research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1-[(E)-2-(3-nitro­phen­yl)diazen-1-yl]naphthalen-2-ol

crossmark logo

aDepartment of Chemistry, Faculty of Sciences, University of 20 Août 1955-Skikda, Skikda 21000, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Université Frères Mentouri Constantine 1, Constantine, 25017, Algeria, cDépartement Tronc Commun Technologie, Université Larbi Ben M'hidi Oum El Bouaghi, Oum El Bouaghi 04000, Algeria, and dLaboratoire de Technologie des Matériaux Avancés, École Nationale Polytechnique de Constantine, Nouvelle Ville Universitaire, Ali Mendjeli, Constantine 25000, Algeria
*Correspondence e-mail: m.benaouida@univ-skikda.dz

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 4 January 2023; accepted 3 February 2023; online 9 February 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The title compound, C16H11N3O3, belongs to the family of azo dyes. In the light of a single-crystal X-ray study, it is evident that of the tautomeric forms (azo–hydrazone), the hydrazone form is the predominant form in the solid state, namely, (1E)-1-[2-(3-nitro­phen­yl)hydrazin-1-yl­idene]-1,2-di­hydro­naphthalen-2-one. The naphthol and benzene fragments attached to the –N=N– moiety adopt the s-trans conformation. Furthermore, the mol­ecules are nearly coplanar, subtending a dihedral angle of 2.63 (5)°. An intra­molecular N—H⋯O hydrogen bond occurs. There are only two types of inter­molecular inter­actions in the crystal structure: strong hydrogen-bonding C—H⋯O inter­actions and ππ stacking inter­actions. The importance of C—H⋯O inter­actions in the mol­ecular packing is reflected by the relatively high contributions (28.5%) made by O⋯H/H⋯O contacts to the Hirshfeld surface.

1. Chemical context

Azo compounds, which include the functional group R—N=N—R′ where R and R′ can either be aryl or alkyl, aryl azo compounds being more common than aliphatic azo compounds (Christie, 2001[Christie, R. M. (2001). Colour Chemistry. Cambridge: Royal Society of Chemistry.]), have striking colors. These colors, particularly reds, oranges, and yellows, are the result of π-electron delocalization through aromatic moieties (Debnath et al., 2015[Debnath, D., Roy, S., Li, B.-H., Lin, C.-H. & Misra, T. K. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 140, 185-197.]; Ferreira et al., 2013[Ferreira, G. R., Garcia, H. C., Couri, M. R. C., Dos Santos, H. F. & de Oliveira, L. F. C. (2013). J. Phys. Chem. A, 117, 642-649.]). They are therefore used as dyes, not only in textile colorants but in many other industrial fields for coloring different substrates, as printing inks, in biological reactions and in the cosmetics industry (Hunger, 2003[Hunger, K. (2003). Industrial Dyes: Chemistry, properties, Applications. Weinheim: Wiley-VCH.]; Ran et al., 2022[Ran, J., Pryazhnikova, V. G. & Telegin, F. Y. (2022). Colorants, 1, 280-297.]; Mathieu-Denoncourt et al., 2014[Mathieu-Denoncourt, J., Martyniuk, C. J., de Solla, S. R., Balakrishnan, V. K. & Langlois, V. S. (2014). Environ. Sci. Technol. 48, 2952-2961.]; Shi & Chen, 2014[Shi, J. & Chen, L. (2014). Anal. Methods, 6, 8129-8135.]; Chudgar & Oakes, 2003[Chudgar, R. J. & Oakes, J. (2003). Azo Dyes. In Kirk-Othmer Encyclopedia of Chemical Technology. Hoboken, NJ,: John Wiley & Sons, Inc.]; Benkhaya et al., 2020[Benkhaya, S., M'rabet, S. & El Harfi, A. (2020). Heliyon, 6, e03271-e03296.]).

Detailed knowledge of mol­ecular structures is essential for determining structure–function relationships and for a systematic approach to the design of new dyes. Structural information obtained from single-crystal X-ray diffraction analysis including conformation, stereochemistry, intra- and inter­molecular inter­actions is related to the optical properties of azo dyes (Pavlović et al., 2009[Pavlović, G., Racané, L., Čičak, H. & Tralić-Kulenović, V. (2009). Dyes Pigments, 83, 354-362.]). In the case of 1-phenyl­azo-2-naphthol derivatives, a strong hydrogen bond enhanced by resonance is established, inducing the azo (OH) → hydrazo (NH) tautomeric displacement (Benosmane et al., 2015[Benosmane, A., Benaouida, M. A., Mili, A., Bouchoul, A. & Merazig, H. (2015). Acta Cryst. E71, o303.]; Bougueria, Benaouida et al., 2013[Bougueria, H., Benaouida, M. A., Bouacida, S. & Bouchoul, A. el kader (2013). Acta Cryst. E69, o1175-o1176.]; Bougueria et al., 2014[Bougueria, H., Mili, A., Benosmane, A., Bouchoul, A. el kader & Bouaoud, S. (2014). Acta Cryst. E70, o225.]). This is directly connected with the presence of at least one protic donor group in conjugation to the azo bridge (2-naphthol) (Antonov, 2016[Antonov, L. (2016). Tautomerism: Concepts and Applications in Science and Technology. Weinheim: Wiley-VCH .]). As a part of our continuing inter­est in the synthesis and crystallography evaluation of azo-2 naphthol compounds, we embarked on the present crystallographic study and report herein the synthesis, mol­ecular structure and Hirshfeld surface analysis of dye derived from 1-phenyl­azo-2-naphtol: (E)-1-(3-nitro­phenyl­azo)-2-naphtol.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound (Fig. 1[link]) was solved in the ortho­rhom­bic space group P212121. The N1—N2, C1—N1, C7—N2 and C8—O1 bond lengths are 1.312 (4), 1.394 (5), 1.330 (5) and 1.276 (5) Å, respectively, indicating that the dye compound has crystallized in the hydrazone tautomeric form (i.e. proton transfer from the naphthol group to the azo group); bond lengths and angles are within normal ranges and are comparable to those reported for other azo compounds (Benaouida et al., 2013[Benaouida, M. A., Chetioui, S. & Bouaoud, S. E. (2013). Acta Cryst. E69, o867-o868.]; Bougueria, Benosmane et al., 2013[Bougueria, H., Benosmane, A., Benaouida, M. A., Bouchoul, A. E. K. & Bouaoud, S. E. (2013). Acta Cryst. E69, o1052.]; Mili et al., 2013[Mili, A., Benosmane, A., Benaouida, M. A., Bouchoul, A. & Bouaoud, S. E. (2013). Acta Cryst. E69, o1498.]; Xu et al., 2010[Xu, J.-J., Li, J., Pi, M. & Jin, C.-M. (2010). Acta Cryst. E66, o1752.]). The mol­ecule adopts an s-trans conformation, with the two aryl groups residing on the opposite side of the azo group. The naphthol and benzene rings attached to the hydrazo group are almost coplanar, subtending a dihedral angle of 2.63 (5)°, indicating significant electron delocalization within the mol­ecule. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond involving hydrogen atoms from the hydrazo groups (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 (3) 1.84 (3) 2.551 (4) 138 (3)
C2—H2⋯O1i 0.93 2.43 3.312 (4) 157
C9—H9⋯O3ii 0.93 2.62 3.303 (5) 130
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x-{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure with the atom-labeling scheme. Displacement ellipsoids drawn at the 30% probability level. Intra­molecular hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

In the crystal, mol­ecules are held together by strong inter­molecular C—H⋯O hydrogen bonds (Table 1[link]), forming parallel chains propagating along the a-axis direction (Fig. 2[link]). Cohesion of the crystal structure is enhanced by the presence of ππ stacking inter­actions (Fig. 3[link]), the most significant being between the benzene and naphthalene rings [Cg1⋯Cg2(1 + x, y, z) = 3.607 (2) Å where Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 rings, respectively].

[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound. The C—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link] for details).
[Figure 3]
Figure 3
π-π- stacking inter­actions, view along the c axis of the stacked mol­ecules. Dashed light-green lines indicate Cg1⋯Cg2 contacts.

4. Database survey

A search for 1-phenyl­azo-2-naphthol derivatives in the Cambridge Structural Database (CSD; Version 2022.3.0, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), revealed several examples of structurally similar azo-2-naphthol compounds prepared using different aromatic primary amines. The crystal structures of 1-[(E)-2-(5-chloro-2 hy­droxy­phen­yl)hydrazin-1-yl­idene]naphthalen-2(1H)-one (Bou­gueria et al., 2021[Bougueria, H., Chetioui, S., Bensegueni, M. A., Djukic, J.-P. & Benarous, N. (2021). Acta Cryst. E77, 672-676.]), (4-amino­sulfonyl­phen­yl)[(2-oxidonaphthalen-1-yl)-imino]­aza­­n­ium (Benosmane et al., 2016[Benosmane, A., Rouag, D. A., Mili, A., Merazig, H. & Benaouida, M. A. (2016). IUCrData, 1, x160658.]), (E)-1-(4-fluoro­phen­yl)-2-(2-oxidonaphthalen-1-yl)diazen-1-ium (Bougueria et al., 2017[Bougueria, H., Chetioui, S., Mili, A., Bouaoud, S. E. & Merazig, H. (2017). IUCrData, 2, x170039.]) have been reported, as well as the structural and optoelectronic properties and theoretical investigation of a novel square-planar nickel (II) complex with an (o-tolyl­diazen­yl) naphthalen-2-ol ligand (Benosmane et al., 2023[Benosmane, A., Gündüz, B., Benaouida, M. A., Boukentoucha, C. & Merzig, H. (2023). J. Mol. Struct. 1273, 134254-134266.]) that exhibits structural diversity with inter­esting optoelectronic properties.

5. Hirshfeld surface analysis

The supra­molecular inter­actions in the title structure were investigated qu­anti­tatively and visualized with Crystal Explorer (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]). Fig. 4[link] shows the Hirshfeld surface mapped over dnorm in the range −0.2344 (red) a.u. to 1.2354 (blue) a.u. The donors and acceptors of inter­molecular C—H⋯O closest inter­actions in the structure are seen as bright-red spots near the benzene-H2, naphthalene-H9, hydroxyl-O1 and nitro-O3 atoms. The Hirshfeld surface mapped over shape-index is shown in Fig. 5[link] where the triangles clearly illustrate the ππ stacking inter­actions. The two-dimensional fingerprint plots are shown in Fig. 6[link]. H⋯O/O⋯H inter­actions provide the largest contribution (28.5%) to the surface. The second largest contribution is from H⋯H contacts (26.4%). The presence of C⋯C inter­actions (6.1%), corresponding to ππ stacking, is also important. Table 2[link] summarizes the percentage contributionsof different types of contacts to the Hirshfeld surface.

Table 2
Distribution of individual inter­molecular inter­actions based on Hirshfeld surface analysis

Contact type Percentage contribution
O⋯H/H⋯O 28.5
H⋯H 26.4
C⋯H/H⋯C 26.0
C⋯C 6.1
N⋯H/H⋯N 4.8
C⋯N/N⋯C 3.8
C⋯O/O⋯C 2.2
[Figure 4]
Figure 4
Hirshfeld surfaces mapped over dnorm in the range −0.23 Å (red) to 1.23 Å (blue).
[Figure 5]
Figure 5
Three-dimensional Hirshfeld surface mapped over shape-index.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots.

6. Synthesis and crystallization

The title compound was obtained through the diazo­tization of 3-nitro­aniline followed by a coupling reaction with 2-naphthol. A solution of hydro­chloric acid (12 M) and 6 mL of water were added to 3-nitro­aniline (0.02 mol) at 273 K. Sodium nitrite solution (0.02 mol, in 10 mL of water) was added dropwise to the cooled mixture and stirred for 15 min. To the formed diazo­nium salt was added dropwise an aqueous solution of 2-naphthol (0.02 mol in 100 mL of water) containing sodium hydroxide (16 mL). The mixture was then allowed to stir for 1 h at 273 K. The resulting red precipitate was filtered and washed several times with distilled water and dried in air. Red needle-shaped crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (yield 85.4%).

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atom of hydrazo group was localized in a difference-Fourier map and refined with N—H = 0.86 (3) Å with Uiso(H) = 1.2Ueq(N). The other hydrogen atoms were placed in calculated positions with C—H = 0.93 Å and refined using a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Table 3
Experimental details

Crystal data
Chemical formula C16H11N3O3
Mr 293.28
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 6.0981 (9), 14.485 (2), 15.389 (2)
V3) 1359.3 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.50 × 0.30 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 12470, 2803, 1342
Rint 0.113
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.087, 0.81
No. of reflections 2803
No. of parameters 203
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.12, −0.13
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 5026 Friedel pairs
Absolute structure parameter −2.4 (10)
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. BrukerAXS Inc, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

(1E)-1-[2-(3-Nitrophenyl)hydrazin-1-ylidene]-1,2-dihydronaphthalen-2-one top
Crystal data top
C16H11N3O3F(000) = 608
Mr = 293.28Dx = 1.433 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1342 reflections
a = 6.0981 (9) Åθ = 2.7–18.9°
b = 14.485 (2) ŵ = 0.10 mm1
c = 15.389 (2) ÅT = 296 K
V = 1359.3 (3) Å3Needle, red
Z = 40.50 × 0.30 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1342 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.113
Graphite monochromatorθmax = 26.4°, θmin = 2.7°
phi and ω scansh = 77
12470 measured reflectionsk = 1818
2803 independent reflectionsl = 1919
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 W = 1/[Σ2(FO2) + (0.0223P)2] WHERE P = (FO2 + 2FC2)/3
wR(F2) = 0.087(Δ/σ)max < 0.001
S = 0.81Δρmax = 0.12 e Å3
2803 reflectionsΔρmin = 0.13 e Å3
203 parametersExtinction correction: shelxl
1 restraintAbsolute structure: Flack (1983), 5026 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 2.4 (10)
Secondary atom site location: difference Fourier map
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1440 (4)0.7501 (2)0.56438 (19)0.0628 (11)
O21.2087 (6)0.4813 (3)0.5013 (2)0.0970 (16)
O30.9538 (5)0.5490 (2)0.4279 (2)0.0808 (11)
N10.3939 (5)0.6367 (2)0.6436 (2)0.0463 (12)
N20.2663 (5)0.6417 (2)0.7121 (2)0.0428 (11)
N31.0269 (7)0.5166 (3)0.4945 (3)0.0623 (17)
C10.5740 (6)0.5775 (3)0.6452 (2)0.0403 (12)
C20.7054 (6)0.5749 (2)0.5720 (2)0.0437 (12)
C30.8870 (6)0.5181 (3)0.5725 (3)0.0457 (12)
C40.9420 (6)0.4646 (3)0.6429 (3)0.0597 (17)
C50.8071 (7)0.4677 (3)0.7151 (3)0.0603 (17)
C60.6243 (6)0.5242 (3)0.7173 (3)0.0490 (14)
C70.0931 (6)0.6974 (3)0.7091 (3)0.0397 (12)
C80.0303 (6)0.7519 (3)0.6340 (3)0.0480 (16)
C90.1635 (6)0.8064 (3)0.6396 (3)0.0583 (17)
C100.2879 (7)0.8059 (3)0.7116 (3)0.0567 (16)
C110.2361 (6)0.7522 (3)0.7869 (3)0.0470 (14)
C120.0426 (6)0.6988 (3)0.7871 (3)0.0417 (12)
C130.0082 (6)0.6472 (3)0.8611 (3)0.0503 (16)
C140.1283 (7)0.6474 (3)0.9321 (3)0.0580 (17)
C150.3181 (7)0.6989 (3)0.9312 (3)0.0627 (17)
C160.3733 (7)0.7510 (3)0.8599 (3)0.0623 (17)
H10.357 (6)0.667 (2)0.5978 (18)0.063 (15)*
H20.672100.610600.523500.0530*
H41.066300.427500.642100.0720*
H50.839900.431100.763000.0720*
H60.536200.526400.766600.0590*
H90.204700.842900.592600.0700*
H100.413700.842200.712600.0680*
H130.136100.612200.862300.0600*
H140.092500.612600.980900.0700*
H150.409900.698400.979400.0750*
H160.501800.785500.860100.0750*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0707 (19)0.0686 (19)0.0491 (18)0.0118 (17)0.0061 (17)0.0121 (18)
O20.059 (2)0.125 (3)0.107 (3)0.023 (2)0.021 (2)0.022 (2)
O30.093 (2)0.095 (2)0.0545 (19)0.014 (2)0.019 (2)0.002 (2)
N10.047 (2)0.054 (2)0.038 (2)0.0038 (18)0.0002 (19)0.0050 (19)
N20.0433 (19)0.0452 (19)0.0399 (18)0.0002 (17)0.0032 (17)0.0004 (17)
N30.062 (3)0.065 (3)0.060 (3)0.012 (2)0.016 (3)0.018 (2)
C10.039 (2)0.043 (2)0.039 (2)0.0021 (19)0.002 (2)0.000 (2)
C20.047 (2)0.042 (2)0.042 (2)0.006 (2)0.000 (2)0.002 (2)
C30.046 (2)0.046 (2)0.045 (2)0.004 (2)0.004 (2)0.006 (2)
C40.052 (3)0.053 (3)0.074 (3)0.006 (2)0.003 (3)0.000 (3)
C50.064 (3)0.054 (3)0.063 (3)0.009 (2)0.002 (3)0.019 (3)
C60.051 (2)0.053 (3)0.043 (2)0.000 (2)0.003 (2)0.005 (2)
C70.041 (2)0.037 (2)0.041 (2)0.000 (2)0.001 (2)0.004 (2)
C80.051 (3)0.044 (2)0.049 (3)0.005 (2)0.004 (2)0.004 (2)
C90.064 (3)0.049 (3)0.062 (3)0.011 (2)0.006 (3)0.008 (2)
C100.057 (3)0.047 (2)0.066 (3)0.007 (2)0.005 (3)0.004 (3)
C110.043 (2)0.043 (2)0.055 (3)0.004 (2)0.001 (2)0.009 (3)
C120.042 (2)0.042 (2)0.041 (2)0.003 (2)0.008 (2)0.004 (2)
C130.050 (3)0.055 (3)0.046 (2)0.000 (2)0.002 (2)0.003 (2)
C140.062 (3)0.067 (3)0.045 (3)0.001 (3)0.003 (2)0.002 (3)
C150.058 (3)0.071 (3)0.059 (3)0.000 (3)0.015 (3)0.010 (3)
C160.057 (3)0.058 (3)0.072 (3)0.005 (3)0.010 (3)0.010 (3)
Geometric parameters (Å, º) top
O1—C81.276 (5)C10—C111.431 (6)
O2—N31.225 (6)C11—C161.401 (6)
O3—N31.212 (5)C11—C121.411 (5)
N1—N21.312 (4)C12—C131.397 (6)
N1—C11.394 (5)C13—C141.374 (6)
N2—C71.330 (5)C14—C151.377 (6)
N3—C31.473 (6)C15—C161.374 (6)
C1—C21.383 (5)C2—H20.9300
C1—C61.386 (6)C4—H40.9300
N1—H10.86 (3)C5—H50.9300
C2—C31.380 (5)C6—H60.9300
C3—C41.374 (6)C9—H90.9300
C4—C51.383 (6)C10—H100.9300
C5—C61.383 (6)C13—H130.9300
C7—C81.451 (6)C14—H140.9300
C7—C121.458 (6)C15—H150.9300
C8—C91.424 (5)C16—H160.9300
C9—C101.343 (6)
N2—N1—C1119.2 (3)C11—C12—C13118.7 (4)
N1—N2—C7118.5 (3)C7—C12—C11118.7 (4)
O2—N3—O3124.5 (4)C7—C12—C13122.5 (4)
O2—N3—C3117.4 (4)C12—C13—C14120.9 (4)
O3—N3—C3118.1 (4)C13—C14—C15120.2 (4)
N1—C1—C2117.3 (3)C14—C15—C16120.8 (4)
N1—C1—C6122.1 (3)C11—C16—C15120.1 (4)
C2—C1—C6120.6 (4)C1—C2—H2121.00
N2—N1—H1118 (2)C3—C2—H2121.00
C1—N1—H1122 (2)C3—C4—H4121.00
C1—C2—C3118.5 (3)C5—C4—H4121.00
N3—C3—C4119.5 (4)C4—C5—H5119.00
N3—C3—C2118.0 (4)C6—C5—H5119.00
C2—C3—C4122.5 (4)C1—C6—H6120.00
C3—C4—C5118.0 (4)C5—C6—H6120.00
C4—C5—C6121.2 (4)C8—C9—H9119.00
C1—C6—C5119.2 (4)C10—C9—H9119.00
C8—C7—C12119.9 (3)C9—C10—H10118.00
N2—C7—C8124.6 (4)C11—C10—H10118.00
N2—C7—C12115.5 (4)C12—C13—H13120.00
C7—C8—C9118.2 (4)C14—C13—H13120.00
O1—C8—C9120.9 (4)C13—C14—H14120.00
O1—C8—C7120.9 (3)C15—C14—H14120.00
C8—C9—C10121.1 (4)C14—C15—H15120.00
C9—C10—C11123.1 (4)C16—C15—H15120.00
C12—C11—C16119.4 (4)C11—C16—H16120.00
C10—C11—C12119.0 (4)C15—C16—H16120.00
C10—C11—C16121.6 (4)
C1—N1—N2—C7179.0 (3)C12—C7—C8—C90.7 (6)
N2—N1—C1—C2179.4 (3)N2—C7—C12—C11176.4 (4)
N2—N1—C1—C60.7 (5)N2—C7—C12—C131.7 (6)
N1—N2—C7—C81.8 (6)C8—C7—C12—C111.3 (6)
N1—N2—C7—C12179.4 (3)C8—C7—C12—C13179.4 (4)
O2—N3—C3—C2165.7 (4)O1—C8—C9—C10177.6 (4)
O2—N3—C3—C413.5 (6)C7—C8—C9—C101.5 (6)
O3—N3—C3—C215.4 (6)C8—C9—C10—C110.4 (7)
O3—N3—C3—C4165.5 (4)C9—C10—C11—C121.7 (7)
N1—C1—C2—C3178.9 (3)C9—C10—C11—C16177.9 (4)
C6—C1—C2—C30.0 (6)C10—C11—C12—C72.5 (6)
N1—C1—C6—C5179.2 (4)C10—C11—C12—C13179.4 (4)
C2—C1—C6—C50.4 (6)C16—C11—C12—C7177.2 (4)
C1—C2—C3—N3179.4 (4)C16—C11—C12—C131.0 (6)
C1—C2—C3—C40.3 (6)C10—C11—C16—C15179.8 (4)
N3—C3—C4—C5180.0 (4)C12—C11—C16—C150.6 (6)
C2—C3—C4—C50.8 (6)C7—C12—C13—C14177.4 (4)
C3—C4—C5—C61.2 (6)C11—C12—C13—C140.7 (6)
C4—C5—C6—C11.0 (6)C12—C13—C14—C150.1 (7)
N2—C7—C8—O10.9 (6)C13—C14—C15—C160.3 (7)
N2—C7—C8—C9178.2 (4)C14—C15—C16—C110.0 (7)
C12—C7—C8—O1178.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.86 (3)1.84 (3)2.551 (4)138 (3)
C2—H2···O1i0.932.433.312 (4)157
C9—H9···O3ii0.932.623.303 (5)130
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x3/2, y+3/2, z+1.
Distribution of individual intermolecular interactions based on Hirshfeld surface analysis top
Contact typePercentage contribution
O···H/H···O28.5
H···H26.4
C···H/H···C26.0
C···C6.1
N···H/H···N4.8
C···N/N···C3.8
C···O/O···C2.2
 

Acknowledgements

We thank all researchers of the CHEMS Research Unit of the University of Constantine Algeria for the valuable assistance they have provided us throughout the realization of this work.

References

First citationAntonov, L. (2016). Tautomerism: Concepts and Applications in Science and Technology. Weinheim: Wiley-VCH .  Google Scholar
First citationBenaouida, M. A., Chetioui, S. & Bouaoud, S. E. (2013). Acta Cryst. E69, o867–o868.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBenkhaya, S., M'rabet, S. & El Harfi, A. (2020). Heliyon, 6, e03271–e03296.  Web of Science CrossRef PubMed Google Scholar
First citationBenosmane, A., Benaouida, M. A., Mili, A., Bouchoul, A. & Merazig, H. (2015). Acta Cryst. E71, o303.  CSD CrossRef IUCr Journals Google Scholar
First citationBenosmane, A., Gündüz, B., Benaouida, M. A., Boukentoucha, C. & Merzig, H. (2023). J. Mol. Struct. 1273, 134254–134266.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenosmane, A., Rouag, D. A., Mili, A., Merazig, H. & Benaouida, M. A. (2016). IUCrData, 1, x160658.  Google Scholar
First citationBougueria, H., Benaouida, M. A., Bouacida, S. & Bouchoul, A. el kader (2013). Acta Cryst. E69, o1175–o1176.  Google Scholar
First citationBougueria, H., Benosmane, A., Benaouida, M. A., Bouchoul, A. E. K. & Bouaoud, S. E. (2013). Acta Cryst. E69, o1052.  CSD CrossRef IUCr Journals Google Scholar
First citationBougueria, H., Chetioui, S., Bensegueni, M. A., Djukic, J.-P. & Benarous, N. (2021). Acta Cryst. E77, 672–676.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBougueria, H., Chetioui, S., Mili, A., Bouaoud, S. E. & Merazig, H. (2017). IUCrData, 2, x170039.  Google Scholar
First citationBougueria, H., Mili, A., Benosmane, A., Bouchoul, A. el kader & Bouaoud, S. (2014). Acta Cryst. E70, o225.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. BrukerAXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationChristie, R. M. (2001). Colour Chemistry. Cambridge: Royal Society of Chemistry.  Google Scholar
First citationChudgar, R. J. & Oakes, J. (2003). Azo Dyes. In Kirk–Othmer Encyclopedia of Chemical Technology. Hoboken, NJ,: John Wiley & Sons, Inc.  Google Scholar
First citationDebnath, D., Roy, S., Li, B.-H., Lin, C.-H. & Misra, T. K. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 140, 185–197.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, G. R., Garcia, H. C., Couri, M. R. C., Dos Santos, H. F. & de Oliveira, L. F. C. (2013). J. Phys. Chem. A, 117, 642–649.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHunger, K. (2003). Industrial Dyes: Chemistry, properties, Applications. Weinheim: Wiley-VCH.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMathieu-Denoncourt, J., Martyniuk, C. J., de Solla, S. R., Balakrishnan, V. K. & Langlois, V. S. (2014). Environ. Sci. Technol. 48, 2952–2961.  Web of Science CAS PubMed Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMili, A., Benosmane, A., Benaouida, M. A., Bouchoul, A. & Bouaoud, S. E. (2013). Acta Cryst. E69, o1498.  CSD CrossRef IUCr Journals Google Scholar
First citationPavlović, G., Racané, L., Čičak, H. & Tralić-Kulenović, V. (2009). Dyes Pigments, 83, 354–362.  Google Scholar
First citationRan, J., Pryazhnikova, V. G. & Telegin, F. Y. (2022). Colorants, 1, 280–297.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J. & Chen, L. (2014). Anal. Methods, 6, 8129–8135.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationXu, J.-J., Li, J., Pi, M. & Jin, C.-M. (2010). Acta Cryst. E66, o1752.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds