research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structure of 4-hy­dr­oxy-N-iso­propyl­tryptamine (4-HO-NiPT) and its precursors

crossmark logo

aCaaMTech, Inc., 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA, and bUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 28 February 2023; accepted 3 March 2023; online 10 March 2023)

The title compound, 4-hy­droxy-N-iso­propyl­tryptamine (4) or 4-HO-NiPT (systematic name: 3-{2-[(propan-2-yl)amino]­eth­yl}-1H-indol-4-ol), C13H18N2O, was synthesized in three steps from 4-benzyl­oxyindole (1) (systematic name: 4-phen­oxy-1H-indole), C15H13NO. (1) was treated with oxalyl chloride and iso­propyl­amine to produce N-isopropyl-4-benz­yloxy-3-indole­glyoxyl­amide (2) {systematic name: 2-[4-(benz­yloxy)-1H-indol-3-yl]-2-oxo-N-(propan-2-yl)acet­amide}, C20H20N2O3. (2) was reduced to generate 4-benz­yloxy-N-iso­propyl­tryptamine (3) or 4-HO-NiPT, which was characterized as its chloride salt 4-benz­yloxy-N-iso­propyl­tryptammonium chloride (3a) (systematic name: {2-[4-(benz­yloxy)-1H-indol-3-yl]eth­yl}(propan-2-yl)aza­nium chloride), C20H25N2O·Cl. Finally the benzyl group of (3) was removed via hydrogenation to generate 4-HO-NiPT. The crystal structures of the title compound and all three synthetic precursors are presented.

1. Chemical context

Psilocybin (C12H17N2O4P, 4-phosphor­yloxy-N,N-di­methyl­tryptamine) has recently garnered a great deal of inter­est due to its potential to ameliorate a number of treatment resistant mood disorders (Carhart-Harris & Goodwin, 2017[Carhart-Harris, R. L. & Goodwin, G. M. (2017). Neuropsychopharmacol, 42, 2105-2113.]; Nichols et al., 2017[Nichols, D. E., Johnson, M. W. & Nichols, C. D. (2017). Clin. Pharmacol. Ther. 101, 209-219.]). Upon administration, psilocybin is enzymatically metabolized via hydrolysis of its 4-phosphor­yloxy group, producing psilocin (C12H16N2O, 4-hy­droxy-N,N-di­methyl­tryptamine) as the active metabolite. Psilocin is an agonist of the serotonin 2A (5-HT2A) receptor; this activity is believed to be responsible for producing a head-twitch response (HTR) in murine models, as well as subjective `psychedelic' effects in human subjects as well as other potentially beneficial biological and clinical results (Halberstadt et al., 2020[Halberstadt, A. L., Chatha, M., Klein, A. K., Wallach, J. & Brandt, S. D. (2020). Neuropharmacology, 167, 107933.]).

Psilocybin and psilocin are both natural products, found in over 200 species of `magic mushrooms' (Stamets, 1996[Stamets, P. (1996). Psilocybin Mushrooms of the World: An Identification Guide. Berkeley, CA: Ten Speed Press.]). However, psilocybin and psilocin are not the only tryptamines present in these fungi. Other structurally similar mol­ecules have been observed in significant qu­anti­ties. (Leung & Paul, 1968[Leung, A. Y. & Paul, A. G. (1968). J. Pharm. Sci. 57, 1667-1671.]; Jensen et al., 2006[Jensen, N., Gartz, J. & Laatsch, H. (2006). Planta Med. 72, 665-666.]; Lenz et al., 2017[Lenz, C., Wick, J. & Hoffmeister, D. (2017). J. Nat. Prod. 80, 2835-2838.]). Such structural analogs include baeocystin (C11H15N2O4P, 4-phosphor­yloxy-N-methyl­tryptamine), the monomethyl derivative of psilocybin, and aerugeniscin (C13H20N2O4P, 4-phosphor­yloxy-N,N,N-tri­methyl­tryptamine), its trimethyl variant. Like psilocybin, both baeocystin and aeruginascin are 4-phospho­ryloxytryptamines, which are hydro­lized to their analogous 4-hy­droxy­tryptamines: norpsilocin (C11H14N2O) and 4-hy­droxy-N,N,N-tri­methyl­tryptamine respectively.

In the case of baeocystin, its active metabolite norpsilocin (4-hy­droxy-N-methyl­tryptamine) has been examined and shown to be a full agonist of the 5-HT2A receptor (Sherwood et al., 2020[Sherwood, A. M., Halberstadt, A. L., Klein, A. K., McCorvy, J. D., Kaylo, K. W., Kargbo, R. B. & Meisenheimer, P. (2020). J. Nat. Prod. 83, 461-467.]; Glatfelter et al., 2022b[Glatfelter, G. C., Pottie, E., Partilla, J. S., Sherwood, A. M., Kaylo, K., Pham, D. N. K., Naeem, M., Sammeta, V. R., DeBoer, S., Golen, J. A., Hulley, E. B., Stove, C. P., Chadeayne, A. R., Manke, D. R. & Baumann, M. H. (2022b). ACS Pharmacol. Transl. Sci. 5, 1181-1196.]). Notably, despite this activity, norpsilocin does not show a head-twitch response (HTR) in mice, the standard animal test to indicate a psychedelic-like response. Unlike dialkyl tryptamines (e.g., psilocybin and psilocin) the pharmacology of analogous monoalkyl tryptamines (e.g., baeocystin and norpsilocin) is relatively unknown. Accordingly, the importance of these compounds within the context of the overall polypharmacological `magic mushroom' experience is not understood. In an effort to explore the proprieties of mono­alkyl­tryptamines, we previously reported the structural characterization, cellular, and behavioral data for baeocystin and norpsilocin (Naeem et al., 2022[Naeem, M., Sherwood, A. M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022). Acta Cryst. E78, 550-553.]; Chadeayne et al., 2020b[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). Acta Cryst. E76, 589-593.]).

[Scheme 1]

Herein, we expand our exploration to include other 4-hy­droxy monoalkyl tryptamines in an effort to examine how the steric variation impacts serotonergic activity. Our first target, 4-hy­droxy-N-iso­propyl­tryptamine (4-HO-NiPT), replaces the methyl group of norpsilocin with an isopropyl group. The only previous literature report of this mol­ecule is as a metabolite of the new psychoactive substance (NPS) 4-acet­oxy-N,N-diisoproptyltryptamine (4-AcO-DiPT) from 2022 (Malaca et al., 2022[Malaca, S., Huestis, M. A., Lattanzio, L., Marsella, L. T., Tagliabracci, A., Carlier, J. & Busardò, F. P. (2022). Metabolites, 12, 705.]). The synthesis of the title compound, 4-HO-NiPT, follows a procedure modified from the psilocin synthesis put forward by Albert Hofmann in 1959 (Troxler et al., 1959[Troxler, F., Seemann, F. & Hofmann, A. (1959). Helv. Chim. Acta, 42, 2073-2103.]). The structure of 4-HO-NiPT and those of its three synthetic precursors are reported herein.

2. Structural commentary

The asymmetric unit of 4-benzyl­oxyindole, C15H13NO (1) contains a single mol­ecule (Fig. 1[link]). The indole ring system of the tryptamine grouping is almost planar with an r.m.s. deviation from planarity of 0.013 Å. The benz­yloxy group has an anti conformation with a C6—O1—C9—C10 torsion angle of −179.00 (13)°. The benzene ring of the benz­yloxy group is near perpendicular from the indole ring with a plane to plane twist of 89.73 (6)°.

[Figure 1]
Figure 1
The mol­ecular structures of 4-benzyl­oxyindole (1) (top left), N-2-propyl-α-oxo-4-(phenyl­meth­oxy)-1H-indole-3-acetamide (2) (top right), 4-benz­yloxy-N-iso­propyl­ammonium chloride (3a) (bottom left), and 4-hy­droxy-N-iso­propyl­tryptamine (4) (bottom right), showing the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

The asymmetric unit of N-2-propyl-α-oxo-4-(phenyl­meth­oxy)-1H-indole-3-acetamide, C20H20N2O3 (2) contains two mol­ecules of the indole-amide (Fig. 1[link]). The indole rings of both mol­ecules are near planar, with r.m.s. deviations from planarity of 0.021 Å and 0.011 Å for the N1 and N3 mol­ecules, respectively. The benz­yloxy groups both have anti conformations with a C6—O3—C14—C15 torsion angle of 179.6 (4)° and a C26—O6—C34—C35 angle of −178.2 (4)°. The benzene rings of the benz­yloxy groups are slightly twisted from the indole rings with plane-to-plane (dihedral) twists of 19.98 (16) and 21.45 (16)°, respectively. The amide arms are slightly turned away from the indole rings with a C7—C8—C9—C10 angle of 157.3 (4)° and a C27—C28—C29—C30 angle of −160.8 (4)°. The amine groups are in anti conformations with C8—C9—C10—N2 = 165.2 (4)° and C28—C29—C30—N4 = 174.3 (4)°. The isopropyl groups are also in anti conformations with a C9—C10—N2—C11 angle of −178.1 (4)° and a C29—C30—N4—C31 angle of 178.5 (4)°. In the asymmetric unit, the indole–amide mol­ecules are linked by an N—H⋯O hydrogen bond between the indole nitro­gen and the carbonyl oxygen of the amide group.

The asymmetric unit of 4-benz­yloxy-N-iso­propyl­tryptammonium chloride, C20H25N2O+·Cl (3a) contains two tryptammonium cations (identified by atoms N1 and N3) and two chloride anions (Fig. 1[link]). The indole rings of both cations are close to planar, with r.m.s. deviations of 0.004 Å and 0.010 Å for the N1 and N3 cations, respectively. The benz­yloxy group of the N1 cation shows an anti conformation with a C6—O1—C14—C15 angle of −173.52 (17)°; in the N3 cation, the benz­yloxy group is turned nearly perpendicular to the indole ring with a C26—O2—C34—C35 angle of 85.8 (2)°. In both cations, the ethyl­amino arms are turned away from the indole rings, with a C7—C8—C9—C10 angle of 73.5 (2)° and a C27—C28—C29—C30 angle of 72.3 (2)°. The amine groups of the arm are both in anti conformations with C8—C9—C10—N2 = −153.55 (16)° and C28—C29—C30—N4 = −172.94 (14)°. On the contrary, the isopropyl groups are in syn conformations with a C9—C10—N2—C11 angle of −59.7 (2)° and a C29—C30—N4—C31 angle of −54.9 (2)°. In the asymmetric unit, the tryptammonium cations and chloride anions are linked by N—H⋯Cl hydrogen bonds arising from the indole nitro­gen atoms.

The asymmetric unit of 4-hy­droxy-N-iso­propyl­tryptamine C13H18N2O (4) contains a single tryptamine mol­ecule (Fig. 1[link]). The indole ring system is almost planar with an r.m.s. deviation of 0.006 Å. The ethyl­amine arm of the tryptamine is turned away from the indole ring, with a C7—C8—C9—C10 torsion angle of 75.2 (2)° whereas the C8—C9—C10—N2 torsion angle of −72.6 (2)° turns the amine group back toward the hydroxide substituent on the 4-position of the indole ring system. The turn of the ethyl­amine arm is due to an intra­molecular O—H⋯N hydrogen bond between the hydroxide group and the amine N atom.

3. Supra­molecular features

There are no significant inter­molecular inter­actions in (1) beyond normal van der Waals contacts. The mol­ecules of (2) are linked by N—H⋯O hydrogen bonds, generating infinite chains along the [100] direction between indole N atoms and the O atoms of the amide carbonyl groups (Table 1[link]). The tryptammonium cations and chloride anions of (3a) are linked into infinite chains propagating along [010] by N—H⋯Cl hydrogen bonds between the indole nitro­gen atoms and the chloride anions and the ammonium N atoms and the Cl ions (Table 2[link]). The tryptamine mol­ecules of (4) are held together in infinite chains along the [010] direction by N—H⋯O hydrogen bonds between the indole NH groupings and the hydroxide O atoms (Table 3[link]). The crystal packing of compounds (1)–(4) are shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.86 1.98 2.810 (5) 164
N3—H3A⋯O2 0.87 (2) 1.99 (3) 2.801 (5) 154 (5)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °) for (3a)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1i 0.87 (1) 2.36 (1) 3.1969 (17) 162 (2)
N2—H2A⋯Cl1ii 0.94 (1) 2.18 (1) 3.1114 (16) 167 (2)
N2—H2B⋯Cl1 0.95 (1) 2.23 (1) 3.1191 (16) 157 (2)
N3—H3A⋯Cl2iii 0.86 (1) 2.42 (1) 3.2657 (17) 168 (2)
N4—H4A⋯Cl2iv 0.94 (1) 2.20 (1) 3.1360 (16) 173 (2)
N4—H4B⋯Cl2 0.94 (1) 2.19 (1) 3.1247 (16) 171 (2)
Symmetry codes: (i) [-x+2, -y+2, -z+1]; (ii) [-x+2, -y+1, -z+1]; (iii) [-x+1, -y+1, -z]; (iv) [-x+1, -y, -z].

Table 3
Hydrogen-bond geometry (Å, °) for (4)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.88 (1) 2.06 (1) 2.9217 (16) 167 (2)
O1—H1⋯N2 1.00 (1) 1.62 (1) 2.6217 (15) 176 (2)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
The crystal packing of 4-benzyl­oxyindole (1) along the a axis (top left), N-2-propyl-α-oxo-4-(phenyl­meth­oxy)-1H-indole-3-acetamide (2) along the b axis (top right), 4-benz­yloxy-N-iso­propyl­ammonium chloride (3a) along the a axis (bottom left), and 4-hy­droxy-N-iso­propyl­tryptamine (4) along the a axis (bottom right). The hydrogen bonds (Tables 2[link]–4[link][link]) are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonds are omitted for clarity.

4. Database survey

The most closely related structure to the title compound is norpsilocin, 4-hy­droxy-N-methyl­tryptamine, which has been reported as its free base and its fumarate salt [Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcodes MULXAV and MULXEZ: Chadeayne et al., 2020a[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020a). Acta Cryst. E76, 514-517.]]. Norpsilocin free base has its ethyl­amino arm in an anti conformation, with O—H⋯N hydrogen bonds being inter­molecular rather than intra­molecular like compound (4). There are three other mono­alkyl­tryptamines reported in the literature, the natural product baeocystin (FEJBAB: Naeem et al., 2022[Naeem, M., Sherwood, A. M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022). Acta Cryst. E78, 550-553.]), 4-acet­oxy-N-methyl­tryptamine (Glatfelter et al., 2022b[Glatfelter, G. C., Pottie, E., Partilla, J. S., Sherwood, A. M., Kaylo, K., Pham, D. N. K., Naeem, M., Sammeta, V. R., DeBoer, S., Golen, J. A., Hulley, E. B., Stove, C. P., Chadeayne, A. R., Manke, D. R. & Baumann, M. H. (2022b). ACS Pharmacol. Transl. Sci. 5, 1181-1196.]) and 5-meth­oxy-N-methyl­tryptamine (QQQAHA: Bergin et al., 1968[Bergin, R., Carlström, D., Falkenberg, G. & Ringertz, H. (1968). Acta Cryst. B24, 882.]). There are nine other 4-hy­droxy­tryptamines reported in the literature, the natural product psilocin (PSILIN: Petcher & Weber, 1974[Petcher, T. J. & Weber, H. P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 946-948.]), 4-hy­droxy-N-methyl-N-iso­propyl­tryptamine as its fumarate (TUFQAP: Chadeayne et al., 2020a[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020a). Acta Cryst. E76, 514-517.]) and hydro­fumarate (RONSUL: Chadeayne et al., 2019a[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 1316-1320.]) salts, 4-hy­droxy-N,N-di-n-propyl­tryptamine as its chloride (WAMGEA: Sammeta et al., 2020[Sammeta, V. R., Rasapalli, S., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2020). IUCrData, 5, x201546.]) and fumarate (WUCGAF: Chadeayne et al., 2019b[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019b). IUCrData, 4, x191469.]) salts, and the four quaternary tryptamines 4-hy­droxy-N,N,N-tri­methyl­tryptamine (XUXFAA: Chadeayne et al., 2020c[Chadeayne, A. R., Pham, D. N. K., Reid, B. G., Golen, J. A. & Manke, D. R. (2020c). ACS Omega, 5, 16940-16943.]), 4-hy­droxy-N,N-dimethyl-N-ethyl­tryptamine, 4-hy­droxy-N,N-di­methyl­iso­propyl­tryptamine, and 4-hy­droxy-N,N-di-n-propyl­tryptamine (EDOYIJ, EDOYUV and EDOZIK: Glatfelter et al., 2022a[Glatfelter, G. C., Pham, D. N. K., Walther, D., Golen, J. A., Chadeayne, A. R., Baumann, M. H. & Manke, D. R. (2022a). ACS Omega, 7, 24888-24894.]). The reported structures most closely related to compound (2) are indole-3-yl-N-iso­propyl­glyoxalyl­amide (HUNCID: Mansell et al., 2009[Mansell, D., Brandt, S. D., Nasima, S., Turvey, N., Alder, J. F., Freeman, S. & Schwalbe, C. H. (2009). Spectrosc. Lett. 42, 156-166.]), 4-benzyl­oxyindole-3-yl-N,N-diiso­propyl­glyoxalyl­amide (RUHYEY: Spaeth et al., 1997[Spaeth, M., Plischka, P., Bohnen, F.-M., Herbst-Irmer, R. & Laatsch, H. (1997). J. Prakt. Chem.-Chem.-Zeitung, 339, 243-249.]) and 4-acet­oxy­indole-3-yl-N,N-di­ethyl­glyoxalyl­amide (AVUMOT: Wu et al., 2004[Wu, H.-Q., Zhou, J.-L., Huang, Z.-S., Gu, L.-Q. & Ng, S. W. (2004). Acta Cryst. E60, o337-o338.]).

5. Synthesis and crystallization

4-Benzyl­oxyindole (1): Single crystals of (1) were grown from the vapor diffusion of diethyl ether into a methyl­ene chloride solution of a commercial sample (Biosynth).

N-isopropyl-4-benz­yloxy-3-indole­glyoxyl­amide (2): to a solution of (1) (2.0 g, 8.96 mmol) in di­ethyl­ether (50 ml) was added oxalylchloride (2.3 g, 17.93 mmol) dropwise at 273 K. The resulting mixture was stirred for 6 h at 273 K, and 2-propyl­amine (4.24 g, 71.68 mmol) was added dropwise. The mixture was warmed to room temperature and stirred overnight. Solvent was removed in vacuo, and the resulting residue was purified on a silica gel column (methyl­ene chloride/methanol) to afford the product as a yellow oil (2.9 g, 96% yield). Single crystals of (2) suitable for X-ray diffraction studies were grown by vapor diffusion of diethyl ether into a methyl­ene chloride solution.

4-Benz­yloxy-N-iso­propyl­tryptamine (3): To a suspension of (2) (900 mg, 2.68 mmol) in tetra­hydro­furan (12 ml) was added borane–tetra­hydro­furan complex (1.0 M, 8.0 ml, 8.0 mmol) dropwise at 273 K. The reaction was then heated at reflux overnight. The resulting yellow solution was cooled to room temperature and quenched with hydro­chloric acid (2.0 M), then heated at 273 K for 2 h. The mixture was cooled to room temperature and ammonium hydroxide was added until the pH exceeded 8. The mixture was extracted with methyl­ene chloride and the organic layer was washed with water and brine, dried over sodium sulfate, and solvent was removed in vacuo. The residue was purified by silica gel column chromatography (methyl­ene chloride/ammonia-methanol solution) to afford (3) as a yellow solid (190 mg, 23% yield). The compound was treated with hydro­chloric acid (1.0 M in di­ethyl­ether) and filtered to yield the chloride salt (3a). Single crystals of (3a) suitable for X-ray diffraction studies were grown from the vapour diffusion of di­ethyl­ether into a methanol solution.1H NMR (400 MHz, CDCl3): δ 8.11 (br s, 1H, NH), 7.49 (d, J = 7.2 Hz, 2H, ArH), 7.41 (t, J = 7.2 Hz, 2H, ArH), 7.35 (d, J = 7.2 Hz, 1H, ArH), 7.08 (t, J = 8.0 Hz, 1H, ArH), 6.99 (d, J = 8.0 Hz, 1H, ArH), 6.96 (s, 1H, ArH), 6.57 (d, J = 8.0 Hz, 1H, ArH), 3.11 (t, J = 7.2 Hz, 2H, CH2), 2.93 (t, J = 7.2 Hz, 2H, CH2), 2.77–2.71 (m, 1H, CH), 0.99 (d, J = 6.4 Hz, 6H, CH3).

4-Hy­droxy-N-iso­propyl­tryptamine (4): To a solution of (3) (190 mg, 0.62 mmol) in methanol (4.0 ml) was added palladium on carbon (30 mg) and palladium hydroxide on carbon (30 mg). The mixture was stirred for 3 h under an atmosphere of hydrogen. The resulting black suspension was filtered and washed with methanol. Solvent was removed in vacuo and the resulting residue was purified by silica gel chromatography (methyl­ene chloride/ammonia methanol solution) to afford (4) as an off-white solid (87 mg, 64% yield). Single crystals of (4) suitable for X-ray diffraction studies were grown from the slow evaporation of an acetone solution. 1H NMR (400 MHz, CDCl3): δ 7.88 (s, 1H, NH), 7.05 (t, J = 7.9 Hz, 1H, ArH), 6.90–6.79 (m, 2H, ArH), 6.59 (d, 1H, ArH), 3.02 (t, 2H, CH2), 2.96 (t, 2H, CH2), 2.91–2.83 (m, 1H, CH), 1.12 (d, J = 6.4 Hz, 6H, CH3). 13C NMR (101 MHz, CDCl3): δ 151.9 (ArC), 138.7 (ArC), 123.5 (ArC), 120.8 (ArC), 118.5 (ArC), 114.0 (ArC), 107.0 (ArC), 102.7 (ArC), 49.5 (AkC), 48.0 (AkC), 27.6 (AkC), 22.1 (AkC). MS (ESI) calculated for C13H16N2O: 218.1; found: 218.9 [M + 1].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Hydrogen atoms H1 in compound (1), H1, H2, H3A and H4A in compound (2), H1, H2A, H2B, H3A, H4A and H4B in compound (3a) and H1, H1A and H2 in compound (4) were found from difference-Fourier maps and were refined isotropically. DFIX restraints were used on all of these hydrogen atoms [except H1 in compound (1), which was refined freely] with N—H distances of 0.87 (1) Å for the indole N atoms, 0.90 (1) Å for the ethyl­amino N atoms, 0.95 (1) Å for ethyl­ammonium N atoms, and 1.00 (1) Å for the O–H distance. Isotropic displacement parameters were set to 1.2 Ueq of the indole N atoms and 1.5 Ueq of the parent ethyl­amino N atoms and the parent oxygen atom. All other hydrogen atoms were placed in calculated positions (C—H = 0.93–0.98 Å). Isotropic displacement parameters were set to 1.2 Ueq (C) or 1.5 Ueq (C-meth­yl).

Table 4
Experimental details

  (1) (2) (3a) (4)
Crystal data
Chemical formula C15H13NO C20H20N2O3 C20H25N2O+·Cl C13H18N2O
Mr 223.26 336.38 344.87 218.29
Crystal system, space group Orthorhombic, Pbca Orthorhombic, Pna21 Triclinic, P[\overline{1}] Orthorhombic, Pbca
Temperature (K) 300 300 300 300
a, b, c (Å) 9.8201 (9), 9.0067 (7), 26.995 (2) 16.4230 (13), 6.5609 (4), 33.469 (2) 10.1895 (9), 10.9117 (7), 17.6887 (14) 8.4065 (5), 14.3944 (9), 19.8501 (10)
α, β, γ (°) 90, 90, 90 90, 90, 90 86.798 (3), 79.340 (3), 87.587 (3) 90, 90, 90
V3) 2387.6 (4) 3606.2 (4) 1928.7 (3) 2402.0 (2)
Z 8 8 4 8
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.08 0.08 0.21 0.08
Crystal size (mm) 0.40 × 0.22 × 0.12 0.34 × 0.30 × 0.08 0.30 × 0.27 × 0.20 0.33 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker D8 Venture CMOS Bruker D8 Venture CMOS Bruker D8 Venture CMOS Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2021[Bruker (2021). APEX4, SAINT, and SADABS. Bruker ACS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2021[Bruker (2021). APEX4, SAINT, and SADABS. Bruker ACS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2021[Bruker (2021). APEX4, SAINT, and SADABS. Bruker ACS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2021[Bruker (2021). APEX4, SAINT, and SADABS. Bruker ACS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.697, 0.745 0.694, 0.745 0.658, 0.745 0.715, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 56335, 2451, 2098 48212, 6584, 5295 42151, 7362, 5589 61022, 2461, 2121
Rint 0.039 0.037 0.033 0.050
(sin θ/λ)max−1) 0.626 0.602 0.612 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.110, 1.11 0.046, 0.117, 1.04 0.041, 0.113, 1.02 0.045, 0.116, 1.08
No. of reflections 2451 6584 7362 2461
No. of parameters 159 468 461 159
No. of restraints 0 4 6 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.12 0.17, −0.15 0.26, −0.29 0.18, −0.15
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.1 (18)
Computer programs: APEX4 (Bruker, 2021[Bruker (2021). APEX4, SAINT, and SADABS. Bruker ACS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2021[Bruker (2021). APEX4, SAINT, and SADABS. Bruker ACS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXS2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For all structures, data collection: APEX4 (Bruker, 2021); cell refinement: SAINT (Bruker, 2021); data reduction: SAINT (Bruker, 2021). Program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a) for (1), (2), (4); SHELXS2014 (Sheldrick, 2015a) for (3a). For all structures, program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-Phenoxy-1H-indole (1) top
Crystal data top
C15H13NODx = 1.242 Mg m3
Mr = 223.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9827 reflections
a = 9.8201 (9) Åθ = 2.6–26.3°
b = 9.0067 (7) ŵ = 0.08 mm1
c = 26.995 (2) ÅT = 300 K
V = 2387.6 (4) Å3Block, colourless
Z = 80.40 × 0.22 × 0.12 mm
F(000) = 944
Data collection top
Bruker D8 Venture CMOS
diffractometer
2098 reflections with I > 2σ(I)
φ and ω scansRint = 0.039
Absorption correction: multi-scan
(SADABS; Bruker, 2021)
θmax = 26.4°, θmin = 3.0°
Tmin = 0.697, Tmax = 0.745h = 1212
56335 measured reflectionsk = 1110
2451 independent reflectionsl = 3333
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.787P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.16 e Å3
2451 reflectionsΔρmin = 0.12 e Å3
159 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0078 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45181 (11)0.35485 (11)0.37604 (4)0.0502 (3)
N10.64192 (16)0.06802 (16)0.31310 (6)0.0608 (4)
H10.659 (2)0.148 (2)0.2961 (8)0.081 (6)*
C10.71754 (19)0.01437 (19)0.35146 (7)0.0602 (5)
H1A0.7969590.0573220.3635780.072*
C20.53303 (16)0.02425 (16)0.30472 (6)0.0494 (4)
C30.43121 (19)0.01880 (19)0.26876 (6)0.0599 (5)
H30.4288700.0561140.2450620.072*
C40.33512 (18)0.1283 (2)0.26987 (6)0.0600 (5)
H40.2660370.1274550.2463120.072*
C50.33709 (16)0.24214 (18)0.30539 (6)0.0511 (4)
H50.2690330.3139370.3052790.061*
C60.43895 (15)0.24842 (15)0.34041 (5)0.0430 (3)
C70.54041 (15)0.13840 (15)0.34020 (5)0.0428 (3)
C80.65916 (17)0.11138 (17)0.36927 (6)0.0506 (4)
H80.6906290.1690170.3954590.061*
C90.34925 (19)0.4685 (2)0.37747 (7)0.0668 (5)
H9A0.2605510.4246430.3834340.080*
H9B0.3462820.5208170.3460730.080*
C100.38433 (16)0.57386 (17)0.41830 (6)0.0523 (4)
C110.3366 (2)0.5527 (2)0.46590 (7)0.0689 (5)
H110.2788600.4733010.4725650.083*
C120.3732 (2)0.6474 (3)0.50358 (8)0.0809 (6)
H120.3405190.6310750.5354490.097*
C130.4566 (2)0.7645 (2)0.49464 (8)0.0759 (6)
H130.4816790.8278760.5202690.091*
C140.5032 (2)0.7883 (2)0.44799 (9)0.0790 (6)
H140.5593400.8691570.4416100.095*
C150.4679 (2)0.6935 (2)0.40992 (7)0.0669 (5)
H150.5011460.7109030.3781930.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0511 (6)0.0444 (6)0.0550 (6)0.0090 (5)0.0092 (5)0.0083 (5)
N10.0713 (10)0.0414 (7)0.0696 (9)0.0005 (7)0.0253 (8)0.0041 (7)
C10.0624 (11)0.0513 (9)0.0669 (10)0.0107 (8)0.0129 (9)0.0111 (8)
C20.0548 (9)0.0420 (8)0.0514 (8)0.0100 (7)0.0189 (7)0.0003 (7)
C30.0697 (11)0.0574 (10)0.0526 (9)0.0223 (9)0.0118 (8)0.0129 (8)
C40.0618 (10)0.0669 (11)0.0513 (9)0.0211 (9)0.0041 (8)0.0027 (8)
C50.0496 (9)0.0509 (9)0.0528 (9)0.0062 (7)0.0035 (7)0.0030 (7)
C60.0475 (8)0.0387 (7)0.0429 (7)0.0056 (6)0.0029 (6)0.0016 (6)
C70.0478 (8)0.0381 (7)0.0426 (7)0.0050 (6)0.0080 (6)0.0037 (6)
C80.0556 (9)0.0444 (8)0.0519 (9)0.0039 (7)0.0035 (7)0.0052 (7)
C90.0596 (11)0.0601 (10)0.0808 (12)0.0192 (9)0.0176 (9)0.0165 (9)
C100.0465 (8)0.0466 (8)0.0636 (10)0.0119 (7)0.0016 (7)0.0060 (7)
C110.0643 (11)0.0618 (11)0.0806 (12)0.0071 (9)0.0135 (10)0.0012 (10)
C120.0892 (15)0.0908 (15)0.0627 (11)0.0035 (13)0.0165 (11)0.0105 (11)
C130.0741 (13)0.0727 (13)0.0809 (13)0.0049 (11)0.0008 (11)0.0264 (11)
C140.0742 (13)0.0569 (11)0.1059 (16)0.0140 (10)0.0105 (12)0.0099 (11)
C150.0702 (12)0.0633 (11)0.0673 (11)0.0006 (9)0.0149 (9)0.0001 (9)
Geometric parameters (Å, º) top
O1—C61.3636 (17)C7—C81.426 (2)
O1—C91.4368 (19)C8—H80.9300
N1—H10.87 (2)C9—H9A0.9700
N1—C11.363 (2)C9—H9B0.9700
N1—C21.373 (2)C9—C101.494 (2)
C1—H1A0.9300C10—C111.381 (2)
C1—C81.357 (2)C10—C151.373 (2)
C2—C31.394 (2)C11—H110.9300
C2—C71.407 (2)C11—C121.375 (3)
C3—H30.9300C12—H120.9300
C3—C41.365 (3)C12—C131.357 (3)
C4—H40.9300C13—H130.9300
C4—C51.404 (2)C13—C141.357 (3)
C5—H50.9300C14—H140.9300
C5—C61.377 (2)C14—C151.380 (3)
C6—C71.405 (2)C15—H150.9300
C6—O1—C9117.07 (12)C1—C8—H8126.5
C1—N1—H1125.9 (14)C7—C8—H8126.5
C1—N1—C2109.56 (14)O1—C9—H9A110.1
C2—N1—H1124.5 (14)O1—C9—H9B110.1
N1—C1—H1A125.2O1—C9—C10108.10 (13)
C8—C1—N1109.56 (16)H9A—C9—H9B108.4
C8—C1—H1A125.2C10—C9—H9A110.1
N1—C2—C3130.67 (15)C10—C9—H9B110.1
N1—C2—C7106.86 (14)C11—C10—C9121.35 (17)
C3—C2—C7122.45 (15)C15—C10—C9120.96 (16)
C2—C3—H3121.5C15—C10—C11117.68 (16)
C4—C3—C2117.05 (15)C10—C11—H11119.5
C4—C3—H3121.5C12—C11—C10120.90 (18)
C3—C4—H4118.9C12—C11—H11119.5
C3—C4—C5122.22 (16)C11—C12—H12119.7
C5—C4—H4118.9C13—C12—C11120.56 (19)
C4—C5—H5119.7C13—C12—H12119.7
C6—C5—C4120.58 (16)C12—C13—H13120.3
C6—C5—H5119.7C14—C13—C12119.40 (19)
O1—C6—C5125.45 (14)C14—C13—H13120.3
O1—C6—C7115.65 (13)C13—C14—H14119.7
C5—C6—C7118.89 (14)C13—C14—C15120.61 (19)
C2—C7—C8106.97 (14)C15—C14—H14119.7
C6—C7—C2118.78 (14)C10—C15—C14120.84 (17)
C6—C7—C8134.25 (14)C10—C15—H15119.6
C1—C8—C7107.03 (15)C14—C15—H15119.6
O1—C6—C7—C2179.47 (12)C4—C5—C6—C70.4 (2)
O1—C6—C7—C80.8 (2)C5—C6—C7—C21.1 (2)
O1—C9—C10—C1190.2 (2)C5—C6—C7—C8178.69 (15)
O1—C9—C10—C1588.3 (2)C6—O1—C9—C10179.00 (13)
N1—C1—C8—C70.28 (18)C6—C7—C8—C1179.77 (16)
N1—C2—C3—C4179.92 (15)C7—C2—C3—C41.5 (2)
N1—C2—C7—C6179.18 (12)C9—O1—C6—C50.9 (2)
N1—C2—C7—C81.00 (15)C9—O1—C6—C7179.63 (14)
C1—N1—C2—C3177.39 (15)C9—C10—C11—C12177.77 (18)
C1—N1—C2—C71.20 (17)C9—C10—C15—C14178.20 (17)
C2—N1—C1—C80.94 (18)C10—C11—C12—C130.4 (3)
C2—C3—C4—C50.0 (2)C11—C10—C15—C140.4 (3)
C2—C7—C8—C10.45 (16)C11—C12—C13—C140.5 (3)
C3—C2—C7—C62.1 (2)C12—C13—C14—C150.9 (3)
C3—C2—C7—C8177.73 (14)C13—C14—C15—C100.5 (3)
C3—C4—C5—C61.0 (2)C15—C10—C11—C120.8 (3)
C4—C5—C6—O1179.00 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.932.613.517 (2)164
Symmetry code: (i) x+3/2, y1/2, z.
2-[4-(Benzyloxy)-1H-indol-3-yl]-2-oxo-N-(propan-2-yl)acetamide (2) top
Crystal data top
C20H20N2O3Dx = 1.239 Mg m3
Mr = 336.38Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 9851 reflections
a = 16.4230 (13) Åθ = 2.6–23.9°
b = 6.5609 (4) ŵ = 0.08 mm1
c = 33.469 (2) ÅT = 300 K
V = 3606.2 (4) Å3Block, brown
Z = 80.34 × 0.30 × 0.08 mm
F(000) = 1424
Data collection top
Bruker D8 Venture CMOS
diffractometer
5295 reflections with I > 2σ(I)
φ and ω scansRint = 0.037
Absorption correction: multi-scan
(SADABS; Bruker, 2021)
θmax = 25.4°, θmin = 2.6°
Tmin = 0.694, Tmax = 0.745h = 1919
48212 measured reflectionsk = 77
6584 independent reflectionsl = 4040
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0416P)2 + 1.3827P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.17 e Å3
6584 reflectionsΔρmin = 0.15 e Å3
468 parametersAbsolute structure: Refined as an inversion twin
4 restraintsAbsolute structure parameter: 0.1 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5240 (2)0.4291 (5)0.63818 (8)0.0793 (10)
O20.4162 (2)0.2561 (6)0.55613 (9)0.0768 (10)
O30.58588 (18)0.8372 (5)0.63145 (7)0.0597 (8)
N10.6357 (2)0.4857 (7)0.51462 (11)0.0679 (11)
H10.6543220.4479620.4917650.081*
N20.4109 (2)0.1572 (6)0.62014 (11)0.0657 (10)
C10.5799 (3)0.3846 (8)0.53570 (13)0.0636 (11)
H1A0.5546980.2647210.5275350.076*
C20.6597 (3)0.6615 (8)0.53495 (12)0.0589 (11)
C30.7126 (3)0.8123 (10)0.52259 (15)0.0748 (15)
H30.7393960.8051870.4981510.090*
C40.7236 (3)0.9720 (9)0.54802 (14)0.0741 (14)
H40.7587451.0768690.5408250.089*
C50.6830 (3)0.9818 (8)0.58479 (12)0.0612 (11)
H50.6921921.0924060.6015600.073*
C60.6296 (2)0.8310 (6)0.59669 (11)0.0492 (10)
C70.6170 (2)0.6621 (6)0.57142 (11)0.0487 (9)
C80.5648 (3)0.4837 (6)0.57149 (11)0.0502 (9)
C90.5135 (3)0.4002 (6)0.60271 (11)0.0523 (10)
C100.4423 (3)0.2625 (6)0.59046 (12)0.0538 (10)
C110.3443 (3)0.0112 (7)0.61586 (14)0.0683 (12)
H110.3105960.0529030.5931000.082*
C120.2927 (4)0.0139 (12)0.6525 (2)0.120 (3)
H12A0.2463030.0729080.6486460.180*
H12B0.2746820.1505660.6576420.180*
H12C0.3239350.0343730.6748320.180*
C130.3778 (4)0.1934 (10)0.6075 (3)0.137 (3)
H13A0.3338750.2876030.6032180.205*
H13B0.4099570.2378640.6297720.205*
H13C0.4112260.1877460.5839790.205*
C140.6120 (3)0.9724 (7)0.66161 (12)0.0606 (11)
H14A0.6118971.1109780.6515360.073*
H14B0.6670600.9384850.6697390.073*
C150.5556 (3)0.9555 (7)0.69666 (12)0.0569 (10)
C160.5345 (3)1.1282 (8)0.71718 (14)0.0739 (13)
H160.5544371.2542550.7090740.089*
C170.4829 (4)1.1146 (11)0.75046 (16)0.0929 (19)
H170.4683981.2316770.7644310.112*
C180.4540 (4)0.9305 (12)0.76219 (16)0.0919 (18)
H180.4206850.9217990.7845790.110*
C190.4728 (4)0.7627 (11)0.74217 (16)0.0945 (19)
H190.4521910.6373470.7503080.113*
C200.5232 (4)0.7744 (9)0.70914 (17)0.0851 (16)
H200.5352840.6561090.6950420.102*
O40.2897 (2)0.4332 (5)0.36366 (8)0.0784 (10)
O50.1974 (2)0.2158 (6)0.44698 (10)0.0901 (11)
O60.35700 (18)0.8328 (5)0.36871 (8)0.0625 (8)
N30.4045 (3)0.4959 (7)0.48712 (12)0.0727 (12)
N40.1780 (3)0.1631 (6)0.38136 (12)0.0727 (11)
C210.3495 (3)0.3903 (8)0.46630 (13)0.0644 (12)
H210.3248530.2703950.4748170.077*
C220.4279 (3)0.6671 (8)0.46657 (13)0.0617 (12)
C230.4817 (3)0.8206 (10)0.47795 (14)0.0741 (14)
H230.5076330.8176350.5026550.089*
C240.4950 (3)0.9755 (9)0.45151 (15)0.0779 (14)
H240.5317391.0781880.4580570.093*
C250.4543 (3)0.9828 (8)0.41458 (13)0.0658 (12)
H250.4641191.0906430.3971890.079*
C260.4000 (3)0.8317 (7)0.40384 (12)0.0537 (10)
C270.3857 (2)0.6662 (7)0.42979 (11)0.0521 (10)
C280.3347 (3)0.4858 (7)0.43015 (11)0.0557 (11)
C290.2838 (3)0.3987 (7)0.39941 (12)0.0602 (11)
C300.2157 (3)0.2463 (7)0.41220 (13)0.0630 (12)
C310.1127 (3)0.0105 (8)0.38476 (16)0.0762 (14)
H310.0797310.0447810.4082150.091*
C320.1477 (4)0.1950 (10)0.3911 (3)0.132 (3)
H32A0.1051640.2881770.3983260.198*
H32B0.1874280.1893900.4120910.198*
H32C0.1732870.2406020.3668690.198*
C330.0584 (4)0.0240 (12)0.3481 (2)0.118 (2)
H33A0.0145350.0718590.3505500.176*
H33B0.0897280.0070080.3246460.176*
H33C0.0366690.1593660.3459160.176*
C340.3794 (3)0.9784 (7)0.33933 (13)0.0627 (11)
H34A0.4352660.9555490.3310100.075*
H34B0.3755531.1147830.3503600.075*
C350.3235 (3)0.9582 (7)0.30415 (12)0.0569 (10)
C360.2928 (4)0.7746 (8)0.29169 (16)0.0822 (16)
H360.3059480.6560600.3055150.099*
C370.2430 (4)0.7651 (11)0.25894 (19)0.102 (2)
H370.2231120.6390730.2507660.122*
C380.2219 (4)0.9337 (13)0.23815 (16)0.0936 (19)
H380.1883300.9240090.2158410.112*
C390.2504 (4)1.1171 (10)0.25040 (16)0.0881 (17)
H390.2358461.2348670.2366850.106*
C400.3017 (3)1.1296 (8)0.28350 (14)0.0709 (13)
H400.3212491.2559850.2916390.085*
H20.433 (2)0.187 (7)0.6439 (7)0.057 (12)*
H4A0.199 (3)0.184 (8)0.3569 (8)0.091 (17)*
H3A0.420 (3)0.448 (7)0.5101 (8)0.086 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.131 (3)0.071 (2)0.0366 (16)0.029 (2)0.0051 (17)0.0044 (14)
O20.091 (2)0.097 (2)0.0430 (17)0.019 (2)0.0148 (16)0.0155 (16)
O30.0653 (17)0.0731 (19)0.0406 (15)0.0187 (15)0.0093 (13)0.0113 (14)
N10.065 (2)0.094 (3)0.045 (2)0.013 (2)0.0100 (18)0.014 (2)
N20.082 (3)0.070 (2)0.046 (2)0.016 (2)0.0082 (19)0.0055 (18)
C10.067 (3)0.072 (3)0.051 (2)0.011 (2)0.000 (2)0.010 (2)
C20.049 (2)0.084 (3)0.043 (2)0.013 (2)0.0008 (19)0.002 (2)
C30.056 (3)0.115 (4)0.054 (3)0.001 (3)0.017 (2)0.001 (3)
C40.059 (3)0.101 (4)0.063 (3)0.012 (3)0.015 (2)0.008 (3)
C50.058 (3)0.071 (3)0.055 (3)0.004 (2)0.009 (2)0.002 (2)
C60.044 (2)0.064 (3)0.040 (2)0.0053 (19)0.0027 (17)0.0007 (19)
C70.045 (2)0.066 (3)0.035 (2)0.0082 (19)0.0007 (16)0.0049 (18)
C80.057 (2)0.059 (2)0.0351 (18)0.010 (2)0.0030 (17)0.0009 (18)
C90.078 (3)0.044 (2)0.035 (2)0.002 (2)0.0022 (19)0.0018 (17)
C100.069 (3)0.050 (2)0.043 (2)0.006 (2)0.0006 (19)0.0052 (17)
C110.071 (3)0.076 (3)0.058 (3)0.013 (2)0.005 (2)0.006 (2)
C120.119 (5)0.144 (6)0.096 (5)0.051 (5)0.019 (4)0.003 (4)
C130.097 (5)0.082 (4)0.232 (10)0.016 (4)0.025 (6)0.044 (5)
C140.060 (3)0.069 (3)0.052 (3)0.004 (2)0.004 (2)0.009 (2)
C150.056 (2)0.070 (3)0.045 (2)0.000 (2)0.0023 (19)0.006 (2)
C160.099 (4)0.074 (3)0.049 (3)0.012 (3)0.003 (2)0.001 (2)
C170.116 (5)0.109 (5)0.053 (3)0.048 (4)0.005 (3)0.015 (3)
C180.083 (4)0.137 (6)0.056 (3)0.000 (4)0.013 (3)0.006 (4)
C190.125 (5)0.104 (5)0.054 (3)0.039 (4)0.016 (3)0.003 (3)
C200.106 (4)0.082 (4)0.068 (3)0.022 (3)0.014 (3)0.017 (3)
O40.129 (3)0.0681 (19)0.0376 (16)0.025 (2)0.0117 (17)0.0062 (15)
O50.102 (3)0.117 (3)0.051 (2)0.014 (2)0.0224 (18)0.0188 (19)
O60.0669 (19)0.0725 (19)0.0483 (17)0.0109 (15)0.0070 (13)0.0182 (14)
N30.070 (2)0.102 (3)0.046 (2)0.028 (2)0.005 (2)0.016 (2)
N40.093 (3)0.073 (3)0.051 (2)0.010 (2)0.015 (2)0.009 (2)
C210.068 (3)0.078 (3)0.048 (2)0.019 (2)0.012 (2)0.014 (2)
C220.058 (3)0.085 (3)0.042 (2)0.023 (2)0.008 (2)0.007 (2)
C230.069 (3)0.109 (4)0.045 (2)0.011 (3)0.009 (2)0.009 (3)
C240.078 (3)0.093 (4)0.064 (3)0.002 (3)0.010 (3)0.014 (3)
C250.068 (3)0.072 (3)0.058 (3)0.001 (2)0.000 (2)0.004 (2)
C260.055 (2)0.063 (3)0.043 (2)0.009 (2)0.0028 (18)0.0016 (19)
C270.052 (2)0.066 (3)0.039 (2)0.017 (2)0.0084 (17)0.0039 (19)
C280.061 (3)0.066 (3)0.040 (2)0.017 (2)0.0141 (19)0.0084 (19)
C290.081 (3)0.055 (2)0.044 (2)0.013 (2)0.017 (2)0.007 (2)
C300.082 (3)0.066 (3)0.041 (2)0.012 (3)0.013 (2)0.012 (2)
C310.073 (3)0.084 (3)0.071 (3)0.009 (3)0.018 (3)0.013 (3)
C320.101 (5)0.079 (4)0.215 (9)0.015 (4)0.027 (5)0.038 (5)
C330.115 (5)0.131 (6)0.107 (5)0.024 (5)0.019 (4)0.013 (4)
C340.071 (3)0.064 (3)0.053 (3)0.005 (2)0.003 (2)0.012 (2)
C350.060 (3)0.067 (3)0.043 (2)0.003 (2)0.0055 (19)0.012 (2)
C360.113 (4)0.076 (3)0.058 (3)0.023 (3)0.012 (3)0.016 (3)
C370.115 (5)0.110 (5)0.080 (4)0.043 (4)0.022 (4)0.006 (3)
C380.085 (4)0.142 (6)0.054 (3)0.006 (4)0.007 (3)0.004 (4)
C390.112 (4)0.095 (4)0.058 (3)0.037 (4)0.006 (3)0.012 (3)
C400.094 (4)0.065 (3)0.054 (3)0.014 (3)0.002 (2)0.004 (2)
Geometric parameters (Å, º) top
O1—C91.215 (4)O4—C291.222 (5)
O2—C101.227 (5)O5—C301.219 (5)
O3—C61.368 (4)O6—C261.372 (5)
O3—C141.411 (5)O6—C341.420 (5)
N1—H10.8600N3—C211.334 (6)
N1—C11.333 (6)N3—C221.372 (7)
N1—C21.396 (6)N3—H3A0.871 (15)
N2—C101.315 (5)N4—C301.322 (6)
N2—C111.461 (6)N4—C311.471 (6)
N2—H20.894 (14)N4—H4A0.897 (15)
C1—H1A0.9300C21—H210.9300
C1—C81.385 (6)C21—C281.384 (6)
C2—C31.381 (7)C22—C231.394 (8)
C2—C71.408 (5)C22—C271.412 (6)
C3—H30.9300C23—H230.9300
C3—C41.362 (8)C23—C241.365 (8)
C4—H40.9300C24—H240.9300
C4—C51.401 (6)C24—C251.406 (6)
C5—H50.9300C25—H250.9300
C5—C61.380 (6)C25—C261.381 (7)
C6—C71.410 (6)C26—C271.410 (6)
C7—C81.451 (6)C27—C281.450 (6)
C8—C91.450 (6)C28—C291.444 (6)
C9—C101.533 (6)C29—C301.560 (6)
C11—H110.9800C31—H310.9800
C11—C121.491 (8)C31—C321.481 (8)
C11—C131.478 (8)C31—C331.520 (8)
C12—H12A0.9600C32—H32A0.9600
C12—H12B0.9600C32—H32B0.9600
C12—H12C0.9600C32—H32C0.9600
C13—H13A0.9600C33—H33A0.9600
C13—H13B0.9600C33—H33B0.9600
C13—H13C0.9600C33—H33C0.9600
C14—H14A0.9700C34—H34A0.9700
C14—H14B0.9700C34—H34B0.9700
C14—C151.499 (6)C34—C351.499 (6)
C15—C161.369 (7)C35—C361.371 (7)
C15—C201.367 (7)C35—C401.368 (6)
C16—H160.9300C36—H360.9300
C16—C171.403 (8)C36—C371.369 (8)
C17—H170.9300C37—H370.9300
C17—C181.356 (9)C37—C381.352 (9)
C18—H180.9300C38—H380.9300
C18—C191.325 (9)C38—C391.355 (9)
C19—H190.9300C39—H390.9300
C19—C201.382 (8)C39—C401.393 (7)
C20—H200.9300C40—H400.9300
C6—O3—C14117.9 (3)C26—O6—C34117.6 (3)
C1—N1—H1124.9C21—N3—C22110.6 (4)
C1—N1—C2110.3 (4)C21—N3—H3A119 (3)
C2—N1—H1124.9C22—N3—H3A131 (3)
C10—N2—C11124.3 (4)C30—N4—C31124.2 (4)
C10—N2—H2113 (3)C30—N4—H4A118 (4)
C11—N2—H2122 (3)C31—N4—H4A117 (4)
N1—C1—H1A124.8N3—C21—H21125.0
N1—C1—C8110.3 (4)N3—C21—C28109.9 (5)
C8—C1—H1A124.8C28—C21—H21125.0
N1—C2—C7106.6 (4)N3—C22—C23129.2 (5)
C3—C2—N1128.6 (4)N3—C22—C27107.2 (4)
C3—C2—C7124.8 (5)C23—C22—C27123.5 (4)
C2—C3—H3121.7C22—C23—H23121.2
C4—C3—C2116.6 (4)C24—C23—C22117.5 (4)
C4—C3—H3121.7C24—C23—H23121.2
C3—C4—H4119.3C23—C24—H24119.4
C3—C4—C5121.4 (5)C23—C24—C25121.3 (5)
C5—C4—H4119.3C25—C24—H24119.4
C4—C5—H5119.2C24—C25—H25119.6
C6—C5—C4121.5 (4)C26—C25—C24120.8 (5)
C6—C5—H5119.2C26—C25—H25119.6
O3—C6—C5123.9 (4)O6—C26—C25123.5 (4)
O3—C6—C7117.1 (4)O6—C26—C27116.5 (4)
C5—C6—C7118.9 (4)C25—C26—C27120.0 (4)
C2—C7—C6116.7 (4)C22—C27—C28106.2 (4)
C2—C7—C8107.0 (4)C26—C27—C22116.9 (4)
C6—C7—C8136.1 (3)C26—C27—C28136.9 (4)
C1—C8—C7105.8 (4)C21—C28—C27106.0 (4)
C1—C8—C9123.4 (4)C21—C28—C29123.1 (4)
C9—C8—C7130.5 (3)C29—C28—C27130.7 (4)
O1—C9—C8124.3 (4)O4—C29—C28125.4 (4)
O1—C9—C10117.5 (4)O4—C29—C30116.4 (4)
C8—C9—C10118.2 (3)C28—C29—C30118.3 (3)
O2—C10—N2123.5 (4)O5—C30—N4124.2 (5)
O2—C10—C9122.5 (4)O5—C30—C29123.0 (4)
N2—C10—C9114.0 (4)N4—C30—C29112.7 (4)
N2—C11—H11108.4N4—C31—H31108.0
N2—C11—C12109.7 (4)N4—C31—C32110.3 (5)
N2—C11—C13109.6 (4)N4—C31—C33109.0 (4)
C12—C11—H11108.4C32—C31—H31108.0
C13—C11—H11108.4C32—C31—C33113.3 (6)
C13—C11—C12112.2 (6)C33—C31—H31108.0
C11—C12—H12A109.5C31—C32—H32A109.5
C11—C12—H12B109.5C31—C32—H32B109.5
C11—C12—H12C109.5C31—C32—H32C109.5
H12A—C12—H12B109.5H32A—C32—H32B109.5
H12A—C12—H12C109.5H32A—C32—H32C109.5
H12B—C12—H12C109.5H32B—C32—H32C109.5
C11—C13—H13A109.5C31—C33—H33A109.5
C11—C13—H13B109.5C31—C33—H33B109.5
C11—C13—H13C109.5C31—C33—H33C109.5
H13A—C13—H13B109.5H33A—C33—H33B109.5
H13A—C13—H13C109.5H33A—C33—H33C109.5
H13B—C13—H13C109.5H33B—C33—H33C109.5
O3—C14—H14A109.9O6—C34—H34A109.9
O3—C14—H14B109.9O6—C34—H34B109.9
O3—C14—C15109.0 (3)O6—C34—C35109.0 (3)
H14A—C14—H14B108.3H34A—C34—H34B108.3
C15—C14—H14A109.9C35—C34—H34A109.9
C15—C14—H14B109.9C35—C34—H34B109.9
C16—C15—C14119.2 (4)C36—C35—C34122.8 (4)
C20—C15—C14122.9 (4)C40—C35—C34119.0 (4)
C20—C15—C16117.9 (4)C40—C35—C36118.2 (4)
C15—C16—H16120.1C35—C36—H36119.9
C15—C16—C17119.9 (5)C37—C36—C35120.2 (5)
C17—C16—H16120.1C37—C36—H36119.9
C16—C17—H17120.1C36—C37—H37119.1
C18—C17—C16119.8 (5)C38—C37—C36121.9 (6)
C18—C17—H17120.1C38—C37—H37119.1
C17—C18—H18119.6C37—C38—H38120.6
C19—C18—C17120.8 (5)C37—C38—C39118.8 (5)
C19—C18—H18119.6C39—C38—H38120.6
C18—C19—H19120.1C38—C39—H39119.9
C18—C19—C20119.8 (6)C38—C39—C40120.1 (5)
C20—C19—H19120.1C40—C39—H39119.9
C15—C20—C19121.7 (5)C35—C40—C39120.8 (5)
C15—C20—H20119.1C35—C40—H40119.6
C19—C20—H20119.1C39—C40—H40119.6
O1—C9—C10—O2164.9 (5)O4—C29—C30—O5171.7 (5)
O1—C9—C10—N213.5 (6)O4—C29—C30—N45.2 (6)
O3—C6—C7—C2177.4 (3)O6—C26—C27—C22178.1 (3)
O3—C6—C7—C82.7 (7)O6—C26—C27—C280.7 (7)
O3—C14—C15—C16141.2 (4)O6—C34—C35—C3634.8 (6)
O3—C14—C15—C2038.2 (6)O6—C34—C35—C40145.0 (4)
N1—C1—C8—C70.2 (5)N3—C21—C28—C270.4 (5)
N1—C1—C8—C9173.3 (4)N3—C21—C28—C29174.1 (4)
N1—C2—C3—C4178.1 (5)N3—C22—C23—C24179.5 (5)
N1—C2—C7—C6178.0 (3)N3—C22—C27—C26179.2 (4)
N1—C2—C7—C81.8 (4)N3—C22—C27—C281.0 (4)
C1—N1—C2—C3176.3 (5)C21—N3—C22—C23178.0 (5)
C1—N1—C2—C72.0 (5)C21—N3—C22—C271.3 (5)
C1—C8—C9—O1147.7 (5)C21—C28—C29—O4153.3 (5)
C1—C8—C9—C1030.9 (6)C21—C28—C29—C3026.2 (6)
C2—N1—C1—C81.4 (5)C22—N3—C21—C281.1 (5)
C2—C3—C4—C50.0 (8)C22—C23—C24—C251.6 (8)
C2—C7—C8—C11.0 (4)C22—C27—C28—C210.4 (4)
C2—C7—C8—C9173.9 (4)C22—C27—C28—C29174.3 (4)
C3—C2—C7—C60.4 (6)C23—C22—C27—C260.1 (6)
C3—C2—C7—C8176.6 (4)C23—C22—C27—C28178.3 (4)
C3—C4—C5—C60.6 (8)C23—C24—C25—C260.6 (8)
C4—C5—C6—O3177.2 (4)C24—C25—C26—O6178.4 (4)
C4—C5—C6—C71.1 (6)C24—C25—C26—C270.9 (7)
C5—C6—C7—C21.0 (5)C25—C26—C27—C221.2 (6)
C5—C6—C7—C8175.7 (4)C25—C26—C27—C28178.6 (4)
C6—O3—C14—C15179.6 (4)C26—O6—C34—C35178.2 (4)
C6—C7—C8—C1176.1 (4)C26—C27—C28—C21178.0 (5)
C6—C7—C8—C911.0 (8)C26—C27—C28—C298.1 (8)
C7—C2—C3—C40.1 (7)C27—C22—C23—C241.3 (7)
C7—C8—C9—O124.1 (7)C27—C28—C29—O419.7 (7)
C7—C8—C9—C10157.3 (4)C27—C28—C29—C30160.8 (4)
C8—C9—C10—O216.4 (6)C28—C29—C30—O58.8 (6)
C8—C9—C10—N2165.2 (4)C28—C29—C30—N4174.3 (4)
C10—N2—C11—C12146.4 (5)C30—N4—C31—C3281.7 (7)
C10—N2—C11—C1390.0 (6)C30—N4—C31—C33153.3 (5)
C11—N2—C10—O23.5 (7)C31—N4—C30—O54.7 (8)
C11—N2—C10—C9178.1 (4)C31—N4—C30—C29178.5 (4)
C14—O3—C6—C518.0 (6)C34—O6—C26—C2510.6 (6)
C14—O3—C6—C7163.8 (4)C34—O6—C26—C27170.1 (4)
C14—C15—C16—C17178.9 (4)C34—C35—C36—C37179.0 (5)
C14—C15—C20—C19178.4 (5)C34—C35—C40—C39179.4 (4)
C15—C16—C17—C180.1 (8)C35—C36—C37—C380.5 (10)
C16—C15—C20—C192.1 (8)C36—C35—C40—C390.8 (7)
C16—C17—C18—C191.3 (9)C36—C37—C38—C390.6 (10)
C17—C18—C19—C200.7 (10)C37—C38—C39—C401.0 (9)
C18—C19—C20—C151.0 (10)C38—C39—C40—C350.3 (8)
C20—C15—C16—C171.6 (7)C40—C35—C36—C371.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.861.982.810 (5)164
N3—H3A···O20.87 (2)1.99 (3)2.801 (5)154 (5)
Symmetry code: (i) x+1/2, y+1/2, z.
{2-[4-(Benzyloxy)-1H-indol-3-yl]ethyl}(propan-2-yl)azanium chloride (3a) top
Crystal data top
C20H25N2O+·ClZ = 4
Mr = 344.87F(000) = 736
Triclinic, P1Dx = 1.188 Mg m3
a = 10.1895 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9117 (7) ÅCell parameters from 9870 reflections
c = 17.6887 (14) Åθ = 2.8–25.6°
α = 86.798 (3)°µ = 0.21 mm1
β = 79.340 (3)°T = 300 K
γ = 87.587 (3)°Blcok, colourless
V = 1928.7 (3) Å30.30 × 0.27 × 0.20 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
5589 reflections with I > 2σ(I)
φ and ω scansRint = 0.033
Absorption correction: multi-scan
(SADABS; Bruker, 2021)
θmax = 25.8°, θmin = 2.7°
Tmin = 0.658, Tmax = 0.745h = 1212
42151 measured reflectionsk = 1313
7362 independent reflectionsl = 2121
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.7204P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
7362 reflectionsΔρmax = 0.26 e Å3
461 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.92323 (5)0.67300 (4)0.44633 (3)0.05824 (14)
Cl20.34634 (5)0.14033 (4)0.04745 (3)0.05806 (14)
O10.96246 (14)0.75588 (11)0.81683 (7)0.0543 (3)
O20.58220 (15)0.24805 (12)0.28702 (8)0.0599 (4)
N11.00390 (18)1.05554 (15)0.62139 (10)0.0569 (4)
N20.88071 (16)0.54312 (14)0.61023 (9)0.0472 (4)
N30.55205 (18)0.60081 (15)0.13621 (10)0.0571 (4)
N40.44895 (16)0.07170 (13)0.10585 (8)0.0447 (3)
C10.9363 (2)0.95917 (17)0.60396 (11)0.0522 (4)
H1A0.9023110.9551480.5589050.063*
C21.03828 (19)1.03071 (16)0.69185 (11)0.0493 (4)
C31.1079 (2)1.10215 (18)0.73283 (13)0.0618 (5)
H31.1385371.1788200.7134790.074*
C41.1292 (2)1.05469 (19)0.80252 (13)0.0685 (6)
H41.1761741.0999750.8310380.082*
C51.0825 (2)0.93968 (19)0.83272 (12)0.0622 (5)
H51.0981890.9106550.8807990.075*
C61.01364 (19)0.86924 (16)0.79188 (10)0.0488 (4)
C70.99032 (17)0.91381 (15)0.71935 (10)0.0422 (4)
C80.92513 (17)0.86917 (15)0.66134 (10)0.0429 (4)
C90.85418 (17)0.75285 (16)0.65954 (11)0.0478 (4)
H9A0.8019520.7617370.6188270.057*
H9B0.7923510.7408930.7079060.057*
C100.94459 (19)0.63883 (16)0.64680 (11)0.0504 (4)
H10A1.0284500.6605880.6140390.060*
H10B0.9638910.6061010.6958280.060*
C110.7499 (2)0.4955 (2)0.65233 (14)0.0660 (6)
H110.6922270.5654250.6716270.079*
C120.6860 (3)0.4335 (3)0.5953 (2)0.1251 (13)
H12A0.6001120.4050050.6201400.188*
H12B0.7417600.3650910.5756360.188*
H12C0.6752640.4909390.5535170.188*
C130.7723 (3)0.4133 (3)0.71931 (19)0.1196 (12)
H13A0.6887110.3808180.7450180.179*
H13B0.8096150.4591360.7545220.179*
H13C0.8329620.3469070.7014860.179*
C140.9880 (3)0.70915 (19)0.89042 (12)0.0694 (6)
H14A0.9417570.7607710.9305090.083*
H14B1.0830120.7102110.8909000.083*
C150.9408 (2)0.58056 (17)0.90557 (11)0.0529 (5)
C161.0015 (3)0.4873 (2)0.86211 (13)0.0793 (7)
H161.0690070.5042420.8201620.095*
C170.9628 (4)0.3679 (2)0.88032 (17)0.0979 (10)
H171.0035860.3047560.8502900.117*
C180.8641 (3)0.3422 (2)0.94272 (17)0.0867 (8)
H180.8384640.2616970.9552740.104*
C190.8042 (2)0.4345 (2)0.98584 (15)0.0744 (7)
H190.7374860.4174671.0281760.089*
C200.8420 (2)0.55345 (19)0.96718 (12)0.0604 (5)
H200.7997280.6164320.9968640.072*
C210.4874 (2)0.50805 (17)0.11145 (11)0.0540 (5)
H210.4436990.5152330.0695970.065*
C220.60418 (18)0.55794 (16)0.19888 (11)0.0492 (4)
C230.6753 (2)0.6196 (2)0.24423 (13)0.0636 (5)
H230.6955150.7017660.2336280.076*
C240.7138 (2)0.5547 (2)0.30457 (14)0.0701 (6)
H240.7607230.5938640.3361060.084*
C250.6851 (2)0.4307 (2)0.32078 (12)0.0630 (5)
H250.7135980.3890180.3624520.076*
C260.61511 (19)0.36954 (17)0.27569 (10)0.0492 (4)
C270.57152 (17)0.43356 (15)0.21327 (9)0.0423 (4)
C280.49560 (18)0.40345 (15)0.15642 (9)0.0438 (4)
C290.42841 (18)0.28675 (16)0.14869 (10)0.0483 (4)
H29A0.3678670.3022830.1126320.058*
H29B0.3751320.2629030.1982410.058*
C300.52222 (18)0.18076 (16)0.12175 (10)0.0469 (4)
H30A0.5829220.2068450.0752400.056*
H30B0.5750940.1573530.1608710.056*
C310.3427 (2)0.02117 (18)0.16887 (11)0.0548 (5)
H310.2753390.0864460.1836180.066*
C320.4012 (3)0.0205 (2)0.23822 (13)0.0850 (8)
H32A0.4365500.0485460.2581900.128*
H32B0.4716600.0806590.2238430.128*
H32C0.3329630.0560950.2769880.128*
C330.2771 (2)0.0812 (2)0.13661 (15)0.0756 (7)
H33A0.2040930.1110160.1746160.113*
H33B0.3413520.1470180.1233270.113*
H33C0.2442250.0505410.0914690.113*
C340.6554 (2)0.1705 (2)0.33397 (12)0.0656 (6)
H34A0.7473010.1960680.3248150.079*
H34B0.6559490.0868740.3180310.079*
C350.60064 (19)0.17215 (17)0.41881 (11)0.0516 (4)
C360.4761 (2)0.2165 (3)0.44842 (15)0.0865 (8)
H360.4224030.2512460.4152270.104*
C370.4278 (3)0.2110 (3)0.52678 (16)0.0948 (9)
H370.3425220.2424620.5456060.114*
C380.5026 (3)0.1608 (2)0.57590 (14)0.0775 (7)
H380.4695080.1557620.6285820.093*
C390.6263 (3)0.1178 (3)0.54767 (14)0.0979 (9)
H390.6793410.0833730.5813280.117*
C400.6759 (3)0.1238 (3)0.46979 (13)0.0837 (8)
H400.7623840.0943240.4517310.100*
H11.015 (2)1.1243 (12)0.5942 (11)0.067 (6)*
H2A0.9443 (16)0.4778 (14)0.6006 (11)0.063 (6)*
H2B0.868 (2)0.5789 (17)0.5622 (7)0.064 (6)*
H3A0.567 (2)0.6707 (13)0.1113 (12)0.082 (8)*
H4A0.5134 (15)0.0084 (13)0.0920 (10)0.053 (5)*
H4B0.4086 (19)0.0901 (18)0.0626 (8)0.061 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0705 (3)0.0464 (3)0.0552 (3)0.0067 (2)0.0081 (2)0.0021 (2)
Cl20.0782 (4)0.0465 (3)0.0504 (3)0.0089 (2)0.0167 (2)0.00195 (19)
O10.0714 (9)0.0488 (7)0.0461 (7)0.0095 (6)0.0207 (6)0.0075 (5)
O20.0800 (10)0.0513 (8)0.0553 (8)0.0016 (7)0.0317 (7)0.0025 (6)
N10.0722 (11)0.0430 (9)0.0551 (10)0.0021 (8)0.0136 (8)0.0085 (7)
N20.0496 (9)0.0416 (8)0.0488 (9)0.0019 (7)0.0038 (7)0.0059 (7)
N30.0707 (11)0.0428 (9)0.0561 (10)0.0033 (8)0.0077 (8)0.0020 (7)
N40.0547 (9)0.0424 (8)0.0372 (8)0.0007 (7)0.0072 (7)0.0075 (6)
C10.0586 (12)0.0526 (11)0.0454 (10)0.0041 (9)0.0110 (9)0.0011 (8)
C20.0543 (11)0.0406 (9)0.0521 (10)0.0001 (8)0.0082 (8)0.0017 (8)
C30.0728 (14)0.0436 (11)0.0716 (13)0.0110 (9)0.0179 (11)0.0015 (9)
C40.0830 (16)0.0544 (12)0.0760 (15)0.0141 (11)0.0301 (12)0.0107 (10)
C50.0782 (15)0.0588 (12)0.0558 (12)0.0073 (10)0.0279 (11)0.0006 (9)
C60.0560 (11)0.0430 (10)0.0483 (10)0.0014 (8)0.0119 (8)0.0013 (8)
C70.0439 (9)0.0380 (9)0.0443 (9)0.0011 (7)0.0066 (7)0.0037 (7)
C80.0424 (9)0.0435 (9)0.0421 (9)0.0039 (7)0.0060 (7)0.0053 (7)
C90.0411 (10)0.0505 (10)0.0506 (10)0.0004 (8)0.0034 (8)0.0118 (8)
C100.0492 (11)0.0479 (10)0.0556 (11)0.0003 (8)0.0127 (8)0.0059 (8)
C110.0536 (12)0.0550 (12)0.0834 (15)0.0090 (9)0.0065 (11)0.0087 (10)
C120.085 (2)0.125 (3)0.171 (3)0.0436 (19)0.014 (2)0.052 (2)
C130.101 (2)0.113 (2)0.116 (2)0.0037 (18)0.0356 (19)0.049 (2)
C140.0998 (18)0.0593 (13)0.0554 (12)0.0121 (12)0.0327 (12)0.0105 (10)
C150.0661 (13)0.0496 (11)0.0453 (10)0.0032 (9)0.0192 (9)0.0041 (8)
C160.103 (2)0.0744 (16)0.0540 (13)0.0122 (13)0.0007 (12)0.0045 (11)
C170.158 (3)0.0610 (16)0.0798 (18)0.0265 (17)0.0355 (19)0.0222 (13)
C180.125 (2)0.0573 (15)0.0916 (19)0.0223 (15)0.0574 (18)0.0139 (13)
C190.0616 (14)0.0821 (17)0.0806 (16)0.0122 (12)0.0211 (12)0.0216 (13)
C200.0604 (13)0.0627 (13)0.0576 (12)0.0125 (10)0.0146 (10)0.0020 (9)
C210.0631 (12)0.0541 (11)0.0453 (10)0.0054 (9)0.0124 (9)0.0035 (8)
C220.0472 (10)0.0475 (10)0.0503 (10)0.0033 (8)0.0007 (8)0.0071 (8)
C230.0623 (13)0.0569 (12)0.0718 (14)0.0165 (10)0.0057 (11)0.0160 (10)
C240.0637 (14)0.0817 (16)0.0701 (14)0.0203 (12)0.0157 (11)0.0232 (12)
C250.0601 (13)0.0785 (15)0.0554 (12)0.0076 (11)0.0213 (10)0.0064 (10)
C260.0492 (11)0.0525 (11)0.0468 (10)0.0026 (8)0.0100 (8)0.0061 (8)
C270.0417 (9)0.0441 (9)0.0404 (9)0.0010 (7)0.0043 (7)0.0080 (7)
C280.0475 (10)0.0447 (9)0.0389 (9)0.0024 (7)0.0060 (7)0.0073 (7)
C290.0484 (10)0.0508 (10)0.0467 (10)0.0001 (8)0.0091 (8)0.0108 (8)
C300.0484 (10)0.0483 (10)0.0436 (9)0.0032 (8)0.0046 (8)0.0105 (7)
C310.0597 (12)0.0527 (11)0.0489 (10)0.0084 (9)0.0001 (9)0.0048 (8)
C320.108 (2)0.0951 (18)0.0491 (12)0.0190 (15)0.0087 (13)0.0137 (12)
C330.0767 (16)0.0639 (14)0.0851 (16)0.0214 (12)0.0064 (13)0.0075 (12)
C340.0764 (15)0.0659 (13)0.0562 (12)0.0195 (11)0.0217 (11)0.0027 (10)
C350.0540 (11)0.0476 (10)0.0555 (11)0.0055 (8)0.0187 (9)0.0005 (8)
C360.0594 (14)0.128 (2)0.0729 (16)0.0244 (14)0.0234 (12)0.0059 (15)
C370.0599 (15)0.134 (3)0.0820 (18)0.0177 (15)0.0019 (13)0.0025 (17)
C380.0893 (18)0.0795 (16)0.0592 (13)0.0041 (13)0.0058 (13)0.0061 (11)
C390.107 (2)0.128 (2)0.0575 (14)0.0461 (19)0.0248 (14)0.0058 (14)
C400.0757 (16)0.112 (2)0.0617 (14)0.0441 (14)0.0193 (12)0.0026 (13)
Geometric parameters (Å, º) top
O1—C61.380 (2)C16—H160.9300
O1—C141.436 (2)C16—C171.380 (4)
O2—C261.376 (2)C17—H170.9300
O2—C341.435 (2)C17—C181.374 (4)
N1—C11.360 (3)C18—H180.9300
N1—C21.366 (2)C18—C191.353 (4)
N1—H10.868 (9)C19—H190.9300
N2—C101.490 (2)C19—C201.374 (3)
N2—C111.500 (2)C20—H200.9300
N2—H2A0.944 (9)C21—H210.9300
N2—H2B0.945 (9)C21—C281.363 (2)
N3—C211.365 (3)C22—C231.392 (3)
N3—C221.367 (2)C22—C271.409 (2)
N3—H3A0.863 (10)C23—H230.9300
N4—C301.498 (2)C23—C241.357 (3)
N4—C311.501 (2)C24—H240.9300
N4—H4A0.943 (9)C24—C251.399 (3)
N4—H4B0.941 (9)C25—H250.9300
C1—H1A0.9300C25—C261.378 (3)
C1—C81.365 (2)C26—C271.405 (2)
C2—C31.392 (3)C27—C281.437 (2)
C2—C71.413 (2)C28—C291.495 (2)
C3—H30.9300C29—H29A0.9700
C3—C41.361 (3)C29—H29B0.9700
C4—H40.9300C29—C301.509 (2)
C4—C51.403 (3)C30—H30A0.9700
C5—H50.9300C30—H30B0.9700
C5—C61.378 (3)C31—H310.9800
C6—C71.405 (2)C31—C321.501 (3)
C7—C81.438 (2)C31—C331.516 (3)
C8—C91.492 (2)C32—H32A0.9600
C9—H9A0.9700C32—H32B0.9600
C9—H9B0.9700C32—H32C0.9600
C9—C101.518 (2)C33—H33A0.9600
C10—H10A0.9700C33—H33B0.9600
C10—H10B0.9700C33—H33C0.9600
C11—H110.9800C34—H34A0.9700
C11—C121.503 (4)C34—H34B0.9700
C11—C131.492 (4)C34—C351.502 (3)
C12—H12A0.9600C35—C361.360 (3)
C12—H12B0.9600C35—C401.360 (3)
C12—H12C0.9600C36—H360.9300
C13—H13A0.9600C36—C371.381 (4)
C13—H13B0.9600C37—H370.9300
C13—H13C0.9600C37—C381.339 (3)
C14—H14A0.9700C38—H380.9300
C14—H14B0.9700C38—C391.342 (4)
C14—C151.497 (3)C39—H390.9300
C15—C161.367 (3)C39—C401.376 (3)
C15—C201.368 (3)C40—H400.9300
C6—O1—C14115.71 (14)C18—C17—H17119.9
C26—O2—C34117.54 (16)C17—C18—H18120.2
C1—N1—C2108.70 (15)C19—C18—C17119.7 (2)
C1—N1—H1124.7 (15)C19—C18—H18120.2
C2—N1—H1126.2 (15)C18—C19—H19119.9
C10—N2—C11117.90 (15)C18—C19—C20120.1 (2)
C10—N2—H2A106.6 (13)C20—C19—H19119.9
C10—N2—H2B105.5 (13)C15—C20—C19120.9 (2)
C11—N2—H2A110.2 (13)C15—C20—H20119.5
C11—N2—H2B108.4 (13)C19—C20—H20119.5
H2A—N2—H2B107.8 (18)N3—C21—H21124.6
C21—N3—C22108.79 (15)C28—C21—N3110.75 (17)
C21—N3—H3A123.8 (17)C28—C21—H21124.6
C22—N3—H3A126.8 (17)N3—C22—C23129.43 (18)
C30—N4—C31118.11 (13)N3—C22—C27107.60 (16)
C30—N4—H4A107.1 (12)C23—C22—C27122.96 (19)
C30—N4—H4B109.6 (12)C22—C23—H23121.4
C31—N4—H4A108.1 (12)C24—C23—C22117.2 (2)
C31—N4—H4B107.0 (13)C24—C23—H23121.4
H4A—N4—H4B106.4 (17)C23—C24—H24119.0
N1—C1—H1A124.5C23—C24—C25122.00 (19)
N1—C1—C8111.04 (17)C25—C24—H24119.0
C8—C1—H1A124.5C24—C25—H25119.6
N1—C2—C3129.08 (18)C26—C25—C24120.8 (2)
N1—C2—C7107.80 (16)C26—C25—H25119.6
C3—C2—C7123.13 (18)O2—C26—C25124.99 (18)
C2—C3—H3121.5O2—C26—C27115.83 (15)
C4—C3—C2116.96 (18)C25—C26—C27119.19 (18)
C4—C3—H3121.5C22—C27—C28107.04 (15)
C3—C4—H4118.9C26—C27—C22117.85 (16)
C3—C4—C5122.12 (19)C26—C27—C28135.10 (16)
C5—C4—H4118.9C21—C28—C27105.81 (16)
C4—C5—H5119.7C21—C28—C29124.87 (17)
C6—C5—C4120.69 (19)C27—C28—C29129.18 (16)
C6—C5—H5119.7C28—C29—H29A108.6
O1—C6—C7115.58 (15)C28—C29—H29B108.6
C5—C6—O1125.13 (17)C28—C29—C30114.73 (15)
C5—C6—C7119.28 (17)H29A—C29—H29B107.6
C2—C7—C8106.75 (15)C30—C29—H29A108.6
C6—C7—C2117.81 (16)C30—C29—H29B108.6
C6—C7—C8135.44 (16)N4—C30—C29112.12 (15)
C1—C8—C7105.72 (16)N4—C30—H30A109.2
C1—C8—C9123.63 (17)N4—C30—H30B109.2
C7—C8—C9130.62 (16)C29—C30—H30A109.2
C8—C9—H9A108.6C29—C30—H30B109.2
C8—C9—H9B108.6H30A—C30—H30B107.9
C8—C9—C10114.85 (15)N4—C31—H31108.5
H9A—C9—H9B107.5N4—C31—C33107.79 (16)
C10—C9—H9A108.6C32—C31—N4110.56 (18)
C10—C9—H9B108.6C32—C31—H31108.5
N2—C10—C9111.09 (15)C32—C31—C33112.83 (19)
N2—C10—H10A109.4C33—C31—H31108.5
N2—C10—H10B109.4C31—C32—H32A109.5
C9—C10—H10A109.4C31—C32—H32B109.5
C9—C10—H10B109.4C31—C32—H32C109.5
H10A—C10—H10B108.0H32A—C32—H32B109.5
N2—C11—H11108.6H32A—C32—H32C109.5
N2—C11—C12107.6 (2)H32B—C32—H32C109.5
C12—C11—H11108.6C31—C33—H33A109.5
C13—C11—N2109.8 (2)C31—C33—H33B109.5
C13—C11—H11108.6C31—C33—H33C109.5
C13—C11—C12113.6 (3)H33A—C33—H33B109.5
C11—C12—H12A109.5H33A—C33—H33C109.5
C11—C12—H12B109.5H33B—C33—H33C109.5
C11—C12—H12C109.5O2—C34—H34A108.7
H12A—C12—H12B109.5O2—C34—H34B108.7
H12A—C12—H12C109.5O2—C34—C35114.29 (17)
H12B—C12—H12C109.5H34A—C34—H34B107.6
C11—C13—H13A109.5C35—C34—H34A108.7
C11—C13—H13B109.5C35—C34—H34B108.7
C11—C13—H13C109.5C36—C35—C34123.43 (19)
H13A—C13—H13B109.5C36—C35—C40117.1 (2)
H13A—C13—H13C109.5C40—C35—C34119.48 (19)
H13B—C13—H13C109.5C35—C36—H36119.3
O1—C14—H14A109.7C35—C36—C37121.4 (2)
O1—C14—H14B109.8C37—C36—H36119.3
O1—C14—C15109.60 (16)C36—C37—H37119.7
H14A—C14—H14B108.2C38—C37—C36120.6 (2)
C15—C14—H14A109.7C38—C37—H37119.7
C15—C14—H14B109.8C37—C38—H38120.6
C16—C15—C14121.0 (2)C37—C38—C39118.7 (2)
C16—C15—C20119.0 (2)C39—C38—H38120.6
C20—C15—C14119.89 (19)C38—C39—H39119.4
C15—C16—H16119.9C38—C39—C40121.1 (2)
C15—C16—C17120.2 (2)C40—C39—H39119.4
C17—C16—H16119.9C35—C40—C39121.0 (2)
C16—C17—H17119.9C35—C40—H40119.5
C18—C17—C16120.1 (2)C39—C40—H40119.5
O1—C6—C7—C2178.71 (16)C14—O1—C6—C7179.02 (18)
O1—C6—C7—C80.9 (3)C14—C15—C16—C17175.4 (2)
O1—C14—C15—C1666.8 (3)C14—C15—C20—C19174.8 (2)
O1—C14—C15—C20118.0 (2)C15—C16—C17—C180.7 (4)
O2—C26—C27—C22179.31 (15)C16—C15—C20—C190.4 (3)
O2—C26—C27—C281.4 (3)C16—C17—C18—C190.5 (4)
O2—C34—C35—C3615.9 (3)C17—C18—C19—C200.1 (4)
O2—C34—C35—C40166.3 (2)C18—C19—C20—C150.6 (3)
N1—C1—C8—C70.4 (2)C20—C15—C16—C170.2 (4)
N1—C1—C8—C9178.92 (16)C21—N3—C22—C23178.5 (2)
N1—C2—C3—C4179.8 (2)C21—N3—C22—C270.4 (2)
N1—C2—C7—C6179.56 (16)C21—C28—C29—C30112.7 (2)
N1—C2—C7—C80.1 (2)C22—N3—C21—C280.2 (2)
N3—C21—C28—C270.2 (2)C22—C23—C24—C250.6 (3)
N3—C21—C28—C29175.82 (16)C22—C27—C28—C210.45 (19)
N3—C22—C23—C24178.9 (2)C22—C27—C28—C29175.33 (17)
N3—C22—C27—C26179.99 (16)C23—C22—C27—C261.0 (3)
N3—C22—C27—C280.54 (19)C23—C22—C27—C28178.44 (17)
C1—N1—C2—C3179.9 (2)C23—C24—C25—C260.4 (3)
C1—N1—C2—C70.1 (2)C24—C25—C26—O2179.99 (19)
C1—C8—C9—C10108.3 (2)C24—C25—C26—C270.5 (3)
C2—N1—C1—C80.3 (2)C25—C26—C27—C221.2 (3)
C2—C3—C4—C50.6 (3)C25—C26—C27—C28178.05 (19)
C2—C7—C8—C10.32 (19)C26—O2—C34—C3585.8 (2)
C2—C7—C8—C9178.69 (17)C26—C27—C28—C21179.8 (2)
C3—C2—C7—C60.6 (3)C26—C27—C28—C294.0 (3)
C3—C2—C7—C8179.69 (18)C27—C22—C23—C240.1 (3)
C3—C4—C5—C60.7 (4)C27—C28—C29—C3072.3 (2)
C4—C5—C6—O1179.2 (2)C28—C29—C30—N4172.94 (14)
C4—C5—C6—C70.0 (3)C30—N4—C31—C3260.6 (2)
C5—C6—C7—C20.6 (3)C30—N4—C31—C33175.65 (17)
C5—C6—C7—C8179.9 (2)C31—N4—C30—C2954.9 (2)
C6—O1—C14—C15173.52 (17)C34—O2—C26—C2518.4 (3)
C6—C7—C8—C1179.3 (2)C34—O2—C26—C27162.13 (16)
C6—C7—C8—C90.9 (3)C34—C35—C36—C37177.0 (3)
C7—C2—C3—C40.0 (3)C34—C35—C40—C39176.5 (3)
C7—C8—C9—C1073.5 (2)C35—C36—C37—C380.4 (5)
C8—C9—C10—N2153.55 (15)C36—C35—C40—C391.5 (4)
C10—N2—C11—C12162.3 (2)C36—C37—C38—C391.1 (5)
C10—N2—C11—C1373.6 (3)C37—C38—C39—C400.5 (5)
C11—N2—C10—C959.7 (2)C38—C39—C40—C350.8 (5)
C14—O1—C6—C51.8 (3)C40—C35—C36—C370.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.87 (1)2.36 (1)3.1969 (17)162 (2)
N2—H2A···Cl1ii0.94 (1)2.18 (1)3.1114 (16)167 (2)
N2—H2B···Cl10.95 (1)2.23 (1)3.1191 (16)157 (2)
N3—H3A···Cl2iii0.86 (1)2.42 (1)3.2657 (17)168 (2)
N4—H4A···Cl2iv0.94 (1)2.20 (1)3.1360 (16)173 (2)
N4—H4B···Cl20.94 (1)2.19 (1)3.1247 (16)171 (2)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y, z.
3-[2-(Propan-2-ylamino)ethyl]-1H-indol-4-ol (4) top
Crystal data top
C13H18N2ODx = 1.207 Mg m3
Mr = 218.29Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9906 reflections
a = 8.4065 (5) Åθ = 2.8–25.6°
b = 14.3944 (9) ŵ = 0.08 mm1
c = 19.8501 (10) ÅT = 300 K
V = 2402.0 (2) Å3Block, colourless
Z = 80.33 × 0.25 × 0.20 mm
F(000) = 944
Data collection top
Bruker D8 Venture CMOS
diffractometer
2121 reflections with I > 2σ(I)
φ and ω scansRint = 0.050
Absorption correction: multi-scan
(SADABS; Bruker, 2021)
θmax = 26.4°, θmin = 2.8°
Tmin = 0.715, Tmax = 0.745h = 1010
61022 measured reflectionsk = 1818
2461 independent reflectionsl = 2424
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.7218P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2461 reflectionsΔρmax = 0.18 e Å3
159 parametersΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61118 (12)0.61010 (6)0.38334 (6)0.0478 (3)
N10.77344 (18)0.91907 (9)0.37395 (8)0.0551 (4)
N20.32230 (14)0.67852 (8)0.37951 (6)0.0397 (3)
C10.6437 (2)0.90682 (11)0.33371 (9)0.0522 (4)
H1B0.5953230.9539940.3091070.063*
C20.81228 (17)0.83572 (10)0.40260 (7)0.0406 (3)
C30.93477 (18)0.81377 (11)0.44719 (8)0.0496 (4)
H31.0065710.8585740.4618560.059*
C40.94493 (19)0.72347 (12)0.46850 (8)0.0496 (4)
H41.0257590.7065850.4980490.060*
C50.83653 (18)0.65601 (11)0.44684 (8)0.0439 (4)
H50.8464250.5954290.4625700.053*
C60.71540 (16)0.67743 (9)0.40270 (7)0.0350 (3)
C70.70144 (15)0.76948 (9)0.37899 (6)0.0332 (3)
C80.59388 (17)0.81690 (10)0.33409 (7)0.0400 (3)
C90.45501 (19)0.78061 (12)0.29482 (8)0.0496 (4)
H9A0.4865630.7234330.2726820.060*
H9B0.4286230.8252570.2599600.060*
C100.30611 (18)0.76164 (12)0.33657 (9)0.0516 (4)
H10A0.2843110.8151240.3648300.062*
H10B0.2162370.7533240.3065280.062*
C110.21361 (17)0.60121 (11)0.36284 (8)0.0458 (4)
H110.1053920.6257690.3584030.055*
C120.2167 (2)0.53158 (12)0.41978 (10)0.0643 (5)
H12A0.1432670.4822090.4102950.096*
H12B0.1867650.5617350.4610120.096*
H12C0.3220360.5065550.4242110.096*
C130.2623 (2)0.55756 (15)0.29654 (10)0.0741 (6)
H13A0.1905080.5079160.2857060.111*
H13B0.3684660.5334950.3003080.111*
H13C0.2589160.6036200.2615930.111*
H20.304 (2)0.6938 (12)0.4226 (5)0.054 (5)*
H1A0.822 (2)0.9726 (9)0.3790 (9)0.071 (6)*
H10.5026 (15)0.6380 (13)0.3800 (10)0.077 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0387 (6)0.0262 (5)0.0784 (8)0.0011 (4)0.0065 (5)0.0003 (5)
N10.0535 (9)0.0306 (7)0.0813 (10)0.0091 (6)0.0127 (7)0.0033 (6)
N20.0369 (6)0.0376 (6)0.0445 (7)0.0001 (5)0.0022 (5)0.0035 (5)
C10.0510 (9)0.0372 (8)0.0684 (10)0.0040 (7)0.0142 (8)0.0191 (7)
C20.0405 (7)0.0342 (7)0.0470 (8)0.0044 (6)0.0132 (6)0.0054 (6)
C30.0405 (8)0.0546 (9)0.0537 (9)0.0082 (7)0.0042 (7)0.0176 (7)
C40.0404 (8)0.0643 (10)0.0441 (8)0.0062 (7)0.0037 (6)0.0081 (7)
C50.0419 (8)0.0418 (8)0.0479 (8)0.0068 (6)0.0002 (6)0.0052 (6)
C60.0340 (7)0.0289 (6)0.0421 (7)0.0026 (5)0.0042 (6)0.0007 (5)
C70.0336 (7)0.0304 (7)0.0357 (6)0.0009 (5)0.0090 (5)0.0012 (5)
C80.0394 (7)0.0367 (7)0.0439 (7)0.0035 (6)0.0094 (6)0.0085 (6)
C90.0478 (9)0.0538 (9)0.0473 (8)0.0050 (7)0.0025 (7)0.0134 (7)
C100.0369 (8)0.0482 (9)0.0697 (10)0.0063 (7)0.0036 (7)0.0084 (8)
C110.0350 (7)0.0475 (8)0.0548 (9)0.0042 (6)0.0007 (6)0.0105 (7)
C120.0593 (11)0.0459 (9)0.0876 (13)0.0085 (8)0.0020 (10)0.0046 (9)
C130.0622 (11)0.0869 (14)0.0731 (12)0.0139 (10)0.0048 (10)0.0392 (11)
Geometric parameters (Å, º) top
O1—C61.3618 (17)C6—C71.4110 (18)
O1—H10.999 (9)C7—C81.4415 (19)
N1—C11.363 (2)C8—C91.498 (2)
N1—C21.367 (2)C9—H9A0.9700
N1—H1A0.877 (9)C9—H9B0.9700
N2—C101.475 (2)C9—C101.526 (2)
N2—C111.4774 (19)C10—H10A0.9700
N2—H20.897 (9)C10—H10B0.9700
C1—H1B0.9300C11—H110.9800
C1—C81.360 (2)C11—C121.511 (2)
C2—C31.394 (2)C11—C131.515 (2)
C2—C71.4131 (19)C12—H12A0.9600
C3—H30.9300C12—H12B0.9600
C3—C41.370 (2)C12—H12C0.9600
C4—H40.9300C13—H13A0.9600
C4—C51.399 (2)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C5—C61.378 (2)
C6—O1—H1108.7 (12)C8—C9—H9A108.6
C1—N1—C2108.74 (13)C8—C9—H9B108.6
C1—N1—H1A123.5 (13)C8—C9—C10114.77 (13)
C2—N1—H1A127.8 (14)H9A—C9—H9B107.6
C10—N2—C11115.11 (12)C10—C9—H9A108.6
C10—N2—H2109.6 (11)C10—C9—H9B108.6
C11—N2—H2106.9 (11)N2—C10—C9112.54 (12)
N1—C1—H1B124.3N2—C10—H10A109.1
C8—C1—N1111.47 (14)N2—C10—H10B109.1
C8—C1—H1B124.3C9—C10—H10A109.1
N1—C2—C3129.74 (14)C9—C10—H10B109.1
N1—C2—C7107.26 (13)H10A—C10—H10B107.8
C3—C2—C7123.00 (13)N2—C11—H11108.8
C2—C3—H3121.4N2—C11—C12108.75 (13)
C4—C3—C2117.20 (14)N2—C11—C13109.86 (13)
C4—C3—H3121.4C12—C11—H11108.8
C3—C4—H4119.2C12—C11—C13111.73 (15)
C3—C4—C5121.54 (15)C13—C11—H11108.8
C5—C4—H4119.2C11—C12—H12A109.5
C4—C5—H5119.3C11—C12—H12B109.5
C6—C5—C4121.41 (14)C11—C12—H12C109.5
C6—C5—H5119.3H12A—C12—H12B109.5
O1—C6—C5119.70 (12)H12A—C12—H12C109.5
O1—C6—C7121.38 (12)H12B—C12—H12C109.5
C5—C6—C7118.92 (13)C11—C13—H13A109.5
C2—C7—C8107.41 (12)C11—C13—H13B109.5
C6—C7—C2117.91 (13)C11—C13—H13C109.5
C6—C7—C8134.67 (13)H13A—C13—H13B109.5
C1—C8—C7105.12 (14)H13A—C13—H13C109.5
C1—C8—C9124.66 (14)H13B—C13—H13C109.5
C7—C8—C9130.21 (13)
O1—C6—C7—C2178.65 (12)C3—C2—C7—C8179.83 (13)
O1—C6—C7—C80.4 (2)C3—C4—C5—C60.5 (2)
N1—C1—C8—C70.54 (17)C4—C5—C6—O1179.29 (13)
N1—C1—C8—C9179.63 (14)C4—C5—C6—C70.1 (2)
N1—C2—C3—C4179.42 (15)C5—C6—C7—C20.74 (19)
N1—C2—C7—C6178.91 (12)C5—C6—C7—C8179.82 (14)
N1—C2—C7—C80.40 (15)C6—C7—C8—C1178.58 (15)
C1—N1—C2—C3179.82 (15)C6—C7—C8—C91.2 (3)
C1—N1—C2—C70.08 (17)C7—C2—C3—C40.3 (2)
C1—C8—C9—C10104.54 (17)C7—C8—C9—C1075.2 (2)
C2—N1—C1—C80.30 (19)C8—C9—C10—N272.62 (18)
C2—C3—C4—C50.4 (2)C10—N2—C11—C12166.98 (14)
C2—C7—C8—C10.57 (15)C10—N2—C11—C1370.45 (18)
C2—C7—C8—C9179.61 (14)C11—N2—C10—C9115.33 (15)
C3—C2—C7—C60.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.88 (1)2.06 (1)2.9217 (16)167 (2)
O1—H1···N21.00 (1)1.62 (1)2.6217 (15)176 (2)
Symmetry code: (i) x+3/2, y+1/2, z.
 

Acknowledgements

Financial statements and conflict of inter­est: this study was funded by CaaMTech, Inc. ARC reports an ownership inter­est in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).

References

First citationBergin, R., Carlström, D., Falkenberg, G. & Ringertz, H. (1968). Acta Cryst. B24, 882.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationBruker (2021). APEX4, SAINT, and SADABS. Bruker ACS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarhart-Harris, R. L. & Goodwin, G. M. (2017). Neuropsychopharmacol, 42, 2105–2113.  CAS Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 1316–1320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019b). IUCrData, 4, x191469.  Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020a). Acta Cryst. E76, 514–517.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). Acta Cryst. E76, 589–593.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Reid, B. G., Golen, J. A. & Manke, D. R. (2020c). ACS Omega, 5, 16940–16943.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlatfelter, G. C., Pham, D. N. K., Walther, D., Golen, J. A., Chadeayne, A. R., Baumann, M. H. & Manke, D. R. (2022a). ACS Omega, 7, 24888–24894.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGlatfelter, G. C., Pottie, E., Partilla, J. S., Sherwood, A. M., Kaylo, K., Pham, D. N. K., Naeem, M., Sammeta, V. R., DeBoer, S., Golen, J. A., Hulley, E. B., Stove, C. P., Chadeayne, A. R., Manke, D. R. & Baumann, M. H. (2022b). ACS Pharmacol. Transl. Sci. 5, 1181–1196.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHalberstadt, A. L., Chatha, M., Klein, A. K., Wallach, J. & Brandt, S. D. (2020). Neuropharmacology, 167, 107933.  Web of Science CrossRef PubMed Google Scholar
First citationJensen, N., Gartz, J. & Laatsch, H. (2006). Planta Med. 72, 665–666.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLenz, C., Wick, J. & Hoffmeister, D. (2017). J. Nat. Prod. 80, 2835–2838.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLeung, A. Y. & Paul, A. G. (1968). J. Pharm. Sci. 57, 1667–1671.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMalaca, S., Huestis, M. A., Lattanzio, L., Marsella, L. T., Tagliabracci, A., Carlier, J. & Busardò, F. P. (2022). Metabolites, 12, 705.  Web of Science CrossRef PubMed Google Scholar
First citationMansell, D., Brandt, S. D., Nasima, S., Turvey, N., Alder, J. F., Freeman, S. & Schwalbe, C. H. (2009). Spectrosc. Lett. 42, 156–166.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaeem, M., Sherwood, A. M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022). Acta Cryst. E78, 550–553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichols, D. E., Johnson, M. W. & Nichols, C. D. (2017). Clin. Pharmacol. Ther. 101, 209–219.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPetcher, T. J. & Weber, H. P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 946–948.  CSD CrossRef Web of Science Google Scholar
First citationSammeta, V. R., Rasapalli, S., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2020). IUCrData, 5, x201546.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSherwood, A. M., Halberstadt, A. L., Klein, A. K., McCorvy, J. D., Kaylo, K. W., Kargbo, R. B. & Meisenheimer, P. (2020). J. Nat. Prod. 83, 461–467.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpaeth, M., Plischka, P., Bohnen, F.-M., Herbst-Irmer, R. & Laatsch, H. (1997). J. Prakt. Chem.-Chem.-Zeitung, 339, 243–249.  CSD CrossRef CAS Web of Science Google Scholar
First citationStamets, P. (1996). Psilocybin Mushrooms of the World: An Identification Guide. Berkeley, CA: Ten Speed Press.  Google Scholar
First citationTroxler, F., Seemann, F. & Hofmann, A. (1959). Helv. Chim. Acta, 42, 2073–2103.  CrossRef CAS Web of Science Google Scholar
First citationWu, H.-Q., Zhou, J.-L., Huang, Z.-S., Gu, L.-Q. & Ng, S. W. (2004). Acta Cryst. E60, o337–o338.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds