research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(N,N-di­ethyl-4-methyl-4-piperazine-1-carboxamide) tetra­kis­(iso­thio­cyanato-κN)­cobalt(II), a model compound for the blue color developed in the Scott test

crossmark logo

aDepartment of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
*Correspondence e-mail: mlieberm@nd.edu

Edited by M. Zeller, Purdue University, USA (Received 21 December 2022; accepted 3 February 2023; online 9 February 2023)

The complex, bis­(N,N-diethyl-4-methyl-4-piperazine-1-carboxamide) tetra­kis(iso­thio­cyanato-κN)cobalt(II) (N,N-diethyl-4-methyl-4-piperazine-1-carboxamide = di­ethyl­carbamazine), (C10H22N3O)2[Co(NCS)4], is presented. This com­plex is a blue precipitate, insoluble in water but soluble in organic solvents, that is formed from the reaction of diethylcarbamazine citrate, a protonated tertiary amine, with cobalt(II) and thio­cyanate. This reaction, in the form of the Scott test, is a common presumptive test for cocaine hydro­chloride. The known cobalt compound, [K2Co(NCS)4]·3H2O, has a deep-blue coloration due to the tetra­hedral [Co(NCS)4]2− that is also present in the ion pair with bulky amines, and is similar to the color of other tetra­hedral cobalt(II) complex ions, such as [CoCl4]2−. The structure is consistent with a previous proposal that a hydro­phobic ion pair formed between [Co(NCS)4]2− and two protonated mol­ecules of cocaine is responsible for the blue hydro­phobic products formed by cocaine in the Scott test.

1. Chemical context

In forensics and law enforcement, the Scott test, and modifications to that test (Scott, 1973[Scott, L. J. (1973). Microgram. 6, 179-181.]; Fansello & Higgins, 1986[Fansello, J. & Higgins, P. (1986). Microgram. 19, 137-138.]; Tsujikawa et al., 2017[Tsujikawa, K., Iwata, Y. T., Segawa, H., Yamamuro, T., Kuwayama, K., Kanamori, T. & Inoue, H. (2017). Forensic Sci. Int. 270, 267-274.]), provide identification of tertiary amines from opioids present in a sample. However, there are few reports on the nature of the coloration that is observed during this test, which can vary from powder blue to royal blue, purple, blue–green, or green depending on the identity of the tertiary amine being tested. Oguri and co-workers found that the blue precipitates from cocaine hydro­chloride have a 1:2 cobalt:cocaine stoichiometry (Oguri et al., 1995[Oguri, K., Wada, S., Eto, S. & Yamada, H. (1995). Eisei Kagaku, 41, 274-279.]), and IR spectra show the blue precipitates contain one or more thio­cyanate units (Morris, 2007[Morris, J. A. (2007). J. Forensic Sci. 52, 84-87.]). However, the strong blue color is consistent with a tetra­hedral CoII species, rather than the octa­hedral structure postulated by Oguri and co-workers.

As part of our on-going research into detection of functional groups using Paper Analytical Devices (PADs, Weaver et al., 2013[Weaver, A. A., Reiser, H., Barstis, T., Benvenuti, M., Ghosh, D., Hunckler, M., Joy, B., Koenig, L., Raddell, K. & Lieberman, M. (2013). Anal. Chem. 85, 6453-6460.]; idPADs Lockwood et al., 2020[Lockwood, T. E., Leong, T. X., Bliese, S. L., Helmke, A., Richard, A., Merga, G., Rorabeck, J. & Lieberman, M. (2020). J. Forensic Sci. 65, 1289-1297.]), we sought to understand why tertiary amines give blue precipitates of so many colors in the presence of the Scott reagent. The citrate salt (di­ethyl­carbamazinium citrate; CAS#1642-54-2) of a suitable tertiary amine (di­eth­ylcarbamazine; CAS#90-89-1) was selected as a representative tertiary amine. The title compound was prepared by extraction into a CH2Cl2 solution from a dried, stoichiometric mixture (1:2) of K2[Co(NCS)4] and di­ethyl­carbamazinium citrate that yielded the blue crystals used in this study. The tetra­hedral ion [Co(NCS)4]2− can also be readily formed by disproportionation of the reagent used for the Scott test [the neutral compound Co(SCN)2] in the presence of a suitable amine, as demonstrated in the synthesis for the iso­thio­pendylium tetra­kis­(iso­thio­cyanato)cobalt(II) complex (refcode: QUXKOK, Arunkashi et al., 2010[Arunkashi, H. K., Jeyaseelan, S., Vepuri, S. B., Revanasiddappa, H. D. & Devarajegowda, H. C. (2010). Acta Cryst. E66, m772-m773.]), which, like our structure, is an ion pair between two protonated amines and [Co(NCS)4]2−.

[Scheme 1]

This formulation for the ion pair has been proposed in the Scott test literature for cocaine: [Co2+ + 4SCN +2B: (color red) ←→ [Co(SCN)4)B2]2− (color blue)] (Conceição et al., 2014[Conceição, V. N., Souza, L. M., Merlo, B. B., Filgueiras, P. R., Poppi, R. J. & Romão, W. (2014). Quím. Nova 37(9), 1538-1544.], in Portugese), and the [(cocaineH)2[Co(NCS)4] ion pair features in several flow-injection analysis methods for cocaine, see for example Eisman et al. (1992[Eisman, M., Gallego, M. & Valcárcel, M. (1992). Anal. Chem. 64, 1509-1512.]). However, there is still no crystal structure for the Scott test product with cocaine, and only three examples are available for protonated tertiary amine ion pairs with the [Co(NCS)4]2− dianion.

The Scott test is a three-step sequence of reactions: (1) addition of 2% cobalt thio­cyanate in water; (2) addition of 1.2 M HCl solution; (3) addition of chloro­form. We ascribe the initial blue precipitate in the Scott test to the formation of the ion pair (amineH)2[Co(NCS)4]. Formation of the ion pair should be a reversible reaction, so when concentrated HCl is added in the second step and it protonates the thio­cyanate ions (pKα for HNCS is 1.1), the tetra­hedral cobalt anion falls apart and the blue color vanishes. When chloro­form is added in the final step of the Scott test, the hydro­phobic ion pair reforms in the organic solvent, turning it blue.

2. Structural commentary

The complex crystallizes with two protonated di­ethyl­carbamazine cations and one tetra­kis­(iso­thio­cyanato)­cobalt(II) dianion in the asymmetric unit (Fig. 1[link]). The iso­thio­cyanate ligands are bound to the cobalt through their nitro­gen atoms, leaving the more bulky and hydro­phobic sulfur atoms exposed to the solvent. Protonation of the carbamazines was confirmed by the presence of electron density on the methyl-piperazine nitro­gen atoms N6 and N9. The geometry of the carbamazide mol­ecules is unexceptional. The CoII center adopts a near ideal tetra­hedral geometry (τ4 = 0.97; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]; Table 1[link]) that is located in a general position within the asymmetric unit. In contrast, the cobalt center in the parent compound K2[Co(NCS)4]·3H2O is located on a twofold screw-axis (space group P21212; Drew & Othman, 1975[Drew, M. G. B. & Hamid bin Othman, A. (1975). Acta Cryst. B31, 613-614.]). The τ4 metric for the parent compound is 0.94 with the largest N—Co—N angle = 114.1 (3)° [in contrast to 112.10 (7)° reported here]. Although this small change should be considered carefully because the Scott test result is a solution phase analysis and here the solid-state structures are compared, it could indicate that the colorimetric response is a change in the tetra­hedral ligand field about Co.

Table 1
Selected geometric parameters (Å, °)

Co1—N3 1.9412 (18) Co1—N1 1.9502 (17)
Co1—N4 1.9451 (18) Co1—N2 1.9520 (18)
       
N3—Co1—N4 110.91 (8) N3—Co1—N2 108.49 (7)
N3—Co1—N1 112.10 (7) N4—Co1—N2 106.51 (8)
N4—Co1—N1 109.98 (8) N1—Co1—N2 108.66 (8)
[Figure 1]
Figure 1
Mol­ecular structure of bis­(di­ethyl­carbamazide) tetra­kis­(iso­thio­cyanato)­cobalt(II). Atomic displacement ellipsoids depicted at the 50% probability level. Hydrogen atoms are shown as spheres of an arbitrary radius.

3. Supra­molecular features

Both protonated tertiary amine nitro­gen atoms are involved in inter­molecular hydrogen bonding with amide oxygen atoms of an identical mol­ecule related by the screw-axis along the b-axis, resulting in mono-periodic chains of each amide along the b-axis direction (Fig. 2[link]). Thus, N6 forms a hydrogen bond to O1i and N9 to O2ii [symmetry codes: (i) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]; (ii) −x + 2, y + [{1\over 2}], −z + [{3\over 2}]; see Table 2[link] for details]. Both chains are identified as having graph-set motif C11(7) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯O1i 0.84 (2) 1.86 (2) 2.691 (2) 169 (2)
N9—H9⋯O2ii 0.88 (2) 1.82 (2) 2.694 (2) 172 (2)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Packing diagram of bis­(di­ethyl­carbamazide) tetra­kis­(iso­thio­cyanato)­cobalt(II) viewed along the b-axis. Hydrogen atoms, except for those involved in hydrogen bonding, have been omitted for clarity. Blue dashed lines represent hydrogen-bonding inter­actions.

4. Database survey

The core structure of N,N-diethyl-4-methyl-4-piperazine-1-carboxamide is only reported in five instances in the Cambridge Structural Database (CSD, v 5.43, update 4, November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). One is a diphenyl morpholine derivative, [4-(di­phenyl­meth­yl)-piperazin-1-yl](morpholin-4-yl)methanone (refcode: IDOVAB, Kumar et al., 2017[Kumar, C. S. A., Naveen, S., Prasad, S. B. B., Gowda, N. S. L. & Lokanath, N. K. (2017). J. Appl. Chem. 6, 274-281.]). The remaining four reported structures are a series of citrates reported by da Silva and co-workers (refcodes: QURWOQ, QURWOQ01, QURWOQ02, and QURWOQ03; da Silva et al., 2010[Silva, C. C. P. da, Martins, F. T., Honorato, S. B., Boechat, N., Ayala, A. P. & Ellena, J. (2010). Cryst. Growth Des. 10, 3094-3101.]). Di­ethyl­carbamazide citrate is used widely in the treatment of filariasis. Comparing the di­ethyl­carbamazide mol­ecules reported herein with those with citrate counter-ions reported by da Silva, the structures are essentially identical. Two of da Silva's structures have some ethyl chain disorder that is the only significant difference compared with the structure reported here. Tetra­kis(iso­thio­cyanato)­cobalt(II) is reported in over 200 structures. At the inter­section of (iso­thio­cyanto)cobalt and tertiary amines there are five structures. Two of these structures contain hexa­kis­(iso­thio­cyanato)­cobalt (refcode: ILOXEP, Makhlouf, 2021[Makhlouf, J. (2021). CSD Communication (refcode ILOXEP, CCDC2061180). CCDC, Cambridge, England.]; KIPYUD, Mali et al., 1991[Mali, T. N., Hancock, R. D., Boeyens, J. C. A. & Oosthuizen, E. L. (1991). J. Chem. Soc. Dalton Trans. pp. 1161-1163.]) and are not pertinent to the discussion. The remaining three compounds {QUXKOK, [N,N-dimethyl-1-(10H-pyrido[3,2-b][1,4]benzo­thia­zin-10-yl)propan-2-aminium] (iso­thio­pendylium), Arunkashi et al., 2010[Arunkashi, H. K., Jeyaseelan, S., Vepuri, S. B., Revanasiddappa, H. D. & Devarajegowda, H. C. (2010). Acta Cryst. E66, m772-m773.]; XIXQUT, [tri­methyl­ammonium], Jie et al., 2018[Jie, Y., Yuan, H., YouQuan, Z., Ting, F., Fan, H., Qian, K. & Ye, Y.-H. (2018). Z. Naturforsch. 73, 571-575.]; YEPHIK, [2-di­ethyl­amino-N-(2,6-di­methyl­phen­yl)acetamide] (lignocainium), Qayyas et al., 1994[Qayyas, N. N. A., Sridhar, M. A., Indria, A. & Prasad, J. S. (1994). Z. Kristallogr. Cryst. Mater. 209(11), 918-919.]} contain a tetra­kis­(iso­thio­cyanato)cobalt(II) anion and associated tertiary amine cation. Bond angles about the cobalt centers in these three structures are similar to those reported here (range for angles about Co is 104.78 to 114.05°).

5. Synthesis and crystallization

K2[Co(NCS)4] was prepared by the metathesis of Co(NO3)2 (3.00 g, 16.4 mmol) and K(SCN) (3.88 g, 39.9 mmol) in 20 mL of water and allowed to dry. Dark-blue crystals were harvested for subsequent reactions; note: upon dissolution in water the solution is pink. K2[Co(NCS)4] and di­ethyl­carbamazide citrate were mixed in a stoichiometric (1:2) ratio in water and allowed to dry. CHCl3 or CH2Cl2 was added to extract the blue complex. Crystals were grown from the CH2Cl2 extract by vapor diffusion of hexane at 277 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms bonded to tertiary amine nitro­gen atoms (N6, N9) were refined freely. All other hydrogen atoms were included in geometrically calculated positions with C—H bond distances constrained to 0.98 Å for aromatic and methyl­ene and 0.99 Å for methyl hydrogen atoms with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for aromatic and methyl­ene H atoms.

Table 3
Experimental details

Crystal data
Chemical formula (C10H22N3O)2[Co(NCS)4]
Mr 691.86
Crystal system, space group Monoclinic, P21/c
Temperature (K) 120
a, b, c (Å) 17.915 (2), 9.8192 (13), 19.954 (3)
β (°) 91.150 (2)
V3) 3509.4 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.76
Crystal size (mm) 0.28 × 0.07 × 0.06
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.810, 0.979
No. of measured, independent and observed [I > 2σ(I)] reflections 66480, 8799, 6514
Rint 0.052
(sin θ/λ)max−1) 0.670
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.087, 1.01
No. of reflections 8799
No. of parameters 384
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.98, −1.11
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT, Bruker-Nonius AXS Inc. Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(N,N-diethyl-4-methyl-4-piperazine-1-carboxamide) tetrakis(isothiocyanto-κN)cobalt(II) top
Crystal data top
(C10H22N3O)2[Co(NCS)4]F(000) = 1460
Mr = 691.86Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.915 (2) ÅCell parameters from 9913 reflections
b = 9.8192 (13) Åθ = 2.3–27.6°
c = 19.954 (3) ŵ = 0.76 mm1
β = 91.150 (2)°T = 120 K
V = 3509.4 (8) Å3Rod, blue
Z = 40.28 × 0.07 × 0.06 mm
Data collection top
Bruker APEXII
diffractometer
8799 independent reflections
Radiation source: fine-focus sealed tube6514 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.052
combination of ω and φ–scansθmax = 28.4°, θmin = 1.1°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 2323
Tmin = 0.810, Tmax = 0.979k = 1313
66480 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.030P)2 + 2.9287P]
where P = (Fo2 + 2Fc2)/3
8799 reflections(Δ/σ)max = 0.002
384 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 1.11 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.74254 (2)0.61672 (3)0.54618 (2)0.02168 (7)
S10.92990 (4)0.81311 (8)0.41695 (4)0.05019 (18)
S20.87654 (4)0.32929 (6)0.69618 (3)0.03974 (15)
S30.57552 (3)0.33888 (7)0.42353 (3)0.03850 (14)
S40.60666 (5)0.89379 (7)0.69206 (6)0.0898 (4)
N10.81550 (10)0.72430 (18)0.49788 (8)0.0287 (4)
N20.79572 (10)0.49630 (18)0.60861 (9)0.0296 (4)
N30.68112 (10)0.50601 (18)0.48628 (8)0.0286 (4)
N40.68106 (10)0.73551 (18)0.60020 (9)0.0313 (4)
C10.86334 (12)0.7621 (2)0.46387 (10)0.0264 (4)
C20.83000 (11)0.4275 (2)0.64557 (10)0.0247 (4)
C30.63674 (12)0.4369 (2)0.45962 (9)0.0249 (4)
C40.64989 (13)0.8006 (2)0.63879 (13)0.0373 (6)
O10.47917 (7)1.15381 (14)0.69673 (7)0.0262 (3)
N50.40377 (9)0.99660 (16)0.74649 (8)0.0205 (3)
N60.39973 (9)0.78750 (17)0.84633 (8)0.0209 (3)
H60.4399 (12)0.747 (2)0.8383 (10)0.022 (6)*
N70.36711 (10)1.10644 (18)0.64724 (9)0.0324 (4)
C50.39077 (11)0.85401 (18)0.72708 (9)0.0210 (4)
H5A0.4389460.8095650.7172910.025*
H5B0.3588500.8504110.6860390.025*
C60.35303 (10)0.7795 (2)0.78338 (9)0.0222 (4)
H6A0.3034590.8204330.7911300.027*
H6B0.3454990.6828590.7707360.027*
C70.41778 (11)0.9324 (2)0.86332 (10)0.0241 (4)
H7A0.4518310.9350960.9029950.029*
H7B0.3713680.9811710.8747500.029*
C80.45436 (11)1.0032 (2)0.80495 (9)0.0216 (4)
H8A0.4649161.0994040.8165620.026*
H8B0.5021820.9579210.7947610.026*
C90.36244 (12)0.7175 (2)0.90305 (10)0.0304 (5)
H9A0.3937900.7253340.9436790.046*
H9B0.3551430.6211480.8919890.046*
H9C0.3138960.7602090.9107020.046*
C100.41985 (11)1.08939 (19)0.69569 (10)0.0223 (4)
C110.28776 (13)1.0721 (3)0.65439 (14)0.0458 (6)
H11A0.2581491.1572410.6544490.055*
H11B0.2809491.0264910.6980880.055*
C120.25841 (16)0.9804 (3)0.59917 (17)0.0664 (9)
H12A0.2602021.0286000.5562200.100*
H12B0.2067130.9549350.6082920.100*
H12C0.2892700.8981630.5971350.100*
C130.38615 (16)1.1942 (3)0.59024 (14)0.0519 (7)
H13A0.4136051.2751300.6071090.062*
H13B0.3395711.2262130.5678370.062*
C140.43331 (19)1.1209 (4)0.53983 (14)0.0682 (9)
H14A0.4464331.1838550.5038270.102*
H14B0.4051251.0439540.5209090.102*
H14C0.4789971.0872350.5620090.102*
O20.94210 (8)0.06408 (14)0.77411 (7)0.0263 (3)
N81.00777 (9)0.22499 (16)0.83271 (8)0.0212 (3)
N91.12181 (9)0.42920 (17)0.82969 (9)0.0230 (3)
H91.1052 (12)0.478 (2)0.7954 (11)0.034 (6)*
N100.90345 (9)0.11786 (17)0.87878 (8)0.0240 (3)
C151.06216 (11)0.2245 (2)0.77881 (10)0.0249 (4)
H15A1.0425310.2773470.7400550.030*
H15B1.0712780.1299330.7638500.030*
C161.13451 (11)0.2875 (2)0.80479 (10)0.0261 (4)
H16A1.1554280.2309330.8416750.031*
H16B1.1712220.2895460.7683750.031*
C171.06253 (10)0.4300 (2)0.88160 (9)0.0229 (4)
H17A1.0519750.5250040.8950860.028*
H17B1.0804220.3796630.9217900.028*
C180.99185 (10)0.36465 (18)0.85434 (9)0.0209 (4)
H18A0.9535900.3633740.8894510.025*
H18B0.9720470.4182520.8159050.025*
C191.19218 (11)0.4913 (2)0.85676 (12)0.0329 (5)
H19A1.1832960.5872180.8676440.049*
H19B1.2310810.4850590.8230610.049*
H19C1.2083790.4425250.8973450.049*
C200.94966 (10)0.13172 (18)0.82610 (9)0.0209 (4)
C210.92829 (12)0.1378 (2)0.94905 (10)0.0303 (5)
H21A0.9789190.1783000.9497110.036*
H21B0.9315940.0480270.9714550.036*
C220.87648 (14)0.2293 (3)0.98833 (11)0.0408 (6)
H22A0.8768180.3211360.9691350.061*
H22B0.8935740.2331731.0352580.061*
H22C0.8256510.1924740.9859330.061*
C230.83827 (11)0.0288 (2)0.86836 (11)0.0291 (4)
H23A0.8196290.0000200.9125370.035*
H23B0.8539610.0540010.8440960.035*
C240.77536 (12)0.0968 (2)0.82916 (11)0.0334 (5)
H24A0.7939270.1290850.7861140.050*
H24B0.7564630.1741420.8547920.050*
H24C0.7349670.0310800.8211810.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02440 (13)0.02027 (13)0.02043 (13)0.00148 (11)0.00194 (10)0.00012 (11)
S10.0401 (4)0.0601 (4)0.0510 (4)0.0233 (3)0.0147 (3)0.0044 (3)
S20.0480 (4)0.0311 (3)0.0393 (3)0.0055 (3)0.0194 (3)0.0092 (2)
S30.0379 (3)0.0448 (3)0.0323 (3)0.0053 (3)0.0132 (2)0.0080 (3)
S40.0949 (6)0.0321 (4)0.1462 (9)0.0231 (4)0.0978 (7)0.0344 (5)
N10.0318 (10)0.0283 (9)0.0260 (9)0.0050 (8)0.0033 (7)0.0005 (7)
N20.0343 (10)0.0263 (9)0.0282 (9)0.0004 (8)0.0015 (8)0.0002 (7)
N30.0345 (10)0.0271 (9)0.0242 (9)0.0035 (8)0.0002 (7)0.0006 (7)
N40.0283 (9)0.0266 (9)0.0393 (10)0.0023 (8)0.0067 (8)0.0045 (8)
C10.0304 (11)0.0226 (10)0.0261 (10)0.0058 (8)0.0033 (9)0.0026 (8)
C20.0282 (10)0.0213 (10)0.0247 (10)0.0065 (8)0.0007 (8)0.0027 (8)
C30.0307 (11)0.0263 (10)0.0177 (9)0.0046 (9)0.0005 (8)0.0025 (8)
C40.0333 (12)0.0190 (10)0.0604 (15)0.0071 (9)0.0214 (11)0.0025 (10)
O10.0246 (7)0.0281 (7)0.0261 (7)0.0076 (6)0.0031 (6)0.0000 (6)
N50.0212 (8)0.0165 (8)0.0238 (8)0.0024 (6)0.0023 (6)0.0015 (6)
N60.0189 (8)0.0209 (8)0.0229 (8)0.0017 (7)0.0025 (6)0.0008 (6)
N70.0294 (9)0.0268 (9)0.0406 (10)0.0038 (8)0.0102 (8)0.0111 (8)
C50.0225 (9)0.0174 (9)0.0229 (9)0.0010 (7)0.0062 (7)0.0025 (7)
C60.0188 (9)0.0196 (9)0.0281 (10)0.0024 (7)0.0046 (8)0.0006 (8)
C70.0284 (10)0.0205 (9)0.0236 (10)0.0014 (8)0.0044 (8)0.0047 (8)
C80.0221 (9)0.0210 (9)0.0216 (9)0.0037 (8)0.0004 (7)0.0038 (7)
C90.0344 (12)0.0283 (11)0.0287 (11)0.0033 (9)0.0071 (9)0.0054 (9)
C100.0232 (10)0.0176 (9)0.0261 (10)0.0009 (7)0.0010 (8)0.0018 (7)
C110.0265 (12)0.0362 (13)0.0738 (18)0.0012 (10)0.0165 (12)0.0140 (13)
C120.0529 (17)0.0469 (17)0.097 (2)0.0115 (14)0.0454 (17)0.0176 (16)
C130.0565 (17)0.0458 (16)0.0523 (16)0.0158 (13)0.0244 (13)0.0284 (13)
C140.076 (2)0.094 (3)0.0339 (14)0.0269 (19)0.0073 (14)0.0207 (16)
O20.0295 (7)0.0231 (7)0.0260 (7)0.0027 (6)0.0047 (6)0.0068 (6)
N80.0246 (8)0.0180 (8)0.0212 (8)0.0009 (6)0.0046 (6)0.0029 (6)
N90.0203 (8)0.0206 (8)0.0280 (9)0.0013 (7)0.0026 (7)0.0067 (7)
N100.0270 (8)0.0249 (8)0.0201 (8)0.0042 (7)0.0019 (6)0.0050 (7)
C150.0279 (10)0.0222 (10)0.0250 (10)0.0027 (8)0.0060 (8)0.0032 (8)
C160.0244 (10)0.0238 (10)0.0304 (11)0.0050 (8)0.0039 (8)0.0006 (8)
C170.0244 (10)0.0211 (9)0.0233 (9)0.0021 (8)0.0004 (8)0.0011 (8)
C180.0227 (9)0.0177 (9)0.0225 (9)0.0019 (7)0.0018 (7)0.0005 (7)
C190.0230 (10)0.0282 (11)0.0472 (13)0.0028 (9)0.0060 (9)0.0044 (10)
C200.0245 (9)0.0157 (9)0.0225 (9)0.0045 (7)0.0031 (7)0.0040 (7)
C210.0360 (12)0.0347 (12)0.0201 (10)0.0050 (9)0.0039 (8)0.0082 (8)
C220.0464 (14)0.0538 (15)0.0227 (11)0.0084 (12)0.0076 (10)0.0005 (10)
C230.0290 (11)0.0260 (11)0.0322 (11)0.0061 (9)0.0015 (9)0.0072 (9)
C240.0257 (11)0.0375 (13)0.0369 (12)0.0022 (9)0.0011 (9)0.0055 (10)
Geometric parameters (Å, º) top
Co1—N31.9412 (18)C13—C141.509 (4)
Co1—N41.9451 (18)C13—H13A0.9900
Co1—N11.9502 (17)C13—H13B0.9900
Co1—N21.9520 (18)C14—H14A0.9800
S1—C11.611 (2)C14—H14B0.9800
S2—C21.616 (2)C14—H14C0.9800
S3—C31.618 (2)O2—C201.237 (2)
S4—C41.613 (2)N8—C201.391 (2)
N1—C11.165 (3)N8—C151.466 (2)
N2—C21.166 (3)N8—C181.467 (2)
N3—C31.165 (3)N9—C191.492 (3)
N4—C41.153 (3)N9—C161.496 (3)
O1—C101.236 (2)N9—C171.498 (2)
N5—C101.397 (2)N9—H90.88 (2)
N5—C81.464 (2)N10—C201.358 (2)
N5—C51.470 (2)N10—C231.470 (3)
N6—C91.493 (2)N10—C211.476 (2)
N6—C71.497 (2)C15—C161.518 (3)
N6—C61.497 (2)C15—H15A0.9900
N6—H60.84 (2)C15—H15B0.9900
N7—C101.349 (3)C16—H16A0.9900
N7—C111.471 (3)C16—H16B0.9900
N7—C131.472 (3)C17—C181.511 (3)
C5—C61.512 (3)C17—H17A0.9900
C5—H5A0.9900C17—H17B0.9900
C5—H5B0.9900C18—H18A0.9900
C6—H6A0.9900C18—H18B0.9900
C6—H6B0.9900C19—H19A0.9800
C7—C81.516 (3)C19—H19B0.9800
C7—H7A0.9900C19—H19C0.9800
C7—H7B0.9900C21—C221.520 (3)
C8—H8A0.9900C21—H21A0.9900
C8—H8B0.9900C21—H21B0.9900
C9—H9A0.9800C22—H22A0.9800
C9—H9B0.9800C22—H22B0.9800
C9—H9C0.9800C22—H22C0.9800
C11—C121.509 (4)C23—C241.514 (3)
C11—H11A0.9900C23—H23A0.9900
C11—H11B0.9900C23—H23B0.9900
C12—H12A0.9800C24—H24A0.9800
C12—H12B0.9800C24—H24B0.9800
C12—H12C0.9800C24—H24C0.9800
N3—Co1—N4110.91 (8)H13A—C13—H13B107.9
N3—Co1—N1112.10 (7)C13—C14—H14A109.5
N4—Co1—N1109.98 (8)C13—C14—H14B109.5
N3—Co1—N2108.49 (7)H14A—C14—H14B109.5
N4—Co1—N2106.51 (8)C13—C14—H14C109.5
N1—Co1—N2108.66 (8)H14A—C14—H14C109.5
C1—N1—Co1165.66 (17)H14B—C14—H14C109.5
C2—N2—Co1177.29 (17)C20—N8—C15115.83 (15)
C3—N3—Co1168.53 (16)C20—N8—C18119.59 (15)
C4—N4—Co1171.6 (2)C15—N8—C18110.79 (15)
N1—C1—S1179.5 (2)C19—N9—C16111.56 (16)
N2—C2—S2178.74 (19)C19—N9—C17110.67 (16)
N3—C3—S3179.0 (2)C16—N9—C17110.44 (15)
N4—C4—S4179.1 (2)C19—N9—H9109.3 (15)
C10—N5—C8114.57 (15)C16—N9—H9107.2 (15)
C10—N5—C5117.62 (15)C17—N9—H9107.5 (15)
C8—N5—C5110.14 (14)C20—N10—C23116.42 (16)
C9—N6—C7111.33 (15)C20—N10—C21123.05 (16)
C9—N6—C6111.14 (15)C23—N10—C21115.91 (16)
C7—N6—C6110.78 (15)N8—C15—C16108.90 (16)
C9—N6—H6108.9 (14)N8—C15—H15A109.9
C7—N6—H6108.3 (15)C16—C15—H15A109.9
C6—N6—H6106.3 (14)N8—C15—H15B109.9
C10—N7—C11124.52 (19)C16—C15—H15B109.9
C10—N7—C13117.16 (18)H15A—C15—H15B108.3
C11—N7—C13116.64 (19)N9—C16—C15110.97 (16)
N5—C5—C6109.64 (15)N9—C16—H16A109.4
N5—C5—H5A109.7C15—C16—H16A109.4
C6—C5—H5A109.7N9—C16—H16B109.4
N5—C5—H5B109.7C15—C16—H16B109.4
C6—C5—H5B109.7H16A—C16—H16B108.0
H5A—C5—H5B108.2N9—C17—C18110.44 (15)
N6—C6—C5110.31 (15)N9—C17—H17A109.6
N6—C6—H6A109.6C18—C17—H17A109.6
C5—C6—H6A109.6N9—C17—H17B109.6
N6—C6—H6B109.6C18—C17—H17B109.6
C5—C6—H6B109.6H17A—C17—H17B108.1
H6A—C6—H6B108.1N8—C18—C17109.66 (15)
N6—C7—C8110.88 (15)N8—C18—H18A109.7
N6—C7—H7A109.5C17—C18—H18A109.7
C8—C7—H7A109.5N8—C18—H18B109.7
N6—C7—H7B109.5C17—C18—H18B109.7
C8—C7—H7B109.5H18A—C18—H18B108.2
H7A—C7—H7B108.1N9—C19—H19A109.5
N5—C8—C7108.76 (15)N9—C19—H19B109.5
N5—C8—H8A109.9H19A—C19—H19B109.5
C7—C8—H8A109.9N9—C19—H19C109.5
N5—C8—H8B109.9H19A—C19—H19C109.5
C7—C8—H8B109.9H19B—C19—H19C109.5
H8A—C8—H8B108.3O2—C20—N10122.49 (18)
N6—C9—H9A109.5O2—C20—N8120.16 (17)
N6—C9—H9B109.5N10—C20—N8117.35 (16)
H9A—C9—H9B109.5N10—C21—C22113.13 (18)
N6—C9—H9C109.5N10—C21—H21A109.0
H9A—C9—H9C109.5C22—C21—H21A109.0
H9B—C9—H9C109.5N10—C21—H21B109.0
O1—C10—N7122.55 (18)C22—C21—H21B109.0
O1—C10—N5120.73 (17)H21A—C21—H21B107.8
N7—C10—N5116.70 (17)C21—C22—H22A109.5
N7—C11—C12112.9 (2)C21—C22—H22B109.5
N7—C11—H11A109.0H22A—C22—H22B109.5
C12—C11—H11A109.0C21—C22—H22C109.5
N7—C11—H11B109.0H22A—C22—H22C109.5
C12—C11—H11B109.0H22B—C22—H22C109.5
H11A—C11—H11B107.8N10—C23—C24113.06 (17)
C11—C12—H12A109.5N10—C23—H23A109.0
C11—C12—H12B109.5C24—C23—H23A109.0
H12A—C12—H12B109.5N10—C23—H23B109.0
C11—C12—H12C109.5C24—C23—H23B109.0
H12A—C12—H12C109.5H23A—C23—H23B107.8
H12B—C12—H12C109.5C23—C24—H24A109.5
N7—C13—C14112.2 (2)C23—C24—H24B109.5
N7—C13—H13A109.2H24A—C24—H24B109.5
C14—C13—H13A109.2C23—C24—H24C109.5
N7—C13—H13B109.2H24A—C24—H24C109.5
C14—C13—H13B109.2H24B—C24—H24C109.5
C10—N5—C5—C6163.66 (16)C20—N8—C15—C16158.44 (16)
C8—N5—C5—C662.57 (19)C18—N8—C15—C1661.2 (2)
C9—N6—C6—C5178.50 (16)C19—N9—C16—C15178.76 (17)
C7—N6—C6—C554.2 (2)C17—N9—C16—C1555.2 (2)
N5—C5—C6—N657.8 (2)N8—C15—C16—N957.8 (2)
C9—N6—C7—C8178.98 (16)C19—N9—C17—C18178.96 (16)
C6—N6—C7—C854.8 (2)C16—N9—C17—C1854.9 (2)
C10—N5—C8—C7162.42 (16)C20—N8—C18—C17159.67 (16)
C5—N5—C8—C762.29 (19)C15—N8—C18—C1761.6 (2)
N6—C7—C8—N558.3 (2)N9—C17—C18—N857.8 (2)
C11—N7—C10—O1157.7 (2)C23—N10—C20—O26.6 (3)
C13—N7—C10—O17.0 (3)C21—N10—C20—O2148.25 (19)
C11—N7—C10—N520.8 (3)C23—N10—C20—N8174.26 (16)
C13—N7—C10—N5174.5 (2)C21—N10—C20—N830.9 (3)
C8—N5—C10—O111.3 (2)C15—N8—C20—O26.9 (3)
C5—N5—C10—O1120.47 (19)C18—N8—C20—O2129.85 (18)
C8—N5—C10—N7167.22 (17)C15—N8—C20—N10172.25 (16)
C5—N5—C10—N761.0 (2)C18—N8—C20—N1051.0 (2)
C10—N7—C11—C12127.1 (2)C20—N10—C21—C22131.8 (2)
C13—N7—C11—C1268.1 (3)C23—N10—C21—C2273.2 (2)
C10—N7—C13—C1479.7 (3)C20—N10—C23—C2478.8 (2)
C11—N7—C13—C14114.4 (3)C21—N10—C23—C24124.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O1i0.84 (2)1.86 (2)2.691 (2)169 (2)
N9—H9···O2ii0.88 (2)1.82 (2)2.694 (2)172 (2)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y+1/2, z+3/2.
 

Acknowledgements

This material is based upon work supported by the Army STTR Program Office and the Army Research Office. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Army STTR Program Office or the US Army Research Office.

Funding information

Funding for this research was provided by: Army Research Office (award No. W911NF-16-P-0029 to M. Lieberman).

References

First citationArunkashi, H. K., Jeyaseelan, S., Vepuri, S. B., Revanasiddappa, H. D. & Devarajegowda, H. C. (2010). Acta Cryst. E66, m772–m773.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2018). APEX3 and SAINT, Bruker–Nonius AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationConceição, V. N., Souza, L. M., Merlo, B. B., Filgueiras, P. R., Poppi, R. J. & Romão, W. (2014). Quím. Nova 37(9), 1538–1544.  Google Scholar
First citationDrew, M. G. B. & Hamid bin Othman, A. (1975). Acta Cryst. B31, 613–614.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationEisman, M., Gallego, M. & Valcárcel, M. (1992). Anal. Chem. 64, 1509–1512.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFansello, J. & Higgins, P. (1986). Microgram. 19, 137–138.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJie, Y., Yuan, H., YouQuan, Z., Ting, F., Fan, H., Qian, K. & Ye, Y.-H. (2018). Z. Naturforsch. 73, 571–575.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKumar, C. S. A., Naveen, S., Prasad, S. B. B., Gowda, N. S. L. & Lokanath, N. K. (2017). J. Appl. Chem. 6, 274–281.  CAS Google Scholar
First citationLockwood, T. E., Leong, T. X., Bliese, S. L., Helmke, A., Richard, A., Merga, G., Rorabeck, J. & Lieberman, M. (2020). J. Forensic Sci. 65, 1289–1297.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMakhlouf, J. (2021). CSD Communication (refcode ILOXEP, CCDC2061180). CCDC, Cambridge, England.  Google Scholar
First citationMali, T. N., Hancock, R. D., Boeyens, J. C. A. & Oosthuizen, E. L. (1991). J. Chem. Soc. Dalton Trans. pp. 1161–1163.  CSD CrossRef Web of Science Google Scholar
First citationMorris, J. A. (2007). J. Forensic Sci. 52, 84–87.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOguri, K., Wada, S., Eto, S. & Yamada, H. (1995). Eisei Kagaku, 41, 274–279.  CrossRef CAS Google Scholar
First citationQayyas, N. N. A., Sridhar, M. A., Indria, A. & Prasad, J. S. (1994). Z. Kristallogr. Cryst. Mater. 209(11), 918–919.  CrossRef Web of Science Google Scholar
First citationScott, L. J. (1973). Microgram. 6, 179–181.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, C. C. P. da, Martins, F. T., Honorato, S. B., Boechat, N., Ayala, A. P. & Ellena, J. (2010). Cryst. Growth Des. 10, 3094–3101.  Web of Science CSD CrossRef Google Scholar
First citationTsujikawa, K., Iwata, Y. T., Segawa, H., Yamamuro, T., Kuwayama, K., Kanamori, T. & Inoue, H. (2017). Forensic Sci. Int. 270, 267–274.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWeaver, A. A., Reiser, H., Barstis, T., Benvenuti, M., Ghosh, D., Hunckler, M., Joy, B., Koenig, L., Raddell, K. & Lieberman, M. (2013). Anal. Chem. 85, 6453–6460.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds