research communications
Structures of S-(pyridin-2-yl) 4-nitrobenzothioate, S-(pyridin-2-yl) 4-methylbenzothioate and S-(pyridin-2-yl) 4-methoxybenzothioate: building blocks for low-symmetry multifunctional tetrapyrroles
aSchool of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, D02 R590, Dublin, Ireland, and bSchool of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland
*Correspondence e-mail: sampleh@tcd.ie
The crystal structures of three S-(pyridin-2-yl) benzothioesters with varying para-phenyl substituents are presented, namely, S-(pyridin-2-yl) 4-nitrobenzothioate (1, C12H8N2O3S), S-(pyridin-2-yl) 4-methylbenzothioate (2, C13H11NO2S) and S-(pyridin-2-yl) 4-methoxybenzothioate (3, C13H11NO2S). This class of compounds are used in the mono-acylation of pyrrolic species to yield multifunctional tetrapyrroles. The structures presented herein are the first of their compound class. The dominant interactions present in this series are π–π stacking and C—H⋯O interactions, and as the para-phenyl motif changes from electron withdrawing (NO2, 1) to electron donating (OCH3, 3), changes are observed in the interactions present in the crystal packing, from predominant π–π stacking in 1 to exclusively C—H⋯O/N interactions (Caryl—H⋯Ocarbonyl, C—H⋯Omethoxy and Caryl—H⋯Npyridine) in 3.
1. Chemical context
In the continual search of evermore functional tetrapyrroles, the tedious separation of multiple regioisomeric et al., 1967) or Lindsey-style syntheses (Lindsey et al., 1986) no longer suits the desires of the few in this research field. Instead, multiple elegant yet simple routes have been developed for the functionalization of the porphyrin core (Hiroto et al., 2017; Sample et al., 2021), as well as from the modification of pyrrolic precursors (Lindsey, 2010). One route of note is via the monoacylation of meso-substituted dipyrromethanes (I, Fig. 1). Initially reported with the use of acyl chlorides by Lindsey and coworkers (Lee et al., 1995), the procedure also yields the diacylated products in substantial yield. The same group reported the selective monoacylation of meso-aryl dipyrromethanes through the use of S-(pyridin-2-yl) benzothioesters (Rao et al., 2000).
from mixed Adler–Longo (AdlerS-(Pyridin-2-yl)benzothioesters were first synthesized for the determination of ionization constants for heterocyclic substances (Albert & Barlin, 1959). This methodology was later elaborated upon to generate a wide variety of alkyl, aryl and heteroaryl (Araki et al., 1974). These compounds were also utilized to generate 2-ketopyrroles (Nicolau et al., 1981). Their versatility was recently highlighted (Lee, 2020). The developments that have led to this point now enable the generation of diverse substitution patterns for both (Rao et al., 2000; Senge, 2011) and chlorins (Laakso et al., 2012; Ra et al., 2015; Senge et al., 2021).
2. Structural commentary
The single-crystal XRD structures of title compounds 1, 2 and 3 (Figs. 2–4), all present asymmetric units consisting of one molecule of compound and no solvate. Compound 1 was found to crystallize in the orthorhombic system (Pna21, Z = 4), compound 2 was found to crystallize in the triclinic system (P, Z = 2) and compound 3 was found to crystallize in the monoclinic system (P21/c, Z = 4). Each molecular structure shows an S-(pyridin-2-yl) benzothioate where the para-phenyl motif is modified, from NO2 in 1, CH3 in 2, and OCH3 in 3. All of the groups utilized herein are found extensively in the field of tetrapyrroles.
In all structures 1–3, the substituted phenyl moieties are all essentially planar with the pyridine ring twisted relative to this plane. This is seen in the plane normal to plane normal angle and the torsion angle described by C8—S1—C6—N1. The twist of the methanethioate moiety to the phenyl ring also describes the change in the angle of the rings to each other. These values are shown in Table 1.
In compound 1 (Fig. 2), the angle between the para-nitrobenzaldehyde moiety, C8–O18, and the pyridine ring is similar to the angle between the benzaldehyde moiety, C8–C16 and the pyridine ring in compound 2 (Fig. 3). The phenyl plane–pyridine plane angle and C8–S1–C6–N1 torsion angle in 3 (Fig. 4) are very different to those of both 1 and 2.
All three benzothioesters are similar to the previously published unsubstituted S-phenyl benzothioate (refcode: CEFMOR; Belay et al., 2012). An overlay of 1–3 with CEFMOR is provided as Fig. 5. The bond distances are within normal ranges (Groom et al., 2016).
3. Supramolecular features
Of the varying para-phenyl motifs presented across the series, the NO2 group in 1 is the most electron withdrawing, according to its tabulated Hammett constant (σp = 0.78; McDaniel & Brown, 1958) but also observed by the differing shifts in the resonances presented for the para-substituted phenyl ring, with extensive deshielding of the respective protons (Figs. S1, S4 in the supporting information). Furthermore, considering the respective previously determined Hammett constants, it is observed that the most electron donating is the OCH3 group in 3 (σp = −0.27), with 2 (CH3) lying somewhere in between (σp = −0.17) (McDaniel & Brown, 1958); again, this is reflected in the 1H NMR spectra.
Compound 1 presents C—H⋯O interactions (Table 2, Fig. 6) to the carbonyl O9 via C4-H and C5-H donors [D⋯A = 3.283 (4) and 3.371 (5) Å]. The pyridine N1 is also an acceptor to the phenyl C12-H [D⋯A = 3.315 (5) Å]. The nitro group is a dual acceptor with interactions between O18 and one pyridyl C3-H [D⋯A = 3.396 (5) Å] and also a bifurcated interaction between O17 and phenyl C14-H and C15-H [D⋯A = 3.359 (4) and 3.312 (5) Å, respectively].
|
Compound 2 presents C—H⋯N-paired dimers between the H6-pyridyl protons C2-H2 and N1 [D⋯A = 3.355 (2) Å; Table 3, Fig. 7]. The carbonyl is involved in a bifurcated interaction C3-H/C4-H⋯O9 [D⋯A = 3.278 (2) and 3.316 (2) Å, respectively] and a C16-H⋯O9 interaction [D⋯A = 3.460 (2) Å].
|
Compound 3 presents a multitude of non-classical hydrogen-bonding interactions, of the C—H⋯Ocarbonyl and the C—H⋯Npyridyl type (Table 4, Fig. 8). The carbonyl O9 is linked by a bifurcated interaction to C3-H and C5-H [D⋯A = 3.2566 (15) and 3.4270 (16) Å, respectively]. There is another bifurcated hydrogen-bond interaction between the pyridine N1 and C11 and C12 [D⋯A = 3.3535 (17) and 3.4182 (16) Å, respectively], linking the molecules head to tail. The methoxy groups form C17-H⋯O16 interactions [D⋯A = 3.4475 (17) Å], comprising a supramolecular synthon linking two molecules together. The methoxy oxygen O16 is further linked by a phenyl C14-H⋯O16 interaction [D⋯A = 3.3340 (15) Å].
|
π–π stacking is evident in both 1 and 2. Weak dimeric offset π–π stacking is observed in 1 with columns of anti-parallel non-interacting molecules when viewed normal to (001) (Fig. 6). The closest centroid–centroid distance in 1 (C10–C15 to C10i–C15i and N1–C6 to N1i–C6i [symmetry transformation: (i) x, y, −1 + z; x, y, 1 + z] is 3.850 (3) Å with a slippages of 1.823 and 1.856 Å, respectively, and angles between planes of 0.0 (2)°. In 2, π-stacking occurs only through phenyl ring pairs with the closest centroid–centroid distance being 3.8783 (11) Å, a slippage of 1.575 Å, and an angle between planes of 0.03 (9)°, as seen normal to the (011) plane. In 3 there is no relevant π–π stacking, with the closest centroid–centroid distance being 4.0847 (7) Å, with a slippage of 2.042 Å and an angle between the planes of 5.14 (6)°.
4. Database survey
A search in the Cambridge Structural Database (CSD, Version 5.43, update November 2022; Groom et al., 2016) shows that no pyridine-substituted benzothioester structures are in the database. The unsubstituted S-phenyl benzothioate (CEFMOR; Belay et al., 2012) is similar structurally to 1 with only slight ring-twisting differences. However, the packing is quite different with only weak dimeric offset π–π stacking present in 1, with columns of anti-parallel non-interacting molecules when viewed normal to (001). The distinct C—H⋯N interactions seen particularly in 3 do not exist in the phenyl homologue.
Several other phenyl benzothiolates, however, are in the database, including, (−)-S-phenyl 2-benzoylbenzothioate (HOBREV; Takahashi et al., 1998a), (±)-S-phenyl 2-(p-tolylcarbonyl)benzothioate (HOBRUL; Takahashi et al., 1998a), (±)-S-phenyl 2-(p-chlorophenylcarbonyl)benzothioate (HOBSAS; Takahashi et al., 1998a), S-phenyl-p-cyanothiobenzoate (MEBDED; Ivanova et al., 2006), S,S-diphenyl 2-bromobenzene-1,3-bis(carbothioate) (MOFQUV; Kathewad et al., 2014), S-phenyl o-chlorothiobenzoate (PEDHOV; Jovanovski et al., 1993) and S-phenyl o-bromothiobenzoate (PEDHUB; Jovanovski et al., 1993), S-phenyl 4-methyl-2-benzoylbenzothioate (PUGXEU; Takahashi et al., 1998b; PUGXEU01; Takahashi et al., 1998a), S1,S4-diphenyl 2,5-bis(diphenylamino)benzene-1,4-dicarbothioate (XETHAI; Shimizu et al., 2016) and S-phenyl 4-methoxybenzenecarbothioate (YAWYEC; El-Azab et al., 2012; YAWYEC01; El-Azab & Abdel-Aziz, 2012).
5. Synthesis and crystallization
Compounds 1, 2, and 3 were synthesized following the reported procedure (Rao et al., 2000). Briefly, the respective acyl chloride (1 eq., ca 0.2 M) in a solution of CH2Cl2 was added dropwise over 0.5 h to a stirring solution of 2-mercaptopyridine (1 eq., ca 0.2 M) in CH2Cl2. The solution was left to stir for a further 2 h at room temperature. Throughout the addition processes, minor exotherms were noted, particularly for 1. The solution was diluted with the same volume again of CH2Cl2, and the solution was washed with NaOH (2 M), water, brine, and the organic layer then dried (MgSO4). Excess solvent was removed under reduced pressure and the title compounds were purified in the following ways: for 1, crystals were generated via hot recrystallization from ethyl acetate, and for 2 and 3, crystals were generated via precipitation from diethyl ether and hexanes. Compound 1 was yielded in 69%, with yields for 2 and 3 comparable to those previously reported (Rao et al., 2000).
1H NMR spectroscopic data matched previously reported synthesized compounds 2 and 3. Whilst the synthesis of compound 1 has been reported previously, no characterization data has been reported for it (Perrin et al., 2011). Below we present analytical data for 1, and within the supporting information we have attached the appropriate spectra, Figs. S1–S3. We also present there the NMR spectra for 2 and 3, to exhibit the electronic differences between the three compounds studied herein (Fig. S4).
Analytical data for 1:
1H NMR (298 K, 400 MHz, CDCl3) δ = 8.66–8.68 (m, 1H), 8.31 (d, J = 8.9 Hz, 2H), 8.14 (d, J = 8.9 Hz, 2H), 7.77–7.81 (m, 1H), 7.68–7.70 (m, 1H), 7.33–7.37 (m, 1H); 13C{1H} NMR (298 K, 101 MHz, CDCl3): δ = 188.3, 150.9, 150.3, 141.3, 137.7, 130.9, 128.7, 124.3, 124.2 ppm; RF = 0.58 (silica, EtOAc:C6H14 1:1, UV); m.p. = 427–429 K. Multiple attempts have been made to obtain a molecular ion peak via ESI–MS and all have been unsuccessful.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were positioned geometrically and refined isotropically using a riding model with C—H = 0.93–0.98 Å and Uiso(H) = 1.2–1.5Ueq(C).
details are summarized in Table 5
|
Supporting information
https://doi.org/10.1107/S2056989023001056/yz2028sup1.cif
contains datablocks 1, 2, 3, global. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989023001056/yz20281sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989023001056/yz20282sup3.hkl
Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S2056989023001056/yz20283sup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989023001056/yz20281sup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989023001056/yz20282sup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989023001056/yz20283sup7.cml
1H, 13C, and 1H-13C-HSQC NMR spectra of compound 1, along with overlayed aromatic regions of the 1H NMR spectra of compounds 1, 2, and 3. DOI: https://doi.org/10.1107/S2056989023001056/yz2028sup8.pdf
Data collection: APEX3 (Bruker, 2017) for (1), (3); APEX4 (Bruker, 2021) for (2). For all structures, cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).C12H8N2O3S | Dx = 1.549 Mg m−3 |
Mr = 260.26 | Cu Kα radiation, λ = 1.54178 Å |
Orthorhombic, Pna21 | Cell parameters from 5322 reflections |
a = 23.0774 (11) Å | θ = 3.8–69.3° |
b = 12.5622 (5) Å | µ = 2.62 mm−1 |
c = 3.8498 (2) Å | T = 100 K |
V = 1116.07 (9) Å3 | Needle, clear colourless |
Z = 4 | 0.37 × 0.05 × 0.04 mm |
F(000) = 536 |
Bruker APEXII Kappa Duo diffractometer | 1870 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 1759 reflections with I > 2σ(I) |
Mirror optics monochromator | Rint = 0.062 |
Detector resolution: 8.33 pixels mm-1 | θmax = 69.8°, θmin = 3.8° |
ω and φ scans | h = −27→28 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −15→15 |
Tmin = 0.596, Tmax = 0.753 | l = −4→4 |
8764 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.043 | w = 1/[σ2(Fo2) + (0.0767P)2 + 0.6178P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.122 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.45 e Å−3 |
1870 reflections | Δρmin = −0.26 e Å−3 |
163 parameters | Absolute structure: Flack x determined using 584 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.02 (3) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.36818 (18) | 0.8352 (3) | 0.5521 (14) | 0.0304 (9) | |
H2 | 0.330987 | 0.825272 | 0.451494 | 0.037* | |
C3 | 0.38137 (18) | 0.9340 (3) | 0.6888 (13) | 0.0306 (9) | |
H3 | 0.354398 | 0.990981 | 0.674849 | 0.037* | |
C4 | 0.43473 (19) | 0.9481 (3) | 0.8464 (12) | 0.0282 (9) | |
H4 | 0.444798 | 1.014804 | 0.945957 | 0.034* | |
C5 | 0.47344 (17) | 0.8632 (3) | 0.8569 (12) | 0.0259 (8) | |
H5 | 0.510275 | 0.869893 | 0.964831 | 0.031* | |
C6 | 0.45619 (15) | 0.7686 (3) | 0.7039 (12) | 0.0240 (8) | |
C8 | 0.56755 (16) | 0.7014 (3) | 0.5347 (11) | 0.0250 (9) | |
C10 | 0.61366 (16) | 0.6184 (3) | 0.4955 (11) | 0.0228 (8) | |
C11 | 0.60607 (17) | 0.5140 (3) | 0.6121 (11) | 0.0238 (8) | |
H11 | 0.571383 | 0.494357 | 0.728517 | 0.029* | |
C12 | 0.64936 (16) | 0.4390 (3) | 0.5575 (12) | 0.0250 (8) | |
H12 | 0.644736 | 0.367567 | 0.633914 | 0.030* | |
C13 | 0.69883 (17) | 0.4706 (3) | 0.3907 (12) | 0.0249 (8) | |
C14 | 0.70817 (17) | 0.5742 (3) | 0.2745 (11) | 0.0251 (9) | |
H14 | 0.743200 | 0.593441 | 0.161129 | 0.030* | |
C15 | 0.66456 (17) | 0.6483 (3) | 0.3299 (11) | 0.0244 (9) | |
H15 | 0.669537 | 0.719721 | 0.254326 | 0.029* | |
N1 | 0.40512 (14) | 0.7521 (2) | 0.5536 (10) | 0.0265 (7) | |
N16 | 0.74430 (14) | 0.3901 (2) | 0.3212 (10) | 0.0278 (8) | |
O9 | 0.57457 (12) | 0.79289 (18) | 0.4455 (9) | 0.0293 (7) | |
O17 | 0.73740 (13) | 0.3009 (2) | 0.4467 (10) | 0.0379 (8) | |
O18 | 0.78579 (13) | 0.4153 (2) | 0.1448 (12) | 0.0449 (10) | |
S1 | 0.50105 (4) | 0.65266 (6) | 0.7155 (4) | 0.0241 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0261 (19) | 0.0317 (19) | 0.033 (2) | 0.0016 (15) | 0.0009 (19) | 0.0019 (19) |
C3 | 0.036 (2) | 0.0242 (17) | 0.031 (2) | 0.0077 (14) | 0.0060 (19) | 0.003 (2) |
C4 | 0.038 (2) | 0.0191 (16) | 0.028 (2) | 0.0014 (15) | 0.0044 (17) | −0.0004 (16) |
C5 | 0.030 (2) | 0.0210 (16) | 0.027 (2) | −0.0019 (14) | 0.0007 (17) | 0.0000 (16) |
C6 | 0.0271 (17) | 0.0168 (15) | 0.028 (2) | −0.0001 (13) | 0.0030 (17) | 0.0025 (17) |
C8 | 0.0270 (18) | 0.0194 (17) | 0.029 (2) | −0.0038 (13) | −0.0023 (17) | 0.0008 (16) |
C10 | 0.0294 (19) | 0.0161 (15) | 0.023 (2) | −0.0021 (13) | −0.0042 (15) | 0.0006 (15) |
C11 | 0.0268 (18) | 0.0187 (15) | 0.026 (2) | −0.0035 (13) | −0.0012 (15) | 0.0011 (15) |
C12 | 0.0303 (19) | 0.0154 (15) | 0.029 (2) | −0.0033 (13) | −0.0041 (18) | 0.0031 (15) |
C13 | 0.0268 (19) | 0.0189 (16) | 0.029 (2) | 0.0020 (13) | −0.0041 (16) | 0.0007 (16) |
C14 | 0.0259 (18) | 0.0209 (16) | 0.029 (2) | −0.0060 (13) | −0.0003 (16) | −0.0007 (16) |
C15 | 0.0285 (19) | 0.0171 (16) | 0.028 (2) | −0.0024 (13) | −0.0045 (16) | 0.0015 (15) |
N1 | 0.0308 (16) | 0.0216 (14) | 0.0270 (19) | −0.0026 (12) | 0.0015 (15) | 0.0007 (15) |
N16 | 0.0279 (17) | 0.0229 (15) | 0.033 (2) | 0.0003 (13) | −0.0030 (14) | −0.0024 (15) |
O9 | 0.0343 (15) | 0.0164 (12) | 0.0371 (18) | −0.0024 (10) | 0.0016 (12) | 0.0055 (13) |
O17 | 0.0376 (16) | 0.0192 (13) | 0.057 (2) | 0.0038 (10) | −0.0016 (15) | 0.0071 (14) |
O18 | 0.0337 (16) | 0.0310 (14) | 0.070 (3) | 0.0042 (12) | 0.0145 (17) | 0.0034 (17) |
S1 | 0.0266 (5) | 0.0147 (4) | 0.0310 (5) | −0.0017 (3) | 0.0025 (3) | 0.0006 (4) |
C2—H2 | 0.9500 | C10—C11 | 1.397 (5) |
C2—C3 | 1.382 (6) | C10—C15 | 1.388 (6) |
C2—N1 | 1.348 (5) | C11—H11 | 0.9500 |
C3—H3 | 0.9500 | C11—C12 | 1.389 (5) |
C3—C4 | 1.384 (6) | C12—H12 | 0.9500 |
C4—H4 | 0.9500 | C12—C13 | 1.369 (6) |
C4—C5 | 1.392 (5) | C13—C14 | 1.393 (5) |
C5—H5 | 0.9500 | C13—N16 | 1.482 (5) |
C5—C6 | 1.385 (5) | C14—H14 | 0.9500 |
C6—N1 | 1.329 (5) | C14—C15 | 1.388 (5) |
C6—S1 | 1.787 (3) | C15—H15 | 0.9500 |
C8—C10 | 1.497 (5) | N16—O17 | 1.231 (4) |
C8—O9 | 1.210 (4) | N16—O18 | 1.215 (5) |
C8—S1 | 1.793 (4) | ||
C3—C2—H2 | 118.1 | C10—C11—H11 | 120.1 |
N1—C2—H2 | 118.1 | C12—C11—C10 | 119.9 (4) |
N1—C2—C3 | 123.7 (4) | C12—C11—H11 | 120.1 |
C2—C3—H3 | 120.7 | C11—C12—H12 | 120.9 |
C2—C3—C4 | 118.5 (3) | C13—C12—C11 | 118.3 (3) |
C4—C3—H3 | 120.7 | C13—C12—H12 | 120.9 |
C3—C4—H4 | 120.5 | C12—C13—C14 | 123.4 (3) |
C3—C4—C5 | 119.0 (4) | C12—C13—N16 | 118.5 (3) |
C5—C4—H4 | 120.5 | C14—C13—N16 | 118.0 (4) |
C4—C5—H5 | 121.3 | C13—C14—H14 | 121.1 |
C6—C5—C4 | 117.5 (4) | C15—C14—C13 | 117.7 (4) |
C6—C5—H5 | 121.3 | C15—C14—H14 | 121.1 |
C5—C6—S1 | 121.5 (3) | C10—C15—H15 | 119.9 |
N1—C6—C5 | 125.0 (3) | C14—C15—C10 | 120.2 (3) |
N1—C6—S1 | 113.4 (3) | C14—C15—H15 | 119.9 |
C10—C8—S1 | 114.2 (3) | C6—N1—C2 | 116.2 (3) |
O9—C8—C10 | 122.5 (4) | O17—N16—C13 | 117.3 (3) |
O9—C8—S1 | 123.3 (3) | O18—N16—C13 | 118.8 (3) |
C11—C10—C8 | 122.2 (3) | O18—N16—O17 | 123.9 (3) |
C15—C10—C8 | 117.3 (3) | C6—S1—C8 | 102.01 (17) |
C15—C10—C11 | 120.5 (3) | ||
C2—C3—C4—C5 | 1.0 (7) | C12—C13—N16—O17 | −6.7 (6) |
C3—C2—N1—C6 | 1.5 (7) | C12—C13—N16—O18 | 173.1 (4) |
C3—C4—C5—C6 | 0.6 (7) | C13—C14—C15—C10 | −0.1 (6) |
C4—C5—C6—N1 | −1.3 (7) | C14—C13—N16—O17 | 174.9 (4) |
C4—C5—C6—S1 | −177.6 (3) | C14—C13—N16—O18 | −5.3 (6) |
C5—C6—N1—C2 | 0.3 (7) | C15—C10—C11—C12 | −1.0 (6) |
C5—C6—S1—C8 | −54.6 (4) | N1—C2—C3—C4 | −2.1 (8) |
C8—C10—C11—C12 | 177.5 (4) | N1—C6—S1—C8 | 128.6 (3) |
C8—C10—C15—C14 | −177.7 (4) | N16—C13—C14—C15 | 177.8 (4) |
C10—C8—S1—C6 | −177.2 (3) | O9—C8—C10—C11 | 177.3 (4) |
C10—C11—C12—C13 | 0.4 (6) | O9—C8—C10—C15 | −4.1 (6) |
C11—C10—C15—C14 | 0.9 (6) | O9—C8—S1—C6 | 1.5 (4) |
C11—C12—C13—C14 | 0.3 (6) | S1—C6—N1—C2 | 176.9 (3) |
C11—C12—C13—N16 | −178.0 (4) | S1—C8—C10—C11 | −4.0 (5) |
C12—C13—C14—C15 | −0.5 (6) | S1—C8—C10—C15 | 174.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O18i | 0.95 | 2.68 | 3.396 (5) | 133 |
C4—H4···O9ii | 0.95 | 2.46 | 3.283 (4) | 145 |
C5—H5···O9iii | 0.95 | 2.56 | 3.371 (5) | 143 |
C12—H12···N1iv | 0.95 | 2.49 | 3.315 (5) | 145 |
C14—H14···O17v | 0.95 | 2.77 | 3.359 (4) | 121 |
C15—H15···O17v | 0.95 | 2.66 | 3.312 (5) | 127 |
Symmetry codes: (i) x−1/2, −y+3/2, z+1; (ii) −x+1, −y+2, z+1/2; (iii) x, y, z+1; (iv) −x+1, −y+1, z+1/2; (v) −x+3/2, y+1/2, z−1/2. |
C13H11NOS | Z = 2 |
Mr = 229.29 | F(000) = 240 |
Triclinic, P1 | Dx = 1.352 Mg m−3 |
a = 7.1775 (2) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 9.1492 (3) Å | Cell parameters from 5814 reflections |
c = 9.2832 (3) Å | θ = 5.0–70.1° |
α = 101.2966 (14)° | µ = 2.35 mm−1 |
β = 108.4632 (13)° | T = 100 K |
γ = 92.5673 (14)° | Plate, clear colourless |
V = 563.28 (3) Å3 | 0.39 × 0.22 × 0.09 mm |
Bruker APEXII Kappa Duo diffractometer | 2106 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 1958 reflections with I > 2σ(I) |
Mirror optics monochromator | Rint = 0.036 |
Detector resolution: 8.33 pixels mm-1 | θmax = 70.0°, θmin = 5.0° |
ω and φ scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −10→10 |
Tmin = 0.641, Tmax = 0.753 | l = −11→11 |
7937 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.126 | w = 1/[σ2(Fo2) + (0.0776P)2 + 0.2152P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max = 0.001 |
2106 reflections | Δρmax = 0.33 e Å−3 |
146 parameters | Δρmin = −0.27 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.49730 (6) | 0.81629 (5) | 0.54572 (5) | 0.02575 (19) | |
N1 | 0.1173 (2) | 0.85006 (17) | 0.44707 (17) | 0.0239 (3) | |
C2 | −0.0761 (3) | 0.8008 (2) | 0.3793 (2) | 0.0250 (4) | |
H2 | −0.167830 | 0.872979 | 0.368508 | 0.030* | |
C3 | −0.1488 (3) | 0.6502 (2) | 0.3242 (2) | 0.0245 (4) | |
H3 | −0.286999 | 0.620400 | 0.278163 | 0.029* | |
C4 | −0.0162 (3) | 0.5439 (2) | 0.3376 (2) | 0.0241 (4) | |
H4 | −0.061528 | 0.439922 | 0.300499 | 0.029* | |
C5 | 0.1838 (3) | 0.5928 (2) | 0.4062 (2) | 0.0237 (4) | |
H5 | 0.279047 | 0.523231 | 0.416127 | 0.028* | |
C6 | 0.2416 (3) | 0.7455 (2) | 0.4599 (2) | 0.0219 (4) | |
C8 | 0.5659 (3) | 0.73280 (19) | 0.7124 (2) | 0.0216 (4) | |
O9 | 0.44856 (19) | 0.65460 (16) | 0.74143 (15) | 0.0294 (3) | |
C10 | 0.7791 (3) | 0.76691 (19) | 0.8087 (2) | 0.0218 (4) | |
C11 | 0.8476 (3) | 0.6978 (2) | 0.9337 (2) | 0.0241 (4) | |
H11 | 0.757864 | 0.634654 | 0.957347 | 0.029* | |
C12 | 1.0455 (3) | 0.7206 (2) | 1.0234 (2) | 0.0250 (4) | |
H12 | 1.090277 | 0.672879 | 1.108358 | 0.030* | |
C13 | 1.1805 (3) | 0.8126 (2) | 0.9914 (2) | 0.0247 (4) | |
C14 | 1.1111 (3) | 0.8823 (2) | 0.8667 (2) | 0.0255 (4) | |
H14 | 1.201135 | 0.945560 | 0.843497 | 0.031* | |
C15 | 0.9125 (3) | 0.8605 (2) | 0.7760 (2) | 0.0229 (4) | |
H15 | 0.867412 | 0.909236 | 0.691895 | 0.028* | |
C16 | 1.3959 (3) | 0.8344 (2) | 1.0883 (2) | 0.0313 (5) | |
H16A | 1.433901 | 0.939493 | 1.144431 | 0.047* | |
H16B | 1.475338 | 0.808356 | 1.020416 | 0.047* | |
H16C | 1.418740 | 0.769623 | 1.163247 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0200 (3) | 0.0285 (3) | 0.0265 (3) | −0.00191 (19) | 0.00180 (19) | 0.0118 (2) |
N1 | 0.0244 (8) | 0.0223 (8) | 0.0238 (7) | 0.0017 (6) | 0.0060 (6) | 0.0056 (6) |
C2 | 0.0217 (9) | 0.0264 (10) | 0.0276 (9) | 0.0063 (7) | 0.0068 (7) | 0.0090 (7) |
C3 | 0.0213 (9) | 0.0292 (10) | 0.0229 (9) | 0.0014 (7) | 0.0065 (7) | 0.0074 (7) |
C4 | 0.0274 (9) | 0.0224 (9) | 0.0199 (8) | −0.0008 (7) | 0.0051 (7) | 0.0042 (7) |
C5 | 0.0245 (9) | 0.0239 (9) | 0.0217 (8) | 0.0056 (7) | 0.0058 (7) | 0.0053 (7) |
C6 | 0.0212 (8) | 0.0241 (9) | 0.0197 (8) | 0.0018 (7) | 0.0051 (7) | 0.0063 (7) |
C8 | 0.0221 (9) | 0.0200 (9) | 0.0212 (8) | 0.0014 (7) | 0.0062 (7) | 0.0027 (7) |
O9 | 0.0229 (7) | 0.0362 (8) | 0.0285 (7) | −0.0035 (6) | 0.0055 (5) | 0.0122 (6) |
C10 | 0.0217 (9) | 0.0201 (9) | 0.0216 (8) | 0.0020 (7) | 0.0061 (7) | 0.0019 (7) |
C11 | 0.0252 (9) | 0.0238 (9) | 0.0237 (9) | 0.0019 (7) | 0.0088 (7) | 0.0056 (7) |
C12 | 0.0259 (9) | 0.0269 (10) | 0.0217 (9) | 0.0051 (7) | 0.0060 (7) | 0.0070 (7) |
C13 | 0.0228 (9) | 0.0259 (9) | 0.0219 (8) | 0.0021 (7) | 0.0052 (7) | 0.0010 (7) |
C14 | 0.0233 (9) | 0.0248 (9) | 0.0265 (9) | −0.0021 (7) | 0.0067 (7) | 0.0045 (7) |
C15 | 0.0226 (9) | 0.0216 (9) | 0.0224 (9) | 0.0011 (7) | 0.0043 (7) | 0.0051 (7) |
C16 | 0.0231 (10) | 0.0379 (11) | 0.0284 (10) | 0.0018 (8) | 0.0029 (8) | 0.0068 (8) |
S1—C6 | 1.7853 (18) | C10—C11 | 1.394 (3) |
S1—C8 | 1.7981 (18) | C10—C15 | 1.398 (3) |
N1—C2 | 1.344 (2) | C11—H11 | 0.9500 |
N1—C6 | 1.333 (2) | C11—C12 | 1.383 (3) |
C2—H2 | 0.9500 | C12—H12 | 0.9500 |
C2—C3 | 1.387 (3) | C12—C13 | 1.394 (3) |
C3—H3 | 0.9500 | C13—C14 | 1.395 (3) |
C3—C4 | 1.386 (3) | C13—C16 | 1.503 (2) |
C4—H4 | 0.9500 | C14—H14 | 0.9500 |
C4—C5 | 1.385 (3) | C14—C15 | 1.389 (2) |
C5—H5 | 0.9500 | C15—H15 | 0.9500 |
C5—C6 | 1.385 (3) | C16—H16A | 0.9800 |
C8—O9 | 1.208 (2) | C16—H16B | 0.9800 |
C8—C10 | 1.490 (2) | C16—H16C | 0.9800 |
C6—S1—C8 | 100.57 (8) | C15—C10—C8 | 122.97 (16) |
C6—N1—C2 | 116.56 (16) | C10—C11—H11 | 119.8 |
N1—C2—H2 | 118.3 | C12—C11—C10 | 120.32 (17) |
N1—C2—C3 | 123.44 (16) | C12—C11—H11 | 119.8 |
C3—C2—H2 | 118.3 | C11—C12—H12 | 119.5 |
C2—C3—H3 | 120.6 | C11—C12—C13 | 121.07 (17) |
C4—C3—C2 | 118.82 (16) | C13—C12—H12 | 119.5 |
C4—C3—H3 | 120.6 | C12—C13—C14 | 118.44 (17) |
C3—C4—H4 | 120.8 | C12—C13—C16 | 120.50 (17) |
C5—C4—C3 | 118.49 (17) | C14—C13—C16 | 121.06 (17) |
C5—C4—H4 | 120.8 | C13—C14—H14 | 119.5 |
C4—C5—H5 | 120.8 | C15—C14—C13 | 121.01 (17) |
C6—C5—C4 | 118.36 (16) | C15—C14—H14 | 119.5 |
C6—C5—H5 | 120.8 | C10—C15—H15 | 120.0 |
N1—C6—S1 | 114.99 (14) | C14—C15—C10 | 119.94 (16) |
N1—C6—C5 | 124.31 (16) | C14—C15—H15 | 120.0 |
C5—C6—S1 | 120.64 (14) | C13—C16—H16A | 109.5 |
O9—C8—S1 | 122.42 (14) | C13—C16—H16B | 109.5 |
O9—C8—C10 | 123.49 (16) | C13—C16—H16C | 109.5 |
C10—C8—S1 | 114.09 (12) | H16A—C16—H16B | 109.5 |
C11—C10—C8 | 117.77 (16) | H16A—C16—H16C | 109.5 |
C11—C10—C15 | 119.22 (16) | H16B—C16—H16C | 109.5 |
S1—C8—C10—C11 | −175.48 (13) | C8—S1—C6—C5 | −62.55 (16) |
S1—C8—C10—C15 | 2.5 (2) | C8—C10—C11—C12 | 177.48 (16) |
N1—C2—C3—C4 | −0.8 (3) | C8—C10—C15—C14 | −177.17 (16) |
C2—N1—C6—S1 | 178.32 (12) | O9—C8—C10—C11 | 3.7 (3) |
C2—N1—C6—C5 | 1.1 (3) | O9—C8—C10—C15 | −178.40 (17) |
C2—C3—C4—C5 | 0.3 (3) | C10—C11—C12—C13 | 0.0 (3) |
C3—C4—C5—C6 | 0.8 (3) | C11—C10—C15—C14 | 0.7 (3) |
C4—C5—C6—S1 | −178.64 (13) | C11—C12—C13—C14 | 0.4 (3) |
C4—C5—C6—N1 | −1.6 (3) | C11—C12—C13—C16 | −178.99 (17) |
C6—S1—C8—O9 | −1.13 (17) | C12—C13—C14—C15 | −0.2 (3) |
C6—S1—C8—C10 | 178.01 (12) | C13—C14—C15—C10 | −0.4 (3) |
C6—N1—C2—C3 | 0.1 (3) | C15—C10—C11—C12 | −0.5 (3) |
C8—S1—C6—N1 | 120.11 (14) | C16—C13—C14—C15 | 179.19 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···N1i | 0.95 | 2.70 | 3.355 (2) | 126 |
C3—H3···O9ii | 0.95 | 2.67 | 3.278 (2) | 122 |
C4—H4···O9ii | 0.95 | 2.75 | 3.316 (2) | 119 |
C16—H16B···O9iii | 0.98 | 2.64 | 3.460 (2) | 142 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x, −y+1, −z+1; (iii) x+1, y, z. |
C13H11NO2S | F(000) = 512 |
Mr = 245.29 | Dx = 1.420 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 16.4043 (6) Å | Cell parameters from 9968 reflections |
b = 5.4939 (2) Å | θ = 2.6–30.6° |
c = 13.0741 (4) Å | µ = 0.27 mm−1 |
β = 103.1748 (14)° | T = 100 K |
V = 1147.27 (7) Å3 | Plate, clear colourless |
Z = 4 | 0.34 × 0.19 × 0.06 mm |
Bruker D8 Quest ECO diffractometer | 3528 independent reflections |
Radiation source: sealed X-ray tube, Siemens, KFF Mo 2K -90 C | 2894 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 5.12 pixels mm-1 | θmax = 30.6°, θmin = 2.6° |
ω and φ scans | h = −23→23 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −7→7 |
Tmin = 0.693, Tmax = 0.746 | l = −18→18 |
19745 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.034P)2 + 0.7686P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.089 | (Δ/σ)max = 0.001 |
S = 1.03 | Δρmax = 0.44 e Å−3 |
3528 reflections | Δρmin = −0.34 e Å−3 |
156 parameters | Extinction correction: SHELXL (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0056 (14) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.33724 (7) | 0.3844 (2) | 0.78131 (9) | 0.0186 (2) | |
C2 | 0.40114 (8) | 0.3820 (2) | 0.86600 (10) | 0.0191 (2) | |
H2 | 0.405275 | 0.511908 | 0.914884 | 0.023* | |
C3 | 0.46148 (8) | 0.2013 (2) | 0.88640 (9) | 0.0175 (2) | |
H3 | 0.505834 | 0.208357 | 0.947409 | 0.021* | |
C4 | 0.45592 (8) | 0.0107 (2) | 0.81631 (10) | 0.0186 (2) | |
H4 | 0.496434 | −0.115916 | 0.828212 | 0.022* | |
C5 | 0.38991 (8) | 0.0072 (2) | 0.72793 (10) | 0.0177 (2) | |
H5 | 0.383763 | −0.122007 | 0.678476 | 0.021* | |
C6 | 0.33342 (7) | 0.1989 (2) | 0.71454 (9) | 0.0155 (2) | |
S1 | 0.24650 (2) | 0.19535 (6) | 0.60431 (2) | 0.02004 (9) | |
C8 | 0.27774 (7) | 0.4257 (2) | 0.52399 (9) | 0.0141 (2) | |
O9 | 0.34259 (6) | 0.53792 (18) | 0.55168 (7) | 0.0197 (2) | |
C10 | 0.21680 (7) | 0.4661 (2) | 0.42271 (9) | 0.0136 (2) | |
C11 | 0.22903 (7) | 0.6656 (2) | 0.36245 (9) | 0.0158 (2) | |
H11 | 0.274363 | 0.773119 | 0.388522 | 0.019* | |
C12 | 0.17643 (8) | 0.7112 (2) | 0.26502 (9) | 0.0166 (2) | |
H12 | 0.185178 | 0.849052 | 0.224987 | 0.020* | |
C13 | 0.11069 (7) | 0.5514 (2) | 0.22707 (9) | 0.0147 (2) | |
C14 | 0.09620 (7) | 0.3538 (2) | 0.28750 (10) | 0.0173 (2) | |
H14 | 0.050131 | 0.248509 | 0.261957 | 0.021* | |
C15 | 0.14888 (7) | 0.3111 (2) | 0.38464 (9) | 0.0162 (2) | |
H15 | 0.138956 | 0.176179 | 0.425619 | 0.019* | |
O16 | 0.05718 (5) | 0.57034 (18) | 0.13098 (7) | 0.01853 (19) | |
C17 | 0.07223 (9) | 0.7626 (3) | 0.06401 (11) | 0.0237 (3) | |
H17A | 0.031733 | 0.752011 | −0.003703 | 0.036* | |
H17B | 0.129116 | 0.747907 | 0.052882 | 0.036* | |
H17C | 0.066163 | 0.919806 | 0.096929 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0185 (5) | 0.0166 (5) | 0.0193 (5) | 0.0021 (4) | 0.0014 (4) | −0.0013 (4) |
C2 | 0.0205 (6) | 0.0179 (6) | 0.0174 (5) | 0.0009 (5) | 0.0012 (4) | −0.0041 (5) |
C3 | 0.0163 (5) | 0.0195 (6) | 0.0149 (5) | −0.0002 (5) | −0.0002 (4) | 0.0020 (5) |
C4 | 0.0174 (5) | 0.0164 (6) | 0.0214 (6) | 0.0027 (4) | 0.0030 (4) | 0.0025 (5) |
C5 | 0.0200 (6) | 0.0157 (5) | 0.0172 (5) | −0.0008 (5) | 0.0038 (4) | −0.0015 (4) |
C6 | 0.0151 (5) | 0.0162 (5) | 0.0140 (5) | −0.0023 (4) | 0.0011 (4) | 0.0020 (4) |
S1 | 0.01791 (15) | 0.02262 (17) | 0.01665 (15) | −0.00707 (12) | −0.00218 (10) | 0.00527 (12) |
C8 | 0.0151 (5) | 0.0139 (5) | 0.0134 (5) | 0.0000 (4) | 0.0035 (4) | −0.0013 (4) |
O9 | 0.0170 (4) | 0.0229 (5) | 0.0179 (4) | −0.0067 (4) | 0.0011 (3) | −0.0003 (4) |
C10 | 0.0133 (5) | 0.0140 (5) | 0.0134 (5) | −0.0004 (4) | 0.0030 (4) | −0.0009 (4) |
C11 | 0.0158 (5) | 0.0156 (5) | 0.0155 (5) | −0.0033 (4) | 0.0024 (4) | −0.0016 (4) |
C12 | 0.0192 (5) | 0.0141 (5) | 0.0162 (5) | −0.0011 (4) | 0.0033 (4) | 0.0015 (4) |
C13 | 0.0126 (5) | 0.0173 (6) | 0.0139 (5) | 0.0026 (4) | 0.0023 (4) | −0.0010 (4) |
C14 | 0.0136 (5) | 0.0205 (6) | 0.0168 (5) | −0.0040 (4) | 0.0017 (4) | −0.0005 (4) |
C15 | 0.0159 (5) | 0.0172 (5) | 0.0151 (5) | −0.0038 (4) | 0.0027 (4) | 0.0009 (4) |
O16 | 0.0159 (4) | 0.0233 (5) | 0.0147 (4) | 0.0006 (3) | −0.0002 (3) | 0.0026 (3) |
C17 | 0.0278 (7) | 0.0222 (6) | 0.0180 (6) | 0.0029 (5) | −0.0013 (5) | 0.0048 (5) |
N1—C2 | 1.3401 (16) | C10—C15 | 1.4007 (16) |
N1—C6 | 1.3342 (16) | C11—H11 | 0.9500 |
C2—H2 | 0.9500 | C11—C12 | 1.3888 (16) |
C2—C3 | 1.3841 (18) | C12—H12 | 0.9500 |
C3—H3 | 0.9500 | C12—C13 | 1.3914 (17) |
C3—C4 | 1.3810 (18) | C13—C14 | 1.3943 (17) |
C4—H4 | 0.9500 | C13—O16 | 1.3627 (14) |
C4—C5 | 1.3920 (17) | C14—H14 | 0.9500 |
C5—H5 | 0.9500 | C14—C15 | 1.3837 (16) |
C5—C6 | 1.3873 (17) | C15—H15 | 0.9500 |
C6—S1 | 1.7815 (12) | O16—C17 | 1.4289 (16) |
S1—C8 | 1.7924 (12) | C17—H17A | 0.9800 |
C8—O9 | 1.2112 (14) | C17—H17B | 0.9800 |
C8—C10 | 1.4828 (16) | C17—H17C | 0.9800 |
C10—C11 | 1.3908 (17) | ||
C6—N1—C2 | 116.38 (11) | C10—C11—H11 | 119.3 |
N1—C2—H2 | 118.1 | C12—C11—C10 | 121.46 (11) |
N1—C2—C3 | 123.83 (12) | C12—C11—H11 | 119.3 |
C3—C2—H2 | 118.1 | C11—C12—H12 | 120.6 |
C2—C3—H3 | 120.7 | C11—C12—C13 | 118.84 (11) |
C4—C3—C2 | 118.68 (11) | C13—C12—H12 | 120.6 |
C4—C3—H3 | 120.7 | C12—C13—C14 | 120.49 (11) |
C3—C4—H4 | 120.6 | O16—C13—C12 | 124.37 (11) |
C3—C4—C5 | 118.84 (12) | O16—C13—C14 | 115.14 (11) |
C5—C4—H4 | 120.6 | C13—C14—H14 | 120.0 |
C4—C5—H5 | 121.1 | C15—C14—C13 | 120.05 (11) |
C6—C5—C4 | 117.73 (12) | C15—C14—H14 | 120.0 |
C6—C5—H5 | 121.1 | C10—C15—H15 | 119.9 |
N1—C6—C5 | 124.54 (11) | C14—C15—C10 | 120.18 (11) |
N1—C6—S1 | 116.57 (9) | C14—C15—H15 | 119.9 |
C5—C6—S1 | 118.83 (9) | C13—O16—C17 | 117.16 (10) |
C6—S1—C8 | 100.56 (6) | O16—C17—H17A | 109.5 |
O9—C8—S1 | 122.22 (9) | O16—C17—H17B | 109.5 |
O9—C8—C10 | 123.94 (11) | O16—C17—H17C | 109.5 |
C10—C8—S1 | 113.84 (8) | H17A—C17—H17B | 109.5 |
C11—C10—C8 | 117.96 (10) | H17A—C17—H17C | 109.5 |
C11—C10—C15 | 118.93 (11) | H17B—C17—H17C | 109.5 |
C15—C10—C8 | 123.10 (11) | ||
N1—C2—C3—C4 | −0.4 (2) | C8—C10—C11—C12 | 177.74 (11) |
N1—C6—S1—C8 | 75.84 (10) | C8—C10—C15—C14 | −177.44 (12) |
C2—N1—C6—C5 | 0.65 (19) | O9—C8—C10—C11 | −9.07 (18) |
C2—N1—C6—S1 | 177.79 (10) | O9—C8—C10—C15 | 169.83 (12) |
C2—C3—C4—C5 | −0.04 (19) | C10—C11—C12—C13 | −0.62 (18) |
C3—C4—C5—C6 | 0.72 (19) | C11—C10—C15—C14 | 1.45 (18) |
C4—C5—C6—N1 | −1.07 (19) | C11—C12—C13—C14 | 2.22 (18) |
C4—C5—C6—S1 | −178.15 (9) | C11—C12—C13—O16 | −177.02 (11) |
C5—C6—S1—C8 | −106.85 (11) | C12—C13—C14—C15 | −1.98 (19) |
C6—N1—C2—C3 | 0.1 (2) | C12—C13—O16—C17 | 2.44 (17) |
C6—S1—C8—O9 | −1.13 (12) | C13—C14—C15—C10 | 0.12 (19) |
C6—S1—C8—C10 | 179.52 (9) | C14—C13—O16—C17 | −176.83 (11) |
S1—C8—C10—C11 | 170.26 (9) | C15—C10—C11—C12 | −1.20 (18) |
S1—C8—C10—C15 | −10.84 (15) | O16—C13—C14—C15 | 177.32 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O9i | 0.95 | 2.65 | 3.2566 (15) | 122 |
C5—H5···O9ii | 0.95 | 2.49 | 3.4270 (16) | 170 |
C11—H11···N1iii | 0.95 | 2.69 | 3.3535 (17) | 128 |
C12—H12···N1iii | 0.95 | 2.84 | 3.4182 (16) | 120 |
C14—H14···O16iv | 0.95 | 2.67 | 3.3340 (15) | 127 |
C17—H17A···O16v | 0.98 | 2.63 | 3.4475 (17) | 141 |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x, y−1, z; (iii) x, −y+3/2, z−1/2; (iv) −x, y−1/2, −z+1/2; (v) −x, −y+1, −z. |
Plane|plane | Torsion angle C8—S1—C6—N1 | Phenyl plane|plane C8—O9—S1—C6 | |
1 | 56.97 (14) | 128.6 (3) | 6.00 (14) |
2 | 57.51 (6) | 120.11 (14) | 5.08 (6) |
3 | 65.94 (4) | 75.84 (10) | 10.28 (4) |
CEFMOR | 51.12 (1) | 122.79 (1) | 10.88 (2) |
In CEFMOR, the torsion angle is defined by C1—S1—C8—C13. |
Funding information
Funding for this research was provided by: Science Foundation Ireland (grant No. 21/FFP-A/9469 to MOS).
References
Adler, D. A., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J. & Korsakoff, L. (1967). J. Org. Chem. 32, 476–476. CrossRef CAS Web of Science Google Scholar
Albert, A. & Barlin, G. B. (1959). J. Chem. Soc. pp. 2384–2396. CrossRef Web of Science Google Scholar
Araki, M., Sakata, S., Takei, H. & Mukaiyama, T. (1974). Bull. Chem. Soc. Jpn, 47, 1777–1780. CrossRef CAS Web of Science Google Scholar
Belay, Y. H., Kinfe, H. H. & Muller, A. (2012). Acta Cryst. E68, o2825. CSD CrossRef IUCr Journals Google Scholar
Bruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2021). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
El-Azab, A. S. & Abdel-Aziz, A. A.-M. (2012). Phosphorus Sulfur Silicon, 187, 1046–1055. CAS Google Scholar
El-Azab, A. S., Abdel-Aziz, A. A.-M., El-Subbagh, H. I., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1074–o1075. CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hiroto, S., Miyake, Y. & Shinokubo, H. (2017). Chem. Rev. 117, 2910–3043. Web of Science CrossRef CAS PubMed Google Scholar
Ivanova, B. B., Arnaudov, M. G., Sheldrick, W. S. & Mayer-Figge, H. (2006). Acta Cryst. E62, o3–o4. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jovanovski, G., Soptrajanov, B., Kaitner, B. & Prangova, L. (1993). J. Crystallogr. Spectrosc. Res. 23, 49–53. CSD CrossRef CAS Web of Science Google Scholar
Kathewad, N. V., Pal, S. & Khan, S. (2014). Private Communication (refcode MOFQUV). CCDC, Cambridge, England. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Laakso, J., Rosser, G. A., Szíjjártó, C., Beeby, A. & Borbas, K. E. (2012). Inorg. Chem. 51, 10366–10374. Web of Science CrossRef CAS PubMed Google Scholar
Lee, C.-H., Li, F., Iwamoto, K., Dadok, J., Bothner-By, A. A. & Lindsey, J. S. (1995). Tetrahedron, 51, 11645–11672. CrossRef CAS Web of Science Google Scholar
Lee, J. (2020). Bull. Korean Chem. Soc. 41, 735–747. Google Scholar
Lindsey, J. S. (2010). Acc. Chem. Res. 43, 300–311. Web of Science CrossRef PubMed CAS Google Scholar
Lindsey, J. S., Hsu, H. C. & Schreiman, I. C. (1986). Tetrahedron Lett. 27, 4969–4970. CrossRef CAS Web of Science Google Scholar
McDaniel, D. H. & Brown, H. C. (1958). J. Org. Chem. 23, 420–427. CrossRef CAS Web of Science Google Scholar
Nicolaou, K. C., Claremon, D. A. & Papahatjis, D. P. (1981). Tetrahedron Lett. 22, 4647–4650. CrossRef CAS Web of Science Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Perrin, M. L., Prins, F., Martin, C. A., Shaikh, A. J., Eelkema, R., van Esch, J. H., Briza, T., Kaplanek, R., Kral, V., van Ruitenbeek, J. M., van der Zant, H. S. J. & Dulić, D. (2011). Angew. Chem. Int. Ed. 50, 11223–11226. Web of Science CrossRef CAS Google Scholar
Ra, D., Gauger, K. A., Muthukumaran, K., Balasubramanian, T., Chandrashaker, V., Taniguchi, M., Yu, Z., Talley, D. C., Ehudin, M. Ptaszek, M. & Lindsey J. S. (2015). J. Porphyrins Phthalocyanines, 19, 547–572 Web of Science CSD CrossRef CAS Google Scholar
Rao, P. D., Littler, B. J., Geier, G. R. III & Lindsey, J. S. (2000). J. Org. Chem. 65, 1084–1092. Web of Science CrossRef PubMed CAS Google Scholar
Sample, H. C. & Senge, M. O. (2021). Eur. J. Org. Chem. 2021, 7–42. Web of Science CrossRef CAS Google Scholar
Senge, M. O. (2011). Chem. Commun. 47, 1943–1960. Web of Science CrossRef CAS Google Scholar
Senge, M. O., Sergeeva, N. N. & Hale, K. J. (2021). Chem. Soc. Rev. 50, 4730–4789. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shimizu, M., Fukui, H., Natakani, M. & Sakaguchi, H. (2016). Eur. J. Org. Chem. 2016, 5950–5956. Web of Science CSD CrossRef CAS Google Scholar
Takahashi, M., Fujita, T., Watanabe, S. & Sakamoto, M. (1998b). J. Chem. Soc. Perkin Trans. 2, pp. 487–492. Web of Science CSD CrossRef Google Scholar
Takahashi, M., Sekine, N., Fujita, T., Watanabe, S., Yamaguchi, K. & Sakamoto, M. (1998a). J. Am. Chem. Soc. 120, 12770–12776. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.