research communications
E)-2-(3-nitrophenyl)diazen-1-yl]naphthalen-2-ol
and Hirshfeld surface analysis of 1-[(aDepartment of Chemistry, Faculty of Sciences, University of 20 Août 1955-Skikda, Skikda 21000, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Université Frères Mentouri Constantine 1, Constantine, 25017, Algeria, cDépartement Tronc Commun Technologie, Université Larbi Ben M'hidi Oum El Bouaghi, Oum El Bouaghi 04000, Algeria, and dLaboratoire de Technologie des Matériaux Avancés, École Nationale Polytechnique de Constantine, Nouvelle Ville Universitaire, Ali Mendjeli, Constantine 25000, Algeria
*Correspondence e-mail: m.benaouida@univ-skikda.dz
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
The title compound, C16H11N3O3, belongs to the family of azo dyes. In the light of a single-crystal X-ray study, it is evident that of the tautomeric forms (azo–hydrazone), the hydrazone form is the predominant form in the solid state, namely, (1E)-1-[2-(3-nitrophenyl)hydrazin-1-ylidene]-1,2-dihydronaphthalen-2-one. The naphthol and benzene fragments attached to the –N=N– moiety adopt the s-trans conformation. Furthermore, the molecules are nearly coplanar, subtending a dihedral angle of 2.63 (5)°. An intramolecular N—H⋯O hydrogen bond occurs. There are only two types of intermolecular interactions in the strong hydrogen-bonding C—H⋯O interactions and π–π stacking interactions. The importance of C—H⋯O interactions in the molecular packing is reflected by the relatively high contributions (28.5%) made by O⋯H/H⋯O contacts to the Hirshfeld surface.
Keywords: azo dyes; X-ray diffraction; crystal structure; intermolecular interactions; Hirshfeld surface.
CCDC reference: 2239846
1. Chemical context
R—N=N—R′ where R and R′ can either be aryl or alkyl, aryl being more common than aliphatic (Christie, 2001), have striking colors. These colors, particularly reds, oranges, and yellows, are the result of π-electron delocalization through aromatic moieties (Debnath et al., 2015; Ferreira et al., 2013). They are therefore used as dyes, not only in textile colorants but in many other industrial fields for coloring different substrates, as printing inks, in biological reactions and in the cosmetics industry (Hunger, 2003; Ran et al., 2022; Mathieu-Denoncourt et al., 2014; Shi & Chen, 2014; Chudgar & Oakes, 2003; Benkhaya et al., 2020).
which include theDetailed knowledge of molecular structures is essential for determining structure–function relationships and for a systematic approach to the design of new dyes. Structural information obtained from single-crystal X-ray et al., 2009). In the case of 1-phenylazo-2-naphthol derivatives, a strong hydrogen bond enhanced by resonance is established, inducing the azo (OH) → hydrazo (NH) tautomeric displacement (Benosmane et al., 2015; Bougueria, Benaouida et al., 2013; Bougueria et al., 2014). This is directly connected with the presence of at least one protic donor group in conjugation to the azo bridge (2-naphthol) (Antonov, 2016). As a part of our continuing interest in the synthesis and crystallography evaluation of azo-2 naphthol compounds, we embarked on the present crystallographic study and report herein the synthesis, molecular structure and Hirshfeld surface analysis of dye derived from 1-phenylazo-2-naphtol: (E)-1-(3-nitrophenylazo)-2-naphtol.
including conformation, stereochemistry, intra- and intermolecular interactions is related to the optical properties of azo dyes (Pavlović2. Structural commentary
The molecular structure of the title compound (Fig. 1) was solved in the orthorhombic P212121. The N1—N2, C1—N1, C7—N2 and C8—O1 bond lengths are 1.312 (4), 1.394 (5), 1.330 (5) and 1.276 (5) Å, respectively, indicating that the dye compound has crystallized in the hydrazone tautomeric form (i.e. proton transfer from the naphthol group to the azo group); bond lengths and angles are within normal ranges and are comparable to those reported for other (Benaouida et al., 2013; Bougueria, Benosmane et al., 2013; Mili et al., 2013; Xu et al., 2010). The molecule adopts an s-trans conformation, with the two residing on the opposite side of the azo group. The naphthol and benzene rings attached to the hydrazo group are almost coplanar, subtending a dihedral angle of 2.63 (5)°, indicating significant electron delocalization within the molecule. The molecular structure is stabilized by an intramolecular N—H⋯O hydrogen bond involving hydrogen atoms from the hydrazo groups (Table 1).
3. Supramolecular features
In the crystal, molecules are held together by strong intermolecular C—H⋯O hydrogen bonds (Table 1), forming parallel chains propagating along the a-axis direction (Fig. 2). Cohesion of the is enhanced by the presence of π–π stacking interactions (Fig. 3), the most significant being between the benzene and naphthalene rings [Cg1⋯Cg2(1 + x, y, z) = 3.607 (2) Å where Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 rings, respectively].
4. Database survey
A search for 1-phenylazo-2-naphthol derivatives in the Cambridge Structural Database (CSD; Version 2022.3.0, last update November 2022; Groom et al., 2016), revealed several examples of structurally similar azo-2-naphthol compounds prepared using different aromatic primary The crystal structures of 1-[(E)-2-(5-chloro-2 hydroxyphenyl)hydrazin-1-ylidene]naphthalen-2(1H)-one (Bougueria et al., 2021), (4-aminosulfonylphenyl)[(2-oxidonaphthalen-1-yl)-imino]azanium (Benosmane et al., 2016), (E)-1-(4-fluorophenyl)-2-(2-oxidonaphthalen-1-yl)diazen-1-ium (Bougueria et al., 2017) have been reported, as well as the structural and optoelectronic properties and theoretical investigation of a novel square-planar nickel (II) complex with an (o-tolyldiazenyl) naphthalen-2-ol ligand (Benosmane et al., 2023) that exhibits structural diversity with interesting optoelectronic properties.
5. Hirshfeld surface analysis
The supramolecular interactions in the title structure were investigated quantitatively and visualized with Crystal Explorer (Spackman & Jayatilaka, 2009; McKinnon et al., 2004). Fig. 4 shows the Hirshfeld surface mapped over dnorm in the range −0.2344 (red) a.u. to 1.2354 (blue) a.u. The donors and acceptors of intermolecular C—H⋯O closest interactions in the structure are seen as bright-red spots near the benzene-H2, naphthalene-H9, hydroxyl-O1 and nitro-O3 atoms. The Hirshfeld surface mapped over shape-index is shown in Fig. 5 where the triangles clearly illustrate the π–π stacking interactions. The two-dimensional fingerprint plots are shown in Fig. 6. H⋯O/O⋯H interactions provide the largest contribution (28.5%) to the surface. The second largest contribution is from H⋯H contacts (26.4%). The presence of C⋯C interactions (6.1%), corresponding to π–π stacking, is also important. Table 2 summarizes the percentage contributionsof different types of contacts to the Hirshfeld surface.
|
6. Synthesis and crystallization
The title compound was obtained through the diazotization of 3-nitroaniline followed by a coupling reaction with 2-naphthol. A solution of hydrochloric acid (12 M) and 6 mL of water were added to 3-nitroaniline (0.02 mol) at 273 K. Sodium nitrite solution (0.02 mol, in 10 mL of water) was added dropwise to the cooled mixture and stirred for 15 min. To the formed diazonium salt was added dropwise an aqueous solution of 2-naphthol (0.02 mol in 100 mL of water) containing sodium hydroxide (16 mL). The mixture was then allowed to stir for 1 h at 273 K. The resulting red precipitate was filtered and washed several times with distilled water and dried in air. Red needle-shaped crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (yield 85.4%).
7. details
Crystal data, data collection and structure . The hydrogen atom of hydrazo group was localized in a difference-Fourier map and refined with N—H = 0.86 (3) Å with Uiso(H) = 1.2Ueq(N). The other hydrogen atoms were placed in calculated positions with C—H = 0.93 Å and refined using a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].
details are summarized in Table 3Supporting information
CCDC reference: 2239846
https://doi.org/10.1107/S2056989023001068/zn2025sup1.cif
contains datablocks global, I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989023001068/zn2025Isup2.cml
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).C16H11N3O3 | F(000) = 608 |
Mr = 293.28 | Dx = 1.433 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 1342 reflections |
a = 6.0981 (9) Å | θ = 2.7–18.9° |
b = 14.485 (2) Å | µ = 0.10 mm−1 |
c = 15.389 (2) Å | T = 296 K |
V = 1359.3 (3) Å3 | Needle, red |
Z = 4 | 0.50 × 0.30 × 0.10 mm |
Bruker APEXII CCD diffractometer | 1342 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.113 |
Graphite monochromator | θmax = 26.4°, θmin = 2.7° |
phi and ω scans | h = −7→7 |
12470 measured reflections | k = −18→18 |
2803 independent reflections | l = −19→19 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.041 | W = 1/[Σ2(FO2) + (0.0223P)2] WHERE P = (FO2 + 2FC2)/3 |
wR(F2) = 0.087 | (Δ/σ)max < 0.001 |
S = 0.81 | Δρmax = 0.12 e Å−3 |
2803 reflections | Δρmin = −0.13 e Å−3 |
203 parameters | Extinction correction: shelxl |
1 restraint | Absolute structure: Flack (1983), 5026 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −2.4 (10) |
Secondary atom site location: difference Fourier map |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.1440 (4) | 0.7501 (2) | 0.56438 (19) | 0.0628 (11) | |
O2 | 1.2087 (6) | 0.4813 (3) | 0.5013 (2) | 0.0970 (16) | |
O3 | 0.9538 (5) | 0.5490 (2) | 0.4279 (2) | 0.0808 (11) | |
N1 | 0.3939 (5) | 0.6367 (2) | 0.6436 (2) | 0.0463 (12) | |
N2 | 0.2663 (5) | 0.6417 (2) | 0.7121 (2) | 0.0428 (11) | |
N3 | 1.0269 (7) | 0.5166 (3) | 0.4945 (3) | 0.0623 (17) | |
C1 | 0.5740 (6) | 0.5775 (3) | 0.6452 (2) | 0.0403 (12) | |
C2 | 0.7054 (6) | 0.5749 (2) | 0.5720 (2) | 0.0437 (12) | |
C3 | 0.8870 (6) | 0.5181 (3) | 0.5725 (3) | 0.0457 (12) | |
C4 | 0.9420 (6) | 0.4646 (3) | 0.6429 (3) | 0.0597 (17) | |
C5 | 0.8071 (7) | 0.4677 (3) | 0.7151 (3) | 0.0603 (17) | |
C6 | 0.6243 (6) | 0.5242 (3) | 0.7173 (3) | 0.0490 (14) | |
C7 | 0.0931 (6) | 0.6974 (3) | 0.7091 (3) | 0.0397 (12) | |
C8 | 0.0303 (6) | 0.7519 (3) | 0.6340 (3) | 0.0480 (16) | |
C9 | −0.1635 (6) | 0.8064 (3) | 0.6396 (3) | 0.0583 (17) | |
C10 | −0.2879 (7) | 0.8059 (3) | 0.7116 (3) | 0.0567 (16) | |
C11 | −0.2361 (6) | 0.7522 (3) | 0.7869 (3) | 0.0470 (14) | |
C12 | −0.0426 (6) | 0.6988 (3) | 0.7871 (3) | 0.0417 (12) | |
C13 | 0.0082 (6) | 0.6472 (3) | 0.8611 (3) | 0.0503 (16) | |
C14 | −0.1283 (7) | 0.6474 (3) | 0.9321 (3) | 0.0580 (17) | |
C15 | −0.3181 (7) | 0.6989 (3) | 0.9312 (3) | 0.0627 (17) | |
C16 | −0.3733 (7) | 0.7510 (3) | 0.8599 (3) | 0.0623 (17) | |
H1 | 0.357 (6) | 0.667 (2) | 0.5978 (18) | 0.063 (15)* | |
H2 | 0.67210 | 0.61060 | 0.52350 | 0.0530* | |
H4 | 1.06630 | 0.42750 | 0.64210 | 0.0720* | |
H5 | 0.83990 | 0.43110 | 0.76300 | 0.0720* | |
H6 | 0.53620 | 0.52640 | 0.76660 | 0.0590* | |
H9 | −0.20470 | 0.84290 | 0.59260 | 0.0700* | |
H10 | −0.41370 | 0.84220 | 0.71260 | 0.0680* | |
H13 | 0.13610 | 0.61220 | 0.86230 | 0.0600* | |
H14 | −0.09250 | 0.61260 | 0.98090 | 0.0700* | |
H15 | −0.40990 | 0.69840 | 0.97940 | 0.0750* | |
H16 | −0.50180 | 0.78550 | 0.86010 | 0.0750* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0707 (19) | 0.0686 (19) | 0.0491 (18) | 0.0118 (17) | 0.0061 (17) | 0.0121 (18) |
O2 | 0.059 (2) | 0.125 (3) | 0.107 (3) | 0.023 (2) | 0.021 (2) | −0.022 (2) |
O3 | 0.093 (2) | 0.095 (2) | 0.0545 (19) | −0.014 (2) | 0.019 (2) | −0.002 (2) |
N1 | 0.047 (2) | 0.054 (2) | 0.038 (2) | 0.0038 (18) | −0.0002 (19) | 0.0050 (19) |
N2 | 0.0433 (19) | 0.0452 (19) | 0.0399 (18) | 0.0002 (17) | 0.0032 (17) | −0.0004 (17) |
N3 | 0.062 (3) | 0.065 (3) | 0.060 (3) | −0.012 (2) | 0.016 (3) | −0.018 (2) |
C1 | 0.039 (2) | 0.043 (2) | 0.039 (2) | −0.0021 (19) | −0.002 (2) | 0.000 (2) |
C2 | 0.047 (2) | 0.042 (2) | 0.042 (2) | −0.006 (2) | 0.000 (2) | 0.002 (2) |
C3 | 0.046 (2) | 0.046 (2) | 0.045 (2) | −0.004 (2) | 0.004 (2) | −0.006 (2) |
C4 | 0.052 (3) | 0.053 (3) | 0.074 (3) | 0.006 (2) | 0.003 (3) | 0.000 (3) |
C5 | 0.064 (3) | 0.054 (3) | 0.063 (3) | 0.009 (2) | 0.002 (3) | 0.019 (3) |
C6 | 0.051 (2) | 0.053 (3) | 0.043 (2) | 0.000 (2) | 0.003 (2) | 0.005 (2) |
C7 | 0.041 (2) | 0.037 (2) | 0.041 (2) | 0.000 (2) | −0.001 (2) | −0.004 (2) |
C8 | 0.051 (3) | 0.044 (2) | 0.049 (3) | 0.005 (2) | −0.004 (2) | 0.004 (2) |
C9 | 0.064 (3) | 0.049 (3) | 0.062 (3) | 0.011 (2) | −0.006 (3) | 0.008 (2) |
C10 | 0.057 (3) | 0.047 (2) | 0.066 (3) | 0.007 (2) | −0.005 (3) | −0.004 (3) |
C11 | 0.043 (2) | 0.043 (2) | 0.055 (3) | −0.004 (2) | −0.001 (2) | −0.009 (3) |
C12 | 0.042 (2) | 0.042 (2) | 0.041 (2) | −0.003 (2) | −0.008 (2) | −0.004 (2) |
C13 | 0.050 (3) | 0.055 (3) | 0.046 (2) | 0.000 (2) | −0.002 (2) | −0.003 (2) |
C14 | 0.062 (3) | 0.067 (3) | 0.045 (3) | −0.001 (3) | 0.003 (2) | −0.002 (3) |
C15 | 0.058 (3) | 0.071 (3) | 0.059 (3) | 0.000 (3) | 0.015 (3) | −0.010 (3) |
C16 | 0.057 (3) | 0.058 (3) | 0.072 (3) | 0.005 (3) | 0.010 (3) | −0.010 (3) |
O1—C8 | 1.276 (5) | C10—C11 | 1.431 (6) |
O2—N3 | 1.225 (6) | C11—C16 | 1.401 (6) |
O3—N3 | 1.212 (5) | C11—C12 | 1.411 (5) |
N1—N2 | 1.312 (4) | C12—C13 | 1.397 (6) |
N1—C1 | 1.394 (5) | C13—C14 | 1.374 (6) |
N2—C7 | 1.330 (5) | C14—C15 | 1.377 (6) |
N3—C3 | 1.473 (6) | C15—C16 | 1.374 (6) |
C1—C2 | 1.383 (5) | C2—H2 | 0.9300 |
C1—C6 | 1.386 (6) | C4—H4 | 0.9300 |
N1—H1 | 0.86 (3) | C5—H5 | 0.9300 |
C2—C3 | 1.380 (5) | C6—H6 | 0.9300 |
C3—C4 | 1.374 (6) | C9—H9 | 0.9300 |
C4—C5 | 1.383 (6) | C10—H10 | 0.9300 |
C5—C6 | 1.383 (6) | C13—H13 | 0.9300 |
C7—C8 | 1.451 (6) | C14—H14 | 0.9300 |
C7—C12 | 1.458 (6) | C15—H15 | 0.9300 |
C8—C9 | 1.424 (5) | C16—H16 | 0.9300 |
C9—C10 | 1.343 (6) | ||
N2—N1—C1 | 119.2 (3) | C11—C12—C13 | 118.7 (4) |
N1—N2—C7 | 118.5 (3) | C7—C12—C11 | 118.7 (4) |
O2—N3—O3 | 124.5 (4) | C7—C12—C13 | 122.5 (4) |
O2—N3—C3 | 117.4 (4) | C12—C13—C14 | 120.9 (4) |
O3—N3—C3 | 118.1 (4) | C13—C14—C15 | 120.2 (4) |
N1—C1—C2 | 117.3 (3) | C14—C15—C16 | 120.8 (4) |
N1—C1—C6 | 122.1 (3) | C11—C16—C15 | 120.1 (4) |
C2—C1—C6 | 120.6 (4) | C1—C2—H2 | 121.00 |
N2—N1—H1 | 118 (2) | C3—C2—H2 | 121.00 |
C1—N1—H1 | 122 (2) | C3—C4—H4 | 121.00 |
C1—C2—C3 | 118.5 (3) | C5—C4—H4 | 121.00 |
N3—C3—C4 | 119.5 (4) | C4—C5—H5 | 119.00 |
N3—C3—C2 | 118.0 (4) | C6—C5—H5 | 119.00 |
C2—C3—C4 | 122.5 (4) | C1—C6—H6 | 120.00 |
C3—C4—C5 | 118.0 (4) | C5—C6—H6 | 120.00 |
C4—C5—C6 | 121.2 (4) | C8—C9—H9 | 119.00 |
C1—C6—C5 | 119.2 (4) | C10—C9—H9 | 119.00 |
C8—C7—C12 | 119.9 (3) | C9—C10—H10 | 118.00 |
N2—C7—C8 | 124.6 (4) | C11—C10—H10 | 118.00 |
N2—C7—C12 | 115.5 (4) | C12—C13—H13 | 120.00 |
C7—C8—C9 | 118.2 (4) | C14—C13—H13 | 120.00 |
O1—C8—C9 | 120.9 (4) | C13—C14—H14 | 120.00 |
O1—C8—C7 | 120.9 (3) | C15—C14—H14 | 120.00 |
C8—C9—C10 | 121.1 (4) | C14—C15—H15 | 120.00 |
C9—C10—C11 | 123.1 (4) | C16—C15—H15 | 120.00 |
C12—C11—C16 | 119.4 (4) | C11—C16—H16 | 120.00 |
C10—C11—C12 | 119.0 (4) | C15—C16—H16 | 120.00 |
C10—C11—C16 | 121.6 (4) | ||
C1—N1—N2—C7 | −179.0 (3) | C12—C7—C8—C9 | 0.7 (6) |
N2—N1—C1—C2 | −179.4 (3) | N2—C7—C12—C11 | −176.4 (4) |
N2—N1—C1—C6 | −0.7 (5) | N2—C7—C12—C13 | 1.7 (6) |
N1—N2—C7—C8 | 1.8 (6) | C8—C7—C12—C11 | 1.3 (6) |
N1—N2—C7—C12 | 179.4 (3) | C8—C7—C12—C13 | 179.4 (4) |
O2—N3—C3—C2 | 165.7 (4) | O1—C8—C9—C10 | 177.6 (4) |
O2—N3—C3—C4 | −13.5 (6) | C7—C8—C9—C10 | −1.5 (6) |
O3—N3—C3—C2 | −15.4 (6) | C8—C9—C10—C11 | 0.4 (7) |
O3—N3—C3—C4 | 165.5 (4) | C9—C10—C11—C12 | 1.7 (7) |
N1—C1—C2—C3 | 178.9 (3) | C9—C10—C11—C16 | −177.9 (4) |
C6—C1—C2—C3 | 0.0 (6) | C10—C11—C12—C7 | −2.5 (6) |
N1—C1—C6—C5 | −179.2 (4) | C10—C11—C12—C13 | 179.4 (4) |
C2—C1—C6—C5 | −0.4 (6) | C16—C11—C12—C7 | 177.2 (4) |
C1—C2—C3—N3 | −179.4 (4) | C16—C11—C12—C13 | −1.0 (6) |
C1—C2—C3—C4 | −0.3 (6) | C10—C11—C16—C15 | −179.8 (4) |
N3—C3—C4—C5 | 180.0 (4) | C12—C11—C16—C15 | 0.6 (6) |
C2—C3—C4—C5 | 0.8 (6) | C7—C12—C13—C14 | −177.4 (4) |
C3—C4—C5—C6 | −1.2 (6) | C11—C12—C13—C14 | 0.7 (6) |
C4—C5—C6—C1 | 1.0 (6) | C12—C13—C14—C15 | −0.1 (7) |
N2—C7—C8—O1 | −0.9 (6) | C13—C14—C15—C16 | −0.3 (7) |
N2—C7—C8—C9 | 178.2 (4) | C14—C15—C16—C11 | 0.0 (7) |
C12—C7—C8—O1 | −178.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.86 (3) | 1.84 (3) | 2.551 (4) | 138 (3) |
C2—H2···O1i | 0.93 | 2.43 | 3.312 (4) | 157 |
C9—H9···O3ii | 0.93 | 2.62 | 3.303 (5) | 130 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x−3/2, −y+3/2, −z+1. |
Contact type | Percentage contribution |
O···H/H···O | 28.5 |
H···H | 26.4 |
C···H/H···C | 26.0 |
C···C | 6.1 |
N···H/H···N | 4.8 |
C···N/N···C | 3.8 |
C···O/O···C | 2.2 |
Acknowledgements
We thank all researchers of the CHEMS Research Unit of the University of Constantine Algeria for the valuable assistance they have provided us throughout the realization of this work.
References
Antonov, L. (2016). Tautomerism: Concepts and Applications in Science and Technology. Weinheim: Wiley-VCH . Google Scholar
Benaouida, M. A., Chetioui, S. & Bouaoud, S. E. (2013). Acta Cryst. E69, o867–o868. CSD CrossRef CAS IUCr Journals Google Scholar
Benkhaya, S., M'rabet, S. & El Harfi, A. (2020). Heliyon, 6, e03271–e03296. Web of Science CrossRef PubMed Google Scholar
Benosmane, A., Benaouida, M. A., Mili, A., Bouchoul, A. & Merazig, H. (2015). Acta Cryst. E71, o303. CSD CrossRef IUCr Journals Google Scholar
Benosmane, A., Gündüz, B., Benaouida, M. A., Boukentoucha, C. & Merzig, H. (2023). J. Mol. Struct. 1273, 134254–134266. Web of Science CSD CrossRef CAS Google Scholar
Benosmane, A., Rouag, D. A., Mili, A., Merazig, H. & Benaouida, M. A. (2016). IUCrData, 1, x160658. Google Scholar
Bougueria, H., Benaouida, M. A., Bouacida, S. & Bouchoul, A. el kader (2013). Acta Cryst. E69, o1175–o1176. Google Scholar
Bougueria, H., Benosmane, A., Benaouida, M. A., Bouchoul, A. E. K. & Bouaoud, S. E. (2013). Acta Cryst. E69, o1052. CSD CrossRef IUCr Journals Google Scholar
Bougueria, H., Chetioui, S., Bensegueni, M. A., Djukic, J.-P. & Benarous, N. (2021). Acta Cryst. E77, 672–676. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bougueria, H., Chetioui, S., Mili, A., Bouaoud, S. E. & Merazig, H. (2017). IUCrData, 2, x170039. Google Scholar
Bougueria, H., Mili, A., Benosmane, A., Bouchoul, A. el kader & Bouaoud, S. (2014). Acta Cryst. E70, o225. Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. BrukerAXS Inc, Madison, Wisconsin, USA. Google Scholar
Christie, R. M. (2001). Colour Chemistry. Cambridge: Royal Society of Chemistry. Google Scholar
Chudgar, R. J. & Oakes, J. (2003). Azo Dyes. In Kirk–Othmer Encyclopedia of Chemical Technology. Hoboken, NJ,: John Wiley & Sons, Inc. Google Scholar
Debnath, D., Roy, S., Li, B.-H., Lin, C.-H. & Misra, T. K. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 140, 185–197. Web of Science CSD CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ferreira, G. R., Garcia, H. C., Couri, M. R. C., Dos Santos, H. F. & de Oliveira, L. F. C. (2013). J. Phys. Chem. A, 117, 642–649. Web of Science CSD CrossRef CAS PubMed Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hunger, K. (2003). Industrial Dyes: Chemistry, properties, Applications. Weinheim: Wiley-VCH. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mathieu-Denoncourt, J., Martyniuk, C. J., de Solla, S. R., Balakrishnan, V. K. & Langlois, V. S. (2014). Environ. Sci. Technol. 48, 2952–2961. Web of Science CAS PubMed Google Scholar
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mili, A., Benosmane, A., Benaouida, M. A., Bouchoul, A. & Bouaoud, S. E. (2013). Acta Cryst. E69, o1498. CSD CrossRef IUCr Journals Google Scholar
Pavlović, G., Racané, L., Čičak, H. & Tralić-Kulenović, V. (2009). Dyes Pigments, 83, 354–362. Google Scholar
Ran, J., Pryazhnikova, V. G. & Telegin, F. Y. (2022). Colorants, 1, 280–297. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, J. & Chen, L. (2014). Anal. Methods, 6, 8129–8135. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Xu, J.-J., Li, J., Pi, M. & Jin, C.-M. (2010). Acta Cryst. E66, o1752. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.