research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 4-(2/3-meth­­oxy­phen­­oxy)phthalo­nitrile

crossmark logo

aDepartment of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, Ivanovo, Russian Federation, bDepartment of Fine Tune Synthesis, Ivanovo State University of Chemistry and Technology, Ivanovo, Russian Federation, and cSector of X-ray Diffraction Research, Razuvaev Institute of Metalloorganic Chemistry, Nizhnii Novgorod, Russian Federation
*Correspondence e-mail: erzunov_da@isuct.ru

Edited by C. Schulzke, Universität Greifswald, Germany (Received 29 November 2022; accepted 20 January 2023; online 17 February 2023)

The syntheses and crystal structures are reported of 4-phen­oxy-substituted phthalo­nitriles with meth­oxy groups in the ortho- and meta-positions of the terminal benzene rings, respectively, namely, 4-(2-meth­oxy­phen­oxy)phthalo­nitrile and 4-(3-meth­oxy­phen­oxy)phthalo­nitrile, both C15H10N2O2. The https://journals.iucr.org/e/issues/2023/03/00/mol­ecular structure was determined using the single-crystal X-ray diffraction method. It is shown that short contacts play a more decisive role in the mol­ecular packing compared to van der Waals inter­actions.

1. Chemical context

Phthalo­nitriles are a class of organic compounds with high thermal and oxidative stability (Laskowski et al., 2016[Laskowski, M., Clarke, J., Neal, A., Harvey, B., Ricks-Laskoski, H. L., Hervey, W. J., Daftary, M. N., Shepard, A. & Keller, T. M. (2016). ChemistrySelect 1, 3423-3427.]). That destruction only takes place at high temperatures facilitates using these mol­ecules as building blocks for polymer composite materials with a high degree of cross-linking (Wang et al., 2019[Wang, H., Zhang, Z., Ji, P., Yu, X., Naito, K. & Zhang, Q. (2019). High Perform. Polym. 31, 820-830.]). In addition, phthalo­nitriles are among the most promising precursors for the preparation of phthalocyanine complexes of various structures based on building blocks derived from them.

[Scheme 1]

Phthalocyanines, as a result of their structural features and the possibility of introducing almost any functional moieties to their periphery, have found wide application in areas of societal and industrial importance such as catalysis, optics, medicine, light industry, etc. (Botnar et al., 2020[Botnar, A., Tikhomirova, T., Nalimova, K., Erzunov, D., Razumov, M. & Vashurin, A. (2020). J. Mol. Struct. 1205, 127626-127636.], 2021[Botnar, A., Tikhomirova, T., Kazaryan, K., Bychkova, A., Maizlish, V., Abramov, I. & Vashurin, A. (2021). J. Mol. Struct. 1238, 130438-130447.]). Substituted phthalocyanines, which attract the most attention, however, are obtained from phthalo­nitriles with various fragments in the 3 and 4 positions.

Thus, it is of general inter­est to obtain functionally substituted nitriles and to study their properties. Here, we report the crystal structures of meth­oxy­phen­oxy­phthalo­nitriles with the meth­oxy group in the meta- and ortho-substitution, respectively, which have been prepared for the synthesis of the corresponding substituted phthalocyanines. X-ray diffraction data for the ortho-isomer are already described in the literature (Agar et al., 2007[Ağar, A. & Ocak İskeleli, N. (2007). Acta Cryst. E63, o712-o713.]). However, no discussion is provided of the influence of the structure of the substituted nitrile on the crystal-packing stabilization. The presence of oxygen atoms in the composition of the mol­ecules leads to the formation of inter­esting inter­molecular inter­actions, which are discussed in this communication.

2. Structural commentary

Both substituted nitriles crystallize as solvent-free crystals; the structures are illustrated in Figs. 1[link] and 2[link]. The phthalo­nitrile (A, C7–C12 atoms) and phen­oxy (B, C1–C6 atoms) rings are oriented at dihedral angles of 66.61 (5) and 83.84 (11)° in the cases of meta- and ortho-substitution, respectively. For both nitriles, the C13, C14, N1, N2 and O1 atoms are practically coplanar to the A ring with a maximum deviation of 12° in the case of the C13N1 fragment. The O1, O2, and C15 atoms and the B rings are essentially coplanar. The plane of the meth­oxy group (C15/O2) and its B-ring pivot atom (C3 or C2) is at an angle to the B-ring plane of only 2.21 (6)° (meta) or 1.43 (15)° (ortho). The torsion angles (C15—O2—C3—C2 for meta and C15—O2—C2—C1 for ortho) are 1.32 (15) and −179.1 (2)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of o-4-(3-meth­oxy phen­oxy)phthalo­nitrile, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of m-4-(2-meth­oxy phen­oxy)phthalo­nitrile, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In 4-(2-meth­oxy­phen­oxy)phthalo­nitrile, stabilization of the inter­molecular packing is realized mainly through the formation of hydrogen bonds between the donor C8—H8A group of the A ring with the cyano group (C14≡N2) acceptor attached to the A ring of an adjacent mol­ecule (C8—H8A⋯N2; symmetry operator: x + [{1\over 2}], −y + [{3\over 2}], −z + 1; Fig. 3[link], Table 1[link]). The formation of a weaker but bifurcated inter­molecular hydrogen-bonding inter­action C11—H11⋯O1/O2(−[{1\over 2}] + x, [{1\over 2}] − y, 1 − z) is also found in this structure, which additionally supports the packing. In the case of 4-(3-meth­oxy­phen­oxy)phthalo­nitrile, because of the favorable spatial arrangement of two A rings of neighboring mol­ecules, stabilization occurs largely through respective ππ inter­actions. The planes of the A rings of two neighboring mol­ecules are parallel to each other, but offset (angle between the ring normal and the centroid vector is 22.6° with a slippage of 1.41 Å). The distance between the centers of the A rings is 3.6632 (6) Å (centroid–centroid distance). These geometric characteristics imply the presence of a significant inter­molecular ππ attraction (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). The hydrogen atom of the aromatic C11—H11 moiety of one and the O1 oxygen atom of the adjacent mol­ecule may be engaged in additional bidirectional contacts (Fig. 4[link]), which support the ππ inter­action as well as its slippage. In both cases, a number of weaker hydrogen-bonding contacts are observed, comprising additional contributions to the stabilization of the crystal structures. Thus, the packing of the ortho-isomer exhibits in total eight inter­molecular hydrogen-bonding inter­actions, while for the meta-isomer, in addition to the ππ inter­action, five hydrogen bonds are observed (Tables 1[link], 2[link], Fig. 5[link]). The resulting crystal packings for the title 4-(2/3-meth­oxy­phen­oxy)phthalo­nitriles are shown in Figs. 6[link] and 7[link].

Table 1
Hydrogen-bond geometry (Å, °) for o-C15H10N2O2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O2i 0.95 2.95 3.629 (3) 129
C5—H5A⋯N2ii 0.95 2.66 3.394 (3) 134
C5—H5A⋯N1iii 0.95 2.90 3.557 (3) 128
C5—H5A⋯O1iv 0.95 2.96 3.453 (3) 113
C8—H8A⋯N2v 0.95 2.69 3.469 (3) 140
C11—H11A⋯O2vi 0.95 2.82 3.735 (3) 161
C11—H11A⋯O1vi 0.95 2.75 3.546 (3) 142
C12—H12A⋯N1vii 0.95 2.44 3.199 (3) 137
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (vii) [x, y-1, z].

Table 2
Hydrogen-bond geometry (Å, °) for m-C15H10N2O2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯N2i 0.95 2.64 3.5839 (13) 175
C8—H8A⋯O2ii 0.95 2.47 3.3447 (11) 153
C11—H11A⋯N1iii 0.95 2.62 3.2718 (13) 126
C12—H12A⋯N1iii 0.95 2.74 3.3325 (13) 121
C12—H12A⋯O2iv 0.95 2.67 3.5343 (12) 151
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x+2, -y+1, -z+2]; (iii) [x-1, y, z]; (iv) [-x+1, -y+1, -z+2].
[Figure 3]
Figure 3
The mol­ecular structure of the o-4-(2-meth­oxy­phen­oxy) phthalo­nitrile dimer, linked by C–H⋯N hydrogen bonds. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4]
Figure 4
The mol­ecular structure of m-4-(3-meth­oxy phen­oxy)phthalo­nitrile dimer, linked by ππ-inter­actions and supporting weak H⋯O contacts. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 5]
Figure 5
Representation of bifurcated O⋯H⋯O hydrogen bond exhibited by the m-4-(2-meth­oxy­phen­oxy)phthalo­nitrile dimer. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 6]
Figure 6
A view along the b axis of the crystal packing of o-4-(3-meth­oxy­phen­oxy)phthalo­nitrile. Inter­molecular hydrogen bonds have been removed for clarity.
[Figure 7]
Figure 7
A view along the b axis of the crystal packing of m-4-(2-meth­oxy­phen­oxy)phthalo­nitrile. Inter­molecular hydrogen bonds have been removed for clarity.

4. Database survey

A survey of the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using ConQuest version 2022 3.0 (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for closely related 4-(phen­oxy)phthalo­nitriles with ether-functionalized substituents on the phen­oxy moiety in the ortho- and meta-positions results in only two and one hits, respectively. The ortho-isomers are a phthalo­nitrile dimer bridged by the o-phen­oxy moiety (refcode: NAGJEN; Köç et al., 2016[Köç, M., Zorlu, Y., İşci, Ü., Berber, S., Ahsen, V. & Dumoulin, F. (2016). CrystEngComm, 18, 1416-1426.]), and the same mol­ecule as the one reported here (refcode: JEVNII; Ağar & Ocak İskeleli, 2007[Ağar, A. & Ocak İskeleli, N. (2007). Acta Cryst. E63, o712-o713.]). The meta-isomer is also a phthalo­nitrile dimer now bridged by the m-phen­oxy moiety (refcode: HAMVIB; Deveci et al., 2004[Deveci, Ö., Işık, Ş., Yavuz, M., Akdemir, N., Ağar, E. & Kantar, C. (2004). Acta Cryst. E60, o2309-o2310.]). Notably, with regard to the phthalo­nitrile dimers, ππ-stacking is observed for the meta-isomer but not for the ortho-isomer; the same observation was made for the two title compounds.

5. Synthesis and crystallization

Materials and physical methods: All reagents were purchased from Sigma–Aldrich. Reaction progress was monitored by thin-layer chromatography (TLC) on silica-gel plates.

Synthesis of substituted phthalo­nitriles: 4-nitro­phthalo­nitrile and 2/3-meth­oxy­phenol in a 1:1 molar ratio were placed in a flask and dissolved in DMF. Further, after complete dissolution of the reagents, 1 mol of potassium carbonate and 1/3 portion of water (in relation to DMF) were added to the mixture. The reaction mass was stirred at 353–363 K for 2.5 h, after which it was cooled to 278 K and poured into a threefold excess (by volume) of 15% aqueous NaCl solution. The precipitate was filtered off, recrystallized from 50% aqueous 2-propanol solution and then dried at 343 K. As a result, light crystals of 4-(2-meth­oxy­phen­oxy) phthalo­nitrile (75%) and 4-(3-meth­oxy­phen­oxy) phthalo­nitrile (89%) were obtained, respectively. Crystals were obtained by slow evaporation of solvent from a saturated solution of phthalo­nitriles in chloro­form.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms were placed in calculated positions and were refined using a riding model [Uiso(H) = 1.5Ueq(C) for CH3 groups and Uiso(H) = 1.2Ueq(C) for other groups).

Table 3
Experimental details

  o-C15H10N2O2 m-C15H10N2O2
Crystal data
Mr 250.25 250.25
Crystal system, space group Orthorhombic, P212121 Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 7.7329 (3), 8.2536 (3), 19.2301 (7) 8.0609 (3), 8.4672 (4), 9.9999 (4)
α, β, γ (°) 90, 90, 90 104.638 (1), 95.078 (1), 110.570 (1)
V3) 1227.35 (8) 606.31 (4)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.09
Crystal size (mm) 0.24 × 0.24 × 0.07 0.45 × 0.30 × 0.27
 
Data collection
Diffractometer Bruker D8 Quest (CMOS) Bruker D8 Quest (CMOS)
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.903, 0.971 0.903, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 19395, 3035, 2616 10029, 3395, 3040
Rint 0.046 0.017
(sin θ/λ)max−1) 0.667 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.095, 1.09 0.039, 0.105, 1.06
No. of reflections 3035 3395
No. of parameters 173 173
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.32 0.37, −0.27
Absolute structure Flack x determined using 931 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Computer programs: APEX3 and SAINT (Bruker, 2003[Bruker (2003). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: Mercury (Macrae et al., 2020).

4-(2-Methoxyphenoxy)benzene-1,2-dicarbonitrile (o-C15H10N2O2) top
Crystal data top
C15H10N2O2Dx = 1.354 Mg m3
Mr = 250.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9781 reflections
a = 7.7329 (3) Åθ = 2.7–30.1°
b = 8.2536 (3) ŵ = 0.09 mm1
c = 19.2301 (7) ÅT = 100 K
V = 1227.35 (8) Å3Prism, colorless
Z = 40.24 × 0.24 × 0.07 mm
F(000) = 520
Data collection top
Bruker D8 Quest (CMOS)
diffractometer
2616 reflections with I > 2σ(I)
Radiation source: microfocus tubeRint = 0.046
ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1010
Tmin = 0.903, Tmax = 0.971k = 1111
19395 measured reflectionsl = 2525
3035 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.3865P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3035 reflectionsΔρmax = 0.21 e Å3
173 parametersΔρmin = 0.32 e Å3
0 restraintsAbsolute structure: Flack x determined using 931 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6870 (2)0.31404 (19)0.64727 (8)0.0195 (4)
O20.9772 (2)0.4854 (2)0.66084 (9)0.0268 (4)
N10.4498 (4)0.9100 (3)0.50573 (12)0.0377 (6)
N20.3018 (3)0.6112 (3)0.36049 (11)0.0244 (5)
C10.7085 (3)0.4120 (3)0.70640 (12)0.0172 (5)
C20.8609 (3)0.5003 (3)0.71355 (12)0.0193 (5)
C30.8807 (3)0.5958 (3)0.77286 (13)0.0235 (5)
H3A0.9825110.6585420.7790840.028*
C40.7515 (3)0.5990 (3)0.82256 (12)0.0249 (6)
H4A0.7654660.6652660.8625520.030*
C50.6029 (3)0.5081 (3)0.81540 (12)0.0242 (5)
H5A0.5166180.5099740.8505460.029*
C60.5809 (3)0.4138 (3)0.75631 (12)0.0210 (5)
H6A0.4788400.3511960.7503600.025*
C70.6104 (3)0.3826 (3)0.59041 (11)0.0160 (5)
C80.5802 (3)0.5471 (3)0.58379 (11)0.0166 (5)
H8A0.6117600.6198030.6199240.020*
C90.5027 (3)0.6041 (3)0.52311 (11)0.0174 (5)
C100.4544 (3)0.4968 (3)0.46957 (11)0.0170 (5)
C110.4861 (3)0.3315 (3)0.47775 (12)0.0178 (5)
H11A0.4543530.2577540.4420350.021*
C120.5635 (3)0.2752 (3)0.53775 (12)0.0180 (5)
H12A0.5848190.1625140.5431850.022*
C130.4736 (3)0.7744 (3)0.51398 (12)0.0235 (5)
C140.3705 (3)0.5595 (3)0.40833 (12)0.0187 (5)
C151.1358 (3)0.5737 (4)0.66790 (16)0.0365 (7)
H15A1.2099110.5522310.6275850.055*
H15B1.1953100.5393390.7104130.055*
H15C1.1107840.6899450.6705150.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0259 (9)0.0151 (8)0.0175 (8)0.0017 (7)0.0029 (7)0.0003 (6)
O20.0213 (8)0.0321 (10)0.0270 (9)0.0034 (8)0.0053 (8)0.0023 (8)
N10.0639 (18)0.0183 (11)0.0310 (12)0.0001 (11)0.0236 (13)0.0027 (10)
N20.0281 (11)0.0235 (11)0.0216 (11)0.0009 (10)0.0029 (10)0.0021 (9)
C10.0213 (11)0.0130 (10)0.0172 (11)0.0032 (10)0.0023 (10)0.0017 (9)
C20.0193 (11)0.0204 (11)0.0183 (11)0.0025 (10)0.0003 (9)0.0067 (10)
C30.0216 (12)0.0234 (13)0.0255 (12)0.0002 (11)0.0092 (11)0.0033 (10)
C40.0317 (14)0.0266 (13)0.0165 (12)0.0070 (12)0.0083 (10)0.0031 (10)
C50.0267 (13)0.0280 (13)0.0177 (11)0.0067 (12)0.0025 (10)0.0004 (10)
C60.0197 (11)0.0193 (12)0.0241 (12)0.0019 (10)0.0016 (10)0.0053 (10)
C70.0137 (10)0.0174 (11)0.0168 (10)0.0005 (9)0.0038 (9)0.0016 (9)
C80.0192 (11)0.0162 (11)0.0144 (10)0.0032 (9)0.0003 (9)0.0029 (9)
C90.0183 (11)0.0150 (11)0.0187 (11)0.0016 (9)0.0010 (10)0.0004 (9)
C100.0162 (10)0.0183 (11)0.0164 (10)0.0011 (10)0.0009 (9)0.0026 (9)
C110.0162 (11)0.0183 (11)0.0191 (11)0.0029 (9)0.0020 (9)0.0042 (9)
C120.0175 (11)0.0123 (11)0.0243 (12)0.0000 (9)0.0028 (10)0.0015 (9)
C130.0320 (14)0.0208 (13)0.0175 (11)0.0029 (11)0.0098 (11)0.0038 (10)
C140.0196 (11)0.0167 (11)0.0199 (12)0.0030 (9)0.0021 (10)0.0054 (9)
C150.0195 (12)0.0447 (17)0.0451 (17)0.0050 (13)0.0056 (12)0.0081 (14)
Geometric parameters (Å, º) top
O1—C71.366 (3)C6—H6A0.9500
O1—C11.405 (3)C7—C81.384 (3)
O2—C21.360 (3)C7—C121.394 (3)
O2—C151.434 (3)C8—C91.394 (3)
N1—C131.145 (3)C8—H8A0.9500
N2—C141.145 (3)C9—C101.408 (3)
C1—C61.377 (3)C9—C131.434 (3)
C1—C21.393 (3)C10—C111.395 (3)
C2—C31.395 (3)C10—C141.441 (3)
C3—C41.382 (4)C11—C121.381 (3)
C3—H3A0.9500C11—H11A0.9500
C4—C51.379 (4)C12—H12A0.9500
C4—H4A0.9500C15—H15A0.9800
C5—C61.388 (3)C15—H15B0.9800
C5—H5A0.9500C15—H15C0.9800
C7—O1—C1117.45 (17)C7—C8—C9118.8 (2)
C2—O2—C15116.7 (2)C7—C8—H8A120.6
C6—C1—C2122.1 (2)C9—C8—H8A120.6
C6—C1—O1119.1 (2)C8—C9—C10120.9 (2)
C2—C1—O1118.8 (2)C8—C9—C13120.1 (2)
O2—C2—C1116.0 (2)C10—C9—C13119.0 (2)
O2—C2—C3126.0 (2)C11—C10—C9119.1 (2)
C1—C2—C3118.0 (2)C11—C10—C14121.5 (2)
C4—C3—C2119.8 (2)C9—C10—C14119.4 (2)
C4—C3—H3A120.1C12—C11—C10120.0 (2)
C2—C3—H3A120.1C12—C11—H11A120.0
C5—C4—C3121.5 (2)C10—C11—H11A120.0
C5—C4—H4A119.2C11—C12—C7120.4 (2)
C3—C4—H4A119.2C11—C12—H12A119.8
C4—C5—C6119.3 (2)C7—C12—H12A119.8
C4—C5—H5A120.4N1—C13—C9179.0 (3)
C6—C5—H5A120.4N2—C14—C10178.6 (2)
C1—C6—C5119.3 (2)O2—C15—H15A109.5
C1—C6—H6A120.4O2—C15—H15B109.5
C5—C6—H6A120.4H15A—C15—H15B109.5
O1—C7—C8123.6 (2)O2—C15—H15C109.5
O1—C7—C12115.53 (19)H15A—C15—H15C109.5
C8—C7—C12120.9 (2)H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.952.953.629 (3)129
C5—H5A···N2ii0.952.663.394 (3)134
C5—H5A···N1iii0.952.903.557 (3)128
C5—H5A···O1iv0.952.963.453 (3)113
C8—H8A···N2v0.952.693.469 (3)140
C11—H11A···O2vi0.952.823.735 (3)161
C11—H11A···O1vi0.952.753.546 (3)142
C12—H12A···N1vii0.952.443.199 (3)137
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+1/2, y+1, z+1/2; (iii) x+1, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2; (v) x+1/2, y+3/2, z+1; (vi) x1/2, y+1/2, z+1; (vii) x, y1, z.
4-(3-Methoxyphenoxy)benzene-1,2-dicarbonitrile (m-C15H10N2O2) top
Crystal data top
C15H10N2O2Z = 2
Mr = 250.25F(000) = 260
Triclinic, P1Dx = 1.371 Mg m3
a = 8.0609 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.4672 (4) ÅCell parameters from 9781 reflections
c = 9.9999 (4) Åθ = 2.7–30.1°
α = 104.638 (1)°µ = 0.09 mm1
β = 95.078 (1)°T = 100 K
γ = 110.570 (1)°Prism, colorless
V = 606.31 (4) Å30.45 × 0.30 × 0.27 mm
Data collection top
Bruker D8 Quest (CMOS)
diffractometer
3040 reflections with I > 2σ(I)
Radiation source: microfocus tubeRint = 0.017
ω scansθmax = 29.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.903, Tmax = 0.971k = 1111
10029 measured reflectionsl = 1313
3395 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.2143P]
where P = (Fo2 + 2Fc2)/3
3395 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56496 (10)0.59440 (10)0.80203 (7)0.01795 (16)
O20.87906 (10)0.47550 (9)1.17760 (7)0.01716 (16)
N10.95411 (13)0.23336 (15)0.44743 (10)0.0277 (2)
N20.46049 (13)0.06002 (13)0.21559 (10)0.0253 (2)
C10.69339 (13)0.64698 (13)0.92463 (10)0.01494 (18)
C20.72490 (12)0.52173 (12)0.97939 (9)0.01389 (18)
H2A0.6688550.3987950.9298160.017*
C30.84135 (13)0.58336 (12)1.10919 (9)0.01423 (18)
C40.92411 (14)0.76450 (13)1.18106 (10)0.01779 (19)
H4A1.0045120.8053111.2691120.021*
C50.88827 (14)0.88403 (13)1.12324 (11)0.0203 (2)
H5A0.9436321.0070751.1725920.024*
C60.77200 (14)0.82629 (13)0.99356 (10)0.0186 (2)
H6A0.7475710.9083410.9537050.022*
C70.55405 (13)0.45928 (12)0.68822 (9)0.01418 (18)
C80.70450 (12)0.42664 (12)0.65164 (9)0.01438 (18)
H8A0.8208470.4934690.7098320.017*
C90.67994 (12)0.29370 (12)0.52775 (9)0.01387 (18)
C100.50752 (12)0.19245 (12)0.44232 (9)0.01434 (18)
C110.35970 (13)0.22881 (13)0.48119 (10)0.01664 (19)
H11A0.2428650.1618800.4237870.020*
C120.38297 (13)0.36220 (13)0.60321 (10)0.01613 (19)
H12A0.2823690.3876200.6290650.019*
C130.83370 (13)0.26098 (14)0.48459 (10)0.0185 (2)
C140.48277 (13)0.05290 (13)0.31588 (10)0.01762 (19)
C150.79525 (14)0.28892 (13)1.10841 (11)0.0189 (2)
H15A0.8292820.2258201.1686750.028*
H15B0.8353830.2608151.0188820.028*
H15C0.6636760.2522941.0902530.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0233 (4)0.0224 (4)0.0123 (3)0.0155 (3)0.0020 (3)0.0032 (3)
O20.0211 (3)0.0165 (3)0.0143 (3)0.0086 (3)0.0001 (3)0.0046 (3)
N10.0205 (4)0.0418 (6)0.0197 (4)0.0167 (4)0.0019 (3)0.0014 (4)
N20.0272 (5)0.0235 (5)0.0203 (4)0.0083 (4)0.0016 (4)0.0019 (3)
C10.0167 (4)0.0193 (4)0.0115 (4)0.0094 (3)0.0045 (3)0.0051 (3)
C20.0156 (4)0.0145 (4)0.0126 (4)0.0073 (3)0.0041 (3)0.0034 (3)
C30.0163 (4)0.0164 (4)0.0124 (4)0.0081 (3)0.0049 (3)0.0052 (3)
C40.0195 (4)0.0176 (5)0.0135 (4)0.0060 (4)0.0021 (3)0.0022 (3)
C50.0246 (5)0.0141 (4)0.0198 (5)0.0064 (4)0.0047 (4)0.0027 (4)
C60.0240 (5)0.0170 (4)0.0184 (4)0.0105 (4)0.0063 (4)0.0068 (4)
C70.0187 (4)0.0165 (4)0.0110 (4)0.0097 (3)0.0042 (3)0.0059 (3)
C80.0139 (4)0.0178 (4)0.0123 (4)0.0070 (3)0.0019 (3)0.0050 (3)
C90.0136 (4)0.0179 (4)0.0122 (4)0.0078 (3)0.0025 (3)0.0056 (3)
C100.0148 (4)0.0164 (4)0.0126 (4)0.0063 (3)0.0022 (3)0.0055 (3)
C110.0126 (4)0.0212 (5)0.0167 (4)0.0060 (3)0.0022 (3)0.0076 (4)
C120.0150 (4)0.0222 (5)0.0160 (4)0.0100 (4)0.0055 (3)0.0090 (3)
C130.0170 (4)0.0247 (5)0.0127 (4)0.0096 (4)0.0003 (3)0.0026 (3)
C140.0159 (4)0.0196 (5)0.0166 (4)0.0060 (3)0.0012 (3)0.0062 (4)
C150.0244 (5)0.0160 (4)0.0181 (4)0.0099 (4)0.0029 (4)0.0058 (3)
Geometric parameters (Å, º) top
O1—C71.3658 (11)C6—H6A0.9500
O1—C11.3959 (11)C7—C121.3939 (14)
O2—C31.3669 (11)C7—C81.3942 (13)
O2—C151.4303 (12)C8—C91.3914 (12)
N1—C131.1464 (14)C8—H8A0.9500
N2—C141.1468 (14)C9—C101.4067 (13)
C1—C61.3782 (14)C9—C131.4404 (13)
C1—C21.3954 (13)C10—C111.3946 (13)
C2—C31.3915 (13)C10—C141.4384 (13)
C2—H2A0.9500C11—C121.3834 (13)
C3—C41.3975 (13)C11—H11A0.9500
C4—C51.3835 (14)C12—H12A0.9500
C4—H4A0.9500C15—H15A0.9800
C5—C61.3934 (15)C15—H15B0.9800
C5—H5A0.9500C15—H15C0.9800
C7—O1—C1120.56 (7)C9—C8—C7118.33 (8)
C3—O2—C15117.05 (7)C9—C8—H8A120.8
C6—C1—C2122.83 (9)C7—C8—H8A120.8
C6—C1—O1116.08 (8)C8—C9—C10121.08 (8)
C2—C1—O1120.80 (8)C8—C9—C13119.63 (8)
C3—C2—C1117.62 (8)C10—C9—C13119.28 (8)
C3—C2—H2A121.2C11—C10—C9119.29 (8)
C1—C2—H2A121.2C11—C10—C14119.99 (8)
O2—C3—C2123.86 (8)C9—C10—C14120.72 (8)
O2—C3—C4115.26 (8)C12—C11—C10120.09 (9)
C2—C3—C4120.85 (9)C12—C11—H11A120.0
C5—C4—C3119.61 (9)C10—C11—H11A120.0
C5—C4—H4A120.2C11—C12—C7119.99 (9)
C3—C4—H4A120.2C11—C12—H12A120.0
C4—C5—C6120.85 (9)C7—C12—H12A120.0
C4—C5—H5A119.6N1—C13—C9178.59 (10)
C6—C5—H5A119.6N2—C14—C10178.88 (11)
C1—C6—C5118.24 (9)O2—C15—H15A109.5
C1—C6—H6A120.9O2—C15—H15B109.5
C5—C6—H6A120.9H15A—C15—H15B109.5
O1—C7—C12115.57 (8)O2—C15—H15C109.5
O1—C7—C8123.07 (8)H15A—C15—H15C109.5
C12—C7—C8121.20 (9)H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N2i0.952.643.5839 (13)175
C8—H8A···O2ii0.952.473.3447 (11)153
C11—H11A···N1iii0.952.623.2718 (13)126
C12—H12A···N1iii0.952.743.3325 (13)121
C12—H12A···O2iv0.952.673.5343 (12)151
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1, z+2; (iii) x1, y, z; (iv) x+1, y+1, z+2.
 

Funding information

Funding for this research was provided by: Russian Science Foundation (grant No. 22-73-10158 to Arthur Vashurin).

References

First citationAğar, A. & Ocak İskeleli, N. (2007). Acta Cryst. E63, o712–o713.  CSD CrossRef IUCr Journals Google Scholar
First citationBotnar, A., Tikhomirova, T., Kazaryan, K., Bychkova, A., Maizlish, V., Abramov, I. & Vashurin, A. (2021). J. Mol. Struct. 1238, 130438–130447.  CrossRef CAS Google Scholar
First citationBotnar, A., Tikhomirova, T., Nalimova, K., Erzunov, D., Razumov, M. & Vashurin, A. (2020). J. Mol. Struct. 1205, 127626–127636.  CrossRef CAS Google Scholar
First citationBruker (2003). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDeveci, Ö., Işık, Ş., Yavuz, M., Akdemir, N., Ağar, E. & Kantar, C. (2004). Acta Cryst. E60, o2309–o2310.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKöç, M., Zorlu, Y., İşci, Ü., Berber, S., Ahsen, V. & Dumoulin, F. (2016). CrystEngComm, 18, 1416–1426.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLaskowski, M., Clarke, J., Neal, A., Harvey, B., Ricks-Laskoski, H. L., Hervey, W. J., Daftary, M. N., Shepard, A. & Keller, T. M. (2016). ChemistrySelect 1, 3423–3427.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, H., Zhang, Z., Ji, P., Yu, X., Naito, K. & Zhang, Q. (2019). High Perform. Polym. 31, 820–830.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds