research communications
Bis(N,N-diethyl-4-methyl-4-piperazine-1-carboxamide) tetrakis(isothiocyanato-κN)cobalt(II), a model compound for the blue color developed in the Scott test
aDepartment of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
*Correspondence e-mail: mlieberm@nd.edu
The complex, bis(N,N-diethyl-4-methyl-4-piperazine-1-carboxamide) tetrakis(isothiocyanato-κN)cobalt(II) (N,N-diethyl-4-methyl-4-piperazine-1-carboxamide = diethylcarbamazine), (C10H22N3O)2[Co(NCS)4], is presented. This complex is a blue precipitate, insoluble in water but soluble in organic solvents, that is formed from the reaction of diethylcarbamazine citrate, a protonated tertiary amine, with cobalt(II) and thiocyanate. This reaction, in the form of the Scott test, is a common presumptive test for cocaine hydrochloride. The known cobalt compound, [K2Co(NCS)4]·3H2O, has a deep-blue coloration due to the tetrahedral [Co(NCS)4]2− that is also present in the with bulky and is similar to the color of other tetrahedral cobalt(II) complex ions, such as [CoCl4]2−. The structure is consistent with a previous proposal that a hydrophobic formed between [Co(NCS)4]2− and two protonated molecules of cocaine is responsible for the blue hydrophobic products formed by cocaine in the Scott test.
CCDC reference: 2239646
1. Chemical context
In forensics and law enforcement, the Scott test, and modifications to that test (Scott, 1973; Fansello & Higgins, 1986; Tsujikawa et al., 2017), provide identification of tertiary from opioids present in a sample. However, there are few reports on the nature of the coloration that is observed during this test, which can vary from powder blue to royal blue, purple, blue–green, or green depending on the identity of the tertiary amine being tested. Oguri and co-workers found that the blue precipitates from cocaine hydrochloride have a 1:2 cobalt:cocaine stoichiometry (Oguri et al., 1995), and IR spectra show the blue precipitates contain one or more thiocyanate units (Morris, 2007). However, the strong blue color is consistent with a tetrahedral CoII species, rather than the octahedral structure postulated by Oguri and co-workers.
As part of our on-going research into detection of functional groups using Paper Analytical Devices (PADs, Weaver et al., 2013; idPADs Lockwood et al., 2020), we sought to understand why tertiary give blue precipitates of so many colors in the presence of the Scott reagent. The citrate salt (diethylcarbamazinium citrate; CAS#1642-54-2) of a suitable tertiary amine (diethylcarbamazine; CAS#90-89-1) was selected as a representative tertiary amine. The title compound was prepared by extraction into a CH2Cl2 solution from a dried, stoichiometric mixture (1:2) of K2[Co(NCS)4] and diethylcarbamazinium citrate that yielded the blue crystals used in this study. The tetrahedral ion [Co(NCS)4]2− can also be readily formed by of the reagent used for the Scott test [the neutral compound Co(SCN)2] in the presence of a suitable amine, as demonstrated in the synthesis for the isothiopendylium tetrakis(isothiocyanato)cobalt(II) complex (refcode: QUXKOK, Arunkashi et al., 2010), which, like our structure, is an between two protonated and [Co(NCS)4]2−.
This formulation for the 2+ + 4SCN− +2B: (color red) ←→ [Co(SCN)4)B2]2− (color blue)] (Conceição et al., 2014, in Portugese), and the [(cocaineH)2[Co(NCS)4] features in several flow-injection analysis methods for cocaine, see for example Eisman et al. (1992). However, there is still no for the Scott test product with cocaine, and only three examples are available for protonated tertiary amine ion pairs with the [Co(NCS)4]2− dianion.
has been proposed in the Scott test literature for cocaine: [CoThe Scott test is a three-step sequence of reactions: (1) addition of 2% cobalt thiocyanate in water; (2) addition of 1.2 M HCl solution; (3) addition of chloroform. We ascribe the initial blue precipitate in the Scott test to the formation of the (amineH)2[Co(NCS)4]. Formation of the should be a reversible reaction, so when concentrated HCl is added in the second step and it protonates the thiocyanate ions (pKα for HNCS is 1.1), the tetrahedral cobalt anion falls apart and the blue color vanishes. When chloroform is added in the final step of the Scott test, the hydrophobic reforms in the organic solvent, turning it blue.
2. Structural commentary
The complex crystallizes with two protonated diethylcarbamazine cations and one tetrakis(isothiocyanato)cobalt(II) dianion in the ). The isothiocyanate ligands are bound to the cobalt through their nitrogen atoms, leaving the more bulky and hydrophobic sulfur atoms exposed to the solvent. Protonation of the carbamazines was confirmed by the presence of electron density on the methyl-piperazine nitrogen atoms N6 and N9. The geometry of the carbamazide molecules is unexceptional. The CoII center adopts a near ideal tetrahedral geometry (τ4 = 0.97; Yang et al., 2007; Table 1) that is located in a general position within the In contrast, the cobalt center in the parent compound K2[Co(NCS)4]·3H2O is located on a twofold screw-axis (space group P21212; Drew & Othman, 1975). The τ4 metric for the parent compound is 0.94 with the largest N—Co—N angle = 114.1 (3)° [in contrast to 112.10 (7)° reported here]. Although this small change should be considered carefully because the Scott test result is a solution phase analysis and here the solid-state structures are compared, it could indicate that the colorimetric response is a change in the tetrahedral about Co.
(Fig. 1
|
3. Supramolecular features
Both protonated tertiary amine nitrogen atoms are involved in intermolecular hydrogen bonding with amide oxygen atoms of an identical molecule related by the screw-axis along the b-axis, resulting in mono-periodic chains of each amide along the b-axis direction (Fig. 2). Thus, N6 forms a hydrogen bond to O1i and N9 to O2ii [symmetry codes: (i) −x + 1, y − , −z + ; (ii) −x + 2, y + , −z + ; see Table 2 for details]. Both chains are identified as having graph-set motif C11(7) (Etter et al., 1990).
4. Database survey
The core structure of N,N-diethyl-4-methyl-4-piperazine-1-carboxamide is only reported in five instances in the Cambridge Structural Database (CSD, v 5.43, update 4, November 2022; Groom et al., 2016). One is a diphenyl morpholine derivative, [4-(diphenylmethyl)-piperazin-1-yl](morpholin-4-yl)methanone (refcode: IDOVAB, Kumar et al., 2017). The remaining four reported structures are a series of citrates reported by da Silva and co-workers (refcodes: QURWOQ, QURWOQ01, QURWOQ02, and QURWOQ03; da Silva et al., 2010). Diethylcarbamazide citrate is used widely in the treatment of filariasis. Comparing the diethylcarbamazide molecules reported herein with those with citrate counter-ions reported by da Silva, the structures are essentially identical. Two of da Silva's structures have some ethyl chain disorder that is the only significant difference compared with the structure reported here. Tetrakis(isothiocyanato)cobalt(II) is reported in over 200 structures. At the intersection of (isothiocyanto)cobalt and tertiary there are five structures. Two of these structures contain hexakis(isothiocyanato)cobalt (refcode: ILOXEP, Makhlouf, 2021; KIPYUD, Mali et al., 1991) and are not pertinent to the discussion. The remaining three compounds {QUXKOK, [N,N-dimethyl-1-(10H-pyrido[3,2-b][1,4]benzothiazin-10-yl)propan-2-aminium] (isothiopendylium), Arunkashi et al., 2010; XIXQUT, [trimethylammonium], Jie et al., 2018; YEPHIK, [2-diethylamino-N-(2,6-dimethylphenyl)acetamide] (lignocainium), Qayyas et al., 1994} contain a tetrakis(isothiocyanato)cobalt(II) anion and associated tertiary amine cation. Bond angles about the cobalt centers in these three structures are similar to those reported here (range for angles about Co is 104.78 to 114.05°).
5. Synthesis and crystallization
K2[Co(NCS)4] was prepared by the metathesis of Co(NO3)2 (3.00 g, 16.4 mmol) and K(SCN) (3.88 g, 39.9 mmol) in 20 mL of water and allowed to dry. Dark-blue crystals were harvested for subsequent reactions; note: upon dissolution in water the solution is pink. K2[Co(NCS)4] and diethylcarbamazide citrate were mixed in a stoichiometric (1:2) ratio in water and allowed to dry. CHCl3 or CH2Cl2 was added to extract the blue complex. Crystals were grown from the CH2Cl2 extract by vapor diffusion of hexane at 277 K.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms bonded to tertiary amine nitrogen atoms (N6, N9) were refined freely. All other hydrogen atoms were included in geometrically calculated positions with C—H bond distances constrained to 0.98 Å for aromatic and methylene and 0.99 Å for methyl hydrogen atoms with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for aromatic and methylene H atoms.
details are summarized in Table 3Supporting information
CCDC reference: 2239646
https://doi.org/10.1107/S2056989023000981/zl5041sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023000981/zl5041Isup2.hkl
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).(C10H22N3O)2[Co(NCS)4] | F(000) = 1460 |
Mr = 691.86 | Dx = 1.309 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 17.915 (2) Å | Cell parameters from 9913 reflections |
b = 9.8192 (13) Å | θ = 2.3–27.6° |
c = 19.954 (3) Å | µ = 0.76 mm−1 |
β = 91.150 (2)° | T = 120 K |
V = 3509.4 (8) Å3 | Rod, blue |
Z = 4 | 0.28 × 0.07 × 0.06 mm |
Bruker APEXII diffractometer | 8799 independent reflections |
Radiation source: fine-focus sealed tube | 6514 reflections with I > 2σ(I) |
Detector resolution: 8.33 pixels mm-1 | Rint = 0.052 |
combination of ω and φ–scans | θmax = 28.4°, θmin = 1.1° |
Absorption correction: numerical (SADABS; Krause et al., 2015) | h = −23→23 |
Tmin = 0.810, Tmax = 0.979 | k = −13→13 |
66480 measured reflections | l = −26→26 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: mixed |
wR(F2) = 0.087 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.030P)2 + 2.9287P] where P = (Fo2 + 2Fc2)/3 |
8799 reflections | (Δ/σ)max = 0.002 |
384 parameters | Δρmax = 0.98 e Å−3 |
0 restraints | Δρmin = −1.11 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.74254 (2) | 0.61672 (3) | 0.54618 (2) | 0.02168 (7) | |
S1 | 0.92990 (4) | 0.81311 (8) | 0.41695 (4) | 0.05019 (18) | |
S2 | 0.87654 (4) | 0.32929 (6) | 0.69618 (3) | 0.03974 (15) | |
S3 | 0.57552 (3) | 0.33888 (7) | 0.42353 (3) | 0.03850 (14) | |
S4 | 0.60666 (5) | 0.89379 (7) | 0.69206 (6) | 0.0898 (4) | |
N1 | 0.81550 (10) | 0.72430 (18) | 0.49788 (8) | 0.0287 (4) | |
N2 | 0.79572 (10) | 0.49630 (18) | 0.60861 (9) | 0.0296 (4) | |
N3 | 0.68112 (10) | 0.50601 (18) | 0.48628 (8) | 0.0286 (4) | |
N4 | 0.68106 (10) | 0.73551 (18) | 0.60020 (9) | 0.0313 (4) | |
C1 | 0.86334 (12) | 0.7621 (2) | 0.46387 (10) | 0.0264 (4) | |
C2 | 0.83000 (11) | 0.4275 (2) | 0.64557 (10) | 0.0247 (4) | |
C3 | 0.63674 (12) | 0.4369 (2) | 0.45962 (9) | 0.0249 (4) | |
C4 | 0.64989 (13) | 0.8006 (2) | 0.63879 (13) | 0.0373 (6) | |
O1 | 0.47917 (7) | 1.15381 (14) | 0.69673 (7) | 0.0262 (3) | |
N5 | 0.40377 (9) | 0.99660 (16) | 0.74649 (8) | 0.0205 (3) | |
N6 | 0.39973 (9) | 0.78750 (17) | 0.84633 (8) | 0.0209 (3) | |
H6 | 0.4399 (12) | 0.747 (2) | 0.8383 (10) | 0.022 (6)* | |
N7 | 0.36711 (10) | 1.10644 (18) | 0.64724 (9) | 0.0324 (4) | |
C5 | 0.39077 (11) | 0.85401 (18) | 0.72708 (9) | 0.0210 (4) | |
H5A | 0.438946 | 0.809565 | 0.717291 | 0.025* | |
H5B | 0.358850 | 0.850411 | 0.686039 | 0.025* | |
C6 | 0.35303 (10) | 0.7795 (2) | 0.78338 (9) | 0.0222 (4) | |
H6A | 0.303459 | 0.820433 | 0.791130 | 0.027* | |
H6B | 0.345499 | 0.682859 | 0.770736 | 0.027* | |
C7 | 0.41778 (11) | 0.9324 (2) | 0.86332 (10) | 0.0241 (4) | |
H7A | 0.451831 | 0.935096 | 0.902995 | 0.029* | |
H7B | 0.371368 | 0.981171 | 0.874750 | 0.029* | |
C8 | 0.45436 (11) | 1.0032 (2) | 0.80495 (9) | 0.0216 (4) | |
H8A | 0.464916 | 1.099404 | 0.816562 | 0.026* | |
H8B | 0.502182 | 0.957921 | 0.794761 | 0.026* | |
C9 | 0.36244 (12) | 0.7175 (2) | 0.90305 (10) | 0.0304 (5) | |
H9A | 0.393790 | 0.725334 | 0.943679 | 0.046* | |
H9B | 0.355143 | 0.621148 | 0.891989 | 0.046* | |
H9C | 0.313896 | 0.760209 | 0.910702 | 0.046* | |
C10 | 0.41985 (11) | 1.08939 (19) | 0.69569 (10) | 0.0223 (4) | |
C11 | 0.28776 (13) | 1.0721 (3) | 0.65439 (14) | 0.0458 (6) | |
H11A | 0.258149 | 1.157241 | 0.654449 | 0.055* | |
H11B | 0.280949 | 1.026491 | 0.698088 | 0.055* | |
C12 | 0.25841 (16) | 0.9804 (3) | 0.59917 (17) | 0.0664 (9) | |
H12A | 0.260202 | 1.028600 | 0.556220 | 0.100* | |
H12B | 0.206713 | 0.954935 | 0.608292 | 0.100* | |
H12C | 0.289270 | 0.898163 | 0.597135 | 0.100* | |
C13 | 0.38615 (16) | 1.1942 (3) | 0.59024 (14) | 0.0519 (7) | |
H13A | 0.413605 | 1.275130 | 0.607109 | 0.062* | |
H13B | 0.339571 | 1.226213 | 0.567837 | 0.062* | |
C14 | 0.43331 (19) | 1.1209 (4) | 0.53983 (14) | 0.0682 (9) | |
H14A | 0.446433 | 1.183855 | 0.503827 | 0.102* | |
H14B | 0.405125 | 1.043954 | 0.520909 | 0.102* | |
H14C | 0.478997 | 1.087235 | 0.562009 | 0.102* | |
O2 | 0.94210 (8) | 0.06408 (14) | 0.77411 (7) | 0.0263 (3) | |
N8 | 1.00777 (9) | 0.22499 (16) | 0.83271 (8) | 0.0212 (3) | |
N9 | 1.12181 (9) | 0.42920 (17) | 0.82969 (9) | 0.0230 (3) | |
H9 | 1.1052 (12) | 0.478 (2) | 0.7954 (11) | 0.034 (6)* | |
N10 | 0.90345 (9) | 0.11786 (17) | 0.87878 (8) | 0.0240 (3) | |
C15 | 1.06216 (11) | 0.2245 (2) | 0.77881 (10) | 0.0249 (4) | |
H15A | 1.042531 | 0.277347 | 0.740055 | 0.030* | |
H15B | 1.071278 | 0.129933 | 0.763850 | 0.030* | |
C16 | 1.13451 (11) | 0.2875 (2) | 0.80479 (10) | 0.0261 (4) | |
H16A | 1.155428 | 0.230933 | 0.841675 | 0.031* | |
H16B | 1.171222 | 0.289546 | 0.768375 | 0.031* | |
C17 | 1.06253 (10) | 0.4300 (2) | 0.88160 (9) | 0.0229 (4) | |
H17A | 1.051975 | 0.525004 | 0.895086 | 0.028* | |
H17B | 1.080422 | 0.379663 | 0.921790 | 0.028* | |
C18 | 0.99185 (10) | 0.36465 (18) | 0.85434 (9) | 0.0209 (4) | |
H18A | 0.953590 | 0.363374 | 0.889451 | 0.025* | |
H18B | 0.972047 | 0.418252 | 0.815905 | 0.025* | |
C19 | 1.19218 (11) | 0.4913 (2) | 0.85676 (12) | 0.0329 (5) | |
H19A | 1.183296 | 0.587218 | 0.867644 | 0.049* | |
H19B | 1.231081 | 0.485059 | 0.823061 | 0.049* | |
H19C | 1.208379 | 0.442525 | 0.897345 | 0.049* | |
C20 | 0.94966 (10) | 0.13172 (18) | 0.82610 (9) | 0.0209 (4) | |
C21 | 0.92829 (12) | 0.1378 (2) | 0.94905 (10) | 0.0303 (5) | |
H21A | 0.978919 | 0.178300 | 0.949711 | 0.036* | |
H21B | 0.931594 | 0.048027 | 0.971455 | 0.036* | |
C22 | 0.87648 (14) | 0.2293 (3) | 0.98833 (11) | 0.0408 (6) | |
H22A | 0.876818 | 0.321136 | 0.969135 | 0.061* | |
H22B | 0.893574 | 0.233173 | 1.035258 | 0.061* | |
H22C | 0.825651 | 0.192474 | 0.985933 | 0.061* | |
C23 | 0.83827 (11) | 0.0288 (2) | 0.86836 (11) | 0.0291 (4) | |
H23A | 0.819629 | 0.000020 | 0.912537 | 0.035* | |
H23B | 0.853961 | −0.054001 | 0.844096 | 0.035* | |
C24 | 0.77536 (12) | 0.0968 (2) | 0.82916 (11) | 0.0334 (5) | |
H24A | 0.793927 | 0.129085 | 0.786114 | 0.050* | |
H24B | 0.756463 | 0.174142 | 0.854792 | 0.050* | |
H24C | 0.734967 | 0.031080 | 0.821181 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.02440 (13) | 0.02027 (13) | 0.02043 (13) | −0.00148 (11) | 0.00194 (10) | 0.00012 (11) |
S1 | 0.0401 (4) | 0.0601 (4) | 0.0510 (4) | −0.0233 (3) | 0.0147 (3) | 0.0044 (3) |
S2 | 0.0480 (4) | 0.0311 (3) | 0.0393 (3) | −0.0055 (3) | −0.0194 (3) | 0.0092 (2) |
S3 | 0.0379 (3) | 0.0448 (3) | 0.0323 (3) | −0.0053 (3) | −0.0132 (2) | −0.0080 (3) |
S4 | 0.0949 (6) | 0.0321 (4) | 0.1462 (9) | −0.0231 (4) | 0.0978 (7) | −0.0344 (5) |
N1 | 0.0318 (10) | 0.0283 (9) | 0.0260 (9) | −0.0050 (8) | 0.0033 (7) | 0.0005 (7) |
N2 | 0.0343 (10) | 0.0263 (9) | 0.0282 (9) | 0.0004 (8) | −0.0015 (8) | −0.0002 (7) |
N3 | 0.0345 (10) | 0.0271 (9) | 0.0242 (9) | −0.0035 (8) | −0.0002 (7) | 0.0006 (7) |
N4 | 0.0283 (9) | 0.0266 (9) | 0.0393 (10) | −0.0023 (8) | 0.0067 (8) | −0.0045 (8) |
C1 | 0.0304 (11) | 0.0226 (10) | 0.0261 (10) | −0.0058 (8) | −0.0033 (9) | −0.0026 (8) |
C2 | 0.0282 (10) | 0.0213 (10) | 0.0247 (10) | −0.0065 (8) | −0.0007 (8) | −0.0027 (8) |
C3 | 0.0307 (11) | 0.0263 (10) | 0.0177 (9) | 0.0046 (9) | 0.0005 (8) | 0.0025 (8) |
C4 | 0.0333 (12) | 0.0190 (10) | 0.0604 (15) | −0.0071 (9) | 0.0214 (11) | −0.0025 (10) |
O1 | 0.0246 (7) | 0.0281 (7) | 0.0261 (7) | −0.0076 (6) | 0.0031 (6) | 0.0000 (6) |
N5 | 0.0212 (8) | 0.0165 (8) | 0.0238 (8) | −0.0024 (6) | −0.0023 (6) | −0.0015 (6) |
N6 | 0.0189 (8) | 0.0209 (8) | 0.0229 (8) | 0.0017 (7) | 0.0025 (6) | −0.0008 (6) |
N7 | 0.0294 (9) | 0.0268 (9) | 0.0406 (10) | −0.0038 (8) | −0.0102 (8) | 0.0111 (8) |
C5 | 0.0225 (9) | 0.0174 (9) | 0.0229 (9) | −0.0010 (7) | −0.0062 (7) | −0.0025 (7) |
C6 | 0.0188 (9) | 0.0196 (9) | 0.0281 (10) | −0.0024 (7) | −0.0046 (8) | 0.0006 (8) |
C7 | 0.0284 (10) | 0.0205 (9) | 0.0236 (10) | −0.0014 (8) | 0.0044 (8) | −0.0047 (8) |
C8 | 0.0221 (9) | 0.0210 (9) | 0.0216 (9) | −0.0037 (8) | 0.0004 (7) | −0.0038 (7) |
C9 | 0.0344 (12) | 0.0283 (11) | 0.0287 (11) | −0.0033 (9) | 0.0071 (9) | 0.0054 (9) |
C10 | 0.0232 (10) | 0.0176 (9) | 0.0261 (10) | 0.0009 (7) | 0.0010 (8) | −0.0018 (7) |
C11 | 0.0265 (12) | 0.0362 (13) | 0.0738 (18) | −0.0012 (10) | −0.0165 (12) | 0.0140 (13) |
C12 | 0.0529 (17) | 0.0469 (17) | 0.097 (2) | −0.0115 (14) | −0.0454 (17) | 0.0176 (16) |
C13 | 0.0565 (17) | 0.0458 (16) | 0.0523 (16) | −0.0158 (13) | −0.0244 (13) | 0.0284 (13) |
C14 | 0.076 (2) | 0.094 (3) | 0.0339 (14) | −0.0269 (19) | −0.0073 (14) | 0.0207 (16) |
O2 | 0.0295 (7) | 0.0231 (7) | 0.0260 (7) | 0.0027 (6) | −0.0047 (6) | −0.0068 (6) |
N8 | 0.0246 (8) | 0.0180 (8) | 0.0212 (8) | −0.0009 (6) | 0.0046 (6) | −0.0029 (6) |
N9 | 0.0203 (8) | 0.0206 (8) | 0.0280 (9) | 0.0013 (7) | −0.0026 (7) | 0.0067 (7) |
N10 | 0.0270 (8) | 0.0249 (8) | 0.0201 (8) | −0.0042 (7) | −0.0019 (6) | 0.0050 (7) |
C15 | 0.0279 (10) | 0.0222 (10) | 0.0250 (10) | 0.0027 (8) | 0.0060 (8) | −0.0032 (8) |
C16 | 0.0244 (10) | 0.0238 (10) | 0.0304 (11) | 0.0050 (8) | 0.0039 (8) | 0.0006 (8) |
C17 | 0.0244 (10) | 0.0211 (9) | 0.0233 (9) | 0.0021 (8) | −0.0004 (8) | −0.0011 (8) |
C18 | 0.0227 (9) | 0.0177 (9) | 0.0225 (9) | 0.0019 (7) | 0.0018 (7) | −0.0005 (7) |
C19 | 0.0230 (10) | 0.0282 (11) | 0.0472 (13) | −0.0028 (9) | −0.0060 (9) | 0.0044 (10) |
C20 | 0.0245 (9) | 0.0157 (9) | 0.0225 (9) | 0.0045 (7) | −0.0031 (7) | 0.0040 (7) |
C21 | 0.0360 (12) | 0.0347 (12) | 0.0201 (10) | −0.0050 (9) | −0.0039 (8) | 0.0082 (8) |
C22 | 0.0464 (14) | 0.0538 (15) | 0.0227 (11) | −0.0084 (12) | 0.0076 (10) | 0.0005 (10) |
C23 | 0.0290 (11) | 0.0260 (11) | 0.0322 (11) | −0.0061 (9) | −0.0015 (9) | 0.0072 (9) |
C24 | 0.0257 (11) | 0.0375 (13) | 0.0369 (12) | −0.0022 (9) | 0.0011 (9) | 0.0055 (10) |
Co1—N3 | 1.9412 (18) | C13—C14 | 1.509 (4) |
Co1—N4 | 1.9451 (18) | C13—H13A | 0.9900 |
Co1—N1 | 1.9502 (17) | C13—H13B | 0.9900 |
Co1—N2 | 1.9520 (18) | C14—H14A | 0.9800 |
S1—C1 | 1.611 (2) | C14—H14B | 0.9800 |
S2—C2 | 1.616 (2) | C14—H14C | 0.9800 |
S3—C3 | 1.618 (2) | O2—C20 | 1.237 (2) |
S4—C4 | 1.613 (2) | N8—C20 | 1.391 (2) |
N1—C1 | 1.165 (3) | N8—C15 | 1.466 (2) |
N2—C2 | 1.166 (3) | N8—C18 | 1.467 (2) |
N3—C3 | 1.165 (3) | N9—C19 | 1.492 (3) |
N4—C4 | 1.153 (3) | N9—C16 | 1.496 (3) |
O1—C10 | 1.236 (2) | N9—C17 | 1.498 (2) |
N5—C10 | 1.397 (2) | N9—H9 | 0.88 (2) |
N5—C8 | 1.464 (2) | N10—C20 | 1.358 (2) |
N5—C5 | 1.470 (2) | N10—C23 | 1.470 (3) |
N6—C9 | 1.493 (2) | N10—C21 | 1.476 (2) |
N6—C7 | 1.497 (2) | C15—C16 | 1.518 (3) |
N6—C6 | 1.497 (2) | C15—H15A | 0.9900 |
N6—H6 | 0.84 (2) | C15—H15B | 0.9900 |
N7—C10 | 1.349 (3) | C16—H16A | 0.9900 |
N7—C11 | 1.471 (3) | C16—H16B | 0.9900 |
N7—C13 | 1.472 (3) | C17—C18 | 1.511 (3) |
C5—C6 | 1.512 (3) | C17—H17A | 0.9900 |
C5—H5A | 0.9900 | C17—H17B | 0.9900 |
C5—H5B | 0.9900 | C18—H18A | 0.9900 |
C6—H6A | 0.9900 | C18—H18B | 0.9900 |
C6—H6B | 0.9900 | C19—H19A | 0.9800 |
C7—C8 | 1.516 (3) | C19—H19B | 0.9800 |
C7—H7A | 0.9900 | C19—H19C | 0.9800 |
C7—H7B | 0.9900 | C21—C22 | 1.520 (3) |
C8—H8A | 0.9900 | C21—H21A | 0.9900 |
C8—H8B | 0.9900 | C21—H21B | 0.9900 |
C9—H9A | 0.9800 | C22—H22A | 0.9800 |
C9—H9B | 0.9800 | C22—H22B | 0.9800 |
C9—H9C | 0.9800 | C22—H22C | 0.9800 |
C11—C12 | 1.509 (4) | C23—C24 | 1.514 (3) |
C11—H11A | 0.9900 | C23—H23A | 0.9900 |
C11—H11B | 0.9900 | C23—H23B | 0.9900 |
C12—H12A | 0.9800 | C24—H24A | 0.9800 |
C12—H12B | 0.9800 | C24—H24B | 0.9800 |
C12—H12C | 0.9800 | C24—H24C | 0.9800 |
N3—Co1—N4 | 110.91 (8) | H13A—C13—H13B | 107.9 |
N3—Co1—N1 | 112.10 (7) | C13—C14—H14A | 109.5 |
N4—Co1—N1 | 109.98 (8) | C13—C14—H14B | 109.5 |
N3—Co1—N2 | 108.49 (7) | H14A—C14—H14B | 109.5 |
N4—Co1—N2 | 106.51 (8) | C13—C14—H14C | 109.5 |
N1—Co1—N2 | 108.66 (8) | H14A—C14—H14C | 109.5 |
C1—N1—Co1 | 165.66 (17) | H14B—C14—H14C | 109.5 |
C2—N2—Co1 | 177.29 (17) | C20—N8—C15 | 115.83 (15) |
C3—N3—Co1 | 168.53 (16) | C20—N8—C18 | 119.59 (15) |
C4—N4—Co1 | 171.6 (2) | C15—N8—C18 | 110.79 (15) |
N1—C1—S1 | 179.5 (2) | C19—N9—C16 | 111.56 (16) |
N2—C2—S2 | 178.74 (19) | C19—N9—C17 | 110.67 (16) |
N3—C3—S3 | 179.0 (2) | C16—N9—C17 | 110.44 (15) |
N4—C4—S4 | 179.1 (2) | C19—N9—H9 | 109.3 (15) |
C10—N5—C8 | 114.57 (15) | C16—N9—H9 | 107.2 (15) |
C10—N5—C5 | 117.62 (15) | C17—N9—H9 | 107.5 (15) |
C8—N5—C5 | 110.14 (14) | C20—N10—C23 | 116.42 (16) |
C9—N6—C7 | 111.33 (15) | C20—N10—C21 | 123.05 (16) |
C9—N6—C6 | 111.14 (15) | C23—N10—C21 | 115.91 (16) |
C7—N6—C6 | 110.78 (15) | N8—C15—C16 | 108.90 (16) |
C9—N6—H6 | 108.9 (14) | N8—C15—H15A | 109.9 |
C7—N6—H6 | 108.3 (15) | C16—C15—H15A | 109.9 |
C6—N6—H6 | 106.3 (14) | N8—C15—H15B | 109.9 |
C10—N7—C11 | 124.52 (19) | C16—C15—H15B | 109.9 |
C10—N7—C13 | 117.16 (18) | H15A—C15—H15B | 108.3 |
C11—N7—C13 | 116.64 (19) | N9—C16—C15 | 110.97 (16) |
N5—C5—C6 | 109.64 (15) | N9—C16—H16A | 109.4 |
N5—C5—H5A | 109.7 | C15—C16—H16A | 109.4 |
C6—C5—H5A | 109.7 | N9—C16—H16B | 109.4 |
N5—C5—H5B | 109.7 | C15—C16—H16B | 109.4 |
C6—C5—H5B | 109.7 | H16A—C16—H16B | 108.0 |
H5A—C5—H5B | 108.2 | N9—C17—C18 | 110.44 (15) |
N6—C6—C5 | 110.31 (15) | N9—C17—H17A | 109.6 |
N6—C6—H6A | 109.6 | C18—C17—H17A | 109.6 |
C5—C6—H6A | 109.6 | N9—C17—H17B | 109.6 |
N6—C6—H6B | 109.6 | C18—C17—H17B | 109.6 |
C5—C6—H6B | 109.6 | H17A—C17—H17B | 108.1 |
H6A—C6—H6B | 108.1 | N8—C18—C17 | 109.66 (15) |
N6—C7—C8 | 110.88 (15) | N8—C18—H18A | 109.7 |
N6—C7—H7A | 109.5 | C17—C18—H18A | 109.7 |
C8—C7—H7A | 109.5 | N8—C18—H18B | 109.7 |
N6—C7—H7B | 109.5 | C17—C18—H18B | 109.7 |
C8—C7—H7B | 109.5 | H18A—C18—H18B | 108.2 |
H7A—C7—H7B | 108.1 | N9—C19—H19A | 109.5 |
N5—C8—C7 | 108.76 (15) | N9—C19—H19B | 109.5 |
N5—C8—H8A | 109.9 | H19A—C19—H19B | 109.5 |
C7—C8—H8A | 109.9 | N9—C19—H19C | 109.5 |
N5—C8—H8B | 109.9 | H19A—C19—H19C | 109.5 |
C7—C8—H8B | 109.9 | H19B—C19—H19C | 109.5 |
H8A—C8—H8B | 108.3 | O2—C20—N10 | 122.49 (18) |
N6—C9—H9A | 109.5 | O2—C20—N8 | 120.16 (17) |
N6—C9—H9B | 109.5 | N10—C20—N8 | 117.35 (16) |
H9A—C9—H9B | 109.5 | N10—C21—C22 | 113.13 (18) |
N6—C9—H9C | 109.5 | N10—C21—H21A | 109.0 |
H9A—C9—H9C | 109.5 | C22—C21—H21A | 109.0 |
H9B—C9—H9C | 109.5 | N10—C21—H21B | 109.0 |
O1—C10—N7 | 122.55 (18) | C22—C21—H21B | 109.0 |
O1—C10—N5 | 120.73 (17) | H21A—C21—H21B | 107.8 |
N7—C10—N5 | 116.70 (17) | C21—C22—H22A | 109.5 |
N7—C11—C12 | 112.9 (2) | C21—C22—H22B | 109.5 |
N7—C11—H11A | 109.0 | H22A—C22—H22B | 109.5 |
C12—C11—H11A | 109.0 | C21—C22—H22C | 109.5 |
N7—C11—H11B | 109.0 | H22A—C22—H22C | 109.5 |
C12—C11—H11B | 109.0 | H22B—C22—H22C | 109.5 |
H11A—C11—H11B | 107.8 | N10—C23—C24 | 113.06 (17) |
C11—C12—H12A | 109.5 | N10—C23—H23A | 109.0 |
C11—C12—H12B | 109.5 | C24—C23—H23A | 109.0 |
H12A—C12—H12B | 109.5 | N10—C23—H23B | 109.0 |
C11—C12—H12C | 109.5 | C24—C23—H23B | 109.0 |
H12A—C12—H12C | 109.5 | H23A—C23—H23B | 107.8 |
H12B—C12—H12C | 109.5 | C23—C24—H24A | 109.5 |
N7—C13—C14 | 112.2 (2) | C23—C24—H24B | 109.5 |
N7—C13—H13A | 109.2 | H24A—C24—H24B | 109.5 |
C14—C13—H13A | 109.2 | C23—C24—H24C | 109.5 |
N7—C13—H13B | 109.2 | H24A—C24—H24C | 109.5 |
C14—C13—H13B | 109.2 | H24B—C24—H24C | 109.5 |
C10—N5—C5—C6 | −163.66 (16) | C20—N8—C15—C16 | −158.44 (16) |
C8—N5—C5—C6 | 62.57 (19) | C18—N8—C15—C16 | 61.2 (2) |
C9—N6—C6—C5 | 178.50 (16) | C19—N9—C16—C15 | 178.76 (17) |
C7—N6—C6—C5 | 54.2 (2) | C17—N9—C16—C15 | 55.2 (2) |
N5—C5—C6—N6 | −57.8 (2) | N8—C15—C16—N9 | −57.8 (2) |
C9—N6—C7—C8 | −178.98 (16) | C19—N9—C17—C18 | −178.96 (16) |
C6—N6—C7—C8 | −54.8 (2) | C16—N9—C17—C18 | −54.9 (2) |
C10—N5—C8—C7 | 162.42 (16) | C20—N8—C18—C17 | 159.67 (16) |
C5—N5—C8—C7 | −62.29 (19) | C15—N8—C18—C17 | −61.6 (2) |
N6—C7—C8—N5 | 58.3 (2) | N9—C17—C18—N8 | 57.8 (2) |
C11—N7—C10—O1 | −157.7 (2) | C23—N10—C20—O2 | −6.6 (3) |
C13—N7—C10—O1 | 7.0 (3) | C21—N10—C20—O2 | 148.25 (19) |
C11—N7—C10—N5 | 20.8 (3) | C23—N10—C20—N8 | 174.26 (16) |
C13—N7—C10—N5 | −174.5 (2) | C21—N10—C20—N8 | −30.9 (3) |
C8—N5—C10—O1 | 11.3 (2) | C15—N8—C20—O2 | −6.9 (3) |
C5—N5—C10—O1 | −120.47 (19) | C18—N8—C20—O2 | 129.85 (18) |
C8—N5—C10—N7 | −167.22 (17) | C15—N8—C20—N10 | 172.25 (16) |
C5—N5—C10—N7 | 61.0 (2) | C18—N8—C20—N10 | −51.0 (2) |
C10—N7—C11—C12 | −127.1 (2) | C20—N10—C21—C22 | 131.8 (2) |
C13—N7—C11—C12 | 68.1 (3) | C23—N10—C21—C22 | −73.2 (2) |
C10—N7—C13—C14 | 79.7 (3) | C20—N10—C23—C24 | −78.8 (2) |
C11—N7—C13—C14 | −114.4 (3) | C21—N10—C23—C24 | 124.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6···O1i | 0.84 (2) | 1.86 (2) | 2.691 (2) | 169 (2) |
N9—H9···O2ii | 0.88 (2) | 1.82 (2) | 2.694 (2) | 172 (2) |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+2, y+1/2, −z+3/2. |
Acknowledgements
This material is based upon work supported by the Army STTR Program Office and the Army Research Office. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Army STTR Program Office or the US Army Research Office.
Funding information
Funding for this research was provided by: Army Research Office (award No. W911NF-16-P-0029 to M. Lieberman).
References
Arunkashi, H. K., Jeyaseelan, S., Vepuri, S. B., Revanasiddappa, H. D. & Devarajegowda, H. C. (2010). Acta Cryst. E66, m772–m773. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2018). APEX3 and SAINT, Bruker–Nonius AXS Inc. Madison, Wisconsin, USA. Google Scholar
Conceição, V. N., Souza, L. M., Merlo, B. B., Filgueiras, P. R., Poppi, R. J. & Romão, W. (2014). Quím. Nova 37(9), 1538–1544. Google Scholar
Drew, M. G. B. & Hamid bin Othman, A. (1975). Acta Cryst. B31, 613–614. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
Eisman, M., Gallego, M. & Valcárcel, M. (1992). Anal. Chem. 64, 1509–1512. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Fansello, J. & Higgins, P. (1986). Microgram. 19, 137–138. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jie, Y., Yuan, H., YouQuan, Z., Ting, F., Fan, H., Qian, K. & Ye, Y.-H. (2018). Z. Naturforsch. 73, 571–575. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kumar, C. S. A., Naveen, S., Prasad, S. B. B., Gowda, N. S. L. & Lokanath, N. K. (2017). J. Appl. Chem. 6, 274–281. CAS Google Scholar
Lockwood, T. E., Leong, T. X., Bliese, S. L., Helmke, A., Richard, A., Merga, G., Rorabeck, J. & Lieberman, M. (2020). J. Forensic Sci. 65, 1289–1297. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Makhlouf, J. (2021). CSD Communication (refcode ILOXEP, CCDC2061180). CCDC, Cambridge, England. Google Scholar
Mali, T. N., Hancock, R. D., Boeyens, J. C. A. & Oosthuizen, E. L. (1991). J. Chem. Soc. Dalton Trans. pp. 1161–1163. CSD CrossRef Web of Science Google Scholar
Morris, J. A. (2007). J. Forensic Sci. 52, 84–87. Web of Science CrossRef PubMed CAS Google Scholar
Oguri, K., Wada, S., Eto, S. & Yamada, H. (1995). Eisei Kagaku, 41, 274–279. CrossRef CAS Google Scholar
Qayyas, N. N. A., Sridhar, M. A., Indria, A. & Prasad, J. S. (1994). Z. Kristallogr. Cryst. Mater. 209(11), 918–919. CrossRef Web of Science Google Scholar
Scott, L. J. (1973). Microgram. 6, 179–181. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Silva, C. C. P. da, Martins, F. T., Honorato, S. B., Boechat, N., Ayala, A. P. & Ellena, J. (2010). Cryst. Growth Des. 10, 3094–3101. Web of Science CSD CrossRef Google Scholar
Tsujikawa, K., Iwata, Y. T., Segawa, H., Yamamuro, T., Kuwayama, K., Kanamori, T. & Inoue, H. (2017). Forensic Sci. Int. 270, 267–274. Web of Science CrossRef CAS PubMed Google Scholar
Weaver, A. A., Reiser, H., Barstis, T., Benvenuti, M., Ghosh, D., Hunckler, M., Joy, B., Koenig, L., Raddell, K. & Lieberman, M. (2013). Anal. Chem. 85, 6453–6460. Web of Science CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.