research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-(Phenyl­methyl­ene)bis­­(1-ethyl-3,4-di­hydro-1H-2,1-benzo­thia­zine-2,2,4-trione): single-crystal X-ray diffraction study, quantum-chemical calculations and Hirshfeld surface analysis

crossmark logo

aDivision of Chemistry of Functional Materials, State Scientific Institution, "Institute for Single Crystals" of the National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv 61072, Ukraine, and bNational University of Pharmacy, 4 Valentynivska St., Kharkov 61168, Ukraine
*Correspondence e-mail: masha.o.shishkina@gmail.com

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 4 January 2023; accepted 14 March 2023; online 21 March 2023)

The title compound, C27H26N2O6S2, possesses potential anti­microbial, analgesic, and anti-inflammatory activity. This compound has three tautomeric forms, which relative energies were estimated with quantum-chemical calculations. All these tautomers (dienol form 7A, keto–enol form 7B, and diketo form 7C) were optimized by the M06–2X/cc-pVTZ method in a vacuum, using the PCM model with chloro­form and DMSO as solvent. The diketo form of the title compound proved to be the most energetically favourable as compared to the keto–enol or dienol forms. The diketo form can exist as three possible stereoisomers with the same configuration of one stereogenic center and different configurations of the stereogenic centers at two other atoms: (R, R, R), (S, R, S) and (R, R, S). The (R, R, S) stereoisomer was found in the crystal phase. It was revealed that the thia­zine rings of equivalent benzo­thia­zine fragments have different conformations, (a sofa or a half-chair). The two bicyclic fragments connected through the phenyl­methyl­ene group are oriented almost orthogonal to each other, subtending a dihedral angle of 82.16(7)°.

1. Chemical context

Nowadays a countless number of heterocyclic scaffolds are being used in nearly every branch of industry, providing necessary properties to the final product. 2,1-Benzo­thia­zine 2,2-dioxide belongs to an important class of heterocyclic cores. In particular, its structural features have led to its wide application in medicinal chemistry research, which is evidenced by the works related to the field as well as recent reviews (Vo & Ngo, 2022[Vo, N. B. & Ngo, Q. A. (2022). J. Heterocycl. Chem. 59, 1813-1823.]; Ukrainets et al., 2019[Ukrainets, I. V., Hamza, G. M., Burian, A. A., Voloshchuk, N. I., Malchenko, O. V., Shishkina, S. V., Danylova, I. A. & Sim, G. (2019). Sci. Pharm. 87, 10.]; Chattopadhyay, 2018[Chattopadhyay, S. K. (2018). Synth. Commun. 48, 3033-3078.]; Ahmad Saddique et al., 2021[Ahmad Saddique, F., Ahmad, M., Kanwal, A., Aslam, S. & Fawad Zahoor, A. (2021). Synth. Commun. 51, 351-378.]; Dobrydnev & Marco-Contelles, 2021[Dobrydnev, A. V. & Marco-Contelles, J. (2021). Eur. J. Org. Chem. pp. 1229-1248.]).

2,1-Benzo­thia­zin-4(3H)-one 2,2-dioxide (1) is one of the simple derivatives of the above-mentioned framework (Fig. 1[link]). It incorporates a β-keto sultam fragment that allows a mol­ecule to be a versatile synthetic inter­mediate used for the preparation of diverse mol­ecular platforms (Ahmad et al., 2018[Ahmad, S., Zaib, S., Jalil, S., Shafiq, M., Ahmad, M., Sultan, S., Iqbal, M., Aslam, S. & Iqbal, J. (2018). Bioorg. Chem. 80, 498-510.]; Grombein et al., 2015[Grombein, C. M., Hu, Q., Rau, S., Zimmer, C. & Hartmann, R. W. (2015). Eur. J. Med. Chem. 90, 788-796.]; D'Amico et al., 2007[D'Amico, D. C., Aya, T., Human, J., Fotsch, C., Chen, J. J., Biswas, K., Riahi, B., Norman, M. H., Willoughby, C. A., Hungate, R., Reider, P. J., Biddlecome, G., Lester-Zeiner, D., Van Staden, C., Johnson, E., Kamassah, A., Arik, L., Wang, J., Viswanadhan, V. N., Groneberg, R. D., Zhan, J., Suzuki, H., Toro, A., Mareska, D. A., Clarke, D. E., Harvey, D. M., Burgess, L. E., Laird, E. R., Askew, B. & Ng, G. (2007). J. Med. Chem. 50, 607-610.]; Pieroni et al., 2012[Pieroni, M., Sabatini, S., Massari, S., Kaatz, G. W., Cecchetti, V. & Tabarrini, O. (2012). Med. Chem. Commun. 3, 1092-1097.]; Popov et al., 2010[Popov, K., Volovnenko, T., Turov, A. & Volovenko, Y. (2010). J. Heterocycl. Chem. 47, 85-90.]; Popov et al., 2009[Popov, K., Volovnenko, T. & Volovenko, J. (2009). Beilstein J. Org. Chem. 5, 42.]). Moreover, such a fragment is probably responsible for non-trivial reactivity as we have established previously (Lega et al., 2016c[Lega, D. A., Gorobets, N. Y., Chernykh, V. P., Shishkina, S. V. & Shemchuk, L. A. (2016c). RSC Adv. 6, 16087-16099.]; Kolodyazhna et al., 2021[Kolodyazhna, T. I., Lega, D. A., Suikov, S. Y., Kyrylchuk, A. A., Vovk, M. V., Chernykh, V. P. & Shemchuk, L. A. (2021). ChemistrySelect 6, 14005-14012.]). One of such unexpected outcomes was the formation of stable ammonium enolates as a result of inter­action between 2,1-benzo­thia­zin-4(3H)-one 2,2-dioxides and aldehydes in the presence of secondary or tertiary amines (Lega et al., 2016c[Lega, D. A., Gorobets, N. Y., Chernykh, V. P., Shishkina, S. V. & Shemchuk, L. A. (2016c). RSC Adv. 6, 16087-16099.], 2017[Lega, D. A., Chernykh, V. P., Zaprutko, L., Gzella, A. K. & Shemchuk, L. A. (2017). Chem. Heterocycl. Compd, 53, 219-229.]). This fact is quite inter­esting as similar bis-derivatives have previously been isolated in an acid form and not as a salt (Zanwar et al., 2012[Zanwar, M. R., Raihan, M. J., Gawande, S. D., Kavala, V., Janreddy, D., Kuo, C.-W., Ambre, R. & Yao, C.-F. (2012). J. Org. Chem. 77, 6495-6504.]; Ye et al., 1999[Ye, J.-H., Ling, K.-Q., Zhang, Y., Li, N. & Xu, J.-H. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2017-2024.]). The possibility of such salt formation is most probably caused by the raised CH-acidic properties of the methyne group (as the result of the electron-withdrawing influence of the SO2 group), which leads to ease of enolization. Moreover, the intra­molecular O—H⋯O−. hydrogen bond increases the stability of such enolates.

[Figure 1]
Figure 1
The structures of 2,1-benzo­thia­zin-4(3H)-one 2,2-dioxides 1 and stable enolates 2 (`B′ is the rest of a secondary or tertiary amine).

Considering the uniqueness of salts 2 (Fig. 1[link]), we have investigated their anti­microbial, analgesic, and anti-inflammatory properties (Lega et al., 2016a[Lega, D. A., Filimonova, N. I., Zupanets, I. A., Shebeko, S. K., Chernykh, V. P. & Shemchuk, L. A. (2016a). J. Org. Pharm. Chem. 14, 3-11.],b[Lega, D. A., Filimonova, N. I., Zupanets, I. A., Shebeko, S. K., Chernykh, V. P. & Shemchuk, L. A. (2016b). VÌsn. Farm. pp. 61-69.]). Biological experiments have revealed that compounds 2 are promising platforms to search for a novel NSAID among them. For the reason of further modification of the compounds' structures, we decided to convert salts 2 into an acidic form with the prospect of a comparative study of their NSAID activity to that of the salts. The motive behind the modification method was the removal of the possible toxic amine fragment. Moreover, there was the assumption that the acidic environment of the stomach breaks down the salt and produces the acidic form of 2, which is the true bioactive part of the salt.

Reflux of 1-ethyl-2,1-benzo­thia­zin-4(3H)-one 2,2-dioxide (3) with benzaldehyde (4) and tri­ethyl­amine (5) (molar ratio 1:2:1) for 1 h in ethyl alcohol results in the tri­ethyl­ammonium salt 6 used in the study (Lega et al., 2016c[Lega, D. A., Gorobets, N. Y., Chernykh, V. P., Shishkina, S. V. & Shemchuk, L. A. (2016c). RSC Adv. 6, 16087-16099.]) (Fig. 2[link]). In order to achieve the planned acidic form, we exposed the salt to a solution of TsOH (1.5 equiv) in ethanol. Short heating of this mixture gave a fine crystalline substance, which was recrystallized from acetic acid and further analyzed. It is worth noting that the reaction can be accomplished by simple reflux of salt 6 in water for 15 h.

[Figure 2]
Figure 2
Preparation of tri­ethyl­ammonium salt 6, its hydrolysis and possible tautomeric inter­conversions of product 7 formed (chiral carbon atoms are starred).

To our great surprise, we recorded an unexpected 1H NMR spectrum (DMSO-d6, 200 MHz) with a complicated set of numerous signals (Fig. 3[link]). Such a spectroscopic picture could be the result of a tautomeric conversion cycle of compound 7 initiated by proton movement in the dihy­droxy tautomer 7A (Fig. 2[link]). The prototropic transformations are apparently facilitated by the slight basic properties of the solvent (MacGregor, 1967[MacGregor, W. S. (1967). Ann. NY Acad. Sci. 141, 3-12.]). From the proton spectrum, one can conclude that the mixture contains the monohy­droxy tautomer 7B (a singlet at 11.13 ppm) and diketo form 7C (triplet at 5.75 ppm). We would like to emphasize that tautomers 7B and 7C contain several asymmetric carbon atoms and can exist as various optical isomers. The situation becomes more complicated with the SO2 fragment that can be located in the crystals up or down the thia­zine ring, creating an additional pseudo-chiral center as was reported previously (Ukrainets et al., 2016b[Ukrainets, I. V., Shishkina, S. V., Baumer, V. N., Gorokhova, O. V., Petrushova, L. A. & Sim, G. (2016b). Acta Cryst. C72, 411-415.]). At the same time, the 1H NMR spectrum (400 MHz) of 7 recorded in CDCl3 solution indicates the presence of only one tautomer, 7C (Fig. 4[link]). With uncertainty about the absolute structure of the isolated product, we decided to perform X-ray experiments to unambiguously establish the structure of compound 7. Moreover, we also aimed to calculate the stability of the tautomers and stereoisomers. The latter has a big value as the binding energy of different isomeric forms to biomolecules depends greatly on the structure and the absolute configuration. Moreover, as was stated in previous works, understanding keto–enol tautomerism is significant in order to substanti­ate critical biological applications of the tautomeric mol­ecules and to comprehend their biochemical reactions (Tighadouini et al., 2022[Tighadouini, S., Roby, O., Mortada, S., Lakbaibi, Z., Radi, S., Al-Ali, A., Faouzi, M. E. A., Ferbinteanu, M., Garcia, Y., Al-Zaqri, N., Zarrouk, A. & Warad, I. (2022). J. Mol. Struct. 1247, 131308.]; Temperini et al., 2009[Temperini, C., Cecchi, A., Scozzafava, A. & Supuran, C. T. (2009). J. Med. Chem. 52, 322-328.]).

[Scheme 1]
[Figure 3]
Figure 3
1H NMR spectrum of 7 in DMSO-d6 (200 MHz).
[Figure 4]
Figure 4
1H NMR spectrum of 7 in CDCl3 (400 MHz)

2. Quantum-chemical study

To estimate the relative energies of tautomeric forms of the product 7, quantum-chemical calculations were performed. Dienol form 7A, keto–enol form 7B and diketo form 7C were optimized by the M06-2X/cc-pVTZ method (Zhao & Truhlar, 2007[Zhao, Y. & Truhlar, D. G. (2007). Theor. Chem. Acc. 120, 215-241.]; Kendall et al., 1992[Kendall, R. A., Dunning, T. H. & Harrison, R. J. (1992). J. Chem. Phys. 96, 6796-6806.]) using GAUSSIAN09 software (Frisch et al., 2010[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2010). GAUSSIAN09. Rev. B. 01 Gaussian Inc., Wallingford, CT, USA.]). The vacuum approximation and PCM model (Mennucci, 2012[Mennucci, B. (2012). WIREs Comput. Mol. Sci. 2, 386-404.]) with chloro­form or DMSO as a solvent for considering a polarizing environment were used. In addition, vibration frequencies were calculated for all of these optimized mol­ecules, indicating a minimum on the potential energy surface. The results of the optimization showed that the diketo form 7C has the lowest energy (Table 1[link]). Moreover, the diketo form can exist as three possible stereoisomers: 7C(R, R, R), 7C(S, R, S) and 7C(R, R, S). The results of the quantum-chemical calculations revealed that these stereoisomers have close energies, but the most energetically preferable stereoisomer is 7C(R, R, S). It should be noted that the use of the PCM model results in an increase of the energy difference between the dienol A and diketo C forms. In contrary to calculations in a vacuum approximation, the calculations considering a polarizing environment result in almost same energy for the stereoisomers.

Table 1
Relative energies (kcal mol−1) of tautomeric and stereoisomeric forms, calculated by the M06–2X/cc-pVTZ method

Tautomer/stereoisomer VacuumE (a.u.) VacuumΔE (kcal mol−1) PCM model (DMSO)E (a.u.) PCM model (DMSO)ΔE (kcal mol−1) PCM model (chloro­form)E (a.u.) PCM model (chloro­form)ΔE (kcal mol−1)
7A −2401.63899485 5.66 −2401.64776724 14.67 −2401.63711368 16.82
7B −2401.63434226 8.58 −2401.66078047 6.52 −2401.65239610 7.23
7C(R, R, R) −2401.64290114 3.21 −2401.67117100 0 −2401.66391151 0
7C(S, R, S) −2401.64801755 0 −2401.67117115 0 −2401.66391177 0
7C(R, R, S) −2401.64801765 0 −2401.67117189 0 −2401.66391159 0

3. Structural commentary

Compound 7 was found as the diketo form 7C(R, R, S) in the crystal phase (Fig. 5[link]). Mol­ecule 7 contains two benzo­thia­zine fragments, in which the thia­zine rings have different conformations. The S1⋯C10 ring adopts a sofa conformation [the puckering parameters (Zefirov et al., 1990[Zefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147-158.]) are S = 0.66, Θ = 57.78 (6)°, Ψ = 27.98 (7)°, and the S1 atom deviates from the mean plane of the other ring atoms by 0.802 (2) Å], and the S2⋯C18 ring adopts a half-chair conformation [the puckering parameters are S = 0.83, Θ = 35.42 (6)°, Ψ = 27.51 (7)°, the S2 and C18 atoms deviating by −0.559 (5) and 0.441 (5) Å, respectively]. The dihedral angle between the mean square planes of two bicyclic fragments is 82.16 (7)°.

[Figure 5]
Figure 5
Mol­ecular structure of the compound 7C(R,R,S). Only the major component of disorder is shown. Displacement ellipsoids are shown at the 50% probability level.

The ethyl substituent at the N2 atom is disordered over two positions (A and B) with the populations of A:B in a 0.823 (10):0.177 (10) ratio. The ethyl substituents at N1 and N2 are rotated almost orthogonally to the planes of the thia­zine rings [the C8—C7—N1—C1, C27A—C26A—N2—C25 and C27B—C26B—N2—C25 torsion angles are 81.3 (4), −99.6 (6) and 97.3 (2)°, respectively], which leads to steric repulsion between the alkyl groups and the aromatic ring [short contacts are H7A⋯C2 = 2.63 Å, H7A⋯H2 = 2.12 Å, H26A⋯C24 = 2.56 Å, H26A⋯H24 = 2.13 Å as compared to the corresponding van der Waals radii sums (Zefirov, 1997[Zefirov, Yu. V. (1997). Kristallografiya, 42, 936-958.]) C⋯H = 2.87 and H⋯H = 2.34 Å]. The two bicyclic fragments are connected through the bridging methyl­ene group, where one of the hydrogen atoms is replaced by a phenyl substituent. The phenyl substituent is in the position inter­mediate between -sc and -ac in relation to the S1—C10 bond [the C12—C11—C10—S1 torsion angle is −81.3 (2)°] or in the position inter­mediate between ac and ap in relation to the S2—C18 bond [the C12—C11—C18—S2 torsion angle is 158.0 (2)°]. The plane of the phenyl substituent is rotated relative to the C11—C10 and C11—C18 bonds [the C13—C12—C11—C10 and C13—C12—C11—C18 torsion angles are 112.5 (3) and −121.1 (2)°, respectively].

4. Supra­molecular features

Analysis of the shortest distances between atoms of neighboring mol­ecules of 7 does not reveal any strong inter­molecular inter­actions in the crystal phase. Only two very weak C­—H⋯O inter­actions are found: C13—H13⋯O6(x, [{1\over 2}] − y, [{1\over 2}] + z) where the H⋯O distance is 2.57 Å and the C—H⋯O bond angle is 165°, and C23—H23⋯O2(1 + x, [{1\over 2}] − y, [{1\over 2}] + z) where the H⋯O distance is 2.65 Å and the C—H⋯O bond angle is 123°. The van der Waals radii sum of H and O atoms is different in various sources: 2.72 Å in accordance to the Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) inter­pretation, 2.65 Å as determined by Rowland & Taylor (1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]), and 2.46 Å as calculated by Zefirov (1997[Zefirov, Yu. V. (1997). Kristallografiya, 42, 936-958.]). As can be seen, the inter­actions discussed above do not unambiguously indicate the existence of weak hydrogen bonds and thus a further study of the supra­molecular features is needed.

5. Hirshfeld surface analysis

To identify and visualize different types of inter­molecular inter­actions in the crystal structure, a Hirshfeld surface analysis (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]) as implemented in program CrystalExplorer17 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used. This method allows the crystal space to be split into mol­ecular domains and the detection of short distances between atoms of neighboring mol­ecules.

A standard (high) surface resolution with three-dimensional dnorm surfaces in the range −0.129 to 1.589 a.u. was used to construct the mol­ecular Hirshfeld surface of the title compound (Fig. 6[link]). Red spots on the dnorm surface were found only near to atoms H13 and O6 atoms participating in the C13—H⋯O6 hydrogen bond. No red spots on the Hirshfeld surface indicated the formation of an C23—H⋯O2 inter­action. Thus, only one C—H⋯O inter­molecular hydrogen bond can be discussed in the title structure. Mol­ecules bound by this hydrogen bond form a chain in the [001] direction.

[Figure 6]
Figure 6
A view of the Hirshfeld surface of a mol­ecule of 7C(R,R,S) mapped over dnorm in the range −0.129 to 1.589 a.u.

Taking into account the potential biological activity of the title compound, which presumes its inter­action with a receptor, an analysis of the relative contributions of inter­actions of different types seems to be useful. All of the inter­molecular inter­actions of the title compound are evident on the two-dimensional fingerprint plot presented in Fig. 7[link]a. The presence of X—H⋯O hydrogen bonds in the crystal structure could be indicated by high contribution of O⋯H/H⋯O (33.7%) contacts and the sharp spikes in Fig. 7[link]c. The contribution of C⋯H/H⋯C (16.3%) contacts, which are associated with X—H⋯π inter­actions, are much lower (Fig. 7[link]d), whereas the contribution of H⋯H contacts is the highest at 47.4% (Fig. 7[link]b).

[Figure 7]
Figure 7
Two-dimensional fingerprint plots for the compound 7 C(R,R,S) showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, and (d) C⋯H/H⋯C contacts.

6. Database survey

To analyze the possibility of the existence of the similar compounds in different tautomeric forms, a search of the Cambridge Structural Database (CSD Version 5.41, update of June 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the benzo­thia­zine fragment was performed. Of the 45 hits found, 19 reported the enol form of this fragment [refcodes: AKIJIP, AKIJIP01 (Ukrainets et al., 2016b[Ukrainets, I. V., Shishkina, S. V., Baumer, V. N., Gorokhova, O. V., Petrushova, L. A. & Sim, G. (2016b). Acta Cryst. C72, 411-415.]), CABBEP (Lei et al., 2016[Lei, K., Hua, X.-W., Tao, Y.-Y., Liu, Y., Liu, N., Ma, Y., Li, Y.-H., Xu, X.-H. & Kong, C.-H. (2016). Bioorg. Med. Chem. 24, 92-103.]), DUCBEL, DUCBEL01 (Shishkina et al., 2020b[Shishkina, S. V., Ukrainets, I. V., Vashchenko, O. V., Voloshchuk, N. I., Bondarenko, P. S., Petrushova, L. A. & Sim, G. (2020b). Acta Cryst. C76, 69-74.]), IJUJAA (Ukrainets et al., 2015b[Ukrainets, I. V., Petrushova, L. A., Sim, G. & Bereznyakova, N. I. (2015b). Khim. Get. Soedin., SSSR, 51, 97-104.]), LANNUM (Ukrainets et al., 2016a[Ukrainets, I. V., Petrushova, L. A., Shishkina, S. V., Sidorenko, L. V., Sim, G. & Kryvanych, O. V. (2016a). Sci. Pharm. 84, 523-535.]), LOGHEW (Ukrainets et al., 2014a[Ukrainets, I. V., Petrushova, L. A., Dzyubenko, S. P. & Sim, G. (2014a). Khim. Get. Soedin., SSSR, 50, 114-120.]), MINJAW (Shishkina et al., 2013[Shishkina, S. V., Ukrainets, I. V. & Petrushova, L. A. (2013). Acta Cryst. E69, o1698.]), NODGUK (Ukrainets et al., 2013[Ukrainets, I. V., Petrushova, L. A. & Dzyubenko, S. P. (2013). Khim. Get. Soedin., SSSR, 49, 1479-1483.]), NOXJOC (Lei et al., 2019[Lei, K., Liu, Y., Wang, S., Sun, B., Hua, X. & Xu, X. (2019). Chem. Res. Chin. Univ. 35, 609-615.]), RACQUL (Shishkina et al., 2020a[Shishkina, S. V., Petrushova, L. A., Burian, K. O., Fedosov, A. I. & Ukrainets, I. V. (2020a). Acta Cryst. E76, 1657-1660.]), TAJXUB, TAJXUB01, TAJXUB02 (Ukrainets et al., 2020a[Ukrainets, I. V., Petrushova, L. A., Fedosov, A. I., Voloshchuk, N. I., Bondarenko, P. S., Shishkina, S. V., Sidorenko, L. V. & Sim, G. (2020a). Sci. Pharm. 88, 1.]), UWUCIA (Ukrainets et al., 2015a[Ukrainets, I. V., Petrushova, L. A. & Bereznyakova, N. L. (2015a). Pharm. Chem. J. 49, 519-522.]), XEKPUB (Ukrainets et al., 2017[Ukrainets, I. V., Petrushova, L. A., Sim, G. & Grinevich, L. A. (2017). Pharm. Chem. J. 51, 482-485.]), ZUZJIQ, ZUZJOW (Ukrainets et al., 2020b[Ukrainets, I. V., Petrushova, L. A., Shishkina, S. V., Sidorenko, L. V., Alekseeva, T. V., Torianyk, I. I. & Davidenko, A. A. (2020b). Sci. Pharm. 88, 10.])], while the keto form was detected in 12 hits [refcodes: KANTIE (Shafiq et al., 2011[Shafiq, M., Khan, L. U., Arshad, M. N. & Siddiqui, W. A. (2011). Asian J. Chem. 23, 2101-2105.]), LIVPUC (Tahir et al., 2008[Tahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557.]), LIVQAJ (Shafiq et al., 2008a[Shafiq, M., Khan, I. U., Tahir, M. N. & Siddiqui, W. A. (2008a). Acta Cryst. E64, o558.]), MOTDOP (Shafiq et al., 2009b[Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Asghar, M. N. (2009b). Acta Cryst. E65, o1182.]), PONWEV (Shafiq et al., 2009d[Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Safdar, M. (2009d). Acta Cryst. E65, o393.]), SEJWAI (Shishkina et al., 2017[Shishkina, S. V., Ukrainets, I. V. & Petrushova, L. A. (2017). Z. Krist. Cryst. Mater. 232, 307-316.]), SOGDOI (Shafiq et al., 2008b[Shafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Siddiqui, W. A. (2008b). Acta Cryst. E64, o1270.]), SOLKOU (Shafiq et al., 2009a[Shafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Arshad, M. N. (2009a). Acta Cryst. E65, o430.]), UZAMOZ (Ukrainets et al., 2014b[Ukrainets, I. V., Petrushova, L. A., Dzyubenko, S. P. & Yangyang, L. (2014b). Khim. Get. Soedin., SSSR, 50, 564-568.]), VACKER (Khan et al., 2010[Khan, I. U., Shafiq, M. & Arshad, M. N. (2010). Acta Cryst. E66, o2839.]), WACRUP (Shafiq et al., 2010[Shafiq, M., Khan, I. U., Arshad, M. N. & Mustafa, G. (2010). Acta Cryst. E66, o3109.]), YOVBER (Shafiq et al., 2009c[Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Haider, Z. (2009c). Acta Cryst. E65, o1413.])]. Both of these two forms are presented in structure NAKZAD (Lega et al., 2016c[Lega, D. A., Gorobets, N. Y., Chernykh, V. P., Shishkina, S. V. & Shemchuk, L. A. (2016c). RSC Adv. 6, 16087-16099.]). As can be seen, the most of the related compounds exist in the crystal phase in the enol tautomeric form. However, the keto tautomeric form of similar compounds also has been found in the crystal phase. This suggests that the difference in the relative energies of the keto and enol tautomeric forms is small enough and tautomeric equilibrium can be distorted during the crystallization process because of the influence of solvation effects.

7. Synthesis and crystallization

Tri­ethyl­ammonium salt 6 (Lega et al., 2016c[Lega, D. A., Gorobets, N. Y., Chernykh, V. P., Shishkina, S. V. & Shemchuk, L. A. (2016c). RSC Adv. 6, 16087-16099.]) (0.639 g, 0.001 mol) was added to a solution of TsOH (0.258 g, 0.0015 mol) in EtOH (10 mL). The obtained mixture was heated at 343 K for 15 min and cooled to room temperature. The precipitate that formed was collected by filtration, washed with EtOH and dried in air, affording 0.53 g (98% yield) of the target product.

The 1H NMR spectrum was recorded on a Varian MR-400 spectrometer, with frequency 400 MHz in CDCl3 solution, m.p. 464–466 K. 1H NMR (400MHz, CDCl3), δ, ppm: 7.80 (2H, dd, J = 7.9, 1.7 Hz), 7.51 (2H, t, J = 6.9 Hz), 7.05 (2H, t, J = 7.6 Hz), 6.98 (1H, t, J = 7.3 Hz), 6.92 (2H, d, J = 8.4 Hz), 6.87 (2H, t, J = 7.7 Hz), 6.77 (2H, d, J = 7.2 Hz), 5.29 (2H, d, J = 7.0 Hz), 4.08 (1H, t, J = 7.0 Hz), 3.88 (2H, dq, J = 14.3, 7.1 Hz), 3.59 (2H, dq, J = 14.5, 7.1 Hz), 1.39 (6H, t, J = 7.1 Hz).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were located in difference-Fourier maps. They were included in calculated positions and treated as riding with C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl groups and with Car—H = 0.93 Å, Csp3—H = 0.97 Å, Uiso(H) = 1.2Ueq(C) for methyl­ene hydrogen atoms and Csp3—H = 0.98 Å, Uiso(H) = 1.2Ueq (C) for hydrogen atoms on the tertiary carbons. Restrictions on the bond lengths were applied for the disordered fragment (N—Csp3 = 1.47 Å, Csp3sp3 = 1.54 Å).

Table 2
Experimental details

Crystal data
Chemical formula C27H26N2O6S2
Mr 538.62
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 11.7125 (4), 18.4040 (6), 12.8601 (5)
β (°) 108.613 (3)
V3) 2627.09 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.2 × 0.15 × 0.1
 
Data collection
Diffractometer Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.774, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18007, 4617, 3493
Rint 0.072
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.163, 1.04
No. of reflections 4617
No. of parameters 356
No. of restraints 4
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.35
Computer programs: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), OLEX2 1.5 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); cell refinement: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); data reduction: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

3,3'-(Phenylmethylene)bis(1-ethyl-3,4-dihydro-1H-2,1-benzothiazine-2,2,4-trione) top
Crystal data top
C27H26N2O6S2F(000) = 1128
Mr = 538.62Dx = 1.362 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.7125 (4) ÅCell parameters from 3809 reflections
b = 18.4040 (6) Åθ = 3.6–24.8°
c = 12.8601 (5) ŵ = 0.25 mm1
β = 108.613 (3)°T = 293 K
V = 2627.09 (17) Å3Block, yellow
Z = 40.2 × 0.15 × 0.1 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
3493 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.072
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 1313
Tmin = 0.774, Tmax = 1.000k = 1921
18007 measured reflectionsl = 1415
4617 independent reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0785P)2 + 0.6422P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4617 reflectionsΔρmax = 0.21 e Å3
356 parametersΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.47793 (6)0.25767 (4)0.19434 (5)0.0472 (2)
S20.83342 (7)0.29750 (5)0.12866 (7)0.0665 (3)
O10.48791 (18)0.40259 (12)0.01080 (16)0.0681 (6)
O20.39569 (17)0.21964 (11)0.10504 (16)0.0610 (5)
O30.56091 (17)0.21663 (11)0.27821 (17)0.0641 (6)
O40.8703 (2)0.48332 (12)0.2195 (2)0.0827 (7)
O50.9255 (2)0.32588 (15)0.0899 (2)0.0863 (7)
O60.7502 (2)0.24653 (13)0.0625 (2)0.0907 (8)
N10.40691 (19)0.31205 (12)0.25327 (17)0.0504 (6)
N20.8914 (2)0.26077 (14)0.2500 (3)0.0744 (8)
C10.3308 (2)0.36578 (15)0.1862 (2)0.0524 (7)
C20.2310 (3)0.39112 (19)0.2112 (3)0.0779 (10)
H20.2131770.3729120.2716790.093*
C30.1584 (4)0.4434 (2)0.1457 (4)0.1034 (15)
H30.0930150.4612270.1641500.124*
C40.1800 (3)0.4697 (2)0.0549 (4)0.1069 (15)
H40.1284960.5039130.0105870.128*
C50.2783 (3)0.44536 (19)0.0291 (3)0.0793 (10)
H50.2930030.4630590.0331950.095*
C60.3566 (2)0.39430 (15)0.0952 (2)0.0521 (7)
C70.3866 (3)0.28547 (19)0.3537 (2)0.0660 (8)
H7A0.3644830.3262570.3910830.079*
H7B0.4614180.2656070.4020410.079*
C80.2902 (3)0.2284 (2)0.3336 (3)0.0770 (10)
H8A0.2167820.2465420.2826560.115*
H8B0.2771530.2163850.4016070.115*
H8C0.3151780.1856590.3038060.115*
C90.4636 (2)0.37545 (14)0.0657 (2)0.0469 (6)
C100.5535 (2)0.32026 (13)0.13538 (19)0.0414 (6)
H100.5826040.2922780.0840640.050*
C110.6668 (2)0.35335 (13)0.22011 (19)0.0396 (6)
H110.7032540.3145630.2723880.048*
C120.6416 (2)0.41570 (13)0.2868 (2)0.0421 (6)
C130.6622 (3)0.40655 (17)0.3976 (2)0.0611 (8)
H130.6915050.3625510.4310970.073*
C140.6389 (4)0.4636 (3)0.4590 (3)0.0899 (12)
H140.6526570.4573620.5337790.108*
C150.5962 (4)0.5285 (2)0.4109 (4)0.0927 (12)
H150.5807820.5662060.4527480.111*
C160.5763 (3)0.53777 (18)0.3024 (4)0.0770 (10)
H160.5467520.5819300.2695900.092*
C170.5994 (2)0.48233 (14)0.2397 (3)0.0556 (7)
H170.5864990.4896870.1653100.067*
C180.7610 (2)0.37414 (14)0.1630 (2)0.0454 (6)
H180.7211110.4019860.0963480.054*
C190.8652 (2)0.41888 (16)0.2378 (2)0.0535 (7)
C200.9511 (2)0.38141 (19)0.3282 (2)0.0616 (8)
C211.0253 (3)0.4243 (3)0.4130 (3)0.0931 (13)
H211.0209070.4746410.4073150.112*
C221.1036 (4)0.3929 (5)0.5037 (4)0.136 (2)
H221.1525680.4218300.5596000.164*
C231.1103 (4)0.3193 (5)0.5125 (5)0.137 (3)
H231.1626660.2985170.5757440.165*
C241.0412 (4)0.2746 (3)0.4298 (4)0.1058 (15)
H241.0480720.2243170.4369210.127*
C250.9608 (3)0.3057 (2)0.3353 (3)0.0706 (9)
C26A0.8651 (6)0.18562 (17)0.2743 (7)0.103 (2)0.823 (10)
H26A0.7824210.1736850.2326840.123*0.823 (10)
H26B0.8742950.1811140.3516860.123*0.823 (10)
C27A0.9510 (7)0.1325 (3)0.2443 (7)0.156 (4)0.823 (10)
H27A0.9489180.1411050.1700670.235*0.823 (10)
H27B0.9262590.0834900.2511110.235*0.823 (10)
H27C1.0315060.1397470.2929430.235*0.823 (10)
C26B0.915 (2)0.1865 (6)0.220 (2)0.120 (13)0.177 (10)
H26C1.0002080.1740410.2491650.144*0.177 (10)
H26D0.8864870.1786650.1415470.144*0.177 (10)
C27B0.839 (3)0.1457 (17)0.279 (3)0.135 (14)0.177 (10)
H27D0.7647200.1306140.2267970.202*0.177 (10)
H27E0.8230320.1773210.3324000.202*0.177 (10)
H27F0.8827870.1038440.3159590.202*0.177 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0481 (4)0.0414 (4)0.0504 (4)0.0078 (3)0.0132 (3)0.0042 (3)
S20.0617 (5)0.0658 (6)0.0791 (6)0.0014 (4)0.0325 (4)0.0177 (4)
O10.0694 (13)0.0820 (16)0.0528 (12)0.0002 (11)0.0194 (10)0.0216 (11)
O20.0593 (12)0.0558 (12)0.0643 (13)0.0228 (9)0.0146 (9)0.0109 (10)
O30.0574 (12)0.0525 (12)0.0748 (14)0.0001 (9)0.0104 (10)0.0270 (10)
O40.0794 (16)0.0544 (15)0.1110 (19)0.0217 (11)0.0258 (13)0.0033 (13)
O50.0739 (15)0.113 (2)0.0908 (17)0.0041 (13)0.0521 (13)0.0189 (15)
O60.0814 (16)0.0819 (17)0.114 (2)0.0092 (13)0.0392 (14)0.0532 (15)
N10.0541 (13)0.0551 (14)0.0440 (13)0.0031 (10)0.0187 (10)0.0060 (10)
N20.0654 (17)0.0551 (17)0.104 (2)0.0186 (13)0.0291 (16)0.0104 (15)
C10.0485 (16)0.0460 (16)0.0633 (18)0.0039 (12)0.0185 (13)0.0034 (13)
C20.072 (2)0.068 (2)0.110 (3)0.0057 (17)0.052 (2)0.009 (2)
C30.076 (3)0.079 (3)0.174 (5)0.021 (2)0.066 (3)0.027 (3)
C40.063 (2)0.100 (3)0.160 (4)0.031 (2)0.039 (2)0.059 (3)
C50.058 (2)0.078 (2)0.101 (3)0.0114 (16)0.0233 (17)0.034 (2)
C60.0411 (15)0.0519 (17)0.0597 (17)0.0002 (11)0.0112 (12)0.0128 (13)
C70.069 (2)0.086 (2)0.0442 (17)0.0085 (16)0.0196 (14)0.0094 (15)
C80.076 (2)0.090 (3)0.074 (2)0.0087 (18)0.0368 (17)0.0210 (19)
C90.0489 (15)0.0481 (16)0.0401 (15)0.0084 (11)0.0092 (11)0.0062 (12)
C100.0431 (14)0.0425 (15)0.0386 (14)0.0045 (10)0.0129 (10)0.0032 (11)
C110.0390 (13)0.0380 (14)0.0407 (14)0.0022 (10)0.0111 (10)0.0036 (10)
C120.0368 (13)0.0403 (15)0.0491 (16)0.0039 (10)0.0134 (10)0.0030 (11)
C130.069 (2)0.062 (2)0.0535 (18)0.0074 (14)0.0214 (14)0.0046 (15)
C140.106 (3)0.107 (3)0.069 (2)0.019 (2)0.045 (2)0.031 (2)
C150.102 (3)0.072 (3)0.119 (4)0.010 (2)0.057 (3)0.039 (3)
C160.076 (2)0.048 (2)0.112 (3)0.0015 (15)0.037 (2)0.0165 (19)
C170.0583 (17)0.0401 (16)0.0689 (19)0.0004 (12)0.0213 (14)0.0032 (13)
C180.0442 (14)0.0458 (15)0.0470 (15)0.0026 (11)0.0157 (11)0.0021 (12)
C190.0473 (16)0.0517 (18)0.0664 (19)0.0085 (12)0.0251 (13)0.0024 (14)
C200.0384 (15)0.083 (2)0.0628 (19)0.0059 (14)0.0147 (12)0.0023 (16)
C210.051 (2)0.142 (4)0.080 (3)0.024 (2)0.0129 (18)0.023 (2)
C220.056 (3)0.257 (8)0.080 (3)0.021 (4)0.001 (2)0.013 (4)
C230.058 (3)0.261 (8)0.082 (3)0.034 (4)0.008 (2)0.040 (5)
C240.062 (2)0.155 (4)0.105 (3)0.040 (3)0.032 (2)0.049 (3)
C250.0368 (16)0.102 (3)0.074 (2)0.0153 (16)0.0186 (14)0.0207 (19)
C26A0.093 (4)0.058 (4)0.178 (6)0.011 (3)0.073 (4)0.026 (4)
C27A0.167 (7)0.062 (4)0.275 (10)0.049 (4)0.120 (7)0.022 (5)
C26B0.067 (16)0.15 (3)0.15 (3)0.022 (17)0.053 (17)0.02 (2)
C27B0.11 (2)0.08 (2)0.20 (4)0.005 (19)0.03 (2)0.01 (2)
Geometric parameters (Å, º) top
S1—O21.4250 (18)C11—C181.555 (3)
S1—O31.4175 (19)C12—C131.377 (4)
S1—N11.634 (2)C12—C171.387 (4)
S1—C101.764 (2)C13—H130.9300
S2—O51.424 (2)C13—C141.392 (5)
S2—O61.423 (2)C14—H140.9300
S2—N21.636 (3)C14—C151.365 (6)
S2—C181.773 (3)C15—H150.9300
O1—C91.215 (3)C15—C161.351 (6)
O4—C191.214 (3)C16—H160.9300
N1—C11.423 (3)C16—C171.379 (4)
N1—C71.470 (3)C17—H170.9300
N2—C251.407 (4)C18—H180.9800
N2—C26A1.472 (2)C18—C191.531 (4)
N2—C26B1.471 (2)C19—C201.446 (4)
C1—C21.388 (4)C20—C211.401 (4)
C1—C61.401 (4)C20—C251.398 (5)
C2—H20.9300C21—H210.9300
C2—C31.379 (5)C21—C221.361 (7)
C3—H30.9300C22—H220.9300
C3—C41.361 (6)C22—C231.360 (8)
C4—H40.9300C23—H230.9300
C4—C51.371 (5)C23—C241.384 (8)
C5—H50.9300C24—H240.9300
C5—C61.396 (4)C24—C251.401 (5)
C6—C91.463 (4)C26A—H26A0.9700
C7—H7A0.9700C26A—H26B0.9700
C7—H7B0.9700C26A—C27A1.538 (2)
C7—C81.503 (4)C27A—H27A0.9600
C8—H8A0.9600C27A—H27B0.9600
C8—H8B0.9600C27A—H27C0.9600
C8—H8C0.9600C26B—H26C0.9700
C9—C101.530 (3)C26B—H26D0.9700
C10—H100.9800C26B—C27B1.540 (2)
C10—C111.548 (3)C27B—H27D0.9600
C11—H110.9800C27B—H27E0.9600
C11—C121.517 (3)C27B—H27F0.9600
O2—S1—N1111.18 (12)C17—C12—C11121.9 (2)
O2—S1—C10106.09 (11)C12—C13—H13120.2
O3—S1—O2118.32 (13)C12—C13—C14119.6 (3)
O3—S1—N1107.48 (13)C14—C13—H13120.2
O3—S1—C10111.02 (12)C13—C14—H14119.6
N1—S1—C10101.48 (12)C15—C14—C13120.9 (4)
O5—S2—N2110.81 (15)C15—C14—H14119.6
O5—S2—C18105.76 (14)C14—C15—H15120.1
O6—S2—O5118.91 (15)C16—C15—C14119.7 (4)
O6—S2—N2107.12 (17)C16—C15—H15120.1
O6—S2—C18112.50 (13)C15—C16—H16119.7
N2—S2—C18100.17 (13)C15—C16—C17120.6 (3)
C1—N1—S1117.23 (18)C17—C16—H16119.7
C1—N1—C7121.2 (2)C12—C17—H17119.7
C7—N1—S1116.9 (2)C16—C17—C12120.6 (3)
C25—N2—S2117.4 (2)C16—C17—H17119.7
C25—N2—C26A119.7 (4)S2—C18—H18109.3
C25—N2—C26B129.7 (11)C11—C18—S2112.95 (17)
C26A—N2—S2122.6 (4)C11—C18—H18109.3
C26B—N2—S2101.0 (12)C19—C18—S2103.61 (17)
C2—C1—N1120.3 (3)C19—C18—C11112.3 (2)
C2—C1—C6119.3 (3)C19—C18—H18109.3
C6—C1—N1120.4 (2)O4—C19—C18118.8 (3)
C1—C2—H2120.2O4—C19—C20123.8 (3)
C3—C2—C1119.6 (3)C20—C19—C18117.3 (2)
C3—C2—H2120.2C21—C20—C19117.2 (3)
C2—C3—H3119.2C25—C20—C19123.3 (3)
C4—C3—C2121.6 (4)C25—C20—C21119.5 (3)
C4—C3—H3119.2C20—C21—H21119.7
C3—C4—H4120.3C22—C21—C20120.7 (5)
C3—C4—C5119.5 (3)C22—C21—H21119.7
C5—C4—H4120.3C21—C22—H22120.0
C4—C5—H5119.6C23—C22—C21119.9 (5)
C4—C5—C6120.8 (3)C23—C22—H22120.0
C6—C5—H5119.6C22—C23—H23119.2
C1—C6—C9124.0 (2)C22—C23—C24121.7 (5)
C5—C6—C1119.1 (3)C24—C23—H23119.2
C5—C6—C9116.9 (3)C23—C24—H24120.4
N1—C7—H7A108.8C23—C24—C25119.3 (5)
N1—C7—H7B108.8C25—C24—H24120.4
N1—C7—C8113.9 (3)C20—C25—N2121.4 (3)
H7A—C7—H7B107.7C20—C25—C24118.9 (4)
C8—C7—H7A108.8C24—C25—N2119.8 (4)
C8—C7—H7B108.8N2—C26A—H26A109.6
C7—C8—H8A109.5N2—C26A—H26B109.6
C7—C8—H8B109.5N2—C26A—C27A110.3 (4)
C7—C8—H8C109.5H26A—C26A—H26B108.1
H8A—C8—H8B109.5C27A—C26A—H26A109.6
H8A—C8—H8C109.5C27A—C26A—H26B109.6
H8B—C8—H8C109.5C26A—C27A—H27A109.5
O1—C9—C6123.7 (2)C26A—C27A—H27B109.5
O1—C9—C10116.9 (2)C26A—C27A—H27C109.5
C6—C9—C10119.5 (2)H27A—C27A—H27B109.5
S1—C10—H10106.0H27A—C27A—H27C109.5
C9—C10—S1109.84 (16)H27B—C27A—H27C109.5
C9—C10—H10106.0N2—C26B—H26C112.2
C9—C10—C11115.2 (2)N2—C26B—H26D112.2
C11—C10—S1112.91 (16)N2—C26B—C27B97.7 (16)
C11—C10—H10106.0H26C—C26B—H26D109.8
C10—C11—H11106.5C27B—C26B—H26C112.2
C10—C11—C18110.02 (19)C27B—C26B—H26D112.2
C12—C11—C10114.7 (2)C26B—C27B—H27D109.5
C12—C11—H11106.5C26B—C27B—H27E109.5
C12—C11—C18112.09 (19)C26B—C27B—H27F109.5
C18—C11—H11106.5H27D—C27B—H27E109.5
C13—C12—C11119.4 (2)H27D—C27B—H27F109.5
C13—C12—C17118.7 (3)H27E—C27B—H27F109.5
S1—N1—C1—C2151.3 (2)C5—C6—C9—C10179.5 (3)
S1—N1—C1—C629.5 (3)C6—C1—C2—C30.5 (5)
S1—N1—C7—C873.9 (3)C6—C9—C10—S129.5 (3)
S1—C10—C11—C1281.3 (2)C6—C9—C10—C1199.3 (3)
S1—C10—C11—C18151.25 (17)C7—N1—C1—C23.8 (4)
S2—N2—C25—C2019.5 (4)C7—N1—C1—C6175.4 (3)
S2—N2—C25—C24160.7 (3)C9—C10—C11—C1246.0 (3)
S2—N2—C26A—C27A85.8 (6)C9—C10—C11—C1881.4 (3)
S2—N2—C26B—C27B122.2 (18)C10—S1—N1—C154.8 (2)
S2—C18—C19—O4131.0 (3)C10—S1—N1—C7149.0 (2)
S2—C18—C19—C2050.2 (3)C10—C11—C12—C13112.5 (3)
O1—C9—C10—S1152.2 (2)C10—C11—C12—C1768.2 (3)
O1—C9—C10—C1179.0 (3)C10—C11—C18—S273.1 (2)
O2—S1—N1—C157.6 (2)C10—C11—C18—C19170.1 (2)
O2—S1—N1—C798.5 (2)C11—C12—C13—C14179.8 (3)
O2—S1—C10—C963.6 (2)C11—C12—C17—C16179.4 (3)
O2—S1—C10—C11166.28 (17)C11—C18—C19—O4106.9 (3)
O3—S1—N1—C1171.43 (19)C11—C18—C19—C2072.0 (3)
O3—S1—N1—C732.4 (2)C12—C11—C18—S2157.98 (17)
O3—S1—C10—C9166.63 (17)C12—C11—C18—C1941.3 (3)
O3—S1—C10—C1136.5 (2)C12—C13—C14—C150.1 (5)
O4—C19—C20—C2116.1 (4)C13—C12—C17—C161.2 (4)
O4—C19—C20—C25165.5 (3)C13—C14—C15—C160.1 (6)
O5—S2—N2—C2559.5 (3)C14—C15—C16—C170.3 (6)
O5—S2—N2—C26A125.8 (3)C15—C16—C17—C121.0 (5)
O5—S2—N2—C26B87.0 (10)C17—C12—C13—C140.8 (4)
O5—S2—C18—C11173.21 (18)C18—S2—N2—C2551.8 (2)
O5—S2—C18—C1951.5 (2)C18—S2—N2—C26A122.9 (3)
O6—S2—N2—C25169.3 (2)C18—S2—N2—C26B161.7 (10)
O6—S2—N2—C26A5.4 (3)C18—C11—C12—C13121.1 (2)
O6—S2—N2—C26B44.2 (10)C18—C11—C12—C1758.2 (3)
O6—S2—C18—C1155.4 (2)C18—C19—C20—C21162.7 (3)
O6—S2—C18—C19177.18 (19)C18—C19—C20—C2515.8 (4)
N1—S1—C10—C952.65 (19)C19—C20—C21—C22176.3 (4)
N1—S1—C10—C1177.47 (19)C19—C20—C25—N24.1 (5)
N1—C1—C2—C3179.7 (3)C19—C20—C25—C24175.7 (3)
N1—C1—C6—C5178.1 (3)C20—C21—C22—C230.0 (7)
N1—C1—C6—C93.6 (4)C21—C20—C25—N2177.5 (3)
N2—S2—C18—C1158.0 (2)C21—C20—C25—C242.8 (5)
N2—S2—C18—C1963.7 (2)C21—C22—C23—C241.7 (9)
C1—N1—C7—C881.3 (4)C22—C23—C24—C251.1 (8)
C1—C2—C3—C41.9 (7)C23—C24—C25—N2179.1 (4)
C1—C6—C9—O1176.9 (3)C23—C24—C25—C201.2 (5)
C1—C6—C9—C101.3 (4)C25—N2—C26A—C27A99.6 (6)
C2—C1—C6—C52.7 (4)C25—N2—C26B—C27B97.3 (19)
C2—C1—C6—C9175.6 (3)C25—C20—C21—C222.2 (5)
C2—C3—C4—C52.0 (7)C26A—N2—C25—C20155.3 (3)
C3—C4—C5—C60.3 (7)C26A—N2—C25—C2424.4 (5)
C4—C5—C6—C12.6 (5)C26B—N2—C25—C20154.8 (14)
C4—C5—C6—C9175.7 (3)C26B—N2—C25—C2425.5 (14)
C5—C6—C9—O11.4 (4)
Relative energies (kcal mol-1) of tautomeric and stereoisomeric forms, calculated by the M06-2X/cc-pVTZ method top
Tautomer/stereoisomerVacuumVacuumPCM model (DMSO)PCM model (DMSO)PCM model (chloroform)PCM model (chloroform)
E (a.u.)ΔE (kcal mol-1)E (a.u.)ΔE (kcal mol-1)E (a.u.)ΔE (kcal mol-1)
7A-2401.638994855.66-2401.6477672414.67-2401.6371136816.82
7B-2401.634342268.58-2401.660780476.52-2401.652396107.23
7C(R, R, R)-2401.642901143.21-2401.671171000-2401.663911510
7C(S, R, S)-2401.648017550-2401.671171150-2401.663911770
7C(R, R, S)-2401.648017650-2401.671171890-2401.663911590
 

References

First citationAhmad, S., Zaib, S., Jalil, S., Shafiq, M., Ahmad, M., Sultan, S., Iqbal, M., Aslam, S. & Iqbal, J. (2018). Bioorg. Chem. 80, 498–510.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAhmad Saddique, F., Ahmad, M., Kanwal, A., Aslam, S. & Fawad Zahoor, A. (2021). Synth. Commun. 51, 351–378.  Web of Science CrossRef CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationChattopadhyay, S. K. (2018). Synth. Commun. 48, 3033–3078.  Web of Science CrossRef CAS Google Scholar
First citationD'Amico, D. C., Aya, T., Human, J., Fotsch, C., Chen, J. J., Biswas, K., Riahi, B., Norman, M. H., Willoughby, C. A., Hungate, R., Reider, P. J., Biddlecome, G., Lester-Zeiner, D., Van Staden, C., Johnson, E., Kamassah, A., Arik, L., Wang, J., Viswanadhan, V. N., Groneberg, R. D., Zhan, J., Suzuki, H., Toro, A., Mareska, D. A., Clarke, D. E., Harvey, D. M., Burgess, L. E., Laird, E. R., Askew, B. & Ng, G. (2007). J. Med. Chem. 50, 607–610.  PubMed CAS Google Scholar
First citationDobrydnev, A. V. & Marco-Contelles, J. (2021). Eur. J. Org. Chem. pp. 1229–1248.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2010). GAUSSIAN09. Rev. B. 01 Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGrombein, C. M., Hu, Q., Rau, S., Zimmer, C. & Hartmann, R. W. (2015). Eur. J. Med. Chem. 90, 788–796.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKendall, R. A., Dunning, T. H. & Harrison, R. J. (1992). J. Chem. Phys. 96, 6796–6806.  CrossRef CAS Web of Science Google Scholar
First citationKhan, I. U., Shafiq, M. & Arshad, M. N. (2010). Acta Cryst. E66, o2839.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKolodyazhna, T. I., Lega, D. A., Suikov, S. Y., Kyrylchuk, A. A., Vovk, M. V., Chernykh, V. P. & Shemchuk, L. A. (2021). ChemistrySelect 6, 14005-14012.  Web of Science CrossRef CAS Google Scholar
First citationLega, D. A., Chernykh, V. P., Zaprutko, L., Gzella, A. K. & Shemchuk, L. A. (2017). Chem. Heterocycl. Compd, 53, 219–229.  Web of Science CSD CrossRef CAS Google Scholar
First citationLega, D. A., Filimonova, N. I., Zupanets, I. A., Shebeko, S. K., Chernykh, V. P. & Shemchuk, L. A. (2016a). J. Org. Pharm. Chem. 14, 3–11.  CrossRef CAS Google Scholar
First citationLega, D. A., Filimonova, N. I., Zupanets, I. A., Shebeko, S. K., Chernykh, V. P. & Shemchuk, L. A. (2016b). VÌsn. Farm. pp. 61–69.  Google Scholar
First citationLega, D. A., Gorobets, N. Y., Chernykh, V. P., Shishkina, S. V. & Shemchuk, L. A. (2016c). RSC Adv. 6, 16087–16099.  Web of Science CSD CrossRef CAS Google Scholar
First citationLei, K., Hua, X.-W., Tao, Y.-Y., Liu, Y., Liu, N., Ma, Y., Li, Y.-H., Xu, X.-H. & Kong, C.-H. (2016). Bioorg. Med. Chem. 24, 92–103.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLei, K., Liu, Y., Wang, S., Sun, B., Hua, X. & Xu, X. (2019). Chem. Res. Chin. Univ. 35, 609–615.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacGregor, W. S. (1967). Ann. NY Acad. Sci. 141, 3–12.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMennucci, B. (2012). WIREs Comput. Mol. Sci. 2, 386–404.  Web of Science CrossRef CAS Google Scholar
First citationPieroni, M., Sabatini, S., Massari, S., Kaatz, G. W., Cecchetti, V. & Tabarrini, O. (2012). Med. Chem. Commun. 3, 1092–1097.  Web of Science CrossRef CAS Google Scholar
First citationPopov, K., Volovnenko, T., Turov, A. & Volovenko, Y. (2010). J. Heterocycl. Chem. 47, 85–90.  CAS Google Scholar
First citationPopov, K., Volovnenko, T. & Volovenko, J. (2009). Beilstein J. Org. Chem. 5, 42.  Web of Science CrossRef PubMed Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationShafiq, M., Khan, I. U., Arshad, M. N. & Mustafa, G. (2010). Acta Cryst. E66, o3109.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Khan, I. U., Tahir, M. N. & Siddiqui, W. A. (2008a). Acta Cryst. E64, o558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Khan, L. U., Arshad, M. N. & Siddiqui, W. A. (2011). Asian J. Chem. 23, 2101–2105.  CAS Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Arshad, M. N. (2009a). Acta Cryst. E65, o430.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Siddiqui, W. A. (2008b). Acta Cryst. E64, o1270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Asghar, M. N. (2009b). Acta Cryst. E65, o1182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Haider, Z. (2009c). Acta Cryst. E65, o1413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Safdar, M. (2009d). Acta Cryst. E65, o393.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShishkina, S. V., Petrushova, L. A., Burian, K. O., Fedosov, A. I. & Ukrainets, I. V. (2020a). Acta Cryst. E76, 1657–1660.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShishkina, S. V., Ukrainets, I. V. & Petrushova, L. A. (2013). Acta Cryst. E69, o1698.  CSD CrossRef IUCr Journals Google Scholar
First citationShishkina, S. V., Ukrainets, I. V. & Petrushova, L. A. (2017). Z. Krist. Cryst. Mater. 232, 307–316.  Web of Science CSD CrossRef CAS Google Scholar
First citationShishkina, S. V., Ukrainets, I. V., Vashchenko, O. V., Voloshchuk, N. I., Bondarenko, P. S., Petrushova, L. A. & Sim, G. (2020b). Acta Cryst. C76, 69–74.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTemperini, C., Cecchi, A., Scozzafava, A. & Supuran, C. T. (2009). J. Med. Chem. 52, 322–328.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTighadouini, S., Roby, O., Mortada, S., Lakbaibi, Z., Radi, S., Al-Ali, A., Faouzi, M. E. A., Ferbinteanu, M., Garcia, Y., Al-Zaqri, N., Zarrouk, A. & Warad, I. (2022). J. Mol. Struct. 1247, 131308.  Web of Science CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationUkrainets, I. V., Hamza, G. M., Burian, A. A., Voloshchuk, N. I., Malchenko, O. V., Shishkina, S. V., Danylova, I. A. & Sim, G. (2019). Sci. Pharm. 87, 10.  Web of Science CSD CrossRef Google Scholar
First citationUkrainets, I. V., Petrushova, L. A. & Bereznyakova, N. L. (2015a). Pharm. Chem. J. 49, 519–522.  Web of Science CSD CrossRef CAS Google Scholar
First citationUkrainets, I. V., Petrushova, L. A. & Dzyubenko, S. P. (2013). Khim. Get. Soedin., SSSR, 49, 1479–1483.  Google Scholar
First citationUkrainets, I. V., Petrushova, L. A., Dzyubenko, S. P. & Sim, G. (2014a). Khim. Get. Soedin., SSSR, 50, 114–120.  Google Scholar
First citationUkrainets, I. V., Petrushova, L. A., Dzyubenko, S. P. & Yangyang, L. (2014b). Khim. Get. Soedin., SSSR, 50, 564–568.  Google Scholar
First citationUkrainets, I. V., Petrushova, L. A., Fedosov, A. I., Voloshchuk, N. I., Bondarenko, P. S., Shishkina, S. V., Sidorenko, L. V. & Sim, G. (2020a). Sci. Pharm. 88, 1.  Web of Science CSD CrossRef Google Scholar
First citationUkrainets, I. V., Petrushova, L. A., Shishkina, S. V., Sidorenko, L. V., Alekseeva, T. V., Torianyk, I. I. & Davidenko, A. A. (2020b). Sci. Pharm. 88, 10.  Web of Science CSD CrossRef Google Scholar
First citationUkrainets, I. V., Petrushova, L. A., Shishkina, S. V., Sidorenko, L. V., Sim, G. & Kryvanych, O. V. (2016a). Sci. Pharm. 84, 523–535.  CSD CrossRef CAS PubMed Google Scholar
First citationUkrainets, I. V., Petrushova, L. A., Sim, G. & Bereznyakova, N. I. (2015b). Khim. Get. Soedin., SSSR, 51, 97–104.  Google Scholar
First citationUkrainets, I. V., Petrushova, L. A., Sim, G. & Grinevich, L. A. (2017). Pharm. Chem. J. 51, 482–485.  Web of Science CSD CrossRef CAS Google Scholar
First citationUkrainets, I. V., Shishkina, S. V., Baumer, V. N., Gorokhova, O. V., Petrushova, L. A. & Sim, G. (2016b). Acta Cryst. C72, 411–415.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVo, N. B. & Ngo, Q. A. (2022). J. Heterocycl. Chem. 59, 1813–1823.  Web of Science CrossRef CAS Google Scholar
First citationYe, J.-H., Ling, K.-Q., Zhang, Y., Li, N. & Xu, J.-H. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2017–2024.  Web of Science CSD CrossRef Google Scholar
First citationZanwar, M. R., Raihan, M. J., Gawande, S. D., Kavala, V., Janreddy, D., Kuo, C.-W., Ambre, R. & Yao, C.-F. (2012). J. Org. Chem. 77, 6495–6504.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147–158.  CrossRef CAS Web of Science Google Scholar
First citationZefirov, Yu. V. (1997). Kristallografiya, 42, 936–958.  CAS Google Scholar
First citationZhao, Y. & Truhlar, D. G. (2007). Theor. Chem. Acc. 120, 215-241.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds