research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Halogen-bonded co-crystal containing 1,3-di­iodo­perchloro­benzene and the photoproduct rtct-tetra­kis­(pyridin-4-yl)cyclo­butane resulting in a zigzag topology

crossmark logo

aMissouri State University, Department of Chemistry and Biochemistry, Springfield, MO 65897, USA, bTexas Tech University, Department of Chemistry and Biochemistry, Lubbock, TX 79409, USA, and cWebster University, Department of Biological Sciences, St. Louis, MO 63119, USA
*Correspondence e-mail: ryangroeneman19@webster.edu

Edited by M. Zeller, Purdue University, USA (Received 3 February 2023; accepted 15 February 2023; online 21 February 2023)

The formation and crystal structure of a zigzag network held together by I⋯N halogen bonds is reported. In particular, the halogen-bond donor is 1,3-di­iodo­perchloro­benzene (C6I2Cl4) while the acceptor is the photoproduct rtct-tetra­kis­(pyridin-4-yl)cyclo­butane (TPCB). Curiously, within the resulting co-crystal (C6I2Cl4)·(TPCB), the photoproduct accepts only two halogen bonds between neighbouring 4-pyridyl rings and as a result behaves as a bent two-connected node rather than the expected four-connected centre. In addition, the photoproduct, TPCB, is also found to engage in C—H⋯N hydrogen bonds, forming an extended zigzag chain.

1. Chemical context

A continued focus for crystal engineers is the formation of mol­ecular networks held together by non-covalent inter­actions (Vantomme & Meijer, 2019[Vantomme, G. & Meijer, E. W. (2019). Science, 363, 1396-1397.]). Still today, research on these purely organic materials continues to lag behind related areas such as metal–organic frameworks as well as supra­molecular coordinated solids. Co-crystallization has proven to be a successful approach in the formation of these extended organic solids (Gunawardana & Aakeröy, 2018[Gunawardana, C. A. & Aakeröy, C. B. (2018). Chem. Commun. 54, 14047-14060.]). As in all types of network design, the components of these co-crystals must be carefully considered to ensure complementary supra­molecular donor and acceptor sites that will allow for self-assembly of the multi-component solid. A highly utilized and well-established non-covalent inter­action is halogen bonding, which is defined as the inter­action between an electrophilic region on a halogen atom and a nucleophilic region on a different atom (Gilday et al., 2015[Gilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. & Beer, P. D. (2015). Chem. Rev. 115, 7118-7195.]). Overall, the strength and directionality of halogen bonds makes them an ideal supra­molecular inter­action, along with hydrogen bonds, as a driving force in the formation of co-crystals (Corpinot & Bučar, 2019[Corpinot, M. K. & Bučar, D.-K. (2019). Cryst. Growth Des. 19, 1426-1453.]).

A continued area of focus between our research groups has been in the design and formation of halogen-bonded mol­ecular networks (Dunning et al., 2021[Dunning, T. J., Unruh, D. K., Bosch, E. & Groeneman, R. H. (2021). Molecules, 26, 3152.], 2022[Dunning, T. J., Bosch, E. & Groeneman, R. H. (2022). Acta Cryst. E78, 506-509.]; Oburn et al., 2020[Oburn, S. M., Santana, C. L., Elacqua, E. & Groeneman, R. H. (2020). CrystEngComm, 22, 4349-4352.]; Sinnwell et al., 2020[Sinnwell, M. A., Santana, C. L., Bosch, E., MacGillivray, L. R. & Groeneman, R. H. (2020). CrystEngComm, 22, 6780-6782.]) that contain cyclo­butane-based nodes generated from the [2 + 2] cyclo­addition reaction between alkenes (Kole & Mir, 2022[Kole, G. K. & Mir, M. H. (2022). CrystEngComm, 24, 3993-4007.]; Gan et al., 2018[Gan, M.-M., Yu, J.-G., Wang, Y. Y. & Han, Y.-F. (2018). Cryst. Growth Des. 18, 553-565.]). Recently, we reported the ability to form a mol­ecular salt with a square network topology based upon the tetra­protonated photoproduct rtct-tetra­kis­(pyridin-4-yl)cyclo­butane and the sulfate anion (Santana et al., 2021b[Santana, C. L., Reinheimer, E. W. & Groeneman, R. H. (2021b). Acta Cryst. C77, 561-565.]). The rtct-isomer, which is the more stable thermodynamic product, is not directly observed from the solid-state [2 + 2] cyclo­addition reaction, but rather forms after the photoreaction and an acid-catalysed isomerization reaction (Hill et al., 2012[Hill, Y., Linares, M. & Briceño, A. (2012). New J. Chem. 36, 554-557.]; Peedikakkal et al., 2010[Peedikakkal, A. M. P., Peh, C. S. Y., Koh, L. L. & Vittal, J. J. (2010). Inorg. Chem. 49, 6775-6777.]).

[Scheme 1]

Herein, we report the solid-state crystal structure of a co-crystal held together by I⋯N halogen bonds that has a zigzag topology. In particular, the solid is based upon 1,3-di­iodo­perchloro­benzene (C6I2Cl4) acting as the halogen-bond donor while the photoproduct rtct-tetra­kis­(pyridin-4-yl)cyclo­butane (TPCB) behaves as the acceptor. Unexpectedly, the TPCB mol­ecule is found to accept only two I⋯N halogen bonds, between neighbouring 4-pyridyl rings, which makes the photoproduct act as a bent two-connected node rather than a four-connected node as seen in the square network topology with the sulfate anion (Santana et al., 2021b[Santana, C. L., Reinheimer, E. W. & Groeneman, R. H. (2021b). Acta Cryst. C77, 561-565.]).

2. Structural commentary

Crystallographic analysis revealed that the components of (C6I2Cl4)·(TPCB) crystallize in the centrosymmetric monoclinic space group P21/c. The asymmetric unit contains a full mol­ecule of both C6I2Cl4 and TPCB (Fig. 1[link]) although the crystals formed from a 2:1 solution of the two components. Notably, the TPCB mol­ecule has an rtct-geometry, as expected since we first subjected the rctt-TPCB to an acid-catalysed isomerization. As a result of the isomerization reaction, the bond angles between neighbouring 4-pyridyl rings within TPCB are nearly perpendicular, with all four angles slightly obtuse at 93.64 (7), 96.05 (7), 96.37 (7) and 100.50 (7)°. These bond angles were measured from the centroids of the cyclo­butane and the pyridine rings. As expected, the halogen-bond donor C6I2Cl4 forms two crystallographically unique I⋯N halogen bonds with TPCB. The halogen-bond distances between I1⋯N4 and I2⋯N3i have values of 2.757 (4) and 2.909 (4) Å along with bond angles for C1—I1⋯N4 and C3—I2⋯N3i of 176.58 (15) and 172.73 (16)°, respectively [symmetry code: (i) 1 + x, [{3\over 2}] − y, −[{1\over 2}] + z]. Surprisingly, within (C6I2Cl4)·(TPCB) only two adjacent 4-pyridyl rings are accepting these I⋯N halogen bonds. As a consequence of the observed formula and the lower than expected number of halogen bonds, TPCB behaves as a bent two-connecting node, resulting in a zigzag topology (Fig. 2[link]). The pitch distance observed within (C6I2Cl4)·(TPCB) is 20.51 (2) Å measured from the centroids of two nearest cyclo­butane rings within the chain. Even though the I atoms on C6I2Cl4 are found in the meta positions, rather than the para position, this halogen-bond donor acts as a nearly linear linker within (C6I2Cl4)·(TPCB) (Fig. 2[link]).

[Figure 1]
Figure 1
The labelled asymmetric unit of (C6I2Cl4)·(TPCB). Displacement ellipsoids are drawn at the 50% probability level for non-hydrogen atoms while hydrogen atoms are shown as spheres of arbitrary size.
[Figure 2]
Figure 2
X-ray crystal structure of (C6I2Cl4)·(TPCB) illustrating the zigzag network held together by I⋯N halogen bonds. Halogen bonds are represented by yellow dashed lines.

3. Supra­molecular features

In addition to halogen bonding within (C6I2Cl4)·(TPCB), the photoproduct TPCB is found to engage in a C—H⋯N hydrogen bond, resulting in a mono-periodic zigzag chain (Fig. 3[link]). In particular, this C—H⋯N hydrogen bond has a C⋯N separation of 3.442 (7) Å and a C—H⋯N angle of 148°. It is important to note that the hydrogen-bond-accepting N atom does not accept halogen bonds. The donor H atom for this C—H⋯N hydrogen bond is in the 3-position on a pyridine ring that accepts a halogen bond.

[Figure 3]
Figure 3
X-ray crystal structure of (C6I2Cl4)·(TPCB) illustrating the C—H⋯N hydrogen bonds between photoproducts forming a zigzag chain. Hydrogen bonds are represented by yellow dashed lines.

These different types of non-covalent inter­actions were also investigated and visualized by a Hirshfeld surface analysis (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) mapped over dnorm (Fig. 4[link]). The darkest red spots on the Hirshfeld surface represent I⋯N halogen bonds while the faint red spots indicate the C—H⋯N inter­actions. The adjacent halogen bond accepting 4-pyridyl groups within TPCB generates the two-connecting node and the bent geometry required for a zigzag topology.

[Figure 4]
Figure 4
Hirshfeld surface of (C6I2Cl4)·(TPCB) mapped over dnorm illustrating the I⋯N halogen bonds (darkest red spots) and the C—H⋯N hydrogen bonds (faint red spots).

4. Database survey

A search of the Cambridge Crystallographic Database, Version 2022.3.0 Build 364, (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using Conquest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for structures containing tetra­kis­(pyridin-4-yl)cyclo­butane in which one pyridyl N atom is within the van der Waals radius of a halogen atom revealed a total of four structures. Two of these structures correspond to the rtct-isomer. One of these, refcode RULHAK, is our earlier report of the tetra­hedral network formed between 1,4-di­iodo­perchloro­benzene and rctt-TPCB (Oburn et al., 2020[Oburn, S. M., Santana, C. L., Elacqua, E. & Groeneman, R. H. (2020). CrystEngComm, 22, 4349-4352.]), in which all four pyridyl N atoms are halogen-bond acceptors. In the other structure, refcode EKUJOM (Santana et al., 2021a[Santana, C. L., Battle, J. D., Unruh, D. K. & Groeneman, R. H. (2021a). Acta Cryst. C77, 111-115.]), a chlorine atom ortho to a hydrogen-bonded phenol has a geometry-enforced close contact to the N atom.

5. Synthesis and crystallization

Materials and general methods The solvents such as reagent grade ethanol, dimethyl sulfoxide, chloro­form, and toluene were all purchased from Sigma-Aldrich Chemical (St. Louis, MO, USA) and used as received. In addition, resorcinol (res), trans-1,2-bis­(pyridin-4-yl)ethyl­ene (BPE), concentrated sulfuric acid, and sodium hydroxide pellets were also purchased from Sigma-Aldrich and were used without additional purification. The [2 + 2] cyclo­addition reaction was conducted in an ACE Glass photochemistry cabinet using UV-radiation from a 450 W medium-pressure mercury lamp. The occurrence of both the [2 + 2] cyclo­addition reaction along with the acid-catalysed isomerization reaction were confirmed by using 1H Nuclear Magnetic Resonance Spectroscopy on a Bruker Avance 400 MHz spectrometer with dimethyl sulfoxide (DMSO-d6) as the solvent. The halogen-bond donor 1,3-di­iodo­perchloro­benzene (C6I2Cl4) was synthesized utilizing a previously published method (Reddy et al., 2006[Reddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222-2234.]).

Synthesis and crystallization The formation of the halogen-bond acceptor rtct-tetra­kis­(pyridin-4-yl)cyclo­butane (TPCB) was achieved by using a previously published approach (Santana et al., 2021a[Santana, C. L., Reinheimer, E. W. & Groeneman, R. H. (2021b). Acta Cryst. C77, 561-565.]). In particular, the co-crystal 2(res)·2(BPE) undergoes a [2 + 2] cyclo­addition reaction to yield rctt-tetra­kis­(pyridin-4-yl)cyclo­butane as previously reported (MacGillivray et al., 2000[MacGillivray, L. R., Reid, J. L. & Ripmeester, J. A. (2000). J. Am. Chem. Soc. 122, 7817-7818.]). The rctt-photoproduct was removed from the template by means of a base extraction with 0.2 M sodium hydroxide solution along with chloro­form as the solvent. The conversion from rctt- to the rtct-isomer was achieved by heating 100 mg of the rctt-photoproduct in a 10 mL beaker with 2.0 mL of dimethyl sulfoxide along with two drops of sulfuric acid. The resulting solution was heated on a hot plate for one hour at 373 K (Peedikakkal et al., 2010[Peedikakkal, A. M. P., Peh, C. S. Y., Koh, L. L. & Vittal, J. J. (2010). Inorg. Chem. 49, 6775-6777.]). The complete upfield shift of the cyclo­butane in the 1H NMR spectra from 4.86 ppm for the rctt-isomer to 3.86 ppm for the rtct-isomer confirms the qu­anti­tative yield for this isomerization reaction. The separation of the photoproduct from the sulfate salt was achieved by a base extraction with 0.2 M sodium hydroxide and again chloro­form in three 10.0 mL aliquots. Removal of the chloro­form yielded pure TPCB (Fig. 1 in the supporting information).

The formation of (C6I2Cl4)·(TPCB) was achieved by dissolving 64.0 mg of C6I2Cl4 in 2.0 mL of toluene and then combined with a 2.0 mL ethanol solution containing 25.0 mg of TPCB (2:1 molar equivalent). Within three days, single crystals suitable for X-ray diffraction were formed upon loss of some of the solvent by slow evaporation.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Intensity data were corrected for Lorentz, polarization, and background effects using CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.]). A numerical absorption correction was applied based on a Gaussian integration over a multifaceted crystal and followed by a semi-empirical correction for absorption applied using the program SCALE3 ABSPACK. The program SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) was used for the initial structure solution while SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) for the refinement of the structure. Both programs were utilized within the OLEX2 software (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]). Hydrogen atoms bound to carbon atoms were located in the difference-Fourier map and were geom­etrically constrained using the appropriate AFIX commands.

Table 1
Experimental details

Crystal data
Chemical formula C24H20N4·C6Cl4I2
Mr 832.10
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 10.0779 (1), 31.1307 (3), 9.3360 (1)
β (°) 90.986 (1)
V3) 2928.57 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 20.46
Crystal size (mm) 0.20 × 0.14 × 0.14
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.])
Tmin, Tmax 0.077, 0.552
No. of measured, independent and observed [I > 2σ(I)] reflections 41005, 6078, 5833
Rint 0.065
(sin θ/λ)max−1) 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.115, 1.06
No. of reflections 6078
No. of parameters 361
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.29, −1.59
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.41.99a (Rigaku OD, 2021); cell refinement: CrysAlis PRO 1.171.41.99a (Rigaku OD, 2021); data reduction: CrysAlis PRO 1.171.41.99a (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.3-ac4 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.3-ac4 (Dolomanov et al., 2009).

1,3-Diiodo-2,4,5,6-tetrachlorobenzene–rtct-1,2,3,4-tetrakis(pyridin-4-yl)cyclobutane top
Crystal data top
C24H20N4·C6Cl4I2F(000) = 1608
Mr = 832.10Dx = 1.887 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 10.0779 (1) ÅCell parameters from 33737 reflections
b = 31.1307 (3) Åθ = 2.8–77.2°
c = 9.3360 (1) ŵ = 20.45 mm1
β = 90.986 (1)°T = 100 K
V = 2928.57 (5) Å3Irregular, clear colourless
Z = 40.20 × 0.14 × 0.14 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
6078 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source5833 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.065
Detector resolution: 10.0000 pixels mm-1θmax = 77.5°, θmin = 2.8°
ω scansh = 1212
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2021)
k = 3937
Tmin = 0.077, Tmax = 0.552l = 1111
41005 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0613P)2 + 12.119P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
6078 reflectionsΔρmax = 1.29 e Å3
361 parametersΔρmin = 1.59 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.76302 (3)0.50879 (2)0.21577 (3)0.02318 (10)
I21.14818 (3)0.64897 (2)0.04465 (4)0.02936 (11)
Cl10.98841 (11)0.58501 (4)0.27061 (12)0.0250 (2)
Cl20.73773 (12)0.49167 (4)0.14080 (13)0.0281 (2)
Cl30.88684 (12)0.54236 (4)0.37433 (12)0.0290 (2)
Cl41.07924 (13)0.61572 (4)0.28903 (13)0.0327 (3)
C10.8680 (4)0.54128 (15)0.0555 (5)0.0204 (9)
C20.9583 (4)0.57339 (15)0.0918 (5)0.0209 (9)
C31.0255 (5)0.59739 (15)0.0116 (5)0.0217 (9)
C41.0010 (5)0.58722 (16)0.1554 (5)0.0247 (10)
C50.9136 (5)0.55427 (16)0.1959 (5)0.0236 (9)
C60.8470 (5)0.53186 (16)0.0900 (5)0.0225 (9)
N10.6291 (5)0.61957 (16)0.2002 (5)0.0330 (10)
N21.0786 (4)0.73533 (15)0.3749 (5)0.0307 (9)
N30.3362 (4)0.78121 (14)0.5891 (5)0.0273 (9)
N40.3606 (4)0.53628 (13)0.5702 (4)0.0236 (8)
C70.7200 (5)0.64543 (17)0.1411 (6)0.0281 (10)
H70.7801120.6595650.2026060.034*
C80.7319 (5)0.65292 (16)0.0056 (5)0.0237 (9)
H80.7982440.6718550.0420880.028*
C90.6457 (5)0.63240 (15)0.0980 (5)0.0218 (9)
C100.5535 (5)0.60444 (16)0.0385 (6)0.0263 (10)
H100.4946260.5889640.0978430.032*
C110.5480 (6)0.59925 (18)0.1101 (6)0.0307 (11)
H110.4832490.5802670.1495850.037*
C120.6517 (4)0.64127 (14)0.2565 (5)0.0198 (9)
H120.7147610.6209990.3053690.024*
C130.6797 (5)0.68819 (15)0.3058 (5)0.0207 (9)
H130.6337200.7081950.2374350.025*
C140.5868 (4)0.67970 (15)0.4330 (5)0.0202 (9)
H140.6382960.6663290.5138960.024*
C150.5189 (4)0.64356 (15)0.3393 (5)0.0191 (9)
H150.4480700.6564350.2764530.023*
C160.8187 (5)0.70430 (15)0.3320 (5)0.0209 (9)
C170.8615 (5)0.74167 (17)0.2657 (6)0.0280 (10)
H170.8035800.7572450.2033970.034*
C180.9901 (6)0.75586 (18)0.2917 (6)0.0315 (11)
H181.0169500.7818680.2474810.038*
C191.0362 (5)0.69957 (17)0.4377 (5)0.0264 (10)
H191.0971390.6843390.4975230.032*
C200.9090 (5)0.68310 (16)0.4216 (5)0.0241 (9)
H200.8838340.6577620.4709980.029*
C210.5012 (4)0.71508 (15)0.4889 (5)0.0220 (9)
C220.5111 (5)0.75683 (16)0.4375 (6)0.0255 (10)
H220.5747840.7637370.3673130.031*
C230.4277 (5)0.78824 (16)0.4892 (6)0.0281 (10)
H230.4356140.8164760.4517410.034*
C240.3279 (5)0.74149 (18)0.6397 (6)0.0296 (11)
H240.2644540.7357850.7113150.036*
C250.4073 (5)0.70759 (16)0.5935 (5)0.0253 (10)
H250.3972710.6796970.6331920.030*
C260.4656 (5)0.60485 (15)0.4143 (5)0.0197 (9)
C270.5467 (5)0.57869 (15)0.5005 (5)0.0215 (9)
H270.6396300.5835830.5066370.026*
C280.4896 (5)0.54561 (15)0.5768 (5)0.0222 (9)
H280.5453840.5286190.6372020.027*
C290.2839 (5)0.56031 (16)0.4856 (5)0.0250 (10)
H290.1920190.5536940.4789410.030*
C300.3309 (5)0.59454 (16)0.4064 (5)0.0227 (9)
H300.2719760.6108240.3472390.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02362 (16)0.02170 (16)0.02419 (17)0.00011 (10)0.00097 (11)0.00065 (10)
I20.02659 (17)0.02932 (18)0.03203 (18)0.00289 (12)0.00289 (13)0.00211 (12)
Cl10.0244 (5)0.0292 (6)0.0214 (5)0.0035 (4)0.0020 (4)0.0017 (4)
Cl20.0307 (6)0.0270 (6)0.0265 (6)0.0042 (4)0.0058 (5)0.0025 (4)
Cl30.0320 (6)0.0358 (6)0.0192 (5)0.0029 (5)0.0026 (4)0.0009 (4)
Cl40.0387 (7)0.0331 (6)0.0266 (6)0.0027 (5)0.0065 (5)0.0064 (5)
C10.020 (2)0.022 (2)0.019 (2)0.0017 (17)0.0051 (17)0.0050 (17)
C20.017 (2)0.023 (2)0.023 (2)0.0023 (17)0.0003 (17)0.0022 (17)
C30.020 (2)0.019 (2)0.026 (2)0.0025 (16)0.0021 (18)0.0001 (17)
C40.025 (2)0.024 (2)0.025 (2)0.0029 (18)0.0005 (19)0.0030 (18)
C50.022 (2)0.027 (2)0.022 (2)0.0053 (18)0.0003 (18)0.0024 (18)
C60.022 (2)0.025 (2)0.021 (2)0.0045 (17)0.0042 (17)0.0017 (18)
N10.038 (2)0.037 (3)0.023 (2)0.005 (2)0.0017 (18)0.0079 (18)
N20.027 (2)0.036 (2)0.030 (2)0.0076 (18)0.0003 (18)0.0024 (18)
N30.0214 (19)0.028 (2)0.032 (2)0.0048 (16)0.0061 (17)0.0074 (17)
N40.028 (2)0.022 (2)0.0208 (19)0.0000 (16)0.0049 (16)0.0003 (15)
C70.032 (3)0.028 (3)0.024 (2)0.005 (2)0.002 (2)0.0005 (19)
C80.022 (2)0.026 (2)0.023 (2)0.0006 (18)0.0019 (18)0.0057 (18)
C90.023 (2)0.020 (2)0.023 (2)0.0046 (17)0.0008 (18)0.0027 (17)
C100.025 (2)0.027 (2)0.027 (2)0.0009 (19)0.0014 (19)0.0063 (19)
C110.033 (3)0.031 (3)0.028 (3)0.001 (2)0.002 (2)0.006 (2)
C120.019 (2)0.018 (2)0.023 (2)0.0008 (16)0.0005 (17)0.0028 (17)
C130.023 (2)0.018 (2)0.021 (2)0.0014 (17)0.0016 (17)0.0011 (17)
C140.020 (2)0.019 (2)0.022 (2)0.0003 (16)0.0013 (17)0.0009 (17)
C150.017 (2)0.021 (2)0.020 (2)0.0015 (16)0.0003 (17)0.0016 (17)
C160.021 (2)0.024 (2)0.018 (2)0.0017 (17)0.0014 (17)0.0050 (17)
C170.027 (2)0.026 (2)0.032 (3)0.0012 (19)0.001 (2)0.004 (2)
C180.034 (3)0.029 (3)0.031 (3)0.006 (2)0.001 (2)0.004 (2)
C190.023 (2)0.030 (3)0.026 (2)0.0026 (19)0.0021 (19)0.0007 (19)
C200.025 (2)0.025 (2)0.022 (2)0.0043 (18)0.0001 (18)0.0004 (18)
C210.019 (2)0.025 (2)0.022 (2)0.0010 (17)0.0064 (17)0.0031 (18)
C220.026 (2)0.022 (2)0.029 (2)0.0006 (18)0.0001 (19)0.0024 (19)
C230.027 (2)0.020 (2)0.036 (3)0.0011 (18)0.004 (2)0.001 (2)
C240.025 (2)0.033 (3)0.030 (3)0.005 (2)0.001 (2)0.006 (2)
C250.026 (2)0.025 (2)0.024 (2)0.0030 (19)0.0011 (19)0.0022 (18)
C260.021 (2)0.021 (2)0.018 (2)0.0007 (17)0.0014 (17)0.0038 (16)
C270.022 (2)0.023 (2)0.020 (2)0.0022 (17)0.0022 (17)0.0026 (17)
C280.025 (2)0.021 (2)0.021 (2)0.0011 (17)0.0006 (18)0.0026 (17)
C290.023 (2)0.024 (2)0.028 (2)0.0020 (18)0.0007 (19)0.0029 (19)
C300.022 (2)0.023 (2)0.023 (2)0.0022 (17)0.0024 (18)0.0005 (18)
Geometric parameters (Å, º) top
I1—C12.106 (4)C12—C151.558 (6)
I1—N4i2.757 (4)C13—H131.0000
I2—C32.088 (5)C13—C141.548 (6)
I2—N3ii2.909 (4)C13—C161.504 (6)
Cl1—C21.730 (5)C14—H141.0000
Cl2—C61.728 (5)C14—C151.574 (6)
Cl3—C51.724 (5)C14—C211.498 (6)
Cl4—C41.732 (5)C15—H151.0000
C1—C21.390 (7)C15—C261.498 (6)
C1—C61.402 (7)C16—C171.390 (7)
C2—C31.404 (7)C16—C201.392 (7)
C3—C41.397 (7)C17—H170.9500
C4—C51.400 (7)C17—C181.386 (8)
C5—C61.391 (7)C18—H180.9500
N1—C71.332 (7)C19—H190.9500
N1—C111.341 (8)C19—C201.386 (7)
N2—C181.336 (7)C20—H200.9500
N2—C191.332 (7)C21—C221.390 (7)
N3—C231.340 (7)C21—C251.391 (7)
N3—C241.327 (7)C22—H220.9500
N4—C281.333 (6)C22—C231.382 (7)
N4—C291.327 (7)C23—H230.9500
C7—H70.9500C24—H240.9500
C7—C81.392 (7)C24—C251.397 (7)
C8—H80.9500C25—H250.9500
C8—C91.391 (7)C26—C271.398 (7)
C9—C101.383 (7)C26—C301.397 (7)
C9—C121.506 (6)C27—H270.9500
C10—H100.9500C27—C281.383 (7)
C10—C111.397 (7)C28—H280.9500
C11—H110.9500C29—H290.9500
C12—H121.0000C29—C301.385 (7)
C12—C131.556 (6)C30—H300.9500
C1—I1—N4i176.58 (15)C21—C14—C13120.1 (4)
C3—I2—N3ii172.73 (16)C21—C14—H14109.7
C2—C1—I1120.5 (3)C21—C14—C15118.1 (4)
C2—C1—C6118.3 (4)C12—C15—C1486.5 (3)
C6—C1—I1121.2 (4)C12—C15—H15109.8
C1—C2—Cl1119.3 (4)C14—C15—H15109.8
C1—C2—C3122.5 (4)C26—C15—C12120.9 (4)
C3—C2—Cl1118.3 (4)C26—C15—C14118.1 (4)
C2—C3—I2121.8 (4)C26—C15—H15109.8
C4—C3—I2120.7 (4)C17—C16—C13120.1 (4)
C4—C3—C2117.4 (4)C17—C16—C20117.4 (4)
C3—C4—Cl4120.1 (4)C20—C16—C13122.5 (4)
C3—C4—C5121.7 (4)C16—C17—H17120.5
C5—C4—Cl4118.2 (4)C18—C17—C16119.0 (5)
C4—C5—Cl3120.4 (4)C18—C17—H17120.5
C6—C5—Cl3120.6 (4)N2—C18—C17124.2 (5)
C6—C5—C4119.0 (5)N2—C18—H18117.9
C1—C6—Cl2120.1 (4)C17—C18—H18117.9
C5—C6—Cl2118.7 (4)N2—C19—H19117.8
C5—C6—C1121.1 (5)N2—C19—C20124.4 (5)
C7—N1—C11116.6 (5)C20—C19—H19117.8
C19—N2—C18116.1 (5)C16—C20—H20120.6
C24—N3—C23116.6 (4)C19—C20—C16118.9 (5)
C29—N4—C28117.5 (4)C19—C20—H20120.6
N1—C7—H7118.1C22—C21—C14121.5 (4)
N1—C7—C8123.8 (5)C22—C21—C25116.9 (4)
C8—C7—H7118.1C25—C21—C14121.6 (4)
C7—C8—H8120.4C21—C22—H22120.2
C9—C8—C7119.3 (5)C23—C22—C21119.6 (5)
C9—C8—H8120.4C23—C22—H22120.2
C8—C9—C12120.7 (4)N3—C23—C22123.9 (5)
C10—C9—C8117.5 (5)N3—C23—H23118.1
C10—C9—C12121.7 (4)C22—C23—H23118.1
C9—C10—H10120.4N3—C24—H24118.2
C9—C10—C11119.1 (5)N3—C24—C25123.7 (5)
C11—C10—H10120.4C25—C24—H24118.2
N1—C11—C10123.6 (5)C21—C25—C24119.3 (5)
N1—C11—H11118.2C21—C25—H25120.3
C10—C11—H11118.2C24—C25—H25120.3
C9—C12—H12110.3C27—C26—C15121.8 (4)
C9—C12—C13117.8 (4)C30—C26—C15121.1 (4)
C9—C12—C15118.4 (4)C30—C26—C27117.0 (4)
C13—C12—H12110.3C26—C27—H27120.4
C13—C12—C1587.9 (3)C28—C27—C26119.1 (4)
C15—C12—H12110.3C28—C27—H27120.4
C12—C13—H13108.4N4—C28—C27123.5 (4)
C14—C13—C1287.6 (3)N4—C28—H28118.2
C14—C13—H13108.4C27—C28—H28118.2
C16—C13—C12121.7 (4)N4—C29—H29118.3
C16—C13—H13108.4N4—C29—C30123.5 (5)
C16—C13—C14120.4 (4)C30—C29—H29118.3
C13—C14—H14109.7C26—C30—H30120.4
C13—C14—C1587.6 (3)C29—C30—C26119.3 (4)
C15—C14—H14109.7C29—C30—H30120.4
I1—C1—C2—Cl12.5 (5)C12—C13—C14—C21145.4 (4)
I1—C1—C2—C3176.7 (3)C12—C13—C16—C17127.3 (5)
I1—C1—C6—Cl22.3 (5)C12—C13—C16—C2052.6 (6)
I1—C1—C6—C5178.0 (3)C12—C15—C26—C2745.7 (6)
I2—C3—C4—Cl43.3 (6)C12—C15—C26—C30137.4 (5)
I2—C3—C4—C5176.5 (4)C13—C12—C15—C1423.8 (3)
Cl1—C2—C3—I24.6 (5)C13—C12—C15—C26144.7 (4)
Cl1—C2—C3—C4179.3 (4)C13—C14—C15—C1224.0 (3)
Cl3—C5—C6—Cl20.3 (6)C13—C14—C15—C26147.4 (4)
Cl3—C5—C6—C1180.0 (4)C13—C14—C21—C225.7 (7)
Cl4—C4—C5—Cl30.7 (6)C13—C14—C21—C25173.7 (4)
Cl4—C4—C5—C6178.2 (4)C13—C16—C17—C18179.9 (5)
C1—C2—C3—I2174.6 (3)C13—C16—C20—C19178.6 (4)
C1—C2—C3—C41.5 (7)C14—C13—C16—C17125.0 (5)
C2—C1—C6—Cl2179.0 (4)C14—C13—C16—C2055.1 (6)
C2—C1—C6—C50.7 (7)C14—C15—C26—C2758.1 (6)
C2—C3—C4—Cl4179.5 (4)C14—C15—C26—C30118.8 (5)
C2—C3—C4—C50.4 (7)C14—C21—C22—C23178.2 (4)
C3—C4—C5—Cl3179.5 (4)C14—C21—C25—C24178.6 (4)
C3—C4—C5—C61.6 (7)C15—C12—C13—C1424.3 (3)
C4—C5—C6—Cl2179.2 (4)C15—C12—C13—C16149.0 (4)
C4—C5—C6—C11.1 (7)C15—C14—C21—C22110.5 (5)
C6—C1—C2—Cl1178.8 (3)C15—C14—C21—C2568.9 (6)
C6—C1—C2—C32.0 (7)C15—C26—C27—C28174.5 (4)
N1—C7—C8—C90.4 (8)C15—C26—C30—C29175.3 (4)
N2—C19—C20—C161.4 (8)C16—C13—C14—C15149.8 (4)
N3—C24—C25—C210.1 (8)C16—C13—C14—C2188.8 (5)
N4—C29—C30—C260.0 (8)C16—C17—C18—N21.7 (9)
C7—N1—C11—C101.0 (8)C17—C16—C20—C191.3 (7)
C7—C8—C9—C101.5 (7)C18—N2—C19—C200.0 (8)
C7—C8—C9—C12177.2 (4)C19—N2—C18—C171.6 (8)
C8—C9—C10—C112.2 (7)C20—C16—C17—C180.1 (7)
C8—C9—C12—C1338.1 (6)C21—C14—C15—C12147.1 (4)
C8—C9—C12—C15141.9 (5)C21—C14—C15—C2689.5 (5)
C9—C10—C11—N10.9 (8)C21—C22—C23—N30.7 (8)
C9—C12—C13—C14145.5 (4)C22—C21—C25—C240.8 (7)
C9—C12—C13—C1689.8 (5)C23—N3—C24—C250.6 (8)
C9—C12—C15—C14144.6 (4)C24—N3—C23—C220.2 (8)
C9—C12—C15—C2694.5 (5)C25—C21—C22—C231.2 (7)
C10—C9—C12—C13140.6 (5)C26—C27—C28—N41.8 (7)
C10—C9—C12—C1536.8 (6)C27—C26—C30—C291.7 (7)
C11—N1—C7—C81.7 (8)C28—N4—C29—C300.9 (7)
C12—C9—C10—C11176.6 (5)C29—N4—C28—C270.1 (7)
C12—C13—C14—C1524.0 (3)C30—C26—C27—C282.6 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+3/2, z1/2.
 

Funding information

RHG gratefully acknowledges financial support from Webster University in the form of various Faculty Research Grants.

References

First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCorpinot, M. K. & Bučar, D.-K. (2019). Cryst. Growth Des. 19, 1426–1453.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDunning, T. J., Bosch, E. & Groeneman, R. H. (2022). Acta Cryst. E78, 506–509.  CSD CrossRef IUCr Journals Google Scholar
First citationDunning, T. J., Unruh, D. K., Bosch, E. & Groeneman, R. H. (2021). Molecules, 26, 3152.  Web of Science CSD CrossRef PubMed Google Scholar
First citationGan, M.-M., Yu, J.-G., Wang, Y. Y. & Han, Y.-F. (2018). Cryst. Growth Des. 18, 553–565.  Web of Science CrossRef CAS Google Scholar
First citationGilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. & Beer, P. D. (2015). Chem. Rev. 115, 7118–7195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGunawardana, C. A. & Aakeröy, C. B. (2018). Chem. Commun. 54, 14047–14060.  Web of Science CrossRef CAS Google Scholar
First citationHill, Y., Linares, M. & Briceño, A. (2012). New J. Chem. 36, 554–557.  Web of Science CSD CrossRef CAS Google Scholar
First citationKole, G. K. & Mir, M. H. (2022). CrystEngComm, 24, 3993–4007.  CrossRef CAS Google Scholar
First citationMacGillivray, L. R., Reid, J. L. & Ripmeester, J. A. (2000). J. Am. Chem. Soc. 122, 7817–7818.  Web of Science CSD CrossRef CAS Google Scholar
First citationOburn, S. M., Santana, C. L., Elacqua, E. & Groeneman, R. H. (2020). CrystEngComm, 22, 4349–4352.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeedikakkal, A. M. P., Peh, C. S. Y., Koh, L. L. & Vittal, J. J. (2010). Inorg. Chem. 49, 6775–6777.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationReddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222–2234.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.  Google Scholar
First citationSantana, C. L., Battle, J. D., Unruh, D. K. & Groeneman, R. H. (2021a). Acta Cryst. C77, 111–115.  CSD CrossRef IUCr Journals Google Scholar
First citationSantana, C. L., Reinheimer, E. W. & Groeneman, R. H. (2021b). Acta Cryst. C77, 561–565.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSinnwell, M. A., Santana, C. L., Bosch, E., MacGillivray, L. R. & Groeneman, R. H. (2020). CrystEngComm, 22, 6780–6782.  Web of Science CSD CrossRef Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVantomme, G. & Meijer, E. W. (2019). Science, 363, 1396–1397.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds