.2
C4—C3—C2121.0 (3)C13—C14—C9118.8 (3)
C4—C3—H3119.5C13—C14—H14120.6
C2—C3—H3119.5C9—C14—H14120.6
C3—C4—C5120.7 (3)O2—C15—N1122.4 (3)
C3—C4—H4119.7O2—C15—C12120.9 (3)
C5—C4—H4119.7N1—C15—C12116.7 (3)
C4—C5—C6118.5 (3)N2—C16—C17121.7 (4)
C4—C5—C8121.3 (3)N2—C16—H16119.1
C6—C5—C8120.0 (3)C17—C16—H16119.1
C5—C6—C7120.0 (4)C18—C17—C16126.5 (4)
C5—C6—H6120.0C18—C17—S1110.6 (3)
C7—C6—H6120.0C16—C17—S1122.8 (3)
C2—C7—C6121.7 (4)C19—C18—C17111.9 (4)
C2—C7—H7119.1C19—C18—H18124.0
C6—C7—H7119.1C17—C18—H18124.0
O1—C8—C5108.8 (3)C20—C19—C18113.0 (4)
O1—C8—H8A109.9C20—C19—H19123.5
C5—C8—H8A109.9C18—C19—H19123.5
O1—C8—H8B109.9C19—C20—S1112.6 (3)
C5—C8—H8B109.9C19—C20—H20123.7
H8A—C8—H8B108.3S1—C20—H20123.7
C15—N1—N2—C16176.9 (3)C11—C12—C13—C141.5 (5)
C7—C2—C3—C42.2 (6)C15—C12—C13—C14176.9 (3)
C1—C2—C3—C4177.8 (4)C12—C13—C14—C90.4 (5)
C2—C3—C4—C51.9 (6)C10—C9—C14—C130.5 (5)
C3—C4—C5—C60.4 (5)O1—C9—C14—C13179.9 (3)
C3—C4—C5—C8176.5 (3)N2—N1—C15—O22.1 (5)
C4—C5—C6—C70.7 (6)N2—N1—C15—C12176.6 (3)
C8—C5—C6—C7175.4 (4)C13—C12—C15—O2154.6 (3)
C3—C2—C7—C61.0 (6)C11—C12—C15—O220.9 (5)
C1—C2—C7—C6179.0 (4)C13—C12—C15—N124.2 (5)
C5—C6—C7—C20.5 (6)C11—C12—C15—N1160.3 (3)
C9—O1—C8—C5175.3 (3)N1—N2—C16—C17179.5 (3)
C4—C5—C8—O162.3 (5)N2—C16—C17—C18166.6 (4)
C6—C5—C8—O1121.7 (4)N2—C16—C17—S115.7 (5)
C8—O1—C9—C142.3 (5)C20—S1—C17—C180.2 (3)
C8—O1—C9—C10178.1 (3)C20—S1—C17—C16178.2 (3)
C14—C9—C10—C110.2 (5)C16—C17—C18—C19177.8 (4)
O1—C9—C10—C11179.9 (3)S1—C17—C18—C190.1 (4)
C9—C10—C11—C120.9 (5)C17—C18—C19—C200.5 (6)
C10—C11—C12—C131.7 (5)C18—C19—C20—S10.6 (5)
C10—C11—C12—C15177.4 (3)C17—S1—C20—C190.5 (4)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C2–C7, C9–C14 and thiophene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.87 (4)2.04 (4)2.899 (4)170 (4)
C10—H10···O1ii0.952.623.409 (4)140
C16—H16···O2i0.952.493.316 (5)146
C18—H18···S1iii0.953.003.938 (4)170
C19—H19···O2iv0.952.653.319 (5)128
C19—H19···O2iv0.952.653.319 (5)128
C3—H3···Cg2v0.952.773.540 (4)138
C6—H6···Cg1vi0.952.803.593 (4)141
C14—H14···Cg2i0.952.903.504 (4)122
C18—H18···Cg3iii0.952.923.803 (4)156
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y+1, z+1; (iii) x, y1/2, z+1/2; (iv) x1/2, y, z+1/2; (v) x+1, y, z+1; (vi) x+1/2, y+1/2, z.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, University of Rajshahi for laboratory facilities. MCS and RM acknowledge the Center for Environmental Conservation and Research Safety, University of Toyama for providing facilities for single-crystal X-ray analyses.

Funding information

Funding for this research was provided by: Faculty of Science, University of Rajshahi for the period 2021–2022.

References

First citationAlagesan, M., Bhuvanesh, N. S. P. & Dharmaraj, N. (2013). Dalton Trans. 42, 7210–7223.  CSD CrossRef CAS PubMed Google Scholar
First citationBanna, M. H. A., Howlader, M. B. H., Miyatake, R., Sheikh, M. C. & Zangrando, E. (2022). Acta Cryst. E78, 1081–1083.  CrossRef IUCr Journals Google Scholar
First citationBedia, K. K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, M., Chen, X., Huang, G., Jiang, Y., Gou, Y. & Deng, J. (2022). J. Mol. Struct. 1268, 133730.  CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Promdet, P., Horkaew, J. & Chantrapromma, S. (2012). Acta Cryst. E68, o562–o563.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan  Google Scholar
First citationKoz'minykh, V. O. (2006). Pharm. Chem. J. 40, 8–17.  CAS Google Scholar
First citationMali, S. N., Thorat, B. R., Gupta, D. R. & Pandey, A. (2021). Eng. Proc. 11, 21.  Google Scholar
First citationPandey, A., Srivastava, S., Aggarwal, N., Srivastava, C., Adholeya, A. & Kochar, M. (2020). Chem. Biol. Technol. Agric. 7, 10.  CrossRef Google Scholar
First citationPopiołek, L. (2021). Biomed. Pharmacother. 141, 111851.  PubMed Google Scholar
First citationRigaku (2018). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSandler, S. R. & Karo, W. (1992). Hydrazine Derivatives, Hydrazones, and Hydrazides. In Sourcebook of Advanced Organic Laboratory Preparations, pp. 136–146. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSinha, B. K. & Mason, R. P. (2014). J. Drug. Metab. Toxicol. 5, https://doi.org/10.4172/2157-7609.1000168.  Google Scholar
First citationTodeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189–199.  Web of Science CrossRef CAS Google Scholar
First citationVicini, P., Zani, F., Cozzini, P. & Doytchinova, I. (2002). Eur. J. Med. Chem. 37, 553–564.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, J., He, R., Xin, Z., Shen, H. & Wang, C. (2014). Acta Cryst. E70, o99.  CSD CrossRef IUCr Journals Google Scholar
First citationWang, Z., Zhou, C., Yan, L. & Wang, J. (2014). Acta Cryst. E70, o995.  CSD CrossRef IUCr Journals Google Scholar
First citationZhou, Y.-Z., Chen, R.-J., Tu, S.-J. & Lu, X.-M. (2006). Chin. J. Chem. 24, 153–156.  CSD CrossRef CAS Google Scholar
First citationZong, Q.-S. & Wu, J.-Y. (2013). J. Struct. Chem. 54, 1151–1156.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds