research communications
3,3′-(Phenylmethylene)bis(1-ethyl-3,4-dihydro-1H-2,1-benzothiazine-2,2,4-trione): single-crystal X-ray diffraction study, quantum-chemical calculations and Hirshfeld surface analysis
aDivision of Chemistry of Functional Materials, State Scientific Institution, "Institute for Single Crystals" of the National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv 61072, Ukraine, and bNational University of Pharmacy, 4 Valentynivska St., Kharkov 61168, Ukraine
*Correspondence e-mail: masha.o.shishkina@gmail.com
The title compound, C27H26N2O6S2, possesses potential antimicrobial, analgesic, and anti-inflammatory activity. This compound has three tautomeric forms, which relative energies were estimated with quantum-chemical calculations. All these tautomers (dienol form 7A, keto–enol form 7B, and diketo form 7C) were optimized by the M06–2X/cc-pVTZ method in a vacuum, using the PCM model with chloroform and DMSO as solvent. The diketo form of the title compound proved to be the most energetically favourable as compared to the keto–enol or dienol forms. The diketo form can exist as three possible with the same configuration of one stereogenic center and different configurations of the stereogenic centers at two other atoms: (R, R, R), (S, R, S) and (R, R, S). The (R, R, S) stereoisomer was found in the crystal phase. It was revealed that the thiazine rings of equivalent benzothiazine fragments have different conformations, (a sofa or a half-chair). The two bicyclic fragments connected through the phenylmethylene group are oriented almost orthogonal to each other, subtending a dihedral angle of 82.16(7)°.
Keywords: 2,1-benzothiazine 2,2-dioxide; keto-enol tautomerism; molecular structure; crystal structure; Hirshfeld surface analysis; quantum-chemical calculations.
CCDC reference: 2248566
1. Chemical context
Nowadays a countless number of heterocyclic scaffolds are being used in nearly every branch of industry, providing necessary properties to the final product. 2,1-Benzothiazine 2,2-dioxide belongs to an important class of heterocyclic cores. In particular, its structural features have led to its wide application in medicinal chemistry research, which is evidenced by the works related to the field as well as recent reviews (Vo & Ngo, 2022; Ukrainets et al., 2019; Chattopadhyay, 2018; Ahmad Saddique et al., 2021; Dobrydnev & Marco-Contelles, 2021).
2,1-Benzothiazin-4(3H)-one 2,2-dioxide (1) is one of the simple derivatives of the above-mentioned framework (Fig. 1). It incorporates a β-keto sultam fragment that allows a molecule to be a versatile synthetic intermediate used for the preparation of diverse molecular platforms (Ahmad et al., 2018; Grombein et al., 2015; D'Amico et al., 2007; Pieroni et al., 2012; Popov et al., 2010; Popov et al., 2009). Moreover, such a fragment is probably responsible for non-trivial reactivity as we have established previously (Lega et al., 2016c; Kolodyazhna et al., 2021). One of such unexpected outcomes was the formation of stable ammonium as a result of interaction between 2,1-benzothiazin-4(3H)-one 2,2-dioxides and in the presence of secondary or tertiary (Lega et al., 2016c, 2017). This fact is quite interesting as similar bis-derivatives have previously been isolated in an acid form and not as a salt (Zanwar et al., 2012; Ye et al., 1999). The possibility of such salt formation is most probably caused by the raised CH-acidic properties of the methyne group (as the result of the electron-withdrawing influence of the SO2 group), which leads to ease of enolization. Moreover, the intramolecular O—H⋯O−. hydrogen bond increases the stability of such enolates.
Considering the uniqueness of salts 2 (Fig. 1), we have investigated their antimicrobial, analgesic, and anti-inflammatory properties (Lega et al., 2016a,b). Biological experiments have revealed that compounds 2 are promising platforms to search for a novel NSAID among them. For the reason of further modification of the compounds' structures, we decided to convert salts 2 into an acidic form with the prospect of a comparative study of their NSAID activity to that of the salts. The motive behind the modification method was the removal of the possible toxic amine fragment. Moreover, there was the assumption that the acidic environment of the stomach breaks down the salt and produces the acidic form of 2, which is the true bioactive part of the salt.
Reflux of 1-ethyl-2,1-benzothiazin-4(3H)-one 2,2-dioxide (3) with benzaldehyde (4) and triethylamine (5) (molar ratio 1:2:1) for 1 h in ethyl alcohol results in the triethylammonium salt 6 used in the study (Lega et al., 2016c) (Fig. 2). In order to achieve the planned acidic form, we exposed the salt to a solution of TsOH (1.5 equiv) in ethanol. Short heating of this mixture gave a fine crystalline substance, which was recrystallized from acetic acid and further analyzed. It is worth noting that the reaction can be accomplished by simple reflux of salt 6 in water for 15 h.
To our great surprise, we recorded an unexpected 1H NMR spectrum (DMSO-d6, 200 MHz) with a complicated set of numerous signals (Fig. 3). Such a spectroscopic picture could be the result of a tautomeric conversion cycle of compound 7 initiated by proton movement in the dihydroxy tautomer 7A (Fig. 2). The prototropic transformations are apparently facilitated by the slight basic properties of the solvent (MacGregor, 1967). From the proton spectrum, one can conclude that the mixture contains the monohydroxy tautomer 7B (a singlet at 11.13 ppm) and diketo form 7C (triplet at 5.75 ppm). We would like to emphasize that tautomers 7B and 7C contain several asymmetric carbon atoms and can exist as various The situation becomes more complicated with the SO2 fragment that can be located in the crystals up or down the thiazine ring, creating an additional pseudo-chiral center as was reported previously (Ukrainets et al., 2016b). At the same time, the 1H NMR spectrum (400 MHz) of 7 recorded in CDCl3 solution indicates the presence of only one tautomer, 7C (Fig. 4). With uncertainty about the of the isolated product, we decided to perform X-ray experiments to unambiguously establish the structure of compound 7. Moreover, we also aimed to calculate the stability of the tautomers and The latter has a big value as the binding energy of different isomeric forms to biomolecules depends greatly on the structure and the Moreover, as was stated in previous works, understanding keto–enol is significant in order to substantiate critical biological applications of the tautomeric molecules and to comprehend their biochemical reactions (Tighadouini et al., 2022; Temperini et al., 2009).
2. Quantum-chemical study
To estimate the relative energies of tautomeric forms of the product 7, quantum-chemical calculations were performed. Dienol form 7A, keto–enol form 7B and diketo form 7C were optimized by the M06-2X/cc-pVTZ method (Zhao & Truhlar, 2007; Kendall et al., 1992) using GAUSSIAN09 software (Frisch et al., 2010). The vacuum approximation and PCM model (Mennucci, 2012) with chloroform or DMSO as a solvent for considering a polarizing environment were used. In addition, vibration frequencies were calculated for all of these optimized molecules, indicating a minimum on the surface. The results of the optimization showed that the diketo form 7C has the lowest energy (Table 1). Moreover, the diketo form can exist as three possible 7C(R, R, R), 7C(S, R, S) and 7C(R, R, S). The results of the quantum-chemical calculations revealed that these have close energies, but the most energetically preferable stereoisomer is 7C(R, R, S). It should be noted that the use of the PCM model results in an increase of the energy difference between the dienol A and diketo C forms. In contrary to calculations in a vacuum approximation, the calculations considering a polarizing environment result in almost same energy for the stereoisomers.
|
3. Structural commentary
Compound 7 was found as the diketo form 7C(R, R, S) in the crystal phase (Fig. 5). Molecule 7 contains two benzothiazine fragments, in which the thiazine rings have different conformations. The S1⋯C10 ring adopts a sofa conformation [the puckering parameters (Zefirov et al., 1990) are S = 0.66, Θ = 57.78 (6)°, Ψ = 27.98 (7)°, and the S1 atom deviates from the mean plane of the other ring atoms by 0.802 (2) Å], and the S2⋯C18 ring adopts a half-chair conformation [the puckering parameters are S = 0.83, Θ = 35.42 (6)°, Ψ = 27.51 (7)°, the S2 and C18 atoms deviating by −0.559 (5) and 0.441 (5) Å, respectively]. The dihedral angle between the mean square planes of two bicyclic fragments is 82.16 (7)°.
The ethyl substituent at the N2 atom is disordered over two positions (A and B) with the populations of A:B in a 0.823 (10):0.177 (10) ratio. The ethyl substituents at N1 and N2 are rotated almost orthogonally to the planes of the thiazine rings [the C8—C7—N1—C1, C27A—C26A—N2—C25 and C27B—C26B—N2—C25 torsion angles are 81.3 (4), −99.6 (6) and 97.3 (2)°, respectively], which leads to steric repulsion between the and the aromatic ring [short contacts are H7A⋯C2 = 2.63 Å, H7A⋯H2 = 2.12 Å, H26A⋯C24 = 2.56 Å, H26A⋯H24 = 2.13 Å as compared to the corresponding van der Waals radii sums (Zefirov, 1997) C⋯H = 2.87 and H⋯H = 2.34 Å]. The two bicyclic fragments are connected through the bridging methylene group, where one of the hydrogen atoms is replaced by a phenyl substituent. The phenyl substituent is in the position intermediate between -sc and -ac in relation to the S1—C10 bond [the C12—C11—C10—S1 torsion angle is −81.3 (2)°] or in the position intermediate between ac and ap in relation to the S2—C18 bond [the C12—C11—C18—S2 torsion angle is 158.0 (2)°]. The plane of the phenyl substituent is rotated relative to the C11—C10 and C11—C18 bonds [the C13—C12—C11—C10 and C13—C12—C11—C18 torsion angles are 112.5 (3) and −121.1 (2)°, respectively].
4. Supramolecular features
Analysis of the shortest distances between atoms of neighboring molecules of 7 does not reveal any strong intermolecular interactions in the crystal phase. Only two very weak C—H⋯O interactions are found: C13—H13⋯O6(x, − y, + z) where the H⋯O distance is 2.57 Å and the C—H⋯O bond angle is 165°, and C23—H23⋯O2(1 + x, − y, + z) where the H⋯O distance is 2.65 Å and the C—H⋯O bond angle is 123°. The van der Waals radii sum of H and O atoms is different in various sources: 2.72 Å in accordance to the Bondi (1964) interpretation, 2.65 Å as determined by Rowland & Taylor (1996), and 2.46 Å as calculated by Zefirov (1997). As can be seen, the interactions discussed above do not unambiguously indicate the existence of weak hydrogen bonds and thus a further study of the supramolecular features is needed.
5. Hirshfeld surface analysis
To identify and visualize different types of intermolecular interactions in the et al., 2017) as implemented in program CrystalExplorer17 (Spackman et al., 2021) was used. This method allows the crystal space to be split into molecular domains and the detection of short distances between atoms of neighboring molecules.
a Hirshfeld surface analysis (TurnerA standard (high) surface resolution with three-dimensional dnorm surfaces in the range −0.129 to 1.589 a.u. was used to construct the molecular Hirshfeld surface of the title compound (Fig. 6). Red spots on the dnorm surface were found only near to atoms H13 and O6 atoms participating in the C13—H⋯O6 hydrogen bond. No red spots on the Hirshfeld surface indicated the formation of an C23—H⋯O2 interaction. Thus, only one C—H⋯O intermolecular hydrogen bond can be discussed in the title structure. Molecules bound by this hydrogen bond form a chain in the [001] direction.
Taking into account the potential biological activity of the title compound, which presumes its interaction with a receptor, an analysis of the relative contributions of interactions of different types seems to be useful. All of the intermolecular interactions of the title compound are evident on the two-dimensional fingerprint plot presented in Fig. 7a. The presence of X—H⋯O hydrogen bonds in the could be indicated by high contribution of O⋯H/H⋯O (33.7%) contacts and the sharp spikes in Fig. 7c. The contribution of C⋯H/H⋯C (16.3%) contacts, which are associated with X—H⋯π interactions, are much lower (Fig. 7d), whereas the contribution of H⋯H contacts is the highest at 47.4% (Fig. 7b).
6. Database survey
To analyze the possibility of the existence of the similar compounds in different tautomeric forms, a search of the Cambridge Structural Database (CSD Version 5.41, update of June 2022; Groom et al., 2016) for the benzothiazine fragment was performed. Of the 45 hits found, 19 reported the enol form of this fragment [refcodes: AKIJIP, AKIJIP01 (Ukrainets et al., 2016b), CABBEP (Lei et al., 2016), DUCBEL, DUCBEL01 (Shishkina et al., 2020b), IJUJAA (Ukrainets et al., 2015b), LANNUM (Ukrainets et al., 2016a), LOGHEW (Ukrainets et al., 2014a), MINJAW (Shishkina et al., 2013), NODGUK (Ukrainets et al., 2013), NOXJOC (Lei et al., 2019), RACQUL (Shishkina et al., 2020a), TAJXUB, TAJXUB01, TAJXUB02 (Ukrainets et al., 2020a), UWUCIA (Ukrainets et al., 2015a), XEKPUB (Ukrainets et al., 2017), ZUZJIQ, ZUZJOW (Ukrainets et al., 2020b)], while the keto form was detected in 12 hits [refcodes: KANTIE (Shafiq et al., 2011), LIVPUC (Tahir et al., 2008), LIVQAJ (Shafiq et al., 2008a), MOTDOP (Shafiq et al., 2009b), PONWEV (Shafiq et al., 2009d), SEJWAI (Shishkina et al., 2017), SOGDOI (Shafiq et al., 2008b), SOLKOU (Shafiq et al., 2009a), UZAMOZ (Ukrainets et al., 2014b), VACKER (Khan et al., 2010), WACRUP (Shafiq et al., 2010), YOVBER (Shafiq et al., 2009c)]. Both of these two forms are presented in structure NAKZAD (Lega et al., 2016c). As can be seen, the most of the related compounds exist in the crystal phase in the enol tautomeric form. However, the keto tautomeric form of similar compounds also has been found in the crystal phase. This suggests that the difference in the relative energies of the keto and enol tautomeric forms is small enough and tautomeric equilibrium can be distorted during the crystallization process because of the influence of solvation effects.
7. Synthesis and crystallization
Triethylammonium salt 6 (Lega et al., 2016c) (0.639 g, 0.001 mol) was added to a solution of TsOH (0.258 g, 0.0015 mol) in EtOH (10 mL). The obtained mixture was heated at 343 K for 15 min and cooled to room temperature. The precipitate that formed was collected by filtration, washed with EtOH and dried in air, affording 0.53 g (98% yield) of the target product.
The 1H NMR spectrum was recorded on a Varian MR-400 spectrometer, with frequency 400 MHz in CDCl3 solution, m.p. 464–466 K. 1H NMR (400MHz, CDCl3), δ, ppm: 7.80 (2H, dd, J = 7.9, 1.7 Hz), 7.51 (2H, t, J = 6.9 Hz), 7.05 (2H, t, J = 7.6 Hz), 6.98 (1H, t, J = 7.3 Hz), 6.92 (2H, d, J = 8.4 Hz), 6.87 (2H, t, J = 7.7 Hz), 6.77 (2H, d, J = 7.2 Hz), 5.29 (2H, d, J = 7.0 Hz), 4.08 (1H, t, J = 7.0 Hz), 3.88 (2H, dq, J = 14.3, 7.1 Hz), 3.59 (2H, dq, J = 14.5, 7.1 Hz), 1.39 (6H, t, J = 7.1 Hz).
8. Refinement
Crystal data, data collection and structure . All hydrogen atoms were located in difference-Fourier maps. They were included in calculated positions and treated as riding with C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl groups and with Car—H = 0.93 Å, Csp3—H = 0.97 Å, Uiso(H) = 1.2Ueq(C) for methylene hydrogen atoms and Csp3—H = 0.98 Å, Uiso(H) = 1.2Ueq (C) for hydrogen atoms on the tertiary carbons. Restrictions on the bond lengths were applied for the disordered fragment (N—Csp3 = 1.47 Å, Csp3—sp3 = 1.54 Å).
details are summarized in Table 2Supporting information
CCDC reference: 2248566
https://doi.org/10.1107/S2056989023002505/ex2067sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023002505/ex2067Isup2.hkl
Data collection: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); cell
CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); data reduction: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).C27H26N2O6S2 | F(000) = 1128 |
Mr = 538.62 | Dx = 1.362 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.7125 (4) Å | Cell parameters from 3809 reflections |
b = 18.4040 (6) Å | θ = 3.6–24.8° |
c = 12.8601 (5) Å | µ = 0.25 mm−1 |
β = 108.613 (3)° | T = 293 K |
V = 2627.09 (17) Å3 | Block, yellow |
Z = 4 | 0.2 × 0.15 × 0.1 mm |
Xcalibur, Sapphire3 diffractometer | 3493 reflections with I > 2σ(I) |
Detector resolution: 16.1827 pixels mm-1 | Rint = 0.072 |
ω scans | θmax = 25.0°, θmin = 3.1° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | h = −13→13 |
Tmin = 0.774, Tmax = 1.000 | k = −19→21 |
18007 measured reflections | l = −14→15 |
4617 independent reflections |
Refinement on F2 | 4 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.058 | H-atom parameters constrained |
wR(F2) = 0.163 | w = 1/[σ2(Fo2) + (0.0785P)2 + 0.6422P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
4617 reflections | Δρmax = 0.21 e Å−3 |
356 parameters | Δρmin = −0.35 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.47793 (6) | 0.25767 (4) | 0.19434 (5) | 0.0472 (2) | |
S2 | 0.83342 (7) | 0.29750 (5) | 0.12866 (7) | 0.0665 (3) | |
O1 | 0.48791 (18) | 0.40259 (12) | −0.01080 (16) | 0.0681 (6) | |
O2 | 0.39569 (17) | 0.21964 (11) | 0.10504 (16) | 0.0610 (5) | |
O3 | 0.56091 (17) | 0.21663 (11) | 0.27821 (17) | 0.0641 (6) | |
O4 | 0.8703 (2) | 0.48332 (12) | 0.2195 (2) | 0.0827 (7) | |
O5 | 0.9255 (2) | 0.32588 (15) | 0.0899 (2) | 0.0863 (7) | |
O6 | 0.7502 (2) | 0.24653 (13) | 0.0625 (2) | 0.0907 (8) | |
N1 | 0.40691 (19) | 0.31205 (12) | 0.25327 (17) | 0.0504 (6) | |
N2 | 0.8914 (2) | 0.26077 (14) | 0.2500 (3) | 0.0744 (8) | |
C1 | 0.3308 (2) | 0.36578 (15) | 0.1862 (2) | 0.0524 (7) | |
C2 | 0.2310 (3) | 0.39112 (19) | 0.2112 (3) | 0.0779 (10) | |
H2 | 0.213177 | 0.372912 | 0.271679 | 0.093* | |
C3 | 0.1584 (4) | 0.4434 (2) | 0.1457 (4) | 0.1034 (15) | |
H3 | 0.093015 | 0.461227 | 0.164150 | 0.124* | |
C4 | 0.1800 (3) | 0.4697 (2) | 0.0549 (4) | 0.1069 (15) | |
H4 | 0.128496 | 0.503913 | 0.010587 | 0.128* | |
C5 | 0.2783 (3) | 0.44536 (19) | 0.0291 (3) | 0.0793 (10) | |
H5 | 0.293003 | 0.463059 | −0.033195 | 0.095* | |
C6 | 0.3566 (2) | 0.39430 (15) | 0.0952 (2) | 0.0521 (7) | |
C7 | 0.3866 (3) | 0.28547 (19) | 0.3537 (2) | 0.0660 (8) | |
H7A | 0.364483 | 0.326257 | 0.391083 | 0.079* | |
H7B | 0.461418 | 0.265607 | 0.402041 | 0.079* | |
C8 | 0.2902 (3) | 0.2284 (2) | 0.3336 (3) | 0.0770 (10) | |
H8A | 0.216782 | 0.246542 | 0.282656 | 0.115* | |
H8B | 0.277153 | 0.216385 | 0.401607 | 0.115* | |
H8C | 0.315178 | 0.185659 | 0.303806 | 0.115* | |
C9 | 0.4636 (2) | 0.37545 (14) | 0.0657 (2) | 0.0469 (6) | |
C10 | 0.5535 (2) | 0.32026 (13) | 0.13538 (19) | 0.0414 (6) | |
H10 | 0.582604 | 0.292278 | 0.084064 | 0.050* | |
C11 | 0.6668 (2) | 0.35335 (13) | 0.22011 (19) | 0.0396 (6) | |
H11 | 0.703254 | 0.314563 | 0.272388 | 0.048* | |
C12 | 0.6416 (2) | 0.41570 (13) | 0.2868 (2) | 0.0421 (6) | |
C13 | 0.6622 (3) | 0.40655 (17) | 0.3976 (2) | 0.0611 (8) | |
H13 | 0.691505 | 0.362551 | 0.431097 | 0.073* | |
C14 | 0.6389 (4) | 0.4636 (3) | 0.4590 (3) | 0.0899 (12) | |
H14 | 0.652657 | 0.457362 | 0.533779 | 0.108* | |
C15 | 0.5962 (4) | 0.5285 (2) | 0.4109 (4) | 0.0927 (12) | |
H15 | 0.580782 | 0.566206 | 0.452748 | 0.111* | |
C16 | 0.5763 (3) | 0.53777 (18) | 0.3024 (4) | 0.0770 (10) | |
H16 | 0.546752 | 0.581930 | 0.269590 | 0.092* | |
C17 | 0.5994 (2) | 0.48233 (14) | 0.2397 (3) | 0.0556 (7) | |
H17 | 0.586499 | 0.489687 | 0.165310 | 0.067* | |
C18 | 0.7610 (2) | 0.37414 (14) | 0.1630 (2) | 0.0454 (6) | |
H18 | 0.721111 | 0.401986 | 0.096348 | 0.054* | |
C19 | 0.8652 (2) | 0.41888 (16) | 0.2378 (2) | 0.0535 (7) | |
C20 | 0.9511 (2) | 0.38141 (19) | 0.3282 (2) | 0.0616 (8) | |
C21 | 1.0253 (3) | 0.4243 (3) | 0.4130 (3) | 0.0931 (13) | |
H21 | 1.020907 | 0.474641 | 0.407315 | 0.112* | |
C22 | 1.1036 (4) | 0.3929 (5) | 0.5037 (4) | 0.136 (2) | |
H22 | 1.152568 | 0.421830 | 0.559600 | 0.164* | |
C23 | 1.1103 (4) | 0.3193 (5) | 0.5125 (5) | 0.137 (3) | |
H23 | 1.162666 | 0.298517 | 0.575744 | 0.165* | |
C24 | 1.0412 (4) | 0.2746 (3) | 0.4298 (4) | 0.1058 (15) | |
H24 | 1.048072 | 0.224317 | 0.436921 | 0.127* | |
C25 | 0.9608 (3) | 0.3057 (2) | 0.3353 (3) | 0.0706 (9) | |
C26A | 0.8651 (6) | 0.18562 (17) | 0.2743 (7) | 0.103 (2) | 0.823 (10) |
H26A | 0.782421 | 0.173685 | 0.232684 | 0.123* | 0.823 (10) |
H26B | 0.874295 | 0.181114 | 0.351686 | 0.123* | 0.823 (10) |
C27A | 0.9510 (7) | 0.1325 (3) | 0.2443 (7) | 0.156 (4) | 0.823 (10) |
H27A | 0.948918 | 0.141105 | 0.170067 | 0.235* | 0.823 (10) |
H27B | 0.926259 | 0.083490 | 0.251111 | 0.235* | 0.823 (10) |
H27C | 1.031506 | 0.139747 | 0.292943 | 0.235* | 0.823 (10) |
C26B | 0.915 (2) | 0.1865 (6) | 0.220 (2) | 0.120 (13) | 0.177 (10) |
H26C | 1.000208 | 0.174041 | 0.249165 | 0.144* | 0.177 (10) |
H26D | 0.886487 | 0.178665 | 0.141547 | 0.144* | 0.177 (10) |
C27B | 0.839 (3) | 0.1457 (17) | 0.279 (3) | 0.135 (14) | 0.177 (10) |
H27D | 0.764720 | 0.130614 | 0.226797 | 0.202* | 0.177 (10) |
H27E | 0.823032 | 0.177321 | 0.332400 | 0.202* | 0.177 (10) |
H27F | 0.882787 | 0.103844 | 0.315959 | 0.202* | 0.177 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0481 (4) | 0.0414 (4) | 0.0504 (4) | −0.0078 (3) | 0.0132 (3) | 0.0042 (3) |
S2 | 0.0617 (5) | 0.0658 (6) | 0.0791 (6) | 0.0014 (4) | 0.0325 (4) | −0.0177 (4) |
O1 | 0.0694 (13) | 0.0820 (16) | 0.0528 (12) | −0.0002 (11) | 0.0194 (10) | 0.0216 (11) |
O2 | 0.0593 (12) | 0.0558 (12) | 0.0643 (13) | −0.0228 (9) | 0.0146 (9) | −0.0109 (10) |
O3 | 0.0574 (12) | 0.0525 (12) | 0.0748 (14) | 0.0001 (9) | 0.0104 (10) | 0.0270 (10) |
O4 | 0.0794 (16) | 0.0544 (15) | 0.1110 (19) | −0.0217 (11) | 0.0258 (13) | 0.0033 (13) |
O5 | 0.0739 (15) | 0.113 (2) | 0.0908 (17) | −0.0041 (13) | 0.0521 (13) | −0.0189 (15) |
O6 | 0.0814 (16) | 0.0819 (17) | 0.114 (2) | −0.0092 (13) | 0.0392 (14) | −0.0532 (15) |
N1 | 0.0541 (13) | 0.0551 (14) | 0.0440 (13) | −0.0031 (10) | 0.0187 (10) | 0.0060 (10) |
N2 | 0.0654 (17) | 0.0551 (17) | 0.104 (2) | 0.0186 (13) | 0.0291 (16) | 0.0104 (15) |
C1 | 0.0485 (16) | 0.0460 (16) | 0.0633 (18) | −0.0039 (12) | 0.0185 (13) | 0.0034 (13) |
C2 | 0.072 (2) | 0.068 (2) | 0.110 (3) | 0.0057 (17) | 0.052 (2) | 0.009 (2) |
C3 | 0.076 (3) | 0.079 (3) | 0.174 (5) | 0.021 (2) | 0.066 (3) | 0.027 (3) |
C4 | 0.063 (2) | 0.100 (3) | 0.160 (4) | 0.031 (2) | 0.039 (2) | 0.059 (3) |
C5 | 0.058 (2) | 0.078 (2) | 0.101 (3) | 0.0114 (16) | 0.0233 (17) | 0.034 (2) |
C6 | 0.0411 (15) | 0.0519 (17) | 0.0597 (17) | −0.0002 (11) | 0.0112 (12) | 0.0128 (13) |
C7 | 0.069 (2) | 0.086 (2) | 0.0442 (17) | −0.0085 (16) | 0.0196 (14) | 0.0094 (15) |
C8 | 0.076 (2) | 0.090 (3) | 0.074 (2) | −0.0087 (18) | 0.0368 (17) | 0.0210 (19) |
C9 | 0.0489 (15) | 0.0481 (16) | 0.0401 (15) | −0.0084 (11) | 0.0092 (11) | 0.0062 (12) |
C10 | 0.0431 (14) | 0.0425 (15) | 0.0386 (14) | −0.0045 (10) | 0.0129 (10) | −0.0032 (11) |
C11 | 0.0390 (13) | 0.0380 (14) | 0.0407 (14) | −0.0022 (10) | 0.0111 (10) | 0.0036 (10) |
C12 | 0.0368 (13) | 0.0403 (15) | 0.0491 (16) | −0.0039 (10) | 0.0134 (10) | −0.0030 (11) |
C13 | 0.069 (2) | 0.062 (2) | 0.0535 (18) | −0.0074 (14) | 0.0214 (14) | −0.0046 (15) |
C14 | 0.106 (3) | 0.107 (3) | 0.069 (2) | −0.019 (2) | 0.045 (2) | −0.031 (2) |
C15 | 0.102 (3) | 0.072 (3) | 0.119 (4) | −0.010 (2) | 0.057 (3) | −0.039 (3) |
C16 | 0.076 (2) | 0.048 (2) | 0.112 (3) | −0.0015 (15) | 0.037 (2) | −0.0165 (19) |
C17 | 0.0583 (17) | 0.0401 (16) | 0.0689 (19) | −0.0004 (12) | 0.0213 (14) | −0.0032 (13) |
C18 | 0.0442 (14) | 0.0458 (15) | 0.0470 (15) | −0.0026 (11) | 0.0157 (11) | 0.0021 (12) |
C19 | 0.0473 (16) | 0.0517 (18) | 0.0664 (19) | −0.0085 (12) | 0.0251 (13) | −0.0024 (14) |
C20 | 0.0384 (15) | 0.083 (2) | 0.0628 (19) | −0.0059 (14) | 0.0147 (12) | −0.0023 (16) |
C21 | 0.051 (2) | 0.142 (4) | 0.080 (3) | −0.024 (2) | 0.0129 (18) | −0.023 (2) |
C22 | 0.056 (3) | 0.257 (8) | 0.080 (3) | −0.021 (4) | −0.001 (2) | −0.013 (4) |
C23 | 0.058 (3) | 0.261 (8) | 0.082 (3) | 0.034 (4) | 0.008 (2) | 0.040 (5) |
C24 | 0.062 (2) | 0.155 (4) | 0.105 (3) | 0.040 (3) | 0.032 (2) | 0.049 (3) |
C25 | 0.0368 (16) | 0.102 (3) | 0.074 (2) | 0.0153 (16) | 0.0186 (14) | 0.0207 (19) |
C26A | 0.093 (4) | 0.058 (4) | 0.178 (6) | 0.011 (3) | 0.073 (4) | 0.026 (4) |
C27A | 0.167 (7) | 0.062 (4) | 0.275 (10) | 0.049 (4) | 0.120 (7) | 0.022 (5) |
C26B | 0.067 (16) | 0.15 (3) | 0.15 (3) | 0.022 (17) | 0.053 (17) | −0.02 (2) |
C27B | 0.11 (2) | 0.08 (2) | 0.20 (4) | 0.005 (19) | 0.03 (2) | 0.01 (2) |
S1—O2 | 1.4250 (18) | C11—C18 | 1.555 (3) |
S1—O3 | 1.4175 (19) | C12—C13 | 1.377 (4) |
S1—N1 | 1.634 (2) | C12—C17 | 1.387 (4) |
S1—C10 | 1.764 (2) | C13—H13 | 0.9300 |
S2—O5 | 1.424 (2) | C13—C14 | 1.392 (5) |
S2—O6 | 1.423 (2) | C14—H14 | 0.9300 |
S2—N2 | 1.636 (3) | C14—C15 | 1.365 (6) |
S2—C18 | 1.773 (3) | C15—H15 | 0.9300 |
O1—C9 | 1.215 (3) | C15—C16 | 1.351 (6) |
O4—C19 | 1.214 (3) | C16—H16 | 0.9300 |
N1—C1 | 1.423 (3) | C16—C17 | 1.379 (4) |
N1—C7 | 1.470 (3) | C17—H17 | 0.9300 |
N2—C25 | 1.407 (4) | C18—H18 | 0.9800 |
N2—C26A | 1.472 (2) | C18—C19 | 1.531 (4) |
N2—C26B | 1.471 (2) | C19—C20 | 1.446 (4) |
C1—C2 | 1.388 (4) | C20—C21 | 1.401 (4) |
C1—C6 | 1.401 (4) | C20—C25 | 1.398 (5) |
C2—H2 | 0.9300 | C21—H21 | 0.9300 |
C2—C3 | 1.379 (5) | C21—C22 | 1.361 (7) |
C3—H3 | 0.9300 | C22—H22 | 0.9300 |
C3—C4 | 1.361 (6) | C22—C23 | 1.360 (8) |
C4—H4 | 0.9300 | C23—H23 | 0.9300 |
C4—C5 | 1.371 (5) | C23—C24 | 1.384 (8) |
C5—H5 | 0.9300 | C24—H24 | 0.9300 |
C5—C6 | 1.396 (4) | C24—C25 | 1.401 (5) |
C6—C9 | 1.463 (4) | C26A—H26A | 0.9700 |
C7—H7A | 0.9700 | C26A—H26B | 0.9700 |
C7—H7B | 0.9700 | C26A—C27A | 1.538 (2) |
C7—C8 | 1.503 (4) | C27A—H27A | 0.9600 |
C8—H8A | 0.9600 | C27A—H27B | 0.9600 |
C8—H8B | 0.9600 | C27A—H27C | 0.9600 |
C8—H8C | 0.9600 | C26B—H26C | 0.9700 |
C9—C10 | 1.530 (3) | C26B—H26D | 0.9700 |
C10—H10 | 0.9800 | C26B—C27B | 1.540 (2) |
C10—C11 | 1.548 (3) | C27B—H27D | 0.9600 |
C11—H11 | 0.9800 | C27B—H27E | 0.9600 |
C11—C12 | 1.517 (3) | C27B—H27F | 0.9600 |
O2—S1—N1 | 111.18 (12) | C17—C12—C11 | 121.9 (2) |
O2—S1—C10 | 106.09 (11) | C12—C13—H13 | 120.2 |
O3—S1—O2 | 118.32 (13) | C12—C13—C14 | 119.6 (3) |
O3—S1—N1 | 107.48 (13) | C14—C13—H13 | 120.2 |
O3—S1—C10 | 111.02 (12) | C13—C14—H14 | 119.6 |
N1—S1—C10 | 101.48 (12) | C15—C14—C13 | 120.9 (4) |
O5—S2—N2 | 110.81 (15) | C15—C14—H14 | 119.6 |
O5—S2—C18 | 105.76 (14) | C14—C15—H15 | 120.1 |
O6—S2—O5 | 118.91 (15) | C16—C15—C14 | 119.7 (4) |
O6—S2—N2 | 107.12 (17) | C16—C15—H15 | 120.1 |
O6—S2—C18 | 112.50 (13) | C15—C16—H16 | 119.7 |
N2—S2—C18 | 100.17 (13) | C15—C16—C17 | 120.6 (3) |
C1—N1—S1 | 117.23 (18) | C17—C16—H16 | 119.7 |
C1—N1—C7 | 121.2 (2) | C12—C17—H17 | 119.7 |
C7—N1—S1 | 116.9 (2) | C16—C17—C12 | 120.6 (3) |
C25—N2—S2 | 117.4 (2) | C16—C17—H17 | 119.7 |
C25—N2—C26A | 119.7 (4) | S2—C18—H18 | 109.3 |
C25—N2—C26B | 129.7 (11) | C11—C18—S2 | 112.95 (17) |
C26A—N2—S2 | 122.6 (4) | C11—C18—H18 | 109.3 |
C26B—N2—S2 | 101.0 (12) | C19—C18—S2 | 103.61 (17) |
C2—C1—N1 | 120.3 (3) | C19—C18—C11 | 112.3 (2) |
C2—C1—C6 | 119.3 (3) | C19—C18—H18 | 109.3 |
C6—C1—N1 | 120.4 (2) | O4—C19—C18 | 118.8 (3) |
C1—C2—H2 | 120.2 | O4—C19—C20 | 123.8 (3) |
C3—C2—C1 | 119.6 (3) | C20—C19—C18 | 117.3 (2) |
C3—C2—H2 | 120.2 | C21—C20—C19 | 117.2 (3) |
C2—C3—H3 | 119.2 | C25—C20—C19 | 123.3 (3) |
C4—C3—C2 | 121.6 (4) | C25—C20—C21 | 119.5 (3) |
C4—C3—H3 | 119.2 | C20—C21—H21 | 119.7 |
C3—C4—H4 | 120.3 | C22—C21—C20 | 120.7 (5) |
C3—C4—C5 | 119.5 (3) | C22—C21—H21 | 119.7 |
C5—C4—H4 | 120.3 | C21—C22—H22 | 120.0 |
C4—C5—H5 | 119.6 | C23—C22—C21 | 119.9 (5) |
C4—C5—C6 | 120.8 (3) | C23—C22—H22 | 120.0 |
C6—C5—H5 | 119.6 | C22—C23—H23 | 119.2 |
C1—C6—C9 | 124.0 (2) | C22—C23—C24 | 121.7 (5) |
C5—C6—C1 | 119.1 (3) | C24—C23—H23 | 119.2 |
C5—C6—C9 | 116.9 (3) | C23—C24—H24 | 120.4 |
N1—C7—H7A | 108.8 | C23—C24—C25 | 119.3 (5) |
N1—C7—H7B | 108.8 | C25—C24—H24 | 120.4 |
N1—C7—C8 | 113.9 (3) | C20—C25—N2 | 121.4 (3) |
H7A—C7—H7B | 107.7 | C20—C25—C24 | 118.9 (4) |
C8—C7—H7A | 108.8 | C24—C25—N2 | 119.8 (4) |
C8—C7—H7B | 108.8 | N2—C26A—H26A | 109.6 |
C7—C8—H8A | 109.5 | N2—C26A—H26B | 109.6 |
C7—C8—H8B | 109.5 | N2—C26A—C27A | 110.3 (4) |
C7—C8—H8C | 109.5 | H26A—C26A—H26B | 108.1 |
H8A—C8—H8B | 109.5 | C27A—C26A—H26A | 109.6 |
H8A—C8—H8C | 109.5 | C27A—C26A—H26B | 109.6 |
H8B—C8—H8C | 109.5 | C26A—C27A—H27A | 109.5 |
O1—C9—C6 | 123.7 (2) | C26A—C27A—H27B | 109.5 |
O1—C9—C10 | 116.9 (2) | C26A—C27A—H27C | 109.5 |
C6—C9—C10 | 119.5 (2) | H27A—C27A—H27B | 109.5 |
S1—C10—H10 | 106.0 | H27A—C27A—H27C | 109.5 |
C9—C10—S1 | 109.84 (16) | H27B—C27A—H27C | 109.5 |
C9—C10—H10 | 106.0 | N2—C26B—H26C | 112.2 |
C9—C10—C11 | 115.2 (2) | N2—C26B—H26D | 112.2 |
C11—C10—S1 | 112.91 (16) | N2—C26B—C27B | 97.7 (16) |
C11—C10—H10 | 106.0 | H26C—C26B—H26D | 109.8 |
C10—C11—H11 | 106.5 | C27B—C26B—H26C | 112.2 |
C10—C11—C18 | 110.02 (19) | C27B—C26B—H26D | 112.2 |
C12—C11—C10 | 114.7 (2) | C26B—C27B—H27D | 109.5 |
C12—C11—H11 | 106.5 | C26B—C27B—H27E | 109.5 |
C12—C11—C18 | 112.09 (19) | C26B—C27B—H27F | 109.5 |
C18—C11—H11 | 106.5 | H27D—C27B—H27E | 109.5 |
C13—C12—C11 | 119.4 (2) | H27D—C27B—H27F | 109.5 |
C13—C12—C17 | 118.7 (3) | H27E—C27B—H27F | 109.5 |
S1—N1—C1—C2 | 151.3 (2) | C5—C6—C9—C10 | 179.5 (3) |
S1—N1—C1—C6 | −29.5 (3) | C6—C1—C2—C3 | 0.5 (5) |
S1—N1—C7—C8 | −73.9 (3) | C6—C9—C10—S1 | 29.5 (3) |
S1—C10—C11—C12 | −81.3 (2) | C6—C9—C10—C11 | −99.3 (3) |
S1—C10—C11—C18 | 151.25 (17) | C7—N1—C1—C2 | −3.8 (4) |
S2—N2—C25—C20 | 19.5 (4) | C7—N1—C1—C6 | 175.4 (3) |
S2—N2—C25—C24 | −160.7 (3) | C9—C10—C11—C12 | 46.0 (3) |
S2—N2—C26A—C27A | 85.8 (6) | C9—C10—C11—C18 | −81.4 (3) |
S2—N2—C26B—C27B | −122.2 (18) | C10—S1—N1—C1 | 54.8 (2) |
S2—C18—C19—O4 | 131.0 (3) | C10—S1—N1—C7 | −149.0 (2) |
S2—C18—C19—C20 | −50.2 (3) | C10—C11—C12—C13 | 112.5 (3) |
O1—C9—C10—S1 | −152.2 (2) | C10—C11—C12—C17 | −68.2 (3) |
O1—C9—C10—C11 | 79.0 (3) | C10—C11—C18—S2 | −73.1 (2) |
O2—S1—N1—C1 | −57.6 (2) | C10—C11—C18—C19 | 170.1 (2) |
O2—S1—N1—C7 | 98.5 (2) | C11—C12—C13—C14 | −179.8 (3) |
O2—S1—C10—C9 | 63.6 (2) | C11—C12—C17—C16 | 179.4 (3) |
O2—S1—C10—C11 | −166.28 (17) | C11—C18—C19—O4 | −106.9 (3) |
O3—S1—N1—C1 | 171.43 (19) | C11—C18—C19—C20 | 72.0 (3) |
O3—S1—N1—C7 | −32.4 (2) | C12—C11—C18—S2 | 157.98 (17) |
O3—S1—C10—C9 | −166.63 (17) | C12—C11—C18—C19 | 41.3 (3) |
O3—S1—C10—C11 | −36.5 (2) | C12—C13—C14—C15 | −0.1 (5) |
O4—C19—C20—C21 | 16.1 (4) | C13—C12—C17—C16 | −1.2 (4) |
O4—C19—C20—C25 | −165.5 (3) | C13—C14—C15—C16 | −0.1 (6) |
O5—S2—N2—C25 | 59.5 (3) | C14—C15—C16—C17 | −0.3 (6) |
O5—S2—N2—C26A | −125.8 (3) | C15—C16—C17—C12 | 1.0 (5) |
O5—S2—N2—C26B | −87.0 (10) | C17—C12—C13—C14 | 0.8 (4) |
O5—S2—C18—C11 | −173.21 (18) | C18—S2—N2—C25 | −51.8 (2) |
O5—S2—C18—C19 | −51.5 (2) | C18—S2—N2—C26A | 122.9 (3) |
O6—S2—N2—C25 | −169.3 (2) | C18—S2—N2—C26B | 161.7 (10) |
O6—S2—N2—C26A | 5.4 (3) | C18—C11—C12—C13 | −121.1 (2) |
O6—S2—N2—C26B | 44.2 (10) | C18—C11—C12—C17 | 58.2 (3) |
O6—S2—C18—C11 | 55.4 (2) | C18—C19—C20—C21 | −162.7 (3) |
O6—S2—C18—C19 | 177.18 (19) | C18—C19—C20—C25 | 15.8 (4) |
N1—S1—C10—C9 | −52.65 (19) | C19—C20—C21—C22 | 176.3 (4) |
N1—S1—C10—C11 | 77.47 (19) | C19—C20—C25—N2 | 4.1 (5) |
N1—C1—C2—C3 | 179.7 (3) | C19—C20—C25—C24 | −175.7 (3) |
N1—C1—C6—C5 | 178.1 (3) | C20—C21—C22—C23 | 0.0 (7) |
N1—C1—C6—C9 | −3.6 (4) | C21—C20—C25—N2 | −177.5 (3) |
N2—S2—C18—C11 | −58.0 (2) | C21—C20—C25—C24 | 2.8 (5) |
N2—S2—C18—C19 | 63.7 (2) | C21—C22—C23—C24 | 1.7 (9) |
C1—N1—C7—C8 | 81.3 (4) | C22—C23—C24—C25 | −1.1 (8) |
C1—C2—C3—C4 | 1.9 (7) | C23—C24—C25—N2 | 179.1 (4) |
C1—C6—C9—O1 | −176.9 (3) | C23—C24—C25—C20 | −1.2 (5) |
C1—C6—C9—C10 | 1.3 (4) | C25—N2—C26A—C27A | −99.6 (6) |
C2—C1—C6—C5 | −2.7 (4) | C25—N2—C26B—C27B | 97.3 (19) |
C2—C1—C6—C9 | 175.6 (3) | C25—C20—C21—C22 | −2.2 (5) |
C2—C3—C4—C5 | −2.0 (7) | C26A—N2—C25—C20 | −155.3 (3) |
C3—C4—C5—C6 | −0.3 (7) | C26A—N2—C25—C24 | 24.4 (5) |
C4—C5—C6—C1 | 2.6 (5) | C26B—N2—C25—C20 | 154.8 (14) |
C4—C5—C6—C9 | −175.7 (3) | C26B—N2—C25—C24 | −25.5 (14) |
C5—C6—C9—O1 | 1.4 (4) |
Tautomer/stereoisomer | Vacuum | Vacuum | PCM model (DMSO) | PCM model (DMSO) | PCM model (chloroform) | PCM model (chloroform) |
E (a.u.) | ΔE (kcal mol-1) | E (a.u.) | ΔE (kcal mol-1) | E (a.u.) | ΔE (kcal mol-1) | |
7A | -2401.63899485 | 5.66 | -2401.64776724 | 14.67 | -2401.63711368 | 16.82 |
7B | -2401.63434226 | 8.58 | -2401.66078047 | 6.52 | -2401.65239610 | 7.23 |
7C(R, R, R) | -2401.64290114 | 3.21 | -2401.67117100 | 0 | -2401.66391151 | 0 |
7C(S, R, S) | -2401.64801755 | 0 | -2401.67117115 | 0 | -2401.66391177 | 0 |
7C(R, R, S) | -2401.64801765 | 0 | -2401.67117189 | 0 | -2401.66391159 | 0 |
References
Ahmad, S., Zaib, S., Jalil, S., Shafiq, M., Ahmad, M., Sultan, S., Iqbal, M., Aslam, S. & Iqbal, J. (2018). Bioorg. Chem. 80, 498–510. Web of Science CrossRef CAS PubMed Google Scholar
Ahmad Saddique, F., Ahmad, M., Kanwal, A., Aslam, S. & Fawad Zahoor, A. (2021). Synth. Commun. 51, 351–378. Web of Science CrossRef CAS Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Chattopadhyay, S. K. (2018). Synth. Commun. 48, 3033–3078. Web of Science CrossRef CAS Google Scholar
D'Amico, D. C., Aya, T., Human, J., Fotsch, C., Chen, J. J., Biswas, K., Riahi, B., Norman, M. H., Willoughby, C. A., Hungate, R., Reider, P. J., Biddlecome, G., Lester-Zeiner, D., Van Staden, C., Johnson, E., Kamassah, A., Arik, L., Wang, J., Viswanadhan, V. N., Groneberg, R. D., Zhan, J., Suzuki, H., Toro, A., Mareska, D. A., Clarke, D. E., Harvey, D. M., Burgess, L. E., Laird, E. R., Askew, B. & Ng, G. (2007). J. Med. Chem. 50, 607–610. PubMed CAS Google Scholar
Dobrydnev, A. V. & Marco-Contelles, J. (2021). Eur. J. Org. Chem. pp. 1229–1248. Web of Science CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2010). GAUSSIAN09. Rev. B. 01 Gaussian Inc., Wallingford, CT, USA. Google Scholar
Grombein, C. M., Hu, Q., Rau, S., Zimmer, C. & Hartmann, R. W. (2015). Eur. J. Med. Chem. 90, 788–796. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kendall, R. A., Dunning, T. H. & Harrison, R. J. (1992). J. Chem. Phys. 96, 6796–6806. CrossRef CAS Web of Science Google Scholar
Khan, I. U., Shafiq, M. & Arshad, M. N. (2010). Acta Cryst. E66, o2839. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kolodyazhna, T. I., Lega, D. A., Suikov, S. Y., Kyrylchuk, A. A., Vovk, M. V., Chernykh, V. P. & Shemchuk, L. A. (2021). ChemistrySelect 6, 14005-14012. Web of Science CrossRef CAS Google Scholar
Lega, D. A., Chernykh, V. P., Zaprutko, L., Gzella, A. K. & Shemchuk, L. A. (2017). Chem. Heterocycl. Compd, 53, 219–229. Web of Science CSD CrossRef CAS Google Scholar
Lega, D. A., Filimonova, N. I., Zupanets, I. A., Shebeko, S. K., Chernykh, V. P. & Shemchuk, L. A. (2016a). J. Org. Pharm. Chem. 14, 3–11. CrossRef CAS Google Scholar
Lega, D. A., Filimonova, N. I., Zupanets, I. A., Shebeko, S. K., Chernykh, V. P. & Shemchuk, L. A. (2016b). VÌsn. Farm. pp. 61–69. Google Scholar
Lega, D. A., Gorobets, N. Y., Chernykh, V. P., Shishkina, S. V. & Shemchuk, L. A. (2016c). RSC Adv. 6, 16087–16099. Web of Science CSD CrossRef CAS Google Scholar
Lei, K., Hua, X.-W., Tao, Y.-Y., Liu, Y., Liu, N., Ma, Y., Li, Y.-H., Xu, X.-H. & Kong, C.-H. (2016). Bioorg. Med. Chem. 24, 92–103. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lei, K., Liu, Y., Wang, S., Sun, B., Hua, X. & Xu, X. (2019). Chem. Res. Chin. Univ. 35, 609–615. Web of Science CSD CrossRef CAS Google Scholar
MacGregor, W. S. (1967). Ann. NY Acad. Sci. 141, 3–12. CrossRef CAS PubMed Web of Science Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mennucci, B. (2012). WIREs Comput. Mol. Sci. 2, 386–404. Web of Science CrossRef CAS Google Scholar
Pieroni, M., Sabatini, S., Massari, S., Kaatz, G. W., Cecchetti, V. & Tabarrini, O. (2012). Med. Chem. Commun. 3, 1092–1097. Web of Science CrossRef CAS Google Scholar
Popov, K., Volovnenko, T., Turov, A. & Volovenko, Y. (2010). J. Heterocycl. Chem. 47, 85–90. CAS Google Scholar
Popov, K., Volovnenko, T. & Volovenko, J. (2009). Beilstein J. Org. Chem. 5, 42. Web of Science CrossRef PubMed Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391. CrossRef CAS Web of Science Google Scholar
Shafiq, M., Khan, I. U., Arshad, M. N. & Mustafa, G. (2010). Acta Cryst. E66, o3109. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shafiq, M., Khan, I. U., Tahir, M. N. & Siddiqui, W. A. (2008a). Acta Cryst. E64, o558. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shafiq, M., Khan, L. U., Arshad, M. N. & Siddiqui, W. A. (2011). Asian J. Chem. 23, 2101–2105. CAS Google Scholar
Shafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Arshad, M. N. (2009a). Acta Cryst. E65, o430. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Siddiqui, W. A. (2008b). Acta Cryst. E64, o1270. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Asghar, M. N. (2009b). Acta Cryst. E65, o1182. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Haider, Z. (2009c). Acta Cryst. E65, o1413. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Safdar, M. (2009d). Acta Cryst. E65, o393. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shishkina, S. V., Petrushova, L. A., Burian, K. O., Fedosov, A. I. & Ukrainets, I. V. (2020a). Acta Cryst. E76, 1657–1660. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shishkina, S. V., Ukrainets, I. V. & Petrushova, L. A. (2013). Acta Cryst. E69, o1698. CSD CrossRef IUCr Journals Google Scholar
Shishkina, S. V., Ukrainets, I. V. & Petrushova, L. A. (2017). Z. Krist. Cryst. Mater. 232, 307–316. Web of Science CSD CrossRef CAS Google Scholar
Shishkina, S. V., Ukrainets, I. V., Vashchenko, O. V., Voloshchuk, N. I., Bondarenko, P. S., Petrushova, L. A. & Sim, G. (2020b). Acta Cryst. C76, 69–74. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557. Web of Science CSD CrossRef IUCr Journals Google Scholar
Temperini, C., Cecchi, A., Scozzafava, A. & Supuran, C. T. (2009). J. Med. Chem. 52, 322–328. Web of Science CrossRef PubMed CAS Google Scholar
Tighadouini, S., Roby, O., Mortada, S., Lakbaibi, Z., Radi, S., Al-Ali, A., Faouzi, M. E. A., Ferbinteanu, M., Garcia, Y., Al-Zaqri, N., Zarrouk, A. & Warad, I. (2022). J. Mol. Struct. 1247, 131308. Web of Science CrossRef Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Ukrainets, I. V., Hamza, G. M., Burian, A. A., Voloshchuk, N. I., Malchenko, O. V., Shishkina, S. V., Danylova, I. A. & Sim, G. (2019). Sci. Pharm. 87, 10. Web of Science CSD CrossRef Google Scholar
Ukrainets, I. V., Petrushova, L. A. & Bereznyakova, N. L. (2015a). Pharm. Chem. J. 49, 519–522. Web of Science CSD CrossRef CAS Google Scholar
Ukrainets, I. V., Petrushova, L. A. & Dzyubenko, S. P. (2013). Khim. Get. Soedin., SSSR, 49, 1479–1483. Google Scholar
Ukrainets, I. V., Petrushova, L. A., Dzyubenko, S. P. & Sim, G. (2014a). Khim. Get. Soedin., SSSR, 50, 114–120. Google Scholar
Ukrainets, I. V., Petrushova, L. A., Dzyubenko, S. P. & Yangyang, L. (2014b). Khim. Get. Soedin., SSSR, 50, 564–568. Google Scholar
Ukrainets, I. V., Petrushova, L. A., Fedosov, A. I., Voloshchuk, N. I., Bondarenko, P. S., Shishkina, S. V., Sidorenko, L. V. & Sim, G. (2020a). Sci. Pharm. 88, 1. Web of Science CSD CrossRef Google Scholar
Ukrainets, I. V., Petrushova, L. A., Shishkina, S. V., Sidorenko, L. V., Alekseeva, T. V., Torianyk, I. I. & Davidenko, A. A. (2020b). Sci. Pharm. 88, 10. Web of Science CSD CrossRef Google Scholar
Ukrainets, I. V., Petrushova, L. A., Shishkina, S. V., Sidorenko, L. V., Sim, G. & Kryvanych, O. V. (2016a). Sci. Pharm. 84, 523–535. CSD CrossRef CAS PubMed Google Scholar
Ukrainets, I. V., Petrushova, L. A., Sim, G. & Bereznyakova, N. I. (2015b). Khim. Get. Soedin., SSSR, 51, 97–104. Google Scholar
Ukrainets, I. V., Petrushova, L. A., Sim, G. & Grinevich, L. A. (2017). Pharm. Chem. J. 51, 482–485. Web of Science CSD CrossRef CAS Google Scholar
Ukrainets, I. V., Shishkina, S. V., Baumer, V. N., Gorokhova, O. V., Petrushova, L. A. & Sim, G. (2016b). Acta Cryst. C72, 411–415. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vo, N. B. & Ngo, Q. A. (2022). J. Heterocycl. Chem. 59, 1813–1823. Web of Science CrossRef CAS Google Scholar
Ye, J.-H., Ling, K.-Q., Zhang, Y., Li, N. & Xu, J.-H. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2017–2024. Web of Science CSD CrossRef Google Scholar
Zanwar, M. R., Raihan, M. J., Gawande, S. D., Kavala, V., Janreddy, D., Kuo, C.-W., Ambre, R. & Yao, C.-F. (2012). J. Org. Chem. 77, 6495–6504. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147–158. CrossRef CAS Web of Science Google Scholar
Zefirov, Yu. V. (1997). Kristallografiya, 42, 936–958. CAS Google Scholar
Zhao, Y. & Truhlar, D. G. (2007). Theor. Chem. Acc. 120, 215-241. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.